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ABSTRACT 1	

Prediction of clinical drug response (CDR) of cancer patients, based on their clinical and 2	

molecular profiles obtained prior to administration of the drug, can play a significant role 3	

in individualized medicine. Machine learning models have the potential to address this 4	

issue, but training them requires data from a large number of patients treated with each 5	

drug, limiting their feasibility. While large databases of drug response and molecular 6	

profiles of preclinical in-vitro cancer cell lines (CCLs) exist for many drugs, it is unclear 7	

whether preclinical samples can be used to predict CDR of real patients.  8	

 9	

We designed a systematic approach to evaluate how well different algorithms, trained on 10	

gene expression and drug response of CCLs, can predict CDR of patients. Using data from 11	

two large databases, we evaluated various linear and non-linear algorithms, some of 12	

which utilized information on gene interactions. Then, we developed a new algorithm 13	

called TG-LASSO that explicitly integrates information on samples’ tissue of origin with 14	

gene expression profiles to improve prediction performance. Our results showed that 15	

regularized regression methods provide significantly accurate prediction. However, 16	

including the network information or common methods of including information on the 17	

tissue of origin did not improve the results. On the other hand, TG-LASSO improved the 18	

predictions and distinguished resistant and sensitive patients for 7 out of 13 drugs. 19	

Additionally, TG-LASSO identified genes associated with the drug response, including 20	

known targets and pathways involved in the drugs’ mechanism of action. Moreover, 21	
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genes identified by TG-LASSO for multiple drugs in a tissue were associated with patient 22	

survival. In summary, our analysis suggests that preclinical samples can be used to predict 23	

CDR of patients and identify biomarkers of drug sensitivity and survival. 24	

 25	

AUTHOR SUMMARY 26	

Cancer is among the leading causes of death globally and perdition of the drug response 27	

of patients to different treatments based on their clinical and molecular profiles can 28	

enable individualized cancer medicine. Machine learning algorithms have the potential to 29	

play a significant role in this task; but, these algorithms are designed based the premise 30	

that a large number of labeled training samples are available, and these samples are 31	

accurate representation of the profiles of real tumors. However, due to ethical and 32	

technical reasons, it is not possible to screen humans for many drugs, significantly limiting 33	

the size of training data. To overcome this data scarcity problem, machine learning 34	

models can be trained using large databases of preclinical samples (e.g. cancer cell line 35	

cultures). However, due to the major differences between preclinical samples and real 36	

tumors, it is unclear how accurately such preclinical-to-clinical computational models can 37	

predict the clinical drug response of cancer patients.  38	

 39	

Here, first we systematically evaluate a variety of different linear and nonlinear machine 40	

learning algorithms for this particular task using two large databases of preclinical (GDSC) 41	

and tumor samples (TCGA). Then, we present a novel method called TG-LASSO that 42	
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utilizes a new approach for explicitly incorporating the tissue of origin of samples in the 43	

prediction task. Our results show that TG-LASSO outperforms all other algorithms and can 44	

accurately distinguish resistant and sensitive patients for the majority of the tested drugs. 45	

Follow-up analysis reveal that this method can also identify biomarkers of drug sensitivity 46	

in each cancer type.  47	

 48	

INTRODUCTION  49	

Cancer is one of the leading causes of death globally and is expected to be the most 50	

important obstacle in increasing the life expectancy in the 21st century [1]. Individualized 51	

cancer medicine has the potential to revolutionize patient prognosis; however, two major 52	

challenges in this area include the prediction of the individual responses to different 53	

treatments and the identification of molecular biomarkers of drug sensitivity. While 54	

factors such as cancer type or its symptoms have been traditionally used to identify the 55	

treatment [2], the development of high throughput sequencing technologies [3] and 56	

sophisticated machine learning (ML) approaches present the possibility of individualizing 57	

treatment based on molecular ‘omics’ profiles of patients’ tumors [4]. However, due to 58	

the technical and ethical challenges of screening individuals against many drugs [5], such 59	

models are either trained for only a handful of drugs [6] or are trained using preclinical 60	

samples such as 2D cancer cell line cultures (CCLs) [7-10]. In spite of the success of these 61	

methods in predicting the drug response of left-out preclinical samples using models 62	
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trained on preclinical samples, they have had limited success in predicting the CDR of real 63	

patients [9, 11], with some exceptions [12-14].  64	

 65	

Various preclinical models of cancer have been developed to enable the study of cancer 66	

and its treatment in the laboratory. CCLs, which are 2D cell cultures developed from 67	

tumor samples, are one of the least expensive and most studied of these models. 68	

Recently, several large-scale studies have cataloged the molecular profiles of thousands 69	

of CCLs and their response to hundreds of drugs [15-17]. Although various computational 70	

models have been developed to predict the CCLs’ drug response using their molecular 71	

profiles [7-9], these models have shown limited success in predicting CDR in real patients. 72	

In spite of sporadic successes for a handful of drugs [12, 13], the current belief remains 73	

that developing an accurate computational ‘preclinical-to-clinical’ model is extremely 74	

difficult if not impossible [5]. Our goal in this study was to perform an unbiased systematic 75	

evaluation on a panel of drugs to determine 1) whether regression models trained on in 76	

vitro preclinical samples can accurately predict the CDR of real patients for each drug and 77	

2) what type of side information (e.g. interaction of the genes, the tissue of origin of 78	

samples) might improve the CDR prediction.  79	

 80	

To this end, we first formed a computational framework to systematically evaluate the 81	

prediction accuracy of different computational methods. We obtained preclinical training 82	

samples from the Genomics of Drug Sensitivity in Cancer (GDSC) database [16] and 83	
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obtained molecular profiles of tumor samples from The Cancer Genome Atlas (TCGA) [18]. 84	

We focused on drugs that were shared between these two datasets and utilized the gene 85	

expression profiles of samples to predict the drug response, since previous studies have 86	

demonstrated gene expression to be most informative for this task [7]. Our analysis 87	

showed that regularized linear regression models provide the best performance among 88	

various algorithms. In addition, we included prior information on the relationship among 89	

genes (in the form of gene interaction networks) using several algorithms; however, this 90	

prior information did not improve the prediction.  91	

 92	

Next, we developed a novel approach called Tissue-Guided LASSO (TG-LASSO) to explicitly 93	

include information on the tissue of origin of samples in the regularized regression model. 94	

This method outperformed all other approaches evaluated. Using this method, we 95	

showed that the CDR of cancer patients can be accurately predicted using preclinical CCL 96	

training samples, for the majority of drugs. More specifically, out of 12 drugs, TG-LASSO 97	

accurately separated resistant patients from sensitive patients for 7 drugs. In addition, for 98	

each tissue type and drug, TG-LASSO identified a small set of genes that may be used as 99	

tissue-specific biomarkers of drug response for each drug. We showed that genes selected 100	

by TG-LASSO for prediction of drug response are informative of patient survival when 101	

used as a gene signature, and also provide pathway-level insights into mechanisms of drug 102	

action. These results emphasize the clinical relevance of molecular profiles of preclinical 103	
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samples cataloged in large-scale databases and demonstrate the importance of properly 104	

including information on the lineage of samples in follow-up analyses.   105	

 106	

RESULTS 107	

Prediction of clinical drug response of cancer patients using in vitro experiments on 108	

preclinical cancer cell lines 109	

In this study, our first goal was to determine whether commonly used machine learning 110	

algorithms are capable of predicting the clinical drug response (CDR) in cancer patients 111	

using computational models trained only on cancer cell lines’ (CCLs) basal gene expression 112	

profiles (i.e. before administration of the drug) and their drug response. For this purpose, 113	

we identified 23 drugs (Supplementary Table S1) that were administered to patients of 114	

The Cancer Genome Atlas (TCGA) [18] and were also present in the Genomics of Drug 115	

Sensitivity in Cancer (GDSC) [16] database. We obtained the gene expression profiles of 116	

531 primary tumor samples of TCGA patients (17 different cancer types) who were 117	

administered any of these drugs from the Genomic Data Commons [19] (see Methods and 118	

Supplementary Table S1). We obtained the carefully collected and curated information 119	

on clinical drug response (CDR) of these patients from [6]. Similarly, we obtained the gene 120	

expression profiles and the half-maximal inhibitory concentration (IC50) of 979 cancer cell 121	

lines (of 55 different tissues) from GDSC (see Supplementary Table S1 for the number of 122	

cell lines from each tissue).  123	
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	124	

Figure 1: The pipeline used for prediction of clinical drug response of cancer patients using computational 125	
models trained on gene expression and drug response of preclinical cell line samples. 126	

 127	

We formed a computational framework to systematically evaluate the prediction 128	

capability of different algorithms (Fig. 1). In this framework, we first normalize the data 129	

and remove batch effects to ensure that the gene expression profiles from these two 130	

datasets are comparable (Methods). This is particularly important since GDSC contains 131	

microarray gene expression values, while TCGA contains RNA-seq data. We used ComBat 132	

[20] for batch effect removal, which has been previously used to successfully remove the 133	

batch effect between RNA-seq and microarray data [21] (see Supplementary Fig. S1 for 134	
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the distribution of samples before and after batch effect removal). Next, we trained a 135	

regression model to relate the gene expression profiles of CCLs to their IC50 values for a 136	

specific drug. Given this model, we then estimated IC50 values for different patient 137	

tumors using their gene expression profiles. Finally, we compared the estimated IC50 138	

values to the true CDR of the tumors of patients treated with the same drug to determine 139	

the accuracy of prediction. 140	

 141	

We used a one-sided nonparametric Mann Whitney U test to determine whether the 142	

estimated IC50 values of resistant tumors (those with CDR of ‘clinical progressive disease’ 143	

or ‘stable disease’) are significantly larger than sensitive tumors (those with CDR of ‘partial 144	

response’ or ‘complete response’). In this evaluation, we only used 12 drugs that had at 145	

least 2 tumor samples in each category of resistant or sensitive and had at least 8 total 146	

samples with known CDR. Table 1 shows a summary of the performance of different 147	

methods. In this table, we used the combined p-value of all 12 drugs (using Fisher’s 148	

method to combine p-values) as a measure to summarize the results of different 149	

methods. Table 2 and Supplementary Table S2 contain the detailed performance of LASSO 150	

and all other methods, respectively, for prediction of the CDR of each drug. We focused 151	

on these methods as they have been previously used for this task (but for fewer drugs 152	

and using other datasets), with different degrees of success [12, 22, 23]. Recently, [5] 153	

reported a computational model based on ridge regression to predict the CDR of TCGA 154	
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patients using GDSC training samples. Table 1 also includes the performance of this 155	

method using our evaluation, based on the predictions reported in the original paper.  156	

 157	
Table 1: The performance of different algorithms in predicting the CDR of patients using models trained on preclinical 158	

CCL samples. The second column shows the number of drugs for which a statistically significant discrimination between 159	

resistant and sensitive patients was obtained (one-sided Mann Whitney U test). The third column shows the total 160	

number of drugs included in the evaluation, and the fourth column shows the combined p-value (using Fisher’s method) 161	

for all the drugs in the analysis.  162	

Algorithm Drugs with P<0.05 Drugs Combined P (Fisher) 

LASSO 5 12 5.21E-09 

ElasticNet 5 12 1.18E-08 

Ridge 4 12 1.75E-05 

SVR (Linear Kernel) 3 12 1.10E-05 

SVR (RBF kernel) 3 12 2.92E-05 

Geeleher, et al. (2017) 1 11 1.85E-02 

Random Forest 1 12 0.19 

 163	

These results suggest several important points. First, consistent with the reports in [12, 164	

22], we observed that regularized linear models resulted in the best performance, with 165	

LASSO performing the best. Second, we observed that although the method proposed in 166	

[5] is based on ridge regression, its performance is inferior to the ridge regression utilized 167	

in our study. This is likely due to the difference between the preprocessing and batch 168	

effect removal approaches used in the two studies. More specifically, instead of using 169	

ComBat to homogenize the gene expression data in the preclinical and clinical samples 170	

(as was done in our study and also in [12]), they simply standardized the mean of each 171	

gene to zero and its variance to one. This point emphasizes the importance of data  172	
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Table 2: The performance of LASSO algorithm in predicting the CDR of patients using models trained on preclinical CCL 173	

samples. The second column shows the p-value (one-sided Mann Whitney U test) for the predicted IC50 values of 174	

sensitive and resistant tumors. The third and fourth columns show the number of resistant and sensitive tumors used 175	

in the statistical test.  176	

Drug P-value 

(one-sided) 

Num Resistant 

(PD or SD) 

Num Sensitive 

(CR or PR) 

bicalutamide 0.34 3 14 

bleomycin 0.10 4 46 

cisplatin 6.67E-05 25 111 

docetaxel 0.98 17 55 

doxorubicin 3.42E-03 7 54 

etoposide 7.57E-04 10 71 

gemcitabine 0.14 43 37 

paclitaxel 0.62 28 74 

sorafenib 0.19 13 2 

tamoxifen 8.82E-03 4 14 

temozolomide 9.08E-02 84 11 

vinorelbine 2.10E-03 6 23 

 177	

 178	
Table 3: The contingency table of predictions using LASSO for cisplatin. The predicted IC50 values were labeled as 179	

resistant or sensitive based on the threshold that obtained the highest oddsratio (oddsratio = 10.5, p<0.001).  180	

 Predicted Resistant Predicted Sensitive Total 

True Resistant 23 2 25 

True Sensitive 58 53 111 

Total 81 55 136 

 181	

preprocessing in pharmacogenomics studies. Third, we observed that for some drugs, the 182	

CDR could be accurately predicted independent of the method, while for others, the 183	

choice of the method is important. For example, the CDR of cisplatin could be accurately 184	

predicted (p<0.05) using six out of the seven methods above (as an example Table 3 shows 185	
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that 92% of resistant patients are correctly designated using LASSO, while keeping 186	

precision at ~30% and specificity at ~50%).  On the other hand, only support vector 187	

regression (SVR) with RBF kernel could accurately predict the CDR of temozolomide, 188	

suggesting a nonlinear relationship between the gene expression values and the drug 189	

response. As another example, the majority of the methods could not predict the CDR of 190	

taxane-based chemotherapy agents (docetaxel and paclitaxel). We suspect that this lack 191	

of success is due to the existence of various parameters that influence their response, 192	

such as tissue dependence or microenvironmental factors [24, 25], which may not be 193	

captured using these simple methods trained on gene expression profiles of CCLs. In fact, 194	

we later show that including the tissue of origin explicitly in the predicting model using 195	

TG-LASSO can significantly improve the drug response prediction for paclitaxel.  196	

 197	

Including information on gene interactions does not improve CDR prediction 198	

Various studies have suggested that including information on the interaction of the genes 199	

(and their protein products) or their involvement in different pathways can improve the 200	

accuracy of different bioinformatics tasks [26] such as gene prioritization [27], gene 201	

function prediction [28], gene set characterization [29], and tumor subtyping [30]. Since 202	

the genes (and their protein products) involved in a drugs mechanism of action 203	

biochemically and functionally interact with each other, we sought to determine whether 204	

including these interactions could improve CDR prediction. Since linear models provided 205	

the best performance in our preliminary analyses (Table 1), we focused on methods that 206	

incorporate gene interaction networks into linear predictive models. These included  207	
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Table 4: The performance of network-based algorithms in predicting the CDR of patients using models trained on 208	

preclinical CCL samples. The third column shows the number of drugs for which a statistically significant discrimination 209	

between resistant and sensitive patients was obtained (one-sided Mann Whitney U test). The fourth column shows the 210	

total number of drugs included in the evaluation, and the fifth column shows the combined p-value (using Fisher’s 211	

method) for all the drugs in the analysis. As a point of comparison, LASSO without the use of any network yielded p-212	

value < 0.05 for five of 12 drugs, with combined p-value of 5.21E-09 (Table 1).  213	

Network Algorithm Drugs with P<0.05 Drugs Combined P (Fisher) 

STRING PPI 

NICK 5 12 1.79E-06 

GELnet 5 12 1.21E-04 

SGL 3 12 1.75E-05 

ssGSEA-LASSO 3 12 6.94E-06 

STRING Co-Expression 

NICK 5 12 2.40E-06 

GELnet 5 12 1.07E-04 

SGL 2 12 2.62E-04 

ssGSEA-LASSO 4 12 1.40E-2 

STRING Text Mining 

NICK 5 12 2.14E-06 

GELnet 5 12 1.23E-04 

SGL 3 12 7.95E-05 

ssGSEA-LASSO 3 12 2.57E-02 

HumanNet Integrated 

Network 

NICK 5 12 1.09E-06 

GELnet 5 12 1.21E-04 

SGL 3 12 7.69E-04 

ssGSEA-LASSO 4 12 6.06E-07 

 214	

Generalized Elastic Net (GELnet) [31], Network-Induced Classification Kernels (NICK) [32], 215	

Sparse Group LASSO (SGL) [33], as well as a method based on LASSO combined with single 216	

sample gene set enrichment analysis (ssGSEA) [34] (see Methods). In all cases, we used 217	

four gene interaction networks: an experimentally verified network of protein-protein 218	

and genetic interactions, a gene co-expression network, and a network built based on text 219	

mining from the STRING database [35], as well as the HumanNet integrated network [36] 220	
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(see Methods and Supplementary Table S1 for details). Table 4 summarizes the results 221	

and Supplementary Table S3 provides the details of the evaluations. These results suggest 222	

that in this application, incorporating network information using these methods does not 223	

improve the prediction compared to linear models (e.g. LASSO) that do not incorporate 224	

such information (Table 1). This was in spite of the fact that some of these network-guided 225	

methods (e.g. NICK with STRING Text Mining) do improve the performance of within-226	

dataset cross-validation (using only GDSC samples) compared to LASSO (see 227	

Supplementary Methods). 228	

 229	

Incorporating the tissue of origin to improve CDR prediction  230	

Up to this point, we only used the tissue of origin of the preclinical and clinical samples 231	

implicitly (through their gene expression profiles) by training a single model for a drug on 232	

all CCLs of different lineages, and then using this global model to predict the response of 233	

patients with different cancer types. However, due to the importance of the tissue of 234	

origin in the efficacy of anticancer drugs observed in various studies [37, 38], we sought 235	

to determine whether explicitly including the tissue of origin would improve the 236	

prediction of CDR, and if so, the best method for this inclusion. For our analysis, we 237	

focused on variations of LASSO (without including gene interactions), which previously 238	

yielded the best performance among all the tested algorithms (Table 1). We matched the 239	

lineage of the CCLs with those of cancer patients, identifying 13 shared tissue types.  240	

 241	
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One of the most common methods of including the tissue of origin in regression analysis 242	

is introducing new binary features to each sample, representing whether the sample 243	

belongs to that tissue (‘1’) or not (‘0’) [15]. We included 13 such binary features in the 244	

analysis (‘method 1’). However, the prediction results of this approach were almost 245	

identical to the results of LASSO when not including any tissue information. This is not 246	

surprising, since in this application the number of one type of features (i.e. genes) is much 247	

larger than the number of the other type of features (i.e. tissue types). As a result, the 248	

predicted drug response values will be highly biased by the influence of gene expression 249	

data and the tissue of origin’s influence will be overlooked. As an alternative, we trained 250	

different LASSO models for each tissue type by restricting the training (CCL) and test 251	

(tumor) samples to those originating from the same tissue of interest (‘method 2’). For 252	

tumor samples without CCLs with matching tissue, we used all CCLs to train the model. 253	

This method resulted in poor performance, with only one drug having a significant p-value 254	

and a combined p-value (Fisher’s method) of 0.16. The reason behind this poor 255	

performance is the small number of samples in training each model: due to the tissue-256	

specificity condition imposed above, only a small fraction of the total samples are used in 257	

training each model, which results in poor generalizability of the models.  258	

 259	

To overcome these issues, while explicitly incorporating information on the samples’ 260	

tissue of origin, we devised a new approach called Tissue-Guided LASSO (TG-LASSO). The 261	

idea behind this approach is to use all CCLs originating from different tissue types in  262	
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	263	

Figure 2: The drug response prediction performance of seven drugs for which TG-LASSO predictions 264	
accurately separated sensitive patients from resistant. The box plots reflect the distribution of estimated IC50 265	
values using TG-LASSO for each group of resistant or sensitive patients.  266	

 267	

training the LASSO model, but choose the hyperparameter of the LASSO model,	𝛼, in a 268	

tissue-specific manner. This avoids the issues caused by the small number of training 269	

samples in Method 2, while adding a tissue-specific aspect to the training of the model. 270	

Since 𝛼  controls the number of features (i.e. genes) used by the LASSO model, this 271	

approach allows us to optimally select the number of predictive genes for each tissue type 272	

(see Methods for details), yet use all CCLs to train these tissue-specific regression models. 273	

1.45E-4 4.98E-4 8.21E-4 2.59E-3

9.92E-3 2.35E-2 4.84E-2
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This approach resulted in the best performance among all the methods tested, with 7 (out 274	

of 12) drugs showing significant discrimination between resistant and sensitive tumors 275	

(p<0.05) and a combined p-value (Fisher’s method for all 12 drugs) of 2.25E-10 (Fig. 2, 276	

Table 5 and Supplementary Table S4). These results not only show that including the 277	

tissue of origin can improve CDR prediction using preclinical samples, but also suggest 278	

that the method of utilizing this information has a significant influence on the 279	

performance. 280	

 281	

One interesting observation was that paclitaxel, the response of which could not be 282	

predicted accurately with the majority of methods reported in Table 1, showed a 283	

significant improvement in the response prediction with TG-LASSO (p = 0.048, one-sided 284	

Mann Whitney U test), suggesting a prominent role for the tissue of origin in its drug 285	

response. On the other hand, the CDR prediction of docetaxel did not improve (p = 0.99), 286	

even though docetaxel is also a taxane, like paclitaxel, and these two drugs have a 287	

statistically significant correlation in their CCL responses (Spearman rank correlation = 288	

0.38, p = 1.7E-13). We suspected that this difference between the performance of TG-289	

LASSO for docetaxel and paclitaxel is related to how well the CCL panel used for training 290	

represents the tumor samples of patients to whom these drugs were administered. To 291	

evaluate this, we calculated the similarity between the gene expression profiles of tumor 292	

samples to those of CCLs from the same tissue of origin for these drugs. This analysis 293	

showed a lower similarity between the docetaxel-administered tumors and CCLs (average 294	
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cosine similarity = 0.07) compared to paclitaxel-administered tumors and CCLs (average 295	

cosine similarity = 0.11). These results provide evidence in favor of our hypothesis that 296	

the difference in the performance of TG-LASSO is related to how well the CCLs represent 297	

the profile of tumors to which these two drugs were administered.  298	

 299	

Table 5: The prediction performance of different approaches that incorporate information on tissue of origin in LASSO. 300	

The second column shows the number of drugs for which a statistically significant discrimination between resistant and 301	

sensitive patients was obtained (one-sided Mann Whitney U test). The third column shows the total number of drugs 302	

included in the evaluation, and the fourth column shows the combined p-value (using Fisher’s method) for all the drugs 303	

in the analysis.  304	

Algorithm Drugs with P<0.05 Drugs Combined P (Fisher) 

TG-LASSO  7 12 2.25E-10 

Method 1  5 12 5.21E-09 

Method 2 1 12 0.16 

 305	

Since some of the drugs used in our study were administered in combination with other 306	

drugs, we asked how well TG-LASSO predicts the CDR in such cases of treatment with drug 307	

combinations. For this purpose, we evaluated its CDR prediction for a drug only on 308	

patients for whom that drug was administered over a period overlapping their treatment 309	

with at least one other drug.  We limited our analysis to 9 drugs with at least two samples 310	

(patients) in each group (sensitive and resistant) and with at least 8 samples in total. 311	

Supplementary Table S5 shows that, consistent with our previous results, TG-LASSO 312	

outperforms all other methods, capable of accurately predicting the CDR of 6 (out of 9) 313	

drugs (p<0.05, one-sided Mann Whitney U test).  314	
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Characterization of genes identified by TG-LASSO  315	

During its training phase, TG-LASSO automatically selects a subset of genes to be used in 316	

the regression model by tuning the hyperparameter 𝛼 introduced above. The number of 317	

genes selected in this manner depends on the drug and tissue type for which the model 318	

is trained to make response predictions and was found to range between 9 and 808 genes 319	

with a median of 174 genes. The genes identified by TG-LASSO included many direct 320	

targets of each drug. (For these analyses we used all 23 drugs shared between TCGA and 321	

GDSC and not just those with a large number of samples in TCGA). For example, EGFR, 322	

which is a direct target of both cetuximab and gefitinib [39], was selected by this 323	

algorithm when trained to predict response of these drugs in each of the 13 tissue types 324	

(Supplementary Table S6). Similarly, FLT3, a target of the drugs sorafenib and sunitinib 325	

[39], was selected by TG-LASSO for predicting response to these drugs in 13 and 12 326	

tissues, respectively. In addition to direct targets, many of the identified genes have been 327	

shown to be indirect targets of these drugs and to be involved in their mechanism of 328	

action. For example DNER, a gene identified by TG-LASSO for all tissue types, has been 329	

shown to be significantly upregulated in response to this drug in NCI-H526 cell lines [40].  330	

 331	

More importantly, the knockdown or overexpression of many of the identified genes has 332	

been shown to influence the sensitivity of cancer cells to these drugs. For example, the 333	

shRNA knockdown of CHI3L1, a gene identified for etoposide and cisplatin response in 334	

every tissue, has been shown to sensitize glioma cells to these two drugs, while its 335	
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overexpression reduced their sensitivity [41]. As another example, the knockdown of 336	

SALL4 (identified in all tissues) in cancer cell lines has been shown to increase the 337	

sensitivity of lung cancer cells [42] and esophageal squamous cell carcinoma cells [43] to 338	

cisplatin. Supplementary Table S7 summarizes some of the evidence we curated from 339	

literature for the role of different genes identified by TG-LASSO in all tissue types for 340	

cisplatin, as an illustration. These examples show the fact that the genes utilized by TG-341	

LASSO in prediction of CDR of patients not only include targets of respective drugs, but 342	

also include genes whose expression has been experimentally shown to predict the 343	

sensitivity of these drugs: a property necessary for any predictive model of drug response.  344	

 345	

Next, we sought to quantify the tissue specificity of identified gene sets for different 346	

drugs. For this purpose, we used the Jaccard Distance (JD), which measures the distance 347	

of two sets: mutual exclusive sets have JD = 100% and identical sets have JD = 0%. For 348	

each drug, we calculated the JD of gene sets identified for that drug in each pair of tissues 349	

(Supplementary Table S8). Nine out of 23 drugs had an average JD (calculated across all 350	

tissue pairs) of more than 50%. Additionally, there was a high degree of variability in the 351	

average JD of different drugs’ gene sets, with Bleomycin having the lowest average JD of 352	

23.4% and Lapatinib having the highest average JD of 65.0% (Supplementary Fig. S3), 353	

which suggests a tissue-specific mechanism of action for the latter drug. These results 354	

illustrate that TG-LASSO may identify largely different gene sets for a drug from one tissue 355	

to another.   356	
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Genes identified for multiple drugs in a tissue are associated with patient survival 357	

We hypothesized that genes that were identified by TG-LASSO as response predictors of 358	

many drugs in a single tissue (Supplementary Table S9) may be able to predict the survival 359	

of patients who have cancer that originated from that tissue, as they may play a significant 360	

role in the development and progress of the disease. To test this, we obtained gene 361	

expression values of 4908 primary tumors from 10 different cancer types (corresponding 362	

to the tissue types in our study) from TCGA, requiring the data to include at least 170 363	

patients and 20 incidents of deaths for each cancer type (Supplementary Table S10). Then, 364	

we clustered the primary tumors of each cancer type into two groups based on the 365	

expression of genes identified by TG-LASSO for more than 5 different drugs in the tissue 366	

corresponding to that cancer type. We used hierarchical clustering with cosine similarity. 367	

Kaplan-Meier survival analysis showed that this clustering approach could separate 368	

patients with poor survival from those with better survival (p < 0.05) for 6 out of the 10 369	

cancer types (Fig. 3, Supplementary Fig. S2, Supplementary Table S10). These results 370	

provide further evidence in favor of the role of these genes in the progress of the 371	

corresponding cancer type.   372	

 373	

Functional and pathway enrichment analysis of LGG related genes 374	

Since Kaplan-Meier analysis using Lower Grade Glioma (LGG) patients resulted in the most 375	

significant p-value (logrank test, p=7.61E-13), we sought to further characterize the 376	

identified genes that resulted in this significant patient stratification using functional and 377	
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pathway enrichment analysis. For this purpose, we used the KnowEnG’s gene set 378	

characterization pipeline [26] and identified 20 gene ontology (GO) terms and two 379	

pathways enriched (FDR < 0.05) in this gene set (Supplementary Table S11).  380	

	381	

Figure 3: The Kaplan Meier survival analysis results for six cancer types. Patients were clustered based on 382	
the expression of genes that were identified by TG-LASSO for more than 5 drugs in the corresponding tissue. 383	
The p-value was calculated using a logrank test. 384	

 385	
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Several of the most significantly enriched GO terms were related to extracellular matrix 386	

(ECM), which plays an important role in the infiltration of glioma cells into the brain [44, 387	

45]. Another important GO term was neutrophil degranulation (FDR=2.1E-3). Neutrophils 388	

are the most abundant type of white blood cells and the number of infiltrating neutrophils 389	

have been shown to be associated with the malignancy of glioma and its drug resistance 390	

[46]. In addition, it has been shown that in patients with glioblastoma, neutrophil 391	

degranulation is associated with peripheral cellular immunosuppression [47]. Another 392	

noteworthy GO term was integrin binding (FDR = 0.037). Integrins are transmembrane 393	

proteins that mediate cell adhesion, play an important role in promoting the invasiveness 394	

of glioma cells [48], and have been suggested as potential targets with diagnostic and 395	

prognostic value in glioma [49]. Several enriched GO terms were related to the activity of 396	

endopeptidases and collagen. It has been shown that the level of collagen in glioma 397	

patients is increased, and it also plays a key role in promoting the tumor progression [50]. 398	

Matrix metalloproteinases (MMPs) are one important class of endopeptidases that are 399	

responsible for regulating the turnover of collagens, and their expression and activity has 400	

been associated with the progression of human glioma [50, 51]. Finally, ‘response to drug’ 401	

was another enriched GO term, which reflects the relevance of the identified genes to the 402	

general mechanisms of drug response in a cell.  403	

 404	

The enriched pathways included miRNA targets in ECM and membrane receptors 405	

(FDR=2.0E-3) and Syndecan-1-mediated signaling (FDR=0.04). Syndecan-1 is a cell surface 406	
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heparan sulfate proteoglycan and its expression has been shown to be correlated with 407	

tumor cell differentiation in various cancers [52]. In addition, its knockdown has been 408	

shown to inhibit glioma cell proliferation and invasion and has been suggested as a 409	

therapeutic target for glioma [53]. These results support our expectation that the LGG-410	

related gene set not only involves drug response related genes, but also includes those 411	

that play important roles in glioma and may act as diagnostic biomarkers or therapeutic 412	

targets.  413	

 414	

DISCUSSION 415	

Ideally, a predictive model of CDR should be trained on data obtained directly from 416	

patients. Similarly, identification of biomarkers of drug sensitivity has the most potential 417	

clinical impact when based on patient data. However, since in practice most patients only 418	

receive the “standard of care” treatment based on their specific cancer type, CDR data is 419	

scarcely available for the newly approved drugs or drugs that have not yet passed the 420	

clinical trial, limiting our ability to decipher the mechanisms of drug sensitivity for these 421	

drugs. An alternative approach is to train ML models on preclinical samples (e.g. CCLs) to 422	

predict the CDR of patients, then use these predictions to discover novel biomarkers and 423	

druggable targets.  424	

 425	

Recent large-scale studies that have cataloged the molecular profiles of thousands of CCLs 426	

and their response to hundreds of drugs [15-17] are great resources to achieve this goal. 427	
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In this study, we adopted such an approach and systematically assessed a variety of ML 428	

algorithms. Our analyses showed that the CDR of many drugs can be predicted using ML 429	

models (especially, regularized linear models) trained on CCLs. However, by evaluating a 430	

variety of methods that include auxiliary information (e.g. interaction of the genes, the 431	

tissue of origin, etc.), we observed that improving the performance beyond what is 432	

achievable using linear models is extremely difficult and requires careful modeling and 433	

novel computational techniques. It appears that the way by which auxiliary information 434	

is utilized has a large impact: for example, several methods that include the tissue of origin 435	

did not improve the results obtained by LASSO, and only TG-LASSO could improve the 436	

performance.   Additionally, we showed that TG-LASSO identifies tissue-specific gene sets 437	

for each drug that include various targets of the drug, genes involved in the drug’s 438	

mechanism of action, and genes whose under- or over-expression could sensitize cancer 439	

cells to the drug. Moreover, these sets include genes that are involved in cancer 440	

progression and are associated with patient survival. These results suggest that in 441	

addition to a superior drug response prediction performance, TG-LASSO can identify 442	

biomarkers of patient survival and drug sensitivity.  443	

 444	

We note that due to the major differences between CCLs and tumors (e.g. the greater 445	

heterogeneity of cells in a tumour compared to CCLs), obtaining more accurate results 446	

based on classical ML techniques may not be possible. The reason is that classical ML 447	

methods assume that the training samples and the test samples are drawn from the same 448	
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or similar distributions. While batch effect removal and other homogenization and 449	

normalization techniques help to alleviate this issue, more realistic preclinical models of 450	

cancer are necessary to significantly improve these results. Recent advances in 451	

developing human derived xenografts [54] and 3D human organoids [55] may enable 452	

developing a more accurate predictive model of CDR in cancer. However, due to the 453	

current high cost of these models, a more practical approach is developing computational 454	

methods that explicitly model these differences. Such methods must go beyond utilizing 455	

bulk gene expression data and take advantage of multi-omics analysis of bulk and single-456	

cell sequencing profiles of samples. Due to the rapid advances in these domains, we 457	

expect that large databases of single-cell multi-omics profiles of preclinical and clinical 458	

samples and their drug response will become available in the near future.  459	

 460	

METHODS 461	

Datasets, preprocessing and batch effect removal 462	

We obtained the gene expression profiles (FPKM values) of 531 primary tumor samples 463	

of TCGA patients who were administered any of the 23 drugs mentioned earlier. First, we 464	

removed genes that contained missing values. We also removed any gene that was not 465	

expressed (i.e. FPKM<1) for more than 90% of the samples. Then, we performed a log-466	

transformation and obtained log2(FPKM+0.1) values for each gene. The resulting gene 467	

expression matrix contained 19,437 genes and 531 samples. We obtained the CDR of 468	

these patients from the supplementary files of [6] (see the original paper for their 469	
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approach in curating this data from TCGA). Similarly, we obtained the Robust Multi-array 470	

Average (RMA)-normalized basal gene expression profiles and the logarithm of half 471	

maximal inhibitory concentration, log(IC50), of 979 cancer cell lines from GDSC 472	

(Supplementary Table S1) for 17,737 genes.  473	

 474	

To homogenize the gene expression data from these two datasets, we first removed 475	

genes not present in both datasets as well as genes with low variability across all the 476	

samples (standard deviation < 0.1), resulting in a total of 13,942 shared genes. Then, we 477	

used ComBat [20] for batch effect removal to homogenize the gene expression data from 478	

TCGA (RNA-seq) and GDSC (microarray). This approach, which has been previously used 479	

to successfully homogenize these two data types [21], removed the batch effect present 480	

in the gene expression datasets (see Supplementary Fig. S1). For all follow-up analysis, we 481	

performed z-score normalization on each gene across all the samples to ensure a mean 482	

of zero and a standard deviation equal to one.  483	

 484	

For the network-guided analyses, we downloaded four networks of gene interactions in 485	

humans from the KnowEnG’s knowledgebase of genomic networks [26] 486	

(https://github.com/KnowEnG/KN_Fetcher/blob/master/Contents.md). The details of 487	

each network including the number of nodes and edges are provided in Supplementary 488	

Table S1.  489	

 490	
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Machine learning regression models 491	

The baseline models (Table 1) were all implemented using the Scikit-learn [56] in Python 492	

and the hyperparameters were selected using cross validation (using only CCL samples). 493	

For the network-based algorithms (Table 4), we used four networks summarized in 494	

Supplementary Table S1. We used the normalized graph Laplacian of these networks to 495	

run GELnet [31]. This method forces neighboring genes in the graph to have similar 496	

weights in order to guide drug response prediction. Specifically, it defines a regularization 497	

penalty 𝑅(𝑤) for the standard linear model. 498	

𝑅(𝑤) = 𝜆)*𝑑,-𝑤,- +
,

	
𝜆/
2 𝑤

1𝑃𝑤 499	

where 𝑑  and 𝑃  are additional penalty weights for individual features and pairs of 500	

features, respectively. Our basic GELnet implementation sets 𝑃 = 𝐿  and 𝑑 = 0 . 501	

Furthermore, we used Network-Induced Classification Kernels (NICK), a method closely 502	

related to GELnet. The NICK framework is actually a special case of the GELnet, with 𝑃 =503	

(𝐼 + 𝛽𝐿)	 for some 𝛽 ≥ 0  and 𝑑 = 0 . The parameter 𝛽  provides a trade-off between 504	

graph-driven regularization and the traditional ridge regression penalty of the SVMs. 505	

 506	

In addition to the above methods that utilize the graph Laplacian of each network in the 507	

regression algorithm, we used sparse group LASSO (SGL). This method takes a collection 508	

of pathways as input and induces sparsity at both the pathway and the gene level to 509	

generate the input. We performed community detection on each of the networks in Table 510	

4 by maximizing the modularity using the Louvain heuristics [57] to identify gene sets to 511	
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be used in the SGL algorithm. We then ran SGL by fitting a regularized generalized linear 512	

model with group memberships of genes as deemed by the community detection to 513	

predict drug response. 514	

 515	

Finally, we developed a heuristic method based on ssGSEA [34] followed by LASSO. In this 516	

method, we used ssGSEA to assign a score to each sample for the enrichment of its gene 517	

expression profile in communities of each network, obtained earlier. These scores where 518	

then used as features to train a LASSO model for prediction of CDR.  519	

 520	

Methods for including tissue of origin in CDR prediction 521	

In the first approach (Method 1 in Table 5), we augmented the gene expression profile of 522	

each sample (both CCLs and tumors) with binary features corresponding to different 523	

tissues of origin shared between the TCGA and GDSC samples (a total of 13 features). For 524	

each sample its tissue of origin was assigned a value of ‘1’, and other tissues were assigned 525	

a value of ‘0’. Then, the LASSO algorithm was used to train a drug response model on CCLs 526	

and predict the CDR of tumors.  527	

 528	

In the second approach (Method 2 in Table 5), we trained different LASSO models for each 529	

drug-tissue pair (23 drugs and 13 tissue types). More specifically, to predict the CDR of 530	

drug 𝑑 in a tumor of tissue 𝑡, we trained a LASSO regression model using the IC50 of drug 531	

𝑑 in only cell lines corresponding to tissue 𝑡 (i.e. a subset of the training samples). For 532	
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tumors originating in tissues without matching training CCLs, we used all the CCLs to train 533	

the model.  534	

 535	

Prediction of CDR in cancer tumors using Tissue-guided LASSO 536	

TG-LASSO is a method for predicting the CDR of tumors using the information in all 537	

training samples (originating from different tissue lineages), while incorporating 538	

information on the tissue of origin of the samples. By utilizing all the training samples, it 539	

overcomes the lack of generalizability stemming from limited number of CCLs from each 540	

tissue type, a major issue in Method 2 above. In addition, by incorporating the 541	

information on the tissue of origin of the samples in the training step, it improves the 542	

performance of tissue-naïve regression methods, such as those in Table 1.  543	

 544	

During training, LASSO minimizes the objective function )
/9
‖𝑦 − 𝑋𝑤‖// + 𝛼‖𝑤‖), where 545	

𝑛 is the number of training samples, 𝑦 is the response vector of length 𝑛, 𝑋 is an 𝑛 × 𝑚 546	

feature matrix (𝑚  is the number of features), ‖	‖/  denotes the L2 vector norm, ‖	‖) 547	

denotes the L1 vector norm, and 𝛼 is the hyperparameter that determines the sparsity of 548	

the model (i.e. number of features used in training). The hyperparameter tuning is usually 549	

achieved independent of the structure of the training samples (e.g. their tissue of origin), 550	

for example using random cross-validation or a regularization path. However, we and 551	

others [58] have shown that including the group structure of data in selecting the 552	

hyperparameter is important in assessing the generalizability of regression models. 553	
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Motivated by these results, even though TG-LASSO utilizes the gene expression and the 554	

drug response of all CCLs in training, the hyperparameter 𝛼 is selected in a tissue- and 555	

drug-specific manner, as explained below. 556	

 557	

Let 𝐷 be the set of all drugs and 𝑇 be the set of all tissues in the test set (i.e. the TCGA 558	

dataset). To train a model to predict the CDR of tumor samples from tissue 𝑡 ∈ 𝑇 to drug 559	

𝑑 ∈ 𝐷, we identify all the training CCLs corresponding to tissue 𝑡 and use them as the 560	

validation set. In addition, we use all other CCLs as the training set. Then, the 561	

hyperparameter 𝛼 is selected as the one that obtains the best accuracy on predicting the 562	

IC50 values of the samples of tissue 𝑡 in the validation set. Designing the hyperparameter-563	

tuning step such that the validation and the test sets have the same tissues of origin 564	

ensures that the value of 𝛼 is selected so as to generalize well to the test set. The obtained 565	

value of 𝛼  is then used with all CCLs (including those from tissue 𝑡 ) to fit a model 566	

minimizing the LASSO objective function. In the prediction step, this fitted model is then 567	

used with the gene expression of tumor samples from tissue 𝑡 to predict their CDR.  568	

 569	

Gene ontology and pathway enrichment analysis 570	

We used the gene set characterization pipeline of KnowEnG analytical platform [26] for 571	

this analysis, which utilizes Fisher’s exact test to determine the significance of 572	

enrichments. We excluded GOs or pathways with too few genes, focusing only on those 573	

with more than 10 members. For the pathway analysis, we used the Enrichr pathways 574	
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[59] available on KnowEnG. All p-values were corrected for multiple hypothesis testing 575	

using Benjamini-Hochberg false discovery rate, available as part of the python module 576	

[60]. 577	

 578	

Software availability: 579	

An implementation of TG-LASSO in python, with appropriate documentation and input 580	

files, is available at: https://github.com/emad2/TG-LASSO. 581	
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