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ABSTRACT 

Background: Primary somatosensory cortex (S1) is involved in pain processing and thus its 

suppression using neuromodulatory techniques such as continuous theta burst stimulation 

(cTBS) might be a potential pain management strategy in patients with neuropathic pain. S1 cTBS 

is known to elevate pain threshold in young adults. However, the persistence of this effect is 

unknown.  

Objective/Hypothesis: We hypothesized persistent elevation of pain threshold following cTBS 

over S1 in healthy, young adults. 

Methods: We recruited ten subjects in a sham-controlled crossover design and recorded their 

electrical pain threshold (EPT) for 40 min following cTBS over S1. We assessed corticospinal 

excitability (CSE) to rule out the involvement of primary motor cortex due to spread of current.  

Results: cTBS over S1 elevated EPT without modulating CSE compared to sham stimulation. 

EPT was elevated for 40 min post-cTBS. 

Conclusions: S1 can be focally targeted using cTBS for a longer lasting pain relief in patients.  
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INTRODUCTION 

Understanding cortical mechanisms for pain processing has been of considerable clinical 

interest for design of effective pain management strategies using neuromodulatory techniques 

[1–6]. Several neuroimaging studies have suggested involvement of cortical areas such as 

dorsolateral prefrontal cortex, primary somatosensory cortex, secondary somatosensory cortex, 

and primary motor cortex in processing of painful stimuli  [1,7–10]. Transcranial magnetic 

stimulation (TMS) has been used to test the critical role of these areas in pain processing 

[2,3,8,11–13]. TMS-induced disruption of primary somatosensory cortex (S1) has been shown to 

increase reports of pain and elevate pain threshold in able-bodied individuals, thus suggesting 

the causal involvement of S1 in pain processing [2,14]. For instance, continuous theta burst 

stimulation (cTBS; a form of repetitive TMS), over S1 significantly reduced the perception of CO2 

laser-evoked painful stimuli delivered to the contralateral hand when compared to the ipsilateral 

hand assessed immediately after S1 stimulation [2]. However, the persistence of after effects of 

S1 stimulation on pain threshold remains unknown.   

Moreover, due to proximity of S1 and primary motor cortex (M1) regions, TMS over S1 

could also induce current in the surrounding M1 region [15]. As M1 is also known to be critically 

involved in pain processing [4,5,7,11], the finding of elevated pain threshold reported following 

TMS over S1 might be confounded by changes in M1 excitability. Therefore, whether S1 plays a 

role in pain processing independent of M1 remains unknown. We studied the time course of the 

effects of cTBS delivered to S1 on electrical pain threshold (EPT), in healthy young adults, in a 

sham-controlled, crossover design. We hypothesized that cTBS over S1 would elevate EPT in 

healthy young adults. Because cTBS over M1 is known to reduce corticospinal excitability (CSE) 

for at least 30 min [16–18], we expected that the effects of cTBS over S1 on EPT will last for at 

least 30 minutes. We addressed the possibility of current spread to M1 by assessing CSE with 

single TMS pulses delivered over M1 [18,19].  
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MATERIALS AND METHODS 

Ten healthy, young, right-handed subjects [20] (mean±SD: 25.30±4.81 years; 4 females) provided 

written informed consent to participate in two sessions in a counterbalanced order. We estimated 

the effect size and sample size using our published data [21] on the change in electrical pain 

threshold (EPT) following breathing-controlled electrical stimulation in young adults [21–23]. To 

achieve at least 90% power to detect change in EPT following cTBS over S1, a sample size of 10 

would be required assuming a Type I error of 0.05 and an effect size of 0.32 [24]. This sample 

size was consistent with that used in previous studies [17,21,25,26]. The study was approved by 

the Institutional Review Board of the University of Houston. 

Electrical pain threshold (EPT) was measured over the abductor pollicis brevis (APB) 

muscle. Three repetitions were performed, and the corresponding average was used (see SI for 

details). We assessed CSE by measuring the size of motor evoked potentials (MEP) elicited in 

the first dorsal interosseous muscle (FDI) of the right hand across 10 trials. Tactile sensitivity and 

electrical sensory threshold were also assessed (see SI). We assessed each measure once 

before cTBS (PRE) and then every 10 min starting immediately post cTBS (POST0) until 40 min 

(POST10, POST20, POST30, POST40). 

We used cTBS [16,17,27] to disrupt left S1 representing the contralateral hand. To target 

S1 (cTBSS1), we positioned the TMS coil over postcentral gyrus posterior to the M1 FDI hotspot 

identified on subject-specific MRI scans [17,28]. For sham stimulation (cTBSSHAM), same 

stimulation parameters were used, but the coil was placed perpendicular over the left S1 region 

so that no relevant current flow was induced in the cortical tissue [29–31].  

We used repeated measures analysis of variance (α=0.05) with within-subject factors of 

CONDITION (cTBSS1, cTBSSHAM) and TIME (PRE, POST0, POST10, POST20, POST30, POST40). 

Posthoc paired t-tests were corrected for multiple comparisons using the false discovery rate at 

p<0.05 [32,33].  
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RESULTS 

 No subjects reported any side effects during or after the experimental sessions. 

EPT increased after cTBSS1 as compared to cTBSSHAM (CONDITION×TIME interaction: 

F5,45=3.37, p=0.011, ƞp
2=0.27; Fig.1A). Following cTBSS1, EPT increased from PRE to Post0 

(t9=3.56, p=0.006), Post10 (t9=2.43, p=0.038), Post20 (t9=2.85, p=0.019), Post30 (t9=3.12, p=0.012), 

and Post40 (t9=2.96, p=0.016). There was no change in EPT following cTBSSHAM (all t9<1.57, all 

p>0.15; refer Figs. 1C and 1D for subject-wise changes in EPT). There was no difference in PRE 

EPT between cTBSS1 and cTBSSHAM (t9=0.68, p=0.51). The results for tactile sensitivity and 

electrical sensory threshold are reported in SI.  

We found no difference in MEP amplitude across cTBSS1 and cTBSSHAM (no 

CONDITION×TIME interaction: F5,45=2.24, p=0.07, ƞp
2=0.19; no CONDITION effect: F1,9=1.39, 

p=0.27 ƞp
2=0.13; no TIME effect: F5.45,=0.23, p=0.95, ƞp

2=0.03; Fig.1B). There was no difference 

in PRE MEP amplitude between cTBSS1 and cTBSSHAM (t9=1.6, p=0.14). These findings indicate 

that the stimulation current delivered over S1 did not affect CSE.  

DISCUSSION 

We found that cTBS over S1 elevated EPT for 40 min in healthy young adults without 

changes in the MEP size assessed over M1.  A spread of current from S1 to M1 would have 

influenced MEP size because previous work including ours have found a reduction in MEP size 

following disruption of M1 activity using cTBS at rest [16–18]. This finding of unchanged MEP size 

precludes the role of M1 in the observed effects of cTBS over S1 on EPT. Our findings provide 

evidence that a single session of cTBS over S1 could provide persistent analgesic effect in 

healthy adults. In contrast, previous studies only reported analgesic effects immediately [2] or 5 

minutes following cTBS over S1 [8]. In summary, our findings suggest that cTBS over S1 can 

serve as a potential focal neuromodulatory tool for pain management. The long-term effect after 
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repetitive use of this intervention and its application in clinical populations need further 

investigation.  
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FIGURE CAPTION 

Figure 1. Time course of electrical pain threshold (EPT) and corticospinal excitability (CSE) post 

cTBS over S1. A. Increase in EPT following cTBS over S1 compared to sham stimulation 

(significant Condition × Time interaction: p=0.011). Asterisks indicate a significant increase in EPT 

at Post time point with respect to PRE (p < 0.05, FDR-corrected).  B. No change in group-level 

data for MEP, a measure of CSE, assessed over M1 following cTBSS1 and cTBSSHAM. For A and 

B, each circle and error bar represent mean and standard error across subjects (n=10) 

respectively. C. Subject-wise time course of change in EPT with respect to PRE following cTBS 

over S1 (solid circles). D. Subject-wise time course of change in EPT with respect to PRE following 

sham stimulation (open circles). In addition to EPT and CSE, we also measured tactile sensitivity 

and electrical sensory thresholds as our secondary measures and these findings are presented 

in Supplementary Information.  
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SUPPLEMENTARY INFORMATION 

METHODS 

Assessment of corticospinal excitability (CSE) 

We measured CSE by assessing the size of motor evoked potentials (MEP) elicited in the 

first dorsal interosseous muscle (FDI) of the right hand. The FDI muscle activity was recorded 

using differential surface electrodes (Delsys Bagnoli EMG System, Boston, MA). The data were 

sampled at 5 kHz using CED data acquisition board (Micro1401, Cambridge, England).  

Single-pulse TMS was used to assess CSE over primary motor cortex (M1) during the 

experiment [1,2]. We first estimated the resting motor threshold (rMT) by delivering 

suprathreshold single monophasic TMS pulses (Magstim 200, Whitland, UK). The TMS coil was 

held tangential to the scalp and perpendicular to the presumed direction of the central sulcus, 45° 

from the midsagittal line, with the handle pointing backward, inducing current in the 

posteroanterior direction. The coil position was adjusted to optimize the motor-evoked potential 

(MEP) in the FDI muscle. Following this procedure, the rMT was estimated as the minimum TMS-

intensity to elicit motor evoked potential (MEP) with an amplitude of ~50 µV (peak-to-peak) for at 

least 5 of the 10 consecutive trials in the FDI muscle [1–4]. The TMS coil was stabilized using a 

coil holder mounted on the TMS chair (Rogue Research). The TMS coil was traced on the 

subject’s scalp using a surgical marker pen. The coil location was regularly checked for any 

displacement that might have occurred during a session. The average rMT across subjects 

(mean±SE) was 54±3% of the maximum stimulator output. The corticospinal excitability was 

assessed with the intensity set at 120% of rMT over the identified FDI region and averaged across 

10 consecutive trials.  

In addition, we also assessed active motor threshold (aMT) to set the stimulation intensity 

of continuous theta burst stimulation. For aMT estimation, subjects were instructed to exert 20% 

of individual’s maximum voluntary force (MVF) on a grip device instrumented with force 
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transducers (Nano-25; ATI Industrial Automation, Garner, NC, 1 kHz sampling rate) with the tips 

of index finger and thumb using visual feedback provided on a computer monitor. Each subject 

was instructed to grip the device as hard as possible for one second followed by a break (~1 min). 

This procedure was repeated three times, and we used the largest grip force as the MVF recorded 

across three trials. The aMT was determined as the TMS intensity that induced 200 μV peak-to-

peak MEPs in 5 of 10 trials in the FDI muscle during force production at 20% of MVF [5]. The aMT 

was 44±2% (mean across all subjects±SE; n=10) of the maximum stimulator output.  

Continuous theta burst stimulation. 

We used continuous theta burst stimulation (cTBS) to disrupt left primary somatosensory 

region representing the contralateral hand. Prior to the cTBS procedure, we obtained a high-

resolution T1-weighted MRI scan (3T Philips Ingenia scanner) for each subject. A three-

dimensional brain was reconstructed from the MRI slices to display the cortical surface (Brainsight 

software, Rogue Research Inc., Canada). For S1 cTBS, we positioned the TMS coil over the 

postcentral gyrus posterior to the M1 FDI hotspot [6]. The mean Montreal Neurological Institute 

coordinates of the stimulation sites for left S1 were -41.67±8.90, -28.27±6.57, 65.10±11.06 (x, y, 

z, mean ±SD; n=10).  

We delivered cTBS over the left S1 using a figure-of-eight coil at 80% of aMT to 

temporarily disrupt its activity. Repetitive biphasic TMS pulses were delivered in the form of bursts 

of three pulses at 50 Hz at a rate of 5 Hz, i.e. 200 ms inter-burst interval, for 40 s. The cTBS 

protocol resulted in the delivery of 600 pulses [7]. The exact positioning of the coil was visually 

monitored throughout the stimulation duration. For the sham stimulation (cTBSSHAM), the same 

stimulation parameters were used, but the coil was placed perpendicular over the left S1 region 

so that no relevant current flow was induced in the cortical tissue [8,9]. The intensity of stimulation 

was well within the safety guidelines for TMS use, and consistent with that used by other TMS 

groups [7,10–15]. 
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 Tactile Sensitivity and Electrical Sensory Threshold Assessments 

 Tactile sensitivity (TS) was measured using Semmes-Weinstein Monofilaments 

Examination (SWME, Smith and Nephew Roland, Menominee Falls, WI) [16–19]. Tactile 

sensibility thresholds were obtained from the distal volar pads of the index finger. The index finger 

was tested approximately midway between the center of the pad and the radial margin of the 

finger. A threshold was recorded for the smallest filament diameter (buckling force in mg, 

according to the manufacturer’s calibration) that could be perceived on at least 70% of its 

applications.  

Electrical sensory threshold (EST) and electrical pain threshold (EPT) were measured 

using manual triggering of electrical stimulator (DS7A; Digitimer, Hertfordshire, UK) via a surface 

bar electrode placed over the abductor pollicis brevis (APB) muscle. For EST, the intensity of 

electrical stimulation was started from zero and gradually increased in steps of 0.1 mA until the 

subject explicitly felt electrical stimulation. This was followed by EPT measurement. The intensity 

was started from the EST and increased in steps of 1 mA until the subject first felt the electrical 

stimulation to be painful. Participants were explicitly instructed that the aim of the study was not 

to assess maximum pain they can bear but to measure only their pain threshold. To improve 

consistency among subjects, they were advised to report a stimulus to be painful upon 

experiencing the pain level equivalent to 1 on the 0–10 visual analog scale [18]. Three repetitions 

were made for each measure and the corresponding average was used for both EST and EPT. 

RESULTS 

TS reduced following cTBSS1 (main effect of TIME for nonparametric Friedman test, 

χ2
5,10=15.174, p=0.010; Fig. S1A). Posthoc comparisons were conducted using Wilcoxon signed-

rank test and the change in TS from PRE to Post0 (Z=-1.826, p=0.068), Post10 (Z=-2.21, p=0.02), 

Post20 (Z=-2.21, p=0.02), POST30 (Z=-2.032, p=0.042) and POST40 (Z=-1.841, p=0.066) failed to 

reach the FDR corrected significance level. We did not find a change in TS following cTBSSHAM 
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(no main effect of TIME, χ2
5, 10=8.582, p=0.127). There was no difference in PRE TS measure 

between cTBSS1 and cTBSSHAM (Wilcoxon signed-rank test: Z=-1.000, p=0.317). The reduction in 

TS following cTBSS1 but not cTBSSHAM is consistent with previous study [20–22] indicating the role 

of S1 in processing sensory information. 

PRE EST measure was not different between cTBSS1 and cTBSSHAM (t9=0.203, p=0.844). 

We observed a significant increase in EST following stimulation (main effect of TIME: F5,45=7.112, 

p<0.001, ƞp
2=0.441). However, this increase was similar following cTBSS1 and cTBSSHAM (no 

CONDITION×TIME interaction: F5,45=1.378, p=0.250, ƞp
2=0.133; no main effect of CONDITION: 

F1,9=0.493, p=0.500, ƞp
2=0.052; Fig. S1B). The increase in EST following cTBSSHAM suggests 

habituation to repeated low intensity electrical stimulation of the thenar eminence [23]. It is likely 

that similar habituation to low intensity electrical stimulation was present in the cTBSS1 session 

and that it might have confounded the effects of cTBS over S1 on EST. Therefore, the EST 

measure, at least in our study, was not a reliable measure to study the effects of cTBS over S1 

on sensory perception. It is important to note that similar habituation was not observed for other 

experimental measures such as EPT and TS.  
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Figure S1. Time course of tactile sensitivity and electrical sensory threshold following cTBS. A. 

Tactile sensitivity threshold was recorded for the smallest filament diameter (buckling force in mg) 

that could be perceived on at least 70% of its applications. An increase in buckling force post 

cTBSS1 corresponds to a reduction in TS. There was no change in tactile sensitivity following sham 

stimulation (cTBSSHAM). B. Temporal drift in electrical sensory threshold following both cTBSS1 

and cTBSSHAM. Each circle and error bar represent mean and standard error across subjects 

(n=10).  
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