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Abstract 

The environmental conditions of microorganisms’ habitats may fluctuate in unpredictable ways, 

such as changes in temperature, carbon source, pH, and salinity to name a few. Environmental 

heterogeneity presents a challenge to microorganisms, as they have to adapt not only to be fit 

under a specific condition, but they must also be robust across many conditions and be able to 

deal with the switch between conditions itself. While experimental evolution has been used to 

gain insight into the adaptive process, this has largely been in either unvarying or consistently 

varying conditions. In cases where changing environments have been investigated, relatively 

little is known about how such environments influence the dynamics of the adaptive process 

itself, as well as the genetic and phenotypic outcomes. We designed a systematic series of 

evolution experiments where we used two growth conditions that have differing timescales of 

adaptation and varied the rate of switching between them. We used lineage tracking to follow 

adaptation, and whole genome sequenced adaptive clones from each of the experiments. We 

find that both the switch rate and the order of the conditions influences adaptation, and that 

switching can both speed up and slow down adaptation, depending on those parameters. We 

also find different adaptive outcomes, at both the genetic and phenotypic levels, even when 

populations spent the same amount of total time in the two different conditions, but the order 

and/or switch rate differed. Thus, in a variable environment adaptation depends not only on the 

nature of the conditions and phenotypes under selection, but also on the complexity of the 

manner in which those conditions are combined to result in a given dynamic environment. 
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Introduction 

How organisms evolve is a fundamental question in biology, and how they adaptively evolve in 

response to changing environments is a question whose answer is central to rational vaccine 

development46, as well as to understanding the evolution of multiple antibiotic resistance3,22, the 

evolution of immune systems34, and even heritability40. In nature, some environmental changes 

are predictable, and organisms can evolve responses to such predictable changes. For 

example, E. coli shows asymmetric anticipation of carbon sources, such that in the presence of 

lactose, E. coli anticipates that maltose will soon become available, because this is what has 

been repeatedly experienced in the mammalian gut. Mechanistically, this is due to lactose 

modestly inducing the genes required for maltose metabolism37. However, when wild E. coli are 

grown under laboratory conditions, which typically lack this selective pressure, this “anticipation” 

is lost as the strain undergoes domestication37. Likewise, circadian clocks are thought to provide 

a fitness benefit, allowing organisms to adapt physiologically to diurnal changes in light, 

temperature, and humidity14. In Cyanobacteria, the benefit of a circadian clock can only be 

maintained in the lab by continued exposure to a rhythmic environment48. Environmental change 

may vary based on the frequency of switching, and whether the switching is random or 

predictable – one way in which organisms can adapt to deal with environmental uncertainty is by 

bet hedging, whereby by the stochastic switching between different phenotypic states can allow 

a portion of a population to be more fit under a certain environment13. It has been experimentally 

shown that bet-hedging approaches that resulting in greater average fitness across 

environments can be engineered5 or evolved1,30, and there is a rich theory on bet hedging as a 

strategy to survive in variable environments that switch more rapidly than can be kept up with 

through mutation and selection alone8,41. 

Experimental Microbial Evolution (EME2; also referred to as Adaptive Laboratory 

Evolution (ALE)) is a prospective approach to studying adaptive evolution in the laboratory and 
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was first used ~140 years ago12. EME has been used to address fundamental evolutionary 

questions, such as the rate at which beneficial mutations fix39, and the influence of both ploidy39 

and sex35 on that rate. High-throughput sequencing has made it possible to establish at high 

resolution how mutations accumulate in co-evolving lineages, revealing clonal interference, with 

hundreds or thousands of beneficial lineages competing20,2426, sometimes even with multiple 

lineages persisting in a quasi-stable state for thousands of generations16. While EME has 

provided many insights into the evolutionary process(see 11,31 for reviews), such experiments have 

typically been performed in either constant environments (such as the chemostat), consistently 

fluctuating environments (as in by serial transfer), or in environments where a variable of interest 

changes monotonically over either time, as in a morbidistat44, or over space, as in the mega-

plate experiment4. However, outside of the laboratory organisms are almost never challenged to 

adaptively evolve in such predictable environments, but rather must cope with variability and 

stochasticity. To date, only a few EME studies(see 7 for review) have sought to determine either how 

microbes adapt to unpredictable changes in the environment, or what characteristics of such 

changes might be important in influencing adaptation. For example, when Pseudomonas 

fluorescens was evolved in variable environments, switching between contrasting carbon 

sources (xylose and mannose), it was found, contrary to expectation, that populations frequently 

evolved to be niche specialists, and became adapted to the less favorable carbon source18. By 

contrast, when evolving in a heterogeneous environment containing multiple carbon sources, 

adaptation converged on the most productive carbon source19. In another example, a recent 

study investigated the fitness of the yeast deletion collection under different time scales of 

periodic environmental change and showed that some mutants are better at dealing with the 

environmental switch itself, suggesting that it is possible to evolve genotypes that are adapted to 

change, per se42. To date no study has characterized the dynamics of evolution during 

adaptation to a changing environment or asked specifically how these dynamics might change 

as a function of the switch rate and strength of selection. 
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To fill this gap, and to improve our knowledge of how dynamic environments impact the 

evolutionary process, a systematic (for a given set of environments) exploration of the 

parameters of dynamic environments is needed, to determine how these parameters affect 

evolutionary dynamics, and the fitness effects of adaptive mutations across environments. Here 

we present a series of experiments that explore evolution during switching between two 

environmental conditions (glucose-containing medium with fluconazole, vs. medium containing 

ethanol/glycerol with no drug), varying two important parameters: 1) the degree of randomness 

of the switches between the two conditions, and 2) the consecutive time spent in each condition. 

Using DNA barcode-based lineage tracking we followed the evolutionary dynamics in 8 different 

environmental scenarios, investigating the statistics of the evolutionary dynamics, and 

determining the phenotypic and genotypic characteristics of adaptive mutants arising in each. 

We found that the speed of adaptation could be either slowed down or sped up depending on 

the rate of switching between conditions, and that different switching dynamics could lead to the 

selection of clones with very different behaviors in each environment. Finally, we found that 

different environmental sequences select for different phenotypic and genotypic outcomes; for 

example, a randomly switching environment tended to select for generalists, while a consistent 

strong selection in a non-switching environment selected for specialists.  

 

Results 

Experimental Design and Overview 

We evolved, by serial transfer, barcoded diploid yeast populations in dynamic environments built 

using two single environment blocks (see Fig. 1 for experimental design), varying two main 

parameters: i) the time spent in each particular environment, relative to the timescale of 

adaptation within that environment and ii) the periodicity/randomness of the switching between 
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environments. We defined the timescale of adaptation as the evolutionary time required for a 

certain fraction of the population to be adaptive within a given environment: for diploid yeast 

evolving by serial transfer in synthetic complete (SC) medium with 2% glucose + 4 µg/ml 

Fluconazole (hereafter referred to as “Fluconazole”), ~20% of the population is adaptive after 48 

generations, while, in SC medium with 2% glycerol and 2% ethanol (“Gly/Eth”), the timescale of 

adaptation is much longer: ~15% of the population is adaptive after 144 generations (Fig. 2A 

and Humphrey, Hérissant et al, in prep.). The timescale of adaptation for these two 

environments is thus 48 and 144 generations respectively. We designed 8 different evolution 

experiments (Fig. 1) that combined the Fluconazole and Gly/Eth environments, chosen 

specifically because of their different timescales of adaptation. The first two experimental 

sequences were designed so that environmental blocks are periodically switched, with 

consecutive time spent in each on the order of the time scale of adaptation (periodic_adap1 and 

periodic_adap2): 144 consecutive generations in Gly/Eth and 48 consecutive generations in 

Fluconazole. The next two sequences were designed so that blocks were periodically switched 

at a rate that is 6-fold faster than the previous sequence; thus the consecutive time spent in 

each environment was 6-times shorter than the time scale of adaptation (periodic_smaller1 and 

periodic_smaller2): 24 consecutive generations in Gly/Eth and 8 consecutive generations in 

Fluconazole. We also designed one experiment with random switching between environments, 

with blocks for which the duration of residence is of the magnitude of the time scale of 

adaptation (random_adap1), and two experiments that randomly switch between blocks of 

environment, for which the duration of residence in each environment is less than the time scale 

of adaptation (random_smaller1 and random_smaller2). We also designed an experiment that 

combined the two block environments, i.e. SC with 2% glycerol, 2% ethanol and 4µg/ml 

Fluconazole (Mix), as well as evolved populations in either Gly/Eth, or in Fluconazole, with no 

switching. 
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Barcoded populations of diploid yeast were then evolved for 192 generations in each of 

the 8 different sequences of switching environments. The yeast populations contain two 

barcodes, such that one (BC1, low diversity) encodes the identity of the evolution experiment 

itself, while the second (BC2, high diversity) is used for lineage tracking within the evolution 

experiment, to distinguish lineages from one another. We characterized the early stages of 

adaptation in different dynamic environments using lineage tracking26 to follow the population 

dynamics. We also isolated 336 clones from generation 192 of each evolution, determined their 

barcodes (see Methods), and pooled unique lineages for which we could recover a barcode 

sequence. To understand phenotypically how clones from different experiments had adapted to 

different environmental sequences, we then remeasured the fitness of all lineages in this pool in 

5 environments: Fluconazole, Gly/Eth, Mix, 8 generations in Fluconazole and 24 in Gly/Eth (1:3), 

8 generations in Fluconazole and 8 in Gly/Eth (1:1) (Fig 3. and SI 1,2). The rationale behind 

remeasurement in the 1:1 environment was to determine if there has been selection for a 

phenotype related to their ability to switch between environments, instead of fitness in one of the 

two environment blocks per se. Pooled fitness remeasurement experiments were performed in 

triplicate as previously described45, and also included known neutral barcoded lineages, 

barcoded adaptive yeast from a Fluconazole only evolution and barcoded adaptive yeast from a 

Gly/Eth only evolution as controls. Neutral lineages in our experiments are defined as lineages 

that show behavior in the 5 environments similar to known, unevolved neutral lineages (Fig. SI 

3). Fitness was determined as described previously29. 

 

The dynamics of adaptation are affected by the environmental dynamics 

Visual inspection of lineage trajectories suggested that while each sequence of environments 

gave rise to distinct lineage dynamics (Figure 2A), some environmental sequences gave rise to 

similar lineage behaviors. For example, lineage trajectories from periodic_smaller1 and 
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periodic_smaller2 are similar, because their sequences of environment are essentially the same, 

except they are offset from one another by a single environmental block. Likewise, 

periodic_adap2 and random_adap1 display visually similar lineage trajectories, likely because 

the lengths of the environmental blocks are similar (on the order of timescale of adaptation). By 

contrast, trajectories from periodic_smaller1 and periodic_smaller2 clearly differ from those of 

periodic_adap2 and random_adap1. To further investigate similarities and differences between 

conditions, we classified the environments into 3 groups: strong selection, intermediate selection 

and weak selection, based on the change in Shannon entropy (lineage diversity) during the 

evolution (Figure 2B), and both the rate at which neutral lineages went extinct and the diversity 

of adaptive lineages after 192 generations (Figure 2C). Under strong selection (periodic_adap1, 

Mix (which both initially contain Fluconazole), and random_smaller1), the diversity tends to crash 

early and populations are rapidly taken over by a few, fit lineages, with neutral lineages going 

rapidly extinct. Indeed, after 192 generations the 100 most abundant lineages are 84%, 80%, 

and 80% of these populations respectively. By contrast, in the weak selection environments 

(periodic_smaller1, periodic_smaller2) the diversity decreases around 160 generations and only 

a few lineages increased in frequency; after 192 generations the 100 most abundant lineages 

represent only 6.7% or 2.7% of the populations respectively. Under intermediate selection 

(periodic_adap2, random_adap1 and random_smaller2) many more lineages significantly 

change their frequencies, while there is still diversity in the isolated lineages: the top 100 

lineages at generation 192 represent 20%, 32% and 13% of the total populations for those 

experiments respectively. Under weak selection (periodic_smaller1 and periodic_smaller2), 

diversity stays high through 192 generations and only a few lineages rise in frequency. We also 

used the Kolmogorov-Smirnov distance between experiments to characterize their relatedness 

(Figure 2D), which was largely consistent this categorization, with the exception of 

random_smaller2, which has a unique behavior, in that diversity didn’t decline until later, but 
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when it did, it fell precipitously, likely driven by the emergence is a highly fit lineage that is almost 

fixed by 192 generations (Figure 2A). 

 

Environmental switching can slow down adaptation 

 The fitness remeasurement data allow us to better understand the differences in 

evolutionary behavior between different environments, how clones evolved in one environment 

fare in another, and how a change in environment affects fitness and adaptation (and possibly 

also evolvability). For clones isolated from any of the environments, we observe no strong 

deleterious fitness effects when fitness is measured in a single environment block for either of 

the two conditions (Fig.3A, SI11). By contrast, there is a strong negative correlation between 

these two conditions when fitness is measured in the context of a switching environment, such 

that clones often display a fitness cost in the fluconazole portion of the environment (Fig. 3B; for 

full data see SI 12). In Fig. 3A, fitness is measured over 40 consecutive generations in each 

condition separately (see SI 1), but in Fig. 3B fitness in Fluconazole is measured over 8 

generations in between 24 consecutive generations in Gly/Eth, and fitness in Gly/Eth is 

measured following 8 generations in Fluconazole. This change of fitness behavior results in a 

slower rate of adaptation in periodic_smaller1 and periodic_smaller2. The deleterious effect 

results from the 8 generations in Fluconazole rather than the 24 generations in Gly/Eth (see SI 

13,15). Indeed, fitness in the 24 generations in Gly/Eth (separated by Fluconazole) and 40 

generations in Gly/Eth without switching is largely the same (SI 15). By contrast, fitness in the 

Fluconazole environment over 8 generations (with a switch to Gly/Eth in between) is not strongly 

correlated with fitness in the Fluconazole over 40 generations with no switching (SI 13). The 

effect of environment switching is also evident in the lineage abundances, as observable ‘zig-

zag’ patterns in the fitness remeasurement experiments (SI 1, bottom two panels). We 

hypothesize that at small timescales we are observing the effects of the switch rather than of the 

.CC-BY 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under 

The copyright holder for this preprint (which was notthis version posted August 18, 2020. ; https://doi.org/10.1101/724419doi: bioRxiv preprint 

https://doi.org/10.1101/724419
http://creativecommons.org/licenses/by/4.0/


environments themselves; for example, the switch may lead to a change in lag phase, 

dependent on the new environmental block. Such a change then appears to slow down 

adaptation in these rapidly switching conditions. 

 

Environmental switching can speed up adaptation 

As discussed above, sometimes environmental change can elicit a fitness cost, which can slow 

down adaptation, as measured by the increase in lineage abundances over time. However, in 

periodic_adap2 and random_smaller2, a changing environment appears to actually increase the 

rate of adaptation (Fig. 4). In both periodic_adap2 and random_smaller2, we observe little 

adaptation in Gly/Eth before entering the Fluconazole block, but then substantial increases in the 

frequencies of some lineages either at or immediately following the environment switch. These 

lineages show significant beneficial fitness effects in Gly/Eth (Fig. 4). It is possible that selection 

for lineages with modest fitness benefits in the Gly/Eth condition incidentally selects generalists 

that also have increased fitness in Fluconazole. The stronger selective pressure in the 

Fluconazole condition compared to Gly/Eth (see difference of scale in fitness SI 2 panel B) might 

then be the reason for this behavior, as both neutral and non-generalist lineages are then rapidly 

outcompeted in the face of the drug. Alternatively, some lineages may be good at switching, or 

instead might opportunistically take advantage of a dip in the population mean fitness due to the 

environmental switch. 

Different sequences of environment select for different phenotypes 

To further understand how the sequence of environments affects the types of fitness benefits 

that are selected, we performed Principal Components Analysis on the fitness remeasurement 

data for all of the isolated mutants in the 5 remeasurement conditions; the first two principal 

components explain 89% of the variance (Fig. 5A). Based on their fitness profiles, we defined 
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seven clusters of clones (see Methods; Fig SI 4, SI5 and 6 for threshold dependence), and 

examined the fitness of the clones in each cluster in each condition (Fig. 5B, 5C). Cluster 3 

contains clones that are modestly more fit in all remeasurement conditions, while Cluster 5 

contains clones with extreme beneficial fitness in all the remeasurement environments, 

suggesting clones in both clusters are generalists. By contrast, clones in cluster 7 have very high 

fitness in fluconazole and the mixed environment, but generally neutral fitness in Gly/Eth. Cluster 

4 clones shows fitness benefits in the mixed environment, but more modest fitness gains in the 

switching environments (1:1, 1:3), while clones in cluster 6 show extreme fitness gains in the 

switching environments (1:1, 1:3), high fitness in the Gly/Eth environment, but small/average 

fitness in the others. Finally, cluster 1 clones only show fitness benefits in Fluconazole, with 

strong trade-offs in the switching environments and the Gly/Eth environment; notably, none of 

the other clusters showed marked trade-offs in any of the environments. Clones from a given 

evolving environment map to one or occasionally two clusters (Fig. 5D), while some evolving 

environments share some cluster usage. For example, strong initial selection for a “long” time in 

Fluconazole in both the Mix and periodic_adap1 environments selects for similar phenotypes in 

cluster 7. By contrast, a “long” time in Gly/Eth followed by a “long” time in Fluconazole may 

explain the similar usage of cluster 3 for clones from Periodic_adap2, Random_adap1 and 

random_smaller2. Finally, cluster membership for clones from both periodic_smaller1 and 

periodic_smaller2 is similar (clusters 3 and 4) and shares some properties with cluster 

membership of clones from random_smaller1, another sequence built with blocks of 8 

generations in Fluconazole.  

 

The dynamics of the changing environment affects both the beneficial mutational spectrum and 

adaptive outcomes 
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We whole genome sequenced adaptive clones isolated from generation 192 from each evolution 

(7 to 51 uniquely barcoded clones per environment, for a total of 198 sequenced clones; of 

these, 112 had reliable fitness estimates, and 81 were considered to be non-neutral in at least 

one of the remeasurement conditions, i.e. adaptive); across all 198 sequenced clones, we 

identified a total of 482 mutations. From these, we identified genes that were recurrent targets of 

mutation, as they are most likely to be beneficial (Table 1). The pair of paralogous zinc finger 

transcription factors encoded by PDR1 and PDR3, mutations in which are known to result in 

pleiotropic drug resistance, were frequent targets of adaptation in periodic_adap1, 

periodic_adap2, and Mix, likely due to selection in a “long” consecutive period in Fluconazole. 

Conversely, we observed frequent, heterozygous, likely loss of function mutations in HEM3 in 

the periodic_smaller1 and random_smaller1 environments, which spend “short” amounts of 

consecutive time in Fluconazole, and for which the main fitness contribution likely comes from 

Gly/Eth environment. HEM3 encodes porphobilinogen deaminase21, which catalyzes the third 

step in heme synthesis15. Heme is a cofactor needed for a wide variety of biological processes, 

including respiration and ergosterol biosynthesis; HEM3 is essential in media lacking specific 

supplements and knockout mutants both lack ergosterol and fail to respire. It is unclear why 

decreased heme biosynthesis might be adaptive in the respiratory conditions of the Gly/Eth 

environment; heme is a cofactor of cytochrome C, which is responsible for the transfer of 

electrons between complexes III and IV in the electron transport chain. Heme is also a co-factor 

for cytochrome C peroxidase, which contributes to mitochondrial detoxification of hydrogen 

peroxide. A decreased rate of heme biosynthesis likely benefits one or both of these respiratory 

processes, resulting in increased fitness in the presence of a non-fermentable carbon source. 

Strikingly, heme is also required for sterol production (e.g. 32), and fluconazole itself inhibits 

ergosterol production, through the inhibition of the heme containing protein cytochrome P450, 

encoded by ERG5. Clustering of the fitness data for the sequenced clones shows that all but 

one of the HEM3 mutants show a fitness trade-off in the fluconazole containing environments, 
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except for the Mix environment (Figure 6). This suggests that the trade-off is not due to 

fluconazole itself, but instead is likely due to the switch of carbon source, and that the HEM3 

loss of function fitness benefit is specific to an environment where respiration is required. 

In addition to the nature of the periodic environment influencing the beneficial mutational 

spectrum, it also influences the nature of adaptation itself, specifically in regard to the 

emergence of generalists (which have positive fitness in both growth conditions) vs. specialists 

(which are fit in only one or a few of the growth conditions). First, we note that selection for 

generalists is order dependent (Fig. 3). Indeed, strong selection for Fluconazole at the beginning 

of periodic_adap1, followed by selection in Gly/Eth enriched the population for lineages with high 

fitness in Fluconazole but approximately neutral fitness in Gly/Eth. Conversely, growth in 

Gly/Eth, followed by growth in the presence of Fluconazole selects for generalists, that are 

highly fit in Gly/Eth, with even modest fitness benefits in Fluconazole; in addition, a few mutants 

with high fitness in Fluconazole, of a similar magnitude to those selected in periodic_adap1, also 

had time to be selected (Fig. SI2 panel A, 11). This kind of generalist also arose during evolution 

in a consistent Gly/Eth environment (Fig. SI2, 11), despite the lack of selection in the 

Fluconazole environment; however, the converse is not true – clones selected in fluconazole do 

not show fitness gains when measured in Gly/Eth (Fig. SI2, 11), suggesting the most fit clones in 

Fluconazole are not generalists. Finally, a group of mutants that have high fitness in both 

Fluconazole and Gly/Eth arose in the Mix experiment, but those strategies were rarely observed 

in periodic_adap1 or 2 (Fig SI2). 

Discussion 

Our data demonstrate that a population’s adaptation to a changing environment depends on the 

order and tempo of environmental change and the strength of selection exerted by the 

environment. We defined our environmental sequences using two parameters: residence time in 

each environment and periodicity/randomness of the switches between environments. In doing 
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so, we shed light on how those parameters influence the outcome of adaptation in dynamic 

environments. 

Adaptation in a varying environment will also be influenced by the joint distribution of fitness 

effects for adaptive mutations in each of those environments – that is, the fitness effects of all 

beneficial mutations from any given environment as measured across the other environment(s). 

If there is strong antagonistic pleiotropy between two environments, then the most fit mutations 

in the first environment will be strongly selected against in the second environment. The 

evolutionary outcome will thus depend on the time scale of adaptation relative to the switching 

frequency – if sufficient time is spent in the first environment for adaptive mutations to reach high 

frequency, the second environment is likely to subsequently select for compensatory mutations 

that alleviate their deleterious effects. Conversely, if a short time is spent in the first environment 

relative to the time scale of adaptation, the second environment will instead likely cause such 

mutants to go extinct. In both cases, adaptation is likely to slow down. The joint distribution of 

fitness effects will depend on the nature of the specific environments – correlated, or even 

uncorrelated environments may not greatly constrain adaptation, while anticorrelated 

environments will. 

Our study also highlights the importance of the order of environmental conditions in 

determining evolutionary outcomes. We explored the simplest of ordering possibilities – with only 

2 environments, one ordering is simply a shift of the alternate order. Even so, we detect a strong 

influence (1 then 2 or 2 then 1, i.e. periodic_adap1 and _2) at small time scales, probably driven 

by the difference of fitness scale between the two blocks in periodic_adap1 and 2 (Fig. SI2). The 

fact that we do not see any fit clones for Gly/Eth in periodic_adap1 might stem from the fact that 

many lineages are at high frequency after the fluconazole environment: under such conditions it 

becomes hard to capture the rise of mutants of small to medium fitness effect, as they are 

swamped by the high frequency lineages. In periodic_adap2, we observe the opposite: at the 
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end of the first environment, Gly/Eth, lineages had not reached high frequencies, and they then 

encountered a new environment, Fluconazole, for which mutations with a much higher fitness 

effect could be selected. Nonetheless, we were unable comprehensively determine how 

environment order influences adaptation. For example, environment order may become more 

relevant over a longer time scale, with more switches between environments, and for a 

population to become adapted to a well-defined, repetitive sequence of environments, the 

population should likely face this repeated sequence many times. Indeed, to fully understand the 

influence of dynamic environments on adaptation, the time scales required may be orders of 

magnitude longer than needed for non-switching environments. This has two main 

consequences for our experiment: 

First, as our experimental approach relied on having barcode diversity remaining in the 

population, both for lineage tracking to follow the trajectories, and fitness remeasurement (we 

require that lineages have different barcodes to be able to remeasure their fitness in pooled 

fashion), by necessity we had to focus on short-term (192 generations) evolution. Indeed, we 

continued the evolutions for 576 generations but one or two lineages remained. Furthermore, 

those lineages were already the most abundant at generation 192, meaning that lineage tracking 

beyond generation 192 has limited power to observe ongoing adaptation (Fig. SI31). Moreover, 

those lineages that fix (or nearly so) by generation 576 are already “special” by generation 192, 

in that they are somewhat distinct from the clusters to which they belong in the PCA projection. 

Second, due to the changing environment, it is challenging to measure fitness from the 

lineage trajectories during the evolution itself and it is this therefore difficult to estimate the 

shape of the DFE. Using Maximum Likelihood inference on the lineage tracking data is less 

informative than when analyzing such trajectories resulting from evolution in a consistent 

environment. This is because in our case, four models (rather than two), have to be considered, 

capturing the behavior of each lineage in the different conditions as either: neutral in both, 
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neutral then adaptive, adaptive then neutral, or adaptive then further adaptive. Distinguishing 

between these models is challenging, as the number of data points available to reconstruct the 

distribution is low. Even more challenging is the uncertainty on the identity of the remeasured 

clone – for example, is it representative of the lineage from which it comes? We developed an 

algorithm for Maximum Likelihood inference of dynamics in our changing environment data that 

highlight the limitations of our capacity to analyze the data that way. The power and flaws of 

such algorithm are depicted on simulated data (Fig. SI 17-25) and applied to our data (Fig.SI 26-

30). 

Both of those limitations inherent to exploring long time scales of adaptation using barcoding 

approaches would likely be mitigated by using an approach that allows either periodic 

introduction of additional barcodes (as in 38), or allows modification of barcodes over time (e.g. 

9), to maintain barcode diversity within the evolving populations, and measuring fitness of 

isolated clones in each of the environments at each environmental switch. 

Conclusions 

We characterized the impacts that dynamic environments can have on adaptation and found that 

switching between conditions with different dynamics can influence adaptation at multiple levels. 

We found that the rate of adaptation itself is influenced by switching, and that adaptation could 

speed up or slow down, depending on the rate of switching. When switching was fast relative to 

the timescale of adaptation within a condition alone, adaptation was generally slowed down, 

while a slower switching rate could speed up adaption. We also found that the order of 

conditions influenced the adaptive outcome: that is, conditions are not commutative, similar to 

the idea of priority effects in the field of ecology, such that it matters what happens first. 

Specifically, we found that the order could influence whether generalists were selected over 

specialists. Finally, different targets of adaptation were selected in different dynamic 
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environments (even when the same amount of time had been spent in each of the different 

conditions), necessarily resulting in different phenotypic outcomes. 
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Materials and Methods 

Yeast barcode library construction 

We used 8 independently constructed barcoded diploid yeast libraries (Humphrey, Hérissant et 

al., in prep.) each containing ~500,000 unique barcodes. Each of these libraries bears two types 

of barcode: a low diversity barcode that is uniquely associated to a library and a high diversity of 

barcodes that is associated to a specific lineage within a library. Humphrey, Hérissant et al. first 

introduced the low diversity barcode as part of the landing pad (see 26), before the introduction of 

the high diversity barcode. Once the low diversity barcode was introduced, the high diversity 

barcode was incorporated for each strain carrying a different low diversity barcode separately.  

 

Construction of the ancestor strain: 

Briefly Humphrey, Hérissant et al. (in prep.) generated the ancestral strain for barcoding by first 

crossing strain SHA32117, which carries the pre-landing pad, Gal-Cre-NatMX, at the YBR209W 

locus26 and the strains HR026d (see list_strains.xlsx for genotype, Mia Jaffe unpublished) which 

contains the Magic Marker43. 

Mata spores derived from this cross were grown on Nourseothricin, to select for the pre-landing 

pad, which contains Gal-Cre-NatMX, and then backcrossed to FY347 five times, each time 

selecting for NatMX and Canavanine. Spores derived from the final backcross were after one 

more mating with FY3 was performed to obtain the diploid ancestor (Strain GSY6699). This last 

cross allowed us to obtain a diploid strain heterozygous for the YBR209W locus, containing one 

copy of the wild type locus and one copy with the pre-landing pad.  

 

Construction of barcoded landing pad strains: 
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From the ancestor diploid strains, a low diversity barcoded landing pad was introduced. The 

landing pad contained lox66, an artificial intron, the 3’ half of URA3 and HygMX along with the 

low diversity barcode.  

To introduce this landing pad, Humphrey, Hérissant et al.(in prep.)  amplified by PCR the 

fragment of interest from the plasmid library L001 (~75,000 barcodes)17. The PCR fragment was 

inserted into the genome by homologous recombination, using NatMX as a selectable marker. 

After selection using Hygromycin, the grown colonies, that were the Barcoded Landing pad 

strains, were isolated and saved for subsequent introduction of the high diversity library of DNA 

barcode.  

 

Construction of high diversity libraries and final pool: 

Each individual diploid barcoded landing pad was then transformed using the plasmid library 

pBAR3-L1 (~500,000 barcodes)26. This plasmid carries lox71, a DNA barcode, an artificial 

intron, the 5’ half of URA3, and HygMX. Transformants were plated onto SC +Gal –Ura, to allow 

expression of the Cre recombinase, which is under the GAL1 promoter. The recombination 

between lox66 and lox71 is irreversible and brings the two barcodes in close proximity to form 

an intron within the complete and functional URA3 gene. Per landing pad strain, we generated 

between ~10,000 and 250,000 transformants. The plates were scraped, and transformants from 

each plate were stored separately in glycerol at -80°C.  

Experimental Evolution: 

The final pools, each containing ~500,000 unique barcodes, were evolved by serial batch culture 

in 100 mL of SC -URA media in 500 mL baffled flasks in the different sequences of environment 

shown in Fig.1. 

.CC-BY 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under 

The copyright holder for this preprint (which was notthis version posted August 18, 2020. ; https://doi.org/10.1101/724419doi: bioRxiv preprint 

https://doi.org/10.1101/724419
http://creativecommons.org/licenses/by/4.0/


In the list below, a letter represents one passage (8 generations). G stands for SC-URA 2% 

Ethanol/2% Glycerol (48 hours between passage), F for SC-URA 2%Glucose + 4 µg 

Fluconazole in 100 mL culture (24 hours between passage) and P for SC-URA 2% Ethanol/2% 

Glycerol 4 µg Fluconazole in 100 mL culture (48 hours between passage). All cultures were 

grown at 30°C; the list below corresponds to the first 192 generations. 

The evolution experiments were started with a pre-culture of each pool in 100 mL of SC -URA 

2% Glucose at 30°C overnight. This pre-culture was used to inoculate evolutions with ~5e7 cells 

(~ 400 µL). 

Periodic_adap1: FFFFFFGGGGGGGGGGGGGGGGGG 

Periodic_adap2: GGGGGGGGGGGGGGGGGGFFFFFF 

Periodic_smaller1: FGGGFGGGFGGGFGGGFGGGFGGG 

Periodic_smaller2: GGGFGGGFGGGFGGGFGGGFGGGF 

Random_adap: GGGGGGGGGGGGGGGGGGFFFGGG 

Random_smaller1: GGGFGGGGGGGGGGGGFGGGGGGF 

Random_smaller2: FGGGGGGFGGGFFFGGGGGGGGGF 

Mix:   PPPPPPPPPPPPPPPPPPPPPPPP 

 

Serial transfers were performed by transferring ~5e7 cells (~ 400 µL) into fresh media. The 

remainder of the culture was used to make glycerol stocks; 3 tubes with 1 mL of culture each 

were stored at -80°C (with 16.6 % final Glycerol), while the remaining ~90 mL were centrifuged 

(3,000 rpm for 5 min) and resuspended in 5ml 0.9M sorbitol solution (0.9M Sorbitol, 0.1M Tris-

HCL, pH7.5 0.1M EDTA, pH8.0) for storage at -20°C. 
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PCR amplification of the barcode locus. 

DNA Extraction for barcode sequencing. 

From the sorbitol stock, DNA was extracted using the MasterPure™ Yeast DNA Purification Kit 

(Epicentre MPY80200), with slight modifications compared to the manufacturer’s guidelines as 

follows: the lysis step was performed for one hour in lysis buffer, supplemented with RNAse at 

1.66 µg/µL. The DNA was washed at least twice with 70% Ethanol to remove remaining 

contaminants. Because the number of cells in a pellet exceeded the upper limit of the kit by 

roughly 6-fold, 6 extractions were performed per pellet. To do so, a cell pellet was resuspended 

in 900 µL of the lysis buffer and aliquoted in 6 tubes (150 µL each). The aliquots were 

complemented with the appropriate volume of lysis buffer (150µL, 300 µL total) to follow the 

manufacturer’s guidelines. We used the same procedure for DNA extraction during the lineage 

tracking or the fitness measurements. 

 

Barcode amplification from population samples 

We used a two-step PCR to amplify the barcode locus for Illumina sequencing as described26,45, 

with the following modifications. For the first step, we supplemented the PCR reaction with 2mM 

MgCl2 and used only 6 PCR reactions per timepoint (600 ng of genomic DNA per tube). 

Nevertheless, in the event of PCR failure, we performed 12 additional reactions per timepoint for 

the first step with the same amount of DNA, lowering the DNA concentration, each with 300 ng 

of genomic DNA.  

The primers used for this first step are listed in list_primers.xlsx. The Ns in the primers are the 

Unique Molecular Identifiers (UMIs) which are random nucleotides used to uniquely tag each 

amplicon product for subsequent removal of PCR duplicates during downstream analysis. All 

primers were HPLC purified to ensure that they were the correct length. 
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After the first step, all tubes were pooled and purified using the QIAquick PCR Purification Kit 

(Qiagen, 28106). For the second step, we used Herculase II Fusion DNA Polymerase (Agilent – 

600677) which is a more efficient high fidelity enzyme, with the following PCR settings: 2’ 98°C, 

followed by 24 cycles of (10” 98°C, 20” 69°C, 30” 68°C). The PCR reaction was performed with 

the standard Illumina paired-end ligation primers at recommended concentrations according to 

the manufacturer’s guidelines. The purified first step was split into the 3 PCR reaction tubes (15 

µL each). 

After amplification, the tubes were pooled and the reaction was purified using one column from 

QIAquick PCR Purification Kit and the DNA was eluted in 30µL of water. Finally, the eluted DNA 

was gel-purified from a 2% agarose gel to select the appropriate band and eliminate primer 

dimers using the QIAquick Gel Extraction Kit. The final gel-purified DNA was quantified using 

Qubit fluorometry (Life Technologies). 

Samples were pooled according to their concentrations.  

We used the same procedure for amplification of the barcode locus during the lineage tracking 

or for fitness measurements. 

Barcode sequencing was performed with 2x150 paired end sequencing using NextSeq. 

Isolation of clones and Fitness remeasurement:  

Samples from generations 192 and 576 were grown overnight in SC –URA and single cells were 

sorted into each well of 96 well plates containing 100 µL YPD using FACSJazz at the Stanford 

Shared FACS Facility as described previously28. We used four 96 wells plates per experiment. 

The barcodes for each well were recovered (see Barcode amplification of individual lineages in 

individual wells) and a single representative for each unique barcode was pooled together. We 

.CC-BY 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under 

The copyright holder for this preprint (which was notthis version posted August 18, 2020. ; https://doi.org/10.1101/724419doi: bioRxiv preprint 

https://doi.org/10.1101/724419
http://creativecommons.org/licenses/by/4.0/


also added 96 clones/lineages that were defined as neutral from prior fitness remeasurement 

experiments (Humphrey, Hérissant et al., in prep.). To have a reference to what fitness type was 

expected in steady environment we also added 96 clones/lineages from Fluconazole (4 µg/ml) 

evolution in steady environment (Humphrey, Hérissant et al., in prep.) taken at generations 48 

and 96 clones/lineages from a Gly/Eth evolution (2%,2%) in consistent environment taken at 

generation 168 (Humphrey, Hérissant et al., in prep.). 

The final pool containing all barcoded clones was grown overnight in 100 mL baffled flasks in SC 

–URA 2% Glucose; the ancestor was grown in a separate flask. To begin the Bulk Fitness 

Assay, the ancestor and the pools were each mixed in a 9:1 ratio, and then ~5e7 cells were 

used to inoculate cultures to remeasure fitness in each of the different environments. Each 

fitness remeasurement was performed in triplicate. The conditions for fitness remeasurement 

are as follow (Fig.SI1): 

• Gly/Eth: SC-URA 2% Ethanol/2% Glycerol for 40 generations with a passage at 

approximately every 8 generations (48 hours between passage). 

• Fluconazole: SC-URA 2% Glucose + 4 µg/mL Fluconazole for 40 generations with a 

passage approximately every 8 generations (24 hours between passage). 

• Mixture: SC-URA 2% Ethanol/2% Glycerol + 4 µg/mL Fluconazole for 40 generations with a 

passage approximately every 8 generations (48 hours between passage). 

• 1:1: SC-URA 2% Glucose + 4 µg/mL Fluconazole for 8 generations (24 hours) then SC-URA 

2% Ethanol/2% Glycerol for 8 generations (48 hours) for a total of 80 generations. 

• 1:3: one passage in SC-URA 2% Glucose + 4 µg/mL Fluconazole for 8 generations (24 

hours) followed by three passages in SC-URA 2% Ethanol/2% Glycerol for 8 generations (48 

hours per passage) for a total of 64 generations. 
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Barcode amplification of individual lineages in individual wells. 

To determine the locations of the individual lineages in the 96 well plates after FACS sorting, a 

small volume of culture was boiled and saved. For amplification, a similar 2-step protocol was 

used. In the first step, each well had a unique combination of primers at a final concentration of 

0.416 µM. OneTaq enzyme was used for amplification following this PCR settings: 3’ 94°C - (20” 

94°C, 30” 48°C, 30” 68°C) 40 cycles. After this first step, 5µL of each well were pooled into one 

tube per 5 plates. After centrifuging to remove cellular debris, 20µL of the pooled mix were gel 

purified using QIAquick Gel Extraction Kit. The purified PCR product was then diluted 50 times 

for the second step of the PCR. In contrast to the previously described second step, Phusion® 

High-Fidelity DNA Polymerase was used, following manufacturer’s instructions for 12 cycles. 

Finally, the PCR product was gel-purified as described above and the purified product was 

quantified using Qubit before mixing the different libraries. 

Whole Genome sequencing  

 

DNA Extraction 

The re-arrayed plates containing lineages of interest were grown in 750 mL of YPD for 2 days. 

DNA was extracted in 96 well format using the PureLink® Pro 96 Genomic DNA Purification Kit 

(Thermo- K182104A). The sequencing libraries were made following the protocol previously 

described using Nextera technology4,23. We multiplexed up to 192 libraries using sets A and D 

primers from Nextera XT kits.  

 

Analysis of whole genome sequencing data 
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Genome sequencing was performed with 2x150 paired end sequencing on NextSeq. 

The analysis generally followed GATK best practices, as we have used previously17,45 (code 

from Humphrey, Hérissant et al.). Briefly, from the split and demultiplexed fastq files, reads were 

trimmed for adaptors, quality and minimum length with cutadapt 1.7.133. Reads were then 

mapped to the yeast reference genome (Saccharomyces_cerevisiae R64-1-1, from SNPeff) 

using BWA version 0.7.10-r78927, variants were called with GATK’s Unified Genotyper v.3.3.036 

and finally the variants were annotated using SNPeff10. Variant filtering was performed, first by 

GATK recommended parameters and then using custom scripts to remove variants with low 

quality scores (below 150) or low coverages. Additionally, any variant in repetitive regions or low 

complexity regions, called using the Tandem Repeat Finder with default parameters, was 

excluded6. 
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Figure 1: Experimental design. Each experiment with a fluctuating environment was 

constructed using blocks of 8 generations in Fluconazole and 24 generations in Gly/Eth. At the 

end of 192 generations, the total time spent in Fluconazole is 48 generations and 144 generation 

in Gly/Eth, for periodic_adap1, periodic_adap2, periodic_smaller1, periodic_smaller2 and 

random_smaller2 experiments. By contrast, in random_adap1 and random_smaller1 the total 

time spent in Fluconazole is 24 generations, with 168 generations in Gly/Eth. Two additional 

experiments, which did not switch between environments, were also carried out. Clones isolated 

from each experiment were pooled, and then had their fitness remeasured under 5 different 

conditions (right). 
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Figure 2: A] Lineage tracking data for a subsample of 300 lineages for each experiment 

over the course of 192 generations. Colored lines correspond to lineages for which single 

colonies were later isolated; white lines correspond to a randomly selected set lineages which 

were not sampled for fitness remeasurement. Dashed lines represent sampled time points. 

Environments are indicated by the color strips above each graph, with colors as in Figure 1. B] 

Shannon entropy calculated across all lineages in each experiment. C] Strength of 

selection. Barcode diversity and the adaptive fraction for 336 lineages randomly picked from 

each experiment at generation 192. D] Similarity of experimental conditions. Kolmogorov 

Smirnov distances were calculated between all the experimental conditions based on the fitness 

remeasurement data. The distance matrix was hierarchically clustered. 
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Figure 3: Fitness remeasurement shows different types of interaction between 

environments according to the time scale. A] Fitness measurement for Gly/Eth and 

Fluconazole for 40 uninterrupted generations shows no particular correlation between 

environments. B] When fitness measurement is performed on a smaller timescale in the context 

of switching there is a net negative correlation between the two environments. Grey braces 

indicate when the fitness was measured. 
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Figure 4: A change in the environment aids selection of lineages with high fitness in 

Gly/Eth. A] Lineages isolated from Periodic_adap2 having an average slope per cycle smaller 

than 0.08 in the Gly/Eth environment during the evolution yet have a remeasured fitness per 

cycle in Gly/Eth of > 0.2. Those fit Gly/Eth mutants were not able to reach high frequency in 144 

generations in Gly/Eth, yet considerably increased their frequency during 48 generations in 

Fluconazole. B] A similar phenomenon is seen in Random_smaller2. The Fluconazole episode 

has reshuffled lineage frequencies: some frequent lineages decrease, while others increase. 

When the population goes back to Gly/Eth, a large increase in frequency can be seen. 
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Figure 5: Fitness clusters. A] PCA analysis of combined fitness data. Each clone is 

represented by a five-dimensional vector of fitness values, which is projected onto a 2D space 

using PCA. Clones with similar fitness vectors are close together and clones from the same 

experiment are frequently close to one another (periodic_adap2, random_smaller2, 

random_adap1 or fluconazole). B] Distribution of fitness effects in the different remeasurement 
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experiments for each cluster. C] Spider plot of cluster characteristics in the different 

remeasurement experiments, indicating (in black) the percentile rank of the median fitness for 

each cluster in a given remeasurement environment. For example, cluster 1 is highly specialized 

in Fluconazole whereas cluster 5 is describing generalist behavior type. White lines indicate 

neutral fitness in each environment. D] Spider plot indicating the fraction of isolated clones in 

each cluster from each evolution environment. 
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Figure 6: Hierarchical clustering of clone fitness data. Fitness remeasurement data, per 
cycle, for each clone that had reliable data in all five remeasurement conditions and at least one 
mutation in a gene that was recurrently mutated, were hierarchically clustered. The presumptive 
adaptive mutation(s) in each clone is indicated on the right, and the gene names are colored by 
the evolution experiment from which they were isolated. 
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 Periodic_ Random_  

Gene adap1 adap2 smaller1 smaller2 adap smaller1 smaller2 Mix 

PDR1 T817K, A763E, L878S, C756S 

F769L, Q274R, G280V, P298L 

Y270S, S753C, L1056P 

R310W, T243A, S814Y, L537F 

N234K 

K253E 
     T817K 

P870L 

N234K 

HEM3 L318M  D218E 

K267(FRS) 

P108L 

G133R 

G250(FRS) 

  E65K 

A181D 

V132M 

  

PDR3 V219A 

H964P 
L708F      K272N 

V954F 

G948S 

TMN2 P522T   V633M     

SGD1 D284Y 

M641V 
       

SPT23  E122K N348K      

MNE1  Q284L     P121S  

LAP3  D421N  H247Y     
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KAP114   I107L   I335L   

MGM1   D841Y 

L626V 
     

VID27   D737A R62K     

SAN1    R183K 

R185K(FRS) 
    

YHR028W-A    S73C 

S73A 
    

DYN1   P3506S 

A2554T 
     

RPO31      P507A, 

E516Q 
  

 

Table 1: Genes mutated at least twice by 2 different non-synonymous mutations (FRS= frame_shift). 
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