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Abstract 
Although studies have shown that urban environments and mass-transit systems have distinct genetic 
profiles, there are no systematic studies of these dense, human/microbial ecosystems around the world. To 
address this gap in knowledge, we created a global metagenomic and antimicrobial resistance (AMR) atlas 
of urban mass transit systems from 58 cities, spanning 3,741 samples and 4,424 taxonomically-defined 
microorganisms collected for from 2015-2017. The map provides annotated, geospatial details about 
microbial strains, functional genetics, antimicrobial resistance, and novel genetic elements, including 
10,928 novel predicted viral species. Urban microbiomes often resemble human commensal microbiomes 
from the skin and airways, but also contain a consistent “core” of 61 species which are predominantly not 
human commensal species. Conversely, samples may be accurately (91.4%) classified to their city-of-
origin using a linear support vector machine over taxa. These data also show that AMR density across 
cities varies by several orders of magnitude, including many AMRs present on plasmids with specific 
cosmopolitan distributions. Together, these results constitute a high-resolution global metagenomic atlas, 
which enables the discovery of new genetic components of the built human environment, highlights 
potential forensic applications, and provides an essential first draft of the global AMR burden of the 
world’s cities. 
 
Keywords: Built Environment, metagenome, global health, antimicrobial resistance, AMR markers 
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Introduction 
The high-density urban environment has historically been home to only a fraction of all people, with the 
majority living in rural areas or small villages. Since 2014, the situation has reversed, with an estimated 
55% of the world’s population now living in urban areas (United Nations, 2018). Since the introduction of 
germ theory and John Snow’s work on cholera, it has been clear that people in cities interact with microbes 
in ways that may be markedly different than in rural areas (Neiderud, 2015). Microbes in the built 
environment have been implicated as a possible source of contagion (Cooley et al., 1998) and other 
syndromes, like allergies, are associated with increasing urbanization (Nicolaou et al., 2005). These data 
indicate that cities in general have an impact on human health, although the mechanisms underlying impact 
are broadly variable and often little understood. Indeed, our understanding of microbial dynamics in the 
urban environment outside of pandemics is limited (Gilbert and Stephens, 2018). 
 
Technological advances in next-generation sequencing (NGS) and metagenomics have created an 
unprecedented opportunity for rapid, global studies of microorganisms and their hosts, providing 
researchers, clinicians, and policymakers with a more comprehensive view of the functional dynamics of 
microorganisms in a city. The NGS methods enable culture-independent sampling of the microorganisms, 
with the potential for both taxonomic and functional annotation. This is particularly important for 
surveillance of microorganims as they acquire antimicrobial resistance (AMR) (Fresia et al., 2019). 
Metagenomic methods enable nearly real-time monitoring of organisms, AMR genes, and pathogens as 
they emerge within a given geographical location, and also have the potential to reveal hidden microbial 
reservoirs and detect microbial transmission routes as they spread around the world (Zhu et al., 2017). A 
molecular map of urban environments will enable significant new research on the impact of urban 
microbiomes on human health. 
 
Urban transit systems - such as subways and buses - are a daily contact interface for the billions of people 
who live in cities.   Notably, urban travelers bring their commensal microorganisms with them as they 
travel and come into contact with organisms and mobile elements present in the environment, including 
AMR markers. The urban microbiome, however, has only been profiled with comprehensive metagenomic 
methods in a select few cities (Afshinnekoo et al., 2015; Hsu et al., 2016; Kang et al., 2018; MetaSUB 
International Consortium, 2016; Mason et al., 2016) on a limited number of occasions. This leaves a gap in 
scientific knowledge about a microbial ecosystem that affects the majority of the global population. 
Human commensal microbiomes have been found to vary widely based on culture and geography and 
geographically-constrained studies, while informative, may prove to miss similar differences (Brito et al., 
2016). Moreover, data on urban microbes and AMR genes are urgently needed in developing nations, 
where antimicrobial drug consumption is expected to rise by 67% by 2030 (United Nations, 2016; Van 
Boeckel et al., 2015), both from changes in consumer demand for livestock products and an expanding use 
of antimicrobials - both of which can alter AMR profiles of these cities. 
 
The International Metagenomics and Metadesign of Subways and Urban Biomes (MetaSUB) Consortium 
was launched in 2015 to address this gap in knowledge on the density, types, and dynamics of urban 
metagenomes and AMR profiles. Since then, we have developed standardized collection and sequencing 
protocols to process 3,741 samples across 58 cities worldwide (Table 1, S1). Sampling took place at three 
major time points: a pilot study in 2015-16 and two global city sampling days (gCSD) in mid 2016 and 
mid 2017, with most samples taken on June 21st. Each sample was sequenced with an average of 6M 
125bp paired-end reads using Illumina NGS sequencers (see Methods). To create a consistent analysis of 
our large dataset, we generated an open-source analysis pipeline (MetaSUB Core Analysis Pipeline, CAP), 
which includes a integrated set of peer-reviewed, metagenomic tools for taxonomic identification, k-mer 
analysis, AMR gene prediction, functional profiling, annotation of particular microbial species and 
geospatial mapping. 
 
This first global metagenomic study of urban microbiomes reveals a consistent “core” urban microbiome 
across all cities, but also distinct geographic variation, which may reflect epidemiological variation and 
that also enables new forensic, source-tracking capabilities. More importantly, our data demonstrate that a 
significant fraction of the urban microbiome remains to be characterized. Though 1,000 samples are 
sufficient to discover roughly 80% of the observed taxa and AMR markers, we continue to observe novel 
taxa and genes at an ongoing discovery rate of approximately one new species and one new AMR marker 
for every 10 samples. Notably, this genetic variation is affected by various environmental factors (e.g., 
climate, surface type, latitude, etc.) and samples show greater diversity near the equator. Moreover, 
sequences associated with AMR markers are widespread, though not necessarily abundant, and show 
geographic specificity. Here, we present the results of our global analyses and a set of tools developed to 
access and analyze this extensive atlas, including: two interactive map-based visualizations for samples 
(metasub.org) and AMRs (resistanceopen.org), an indexed search tool over raw sequence data 
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(dnaloc.ethz.ch), a Git repository for all analytical pipelines and figures, and application programming 
interfaces (APIs) for computationally accessing results (github.com/metasub/metasub_utils). 
 
Results 
We first investigated the distribution of microbial species across the global urban environment. 
Specifically, we asked whether the urban environment represents a singular type of microbial ecosystem or 
a set of related, but distinct, communities, especially in terms of biodiversity. We observed a bimodal 
distribution of taxa prevalence across our dataset (Figure 1), which we used to define two separate sets of 
taxa based on the inflection points of the distribution: the putative “sub-core” set of urban microbial 
species that are consistently observed (>70% of samples) and the less common “peripheral” (<25% of 
samples) species. We also define a set of true “core” taxa which occur in almost all samples (>95%) from 
the global dataset (Table 1). 
 

 
Applying these thresholds, we identified 1,145 microbial species (Figure 1B) that make up the sub-core 
urban microbiome with 61 species in the “core” microbiome (Figure 1A). Core and sub-core taxa 
classifications were further evaluated for sequence complexity and genome coverage on a subset of 
samples. Of the 1,206 taxa with prevalence greater than 70%, 69 were flagged as being low-quality 
classifications, based on genome coverage and marker abundance (see methods). The sub-core microbiome 
was principally bacterial, with just one eukaryotic taxa identified (S. cerevisiae). The three most common 
bacterial phyla across the world’s cities ordered by the number of species observed were Proteobacteria, 
Actinobacteria, and Firmicutes. To test for possible geographic bias in our data we normalized the 
prevalence for each taxa by the median prevalence within each city. The two normalization methods 
broadly agreed (Figure 1B). 
 
This trend can also be observed in the global co-occurrence map of microbial species (Figure 1C) which 
shows a single, strongly co-occurring group and a minor tail of co-occurrence but no secondary cluster. 
Despite their global prevalence, the core taxa are not uniformly abundant across all cities. Many species 
exhibited a high standard deviation and kurtosis (calculated using Fisher’s definition and normal kurtosis 
of 0) than other species (Figure 1D). Furthermore, some species show distinctly high mean abundance, 
often higher than the core species, but more heterogeneous global prevalence. For example, Salmonella 
enterica is identified in less than half of all samples, but is the 12th most abundant species based on the 
fraction of mapped DNA. The most relatively abundant microbial species was Cutibacterium acnes 
(Figure 1D), which had a comparatively stable distribution of abundance across all samples. C. acnes is 
known as a prominent member of the human skin microbiome. To test for any biases arising from uneven 
geographic sampling, we measured the relative abundance of each taxon by calculating the fraction of 
reads classified to each particular taxon, and compared the raw distribution of abundance to the distribution 
of median abundance within each city (Figure 1D); the two measures closely aligned. Also, an 
examination of the positive and negative controls indicates that these results are not likely due to 
contamination or batch effect (Figure S1). In total, we observed 61 core taxa (>95%), 1,145 sub-core taxa 
(70-95%) 2,466 peripheral taxa (<25%), and 4,424 taxa across all samples.  
 
The taxonomic classification used (KrakenUniq) revealed that much of the diversity in our data represents 
sequences of novel or unknown provenance. Indeed, the average fraction of DNA unclassified at the 
species level across all of our samples is approximately 50% (Figure 1E), mirroring results seen by 
previous urban microbiome works (Afshinnekoo et al., 2015; Hsu et al., 2016). As humans are a major part 
of the urban environment, the DNA in our samples could be expected to resemble commensal human 
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microbiomes. To investigate this, we compared non-human DNA fragments from our samples to a 
randomized set of 50 samples from 5 commensal microbiome sites in the Human Microbiome Project 
(HMP) (Consortium et al., 2012) (stool, skin, airway, gastrointestinal, urogenital).  We used MASH to 
perform a k-mer based comparison of our samples vs. the HMP samples, which showed more similarity 
between MetaSUB samples and those from skin and airway sites (Figure 1F, Figure S2). A similar 
comparison based on taxonomic profiles, rather than k-mers, revealed greater similarity between MetaSUB 
samples and the skin and airway commensal microbiomes (Figure S2) than other body sites.  

 
Figure 1: The core and global metagenome A) Taxonomic tree showing 61 core taxa, colored by phylum and 
annotated according to gram stain, ability to form biofilms, predicted association with a virus, and whether the 
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bacteria is a human commensal species B) Distribution of species prevalence from all samples and normalized 
by cities. Vertical lines show defined group cutoffs. C) Co-occurrence of species within samples. Co-occurrence 
is measured by Jaccard Index, species are sorted by prevalence. D) prevalence and distribution of relative 
abundances of the 75 most abundant taxa. Mean relative abundance, standard deviation, and kurtosis of the 
abundance distribution are shown. E) Fraction of DNA in each sample which was not classified, by continent. 
F) MASH (k-mer based) similarity between MetaSUB samples and HMP skin microbiome samples, by continent. 
G) Species Richness (Alpha Diversity) vs. Latitude. H) Rarefaction analysis showing the number of species 
detected in randomly-chosen sets of samples. 
 
Given that a large fraction of DNA in our samples could not be classified, it is possible that the 
unclassified DNA in our samples is from novel taxa which are not human commensals, such as those from 
soil. To test this, we processed 28 metagenomic soil samples (Bahram et al., 2018) using the same 
pipeline, and then compared these soil samples to MetaSUB samples using MASH. Our samples were very 
dissimilar from the soil samples (Figure S2), even in comparison to human skin microbiomes. This 
suggests that the unclassified DNA may represent heretofore uncharacterized taxa that are not known 
commensals being shed into the environment. To estimate the number of likely unobserved taxa, we 
performed a rarefaction analysis on the taxa that were identified. By estimating the number of taxa 
identified for different numbers of samples, we see a diminishing trend (Figure 1H), but one that is not yet 
approaching the asymptote. Indeed, the rarefaction curve did not reach a plateau and, even after including 
all samples, it still shows an expected marginal discovery rate of roughly one new species for every 10 
samples added to the study. Thus, we estimate that most (~80%) of the classifiable taxa in a the urban 
microbiome could be identified with 1,000 samples. However, this new diversity is likely not evenly 
distributed, with the bulk of new discoveries expected to be made from equatorial regions and cities in the 
Southern hemisphere. 
 
To examine this quantitatively, we next investigated the impact of geography on sample composition. In 
ecology, an increasing distance from the equator is associated with a decrease in taxonomic diversity 
(O’Hara et al., 2017). Indeed, the MetaSUB dataset recapitulates this result and identifies a significant, 
albeit small, decrease in taxonomic diversity as a function of absolute latitude (p < 2e-16, R2 = 0.06915); 
samples are estimated to lose 6.9 species for each degree of latitude away from the equator (Figure 1G). 
The effect of latitude on species diversity is not purely monotonic, since several cities have higher species 
diversity then their latitude would predict. This is expected, as latitude is only a rough predictor of a city’s 
climate. While this is an observation consistent with ecological theory, the samples are heavily skewed by 
the location of the target cities, as well as the prevalence of those cities in specific latitude zones of the 
northern hemisphere. 
 
Global Diversity Varies by Geography 
Despite the core urban microbiome present in almost all samples, there was also clear subsets of variation 
in both taxonomy and localization. We calculated the Jaccard distance between samples measured by the 
presence and absence of species, and then performed a dimensionality reduction of the data using UMAP 
(Uniform Manifold Approximation and Projection, McInnes et al. (2018)) for visualization (Figure 2A). 
Jaccard distance was correlated with distance based on Jensen-Shannon Divergence, which accounts for 
relative abundance, and k-mer distance calculated by MASH, which is based on the k-mer distribution in a 
sample (Figure S3A, B, C). In principle, Jaccard distance can be influenced by read depth, however the 
total number of species identified stabilized at 100,000 reads (Figure S4) compared to an average of 
6.01M reads per sample. Samples collected from Europe and East Asia were distinct, but the separation 
between other continents was less clear. A similar trend was found in an analogous analysis based on 
functional pathways rather than a taxonomy (Figure S5), which indicates geographic stratification of the 
metagenomes at both the functional and taxonomic levels. These findings confirm and extend earlier 
analyses performed on a fraction of the MetaSUB data which were run as a part of CAMDA Challenges in 
years 2017 and 2018 (Harris et al., 2018; Walker and Datta, 2019). 
 
We next quantified the degree to which metadata covariates influence the taxonomic composition of the 
samples using MAVRIC, a statistical tool to estimate the sources of variation in a count-based dataset 
(Moskowitz and Greenleaf, 2018). We identified several covariates which influenced the taxonomic 
composition of our samples, including: continent, elevation above sea-level, average temperature, surface 
material, and proximity to the coast. The most important factor, which could explain 11% of the variation 
in isolation, was the continent from which a sample was taken. The other four factors ranged from 
explaining 2% to 7% of the possible variation in taxonomy in isolation (Table S2). We note that many of 
the factors were confounded with one another so together explain less diversity than their sum. 
Surprisingly, the population density of the sampled city appeared to have no discernible effect on 
taxonomic variation, indicating diversity is driven more by non-human factors. This is consistent with our 
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observation that the urban microbiome is not merely derivative of the human skin microbiome. 
 

 
 
Figure 2: Functional, Taxonomnic, and AMR differences at global scale. A) UMAP of taxonomic profiles based 
on Jaccard distance between samples. Colored by the region of origin for each sample. Axes are arbitrary and 
without meaningful scale. B) Association of the first 25 principal components of sample taxonomy with climate, 
continent, and surface material. C) Distribution of major phyla, sorted by hierarchical clustering of all samples 
and grouped by continent. D) Distribution of high-level groups of functional pathways, using the same order as 
taxa (C). E) Distribution of AMR genes by drug class, using the same order as taxa (C). Note that MLS is 
macrolide-lincosamide-streptogramin. 
 
To quantify how the principle covariates, climate, continent, and surface material impacted the taxonomic 
composition of samples, we also performed a Principal Component Analysis (PCA) on our taxonomic data 
normalized by proportion and identified principal components (PCs) which were strongly associated with a 
metadata covariate in a positive or negative direction (PCs were centered so an average direction indicates 
an association). We found that the first two PCs (representing 28.0% and 15.7% of the variance of the 
original data, respectively) associated strongly with the city climate while continent and surface material 
associate less strongly (Figure 2B). 
 
Next, we tested whether geographic proximity (in km) of samples to one another had any effect on the 
variation, since samples taken from nearby locations could be expected to more closely resemble one 
another. Indeed, for samples taken in the same city, the average JSD (Jensen-Shannon distance) was 
weakly predictive of the taxonomic distance between samples, with every increase of 1km in distance 
between two samples representing an increase of 0.056% in divergence (p < 2e-16, R2 = 0.01073, Figure 
S2). This suggests a "neighborhood effect" for sample similarity analogous to the effect described by 
Meyer et al. (2018), albeit a very minor one. To reduce bias that could be introduced by samples taken 
from precisely the same object we excluded all pairs of samples within 1km of one another. 
 
At a global level, we examined the prevalence and abundance of taxa and their functional profiles between 
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cities and continents. These data showed a fairly stable phyla distribution across samples, but the relative 
abundance of these taxa is unstable (Figure 2C) with some continental trends. In contrast to taxonomic 
variation, functional pathways were much more stable across continents, showing relatively little variation 
in the abundance of MetaCyc categories annotated by HUMAnN2 (Figure 2D). This pattern may also be 
due to the more limited range of pathway classes and their essential role in cellular function, in contrast to 
the much more wide-ranging taxonomic distributions examined across metagenomes. Classes of 
antimicrobial resistance were observed to vary by continent as well. Many samples had no AMR genes 
identified but clusters of AMR classes were observed to occur in groups of taxonomically similar samples 
(Figure 2E). 
 
We then quantified the relative variation of taxonomic and functional profiles by comparing the 
distribution of pairwise distances in taxonomic and functional profiles. Both profiles were equivalently 
normalized to give the probability of encountering a particular taxon or pathway. Taxonomic profiles have 
a mean pairwise Jensen-Shannon Divergence (JSD) of 0.61 while pathways have a mean JSD of 0.099. 
The distributions of distances are significantly different (Welch’s t-test, unequal variances, p < 2e-16 ), 
which is consistent with observations from the Human Microbiome Project, where metabolic function 
varied less than taxonomic composition (HMP Consortium et al., 2012; Lloyd-Price et al., 2017) within 
samples from a given body site. 
  
Diversity and Novel Sequences 
We next examined the uniqueness of metagenomic sequences from the various MetaSUB cities, including 
those which do not map to any known species. To facilitate characterization of novel sequences, we 
created a searchable web interface (GeoDNA, Figure 3A) to enable mapping of raw sequences against our 
dataset. Users can submit sequences that are processed against a k-mer graph-based representation of our 
data (see methods). Query sequences are mapped to samples, metadata, and a set of likely sample hits, with 
a tunable sequence similarity (e.g. 80% or 90%) that is returned to the user. This allows researchers a new 
capacity to map the diversity of this dataset and rapidly identify the range of various genetic sequences 
around the world, including from novel genetic elements, which showed geographical and continental 
specificity (Figure 3A). 
 
Since novel sequences and various taxonomic groups showed differentially abundance between cities, we 
next examined how predictive these sequences could be for tracing a samples’ origin. To quantify the 
strength of the geographic separation, we trained a Linear Support Vector Machine (SVM) classifier to 
predict the city-of-origin from binary taxonomic data (present or absent) reduced to 1,000 dimensions by 
principle component analysis. We trained the model on 90% of the samples in our dataset and evaluated its 
performance on the remaining 10%. This classifier achieved 91.4% precision and 91.4% recall on the held-
out test data, and the results on test data were not dominated by cities with many samples (Figure S6). We 
also added gaussian noise to each variable in a test dataset (mean of 0, standard deviation proportional to 
the mean of the variable) and performed repeated classification testing. The classifier was robust to noise 
until the standard deviation of that noise exceeded the mean of the variable, at which point performance of 
the classifier rapidly deteriorated (Figure S6). The successful geographic classification of samples 
demonstrates distinct city-specific trends in the detected taxa, that may enable future forensic 
biogeographical capacities. 
 
While the taxonomic distributions are geographically distinct for our sampled cities (Figure S7), 
predicting the geographic origin of samples from cities not represented in the training dataset would likely 
be harder. This application is relevant for forensics. As a preliminary investigation into the predictive 
forensic capacity of our dataset, we also trained classifiers to predict various metadata features on held-out 
cities. Models were trained as above, except that all samples from a given city were held out, and PCA was      
used to reduce the data to just 100 dimensions. After training the model we classified samples from the 
held-out city for the appropriate metadata features (see methods). Mean accuracy by city for features 
varied (Table S3), from 38% for climate classification to 65% for city population. Different held-out cities 
were more predictable than others (Figure S6), in particular features for a number of British cities were 
roughly similar and could be predicted effectively. Predicting different metadata features enables forensic 
classification of samples by assigning smaples to several broadly limiting categories, thus reducing a 
sample’s potential provenance. 
 
However, the utility of geospatial reduction is variable, since city-specific taxa are not uniformly 
distributed (Figure 3B). To quantify this, we developed a score to reflect how endemic a given taxon is 
within a city, which reflects upon the forensic usefulness of a taxon. The Endemicity score (ES) is defined 
as ES = P (City Taxa) | P (Taxa City), with the probabilities both given by empirically observed fractions. 
This score is designed to simultaneously reflect the chance that a taxon could identify a given city and that 
that taxon could be found within the given city. A high endemicity score for a taxon in a given city could 
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be evidence of the evolutionary advantage that the taxon has adapted to for a particular environment. 
However, neutral evolution of microbes within a particular niche is also possible and the ES alone does not 
distinguish between these two hypotheses. While the ES only considers taxa which are found in a city, a 
forensic classifier could also take advantage of the absence of taxa for a similar metric. The ES shows a 
clear inflection of values at 0.000025 (Figure 3B, inset), below that level we filter scores. Some cities, like 
Offa (Nigeria), host many endemic taxa while others, like Zurich (Switzerland), host fewer endemic 
species. Since some cities from well sampled continents (e.g., Lisbon, Hong Kong) also host many 
endemic species, these data suggest that ES may indicate interchangeability or local pockets of 
microbiome variation for some locations. 

 
 
Figure 3: Quantifying known and novel urban diversity. A) Schematic of GeoDNA representation 
generation – Raw sequences of individual samples for all cities are transformed into lists of unique k-mers 
(left). After filtration, the k-mers are assembled into a graph index database. Each k-mer is then associated 
with its respective city label and other informative metadata, such as geo-location and sampling 
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information (top middle). Arbitrary input sequences (top right) can then be efficiently queried against the 
index, returning a ranked list of matching paths in the graph together with metadata and a score indicating 
the percentage of k-mer identity (bottom right). The geo- information of each sample is used to highlight 
the locations of samples that contain sequences identical or close to the queried sequence (middle right). 
B) Distributions of Endemicity scores within cities C) The planetary distribution of MetaSUB viral 
clusters. Solid red circles indicate the number of viral contigs recovered in each region (Section2.5). Black 
open circles indicate the number of viral species recovered in each region. Blue lines indicate the number 
of viral clusters that are shared between regions, thicker lines indicating more viral clusters in common. 
 
We then investigated our de novo assembled contigs from MetaSPAdes relative to the Joint Genome 
Institute (JGI) known virus and retroviruses (VR) datasets and annotation pipeline. Our samples identified 
16,584 predicted uncultivated viral genomes (UViGs), including 2,009 clusters containing a total of 6,979 
UViGs and 9,605 singleton UViGs, for a total of 11,614 predicted viral species. We compared the 
predicted species to known viral sequences in the IMG/VR system, which contains viral genomes from all 
NCBI isolates, a curated set of prophages, and 730k UViGs from other studies. Of the 11,614 species 
discovered in our data, 94.1% did not match any viral sequence in IMG/VR (Paez-Espino et al., 2019) at 
the species level, indicating that urban microbiomes contain significant diversity not observed in other 
environments. Next, we attempted to identify possible hosts for our predicted UViGs. For the 686 species 
with similar sequences in IMG/VR, we projected known host information onto 2,064 MetaSUB UViGs. 
Additionally, we used CRISPR-Cas spacer matches in the IMG/M system to assign possible hosts to a 
further 1,915 predicted viral species. Finally, we used a JGI database of 20 million metagenome derived 
CRISPR spacers to provide further rough taxonomic assignments. We note that virus-host associations 
were found for 41% of species in the core microbiome (Figure 1A, Supplementary Data Packet). 
 
Finally, these predicted viral species from samples collected within 10, 100 and 1000 kilometers of one 
another were agglomerated to examine their planetary distribution at different scales (Figure 3C). At any 
scale, most viral clusters appear to be weakly cosmopolitan; the majority of their members were found at 
or near one location, with a few exceptions. These cosmopolitan viral clusters also exhibit an observational 
effect; regions in which more samples were recovered share more viral clusters (notably, the northeast 
United States, Lagos and the southern Brazil).  
 
Antimicrobial Resistance (AMR) Markers Form Distinct Clusters 
Quantification of antimicrobial diversity and AMRs are key components of global antibiotic stewardship. Yet, 
predicting antibiotic resistance from genetic sequences alone is challenging, and detection accuracy depends on 
the class of antibiotics (i.e., some AMR genes are associated to main metabolic pathways while others are 
uniquely used to metabolize antibiotics). As a first step towards a global survey of antibiotic resistance in urban 
environments, we mapped reads to known antibiotic resistance genes, using the MegaRES ontology and 
alignment software (Figure 4). We first performed a rarefaction analysis on the set of all resistance genes in the 
dataset, across the “panresistome” (Figure 4A). Similar to the rate of detected species, the panresistome also 
shows an open slope with an expected rate of discovery of one new AMR gene per 10 samples. Given that AMR 
gene databases are rapidly expanding and that single AMR markers were not commonly found in many samples, 
it is likely that future analyses will identify many more resistance genes in this data. Additionally, AMR genes 
show a “neighborhood” effect within samples that are geographically proximal, analogous to the effect seen for 
taxonomic composition (Figure 4B). Excluding samples where no AMR genes were detected, the Jaccard 
distance between sets of AMR genes increases with distance for pairs of samples in the same city; as with 
taxonomic composition, the overall effect is weak and noisy but significant. 
 
We then quantified the mapped AMR relative abundances using reads/kilobase/million mapped reads (RPKM) 
for 20 classes of antibiotic resistance genes detected in our samples (Figure 4C, D). 2,210 samples had some 
sequence which was identified as belonging to an AMR gene, but no consistent core set of genes was identified. 
The most common classes of antibiotic resistance genes were for macrolides, lincosamides, streptogamines 
(MLS), and betalactams. Despite being relatively common, antibiotic resistance genes were universally in low 
abundance compared to functional genes, with measured values for resistance classes typically ranging from 0.1 
– 1 RPKM compared to values of 10 - 100 RPKM for typical housekeeping genes. In spite of the low abundance 
of the marker genes themselves, some samples contained sequences from hundreds of distinct AMR genes, 
where others were only a few. Moreover, clusters of high AMR diversity were not evenly distributed across the 
world (Figure 4E), with some cities showing far more resistance genes on average (15-20X) than others (e.g. 
Offa), while other cities had bimodal distributions (e.g. Seoul), indicating significant regional variation. 
 
We next identified AMR genes that were found on assembled contigs. Contigs were identified as either 
representing bacterial plasmids or chromosomes and were given taxonomic assignments, and then annotated 
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with the number of AMR genes identified. Prominent AMR genes identified on plasmid contigs formed co-
occurring clusters (Figure 5A). Specifically, we identified thirteen clusters of at least two AMR genes that 
consistently occurred on the same contigs and were found on at least 1,000 contigs. All of these genes were 
found to have cosmopolitan ranges, but were not necessarily found in equal abundances across regions. A<R 
genes in clusters were of many different types but there were notable clusters for vancomycin resistance, 
tetracycline resistance, and Multi-drug efflux complexes. Some clusters were dominated by a single type of 
resistance gene while others had genes with multiple sources. 
 
Contigs with at least one AMR gene from both chromosomes and plasmids had a mode of three AMR genes. 
Chromosomal contigs had more AMR genes than plasmid contigs on average but this does not account for the 
larger size of chromosomal contigs. Three taxa groups, Acinetobacteria, Bacteroidetes, and Tenericutes, had 
AMR genes predominantly on chromosol contigs. One taxa group, Deinococcus-Thermus, had more AMR 
genes identified on plasmid contigs than chromosomes. AMR genes from three taxa groups, Cyanobacteria, 
Deinococcus-Thermus, and Tenericutes, had geographically constrained ranges while AMRs from other taxa 
had cosmopolitan ranges. 
 
 

 
Figure 4: AMR Orthologs are common but varied in distribution. A) Rarefaction analysis of AMR genes 
over samples B) Co-occurrence of AMR genes decreases with distance, nearby samples are more likely to be 
similar C) Prevalence of AMR genes with resistance to particular drug classes D) Abundance of AMR gene 
classes when detected, by drug class E) Number of detected AMR genes by city.
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Figure 5: AMRs Form Distinct Clusters A) Co-occurrence of prominent AMR genes found on plasmids. Heatmap of the 
Jaccard index for pairs of genes according to the contigs where they are identified. Only genes which were identified on 
1,000 contigs are more are shown. B) Geographic distribution of AMR genes in (A). 
c) The number of AMR genes identified on assembled contigs based on the type of contig and taxonomic classification. 
 
Discussion 
Here, we have generated a comprehensive global, urban metagenomic atlas and identified a core microbiome 
present across 58 cities, consisting of a wide range of mostly bacterial and fungal species. We also identified 
species that are geographically constrained, and also showed that these can be used to infer the likely city of 
origin. Many of these species are associated with commensal microbiomes from human skin and airways, but 
we observed that urban microbiomes are nevertheless distinct from both human and soil microbiomes. Notably, 
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no species from the Bacteroidetes, a prominent group of human commensal organisms (Eckburg et al., 2005; 
Qin et al., 2010), was identified in the core urban microbiome. Notably, no archaea or viruses were identified in 
the group of sub-core microorganisms, although this analysis did not include viruses newly discovered in this 
study. For viruses in particular, this may be affected by the sampling or DNA extraction methods used, by 
limitations in sequencing depth, or by missing annotations in the reference databases used for taxonomic 
classification, which is principally problematic with phages. It is worth noting that potentially prevalent RNA 
viruses are omitted with our DNA-based sampling. 

 
Unique taxonomic composition and association with covariates specific to the urban environment suggest that 
urban microbiomes should be treated as ecologically distinct from both surrounding soil microbiomes and 
human commensal microbiomes. Though these microbiomes undoubtedly interact with the urban environment, 
they nonetheless represent distinct ecological niches with different genetic profiles. While our metadata 
covariates were associated with the principal variation in our samples, they do not explain a large proportion of 
the observed variance. It remains to be determined whether variation is essentially a stochastic process or if a 
deeper analysis of our covariates proves more fruitful. We have observed that less important principal 
components (roughly PCs 10-100) are generally less associated with metadata covariates but that PCs 1-3 do not 
adequately describe the data alone. This is a pattern that was observed in the human microbiome project as well, 
where minor PCs (such as our Figure 2B) were required to separate samples from closely related body sites. 

 
Much of the urban microbiome likely represents novel diversity, as our samples contain a significant proportion 
of unclassified DNA. More sensitive methodologies only marginally increase the proportion of DNA that can be 
classified (see methods), and the sequencing error rate is <1%. As such, we consider the un-mapped DNA likely 
to be components of truly novel organisms and viruses, as evidenced by comparison to the JGI/VR databases. 
Indeed, the fraction of predicted viral sequences which belonged to previously unobserved taxa was particularly 
high in our study (94.1%). However, taxonomic associations of these viruses to observed microbial hosts 
suggests these results are not spurious. This rate of discovery may prove prescient for novel taxa in other 
domains, and novel discovery of taxa may help to reduce the large fraction of DNA which cannot currently be 
classified. 
 
Many of the identified taxa are frequently implicated as infectious agents in a clinical setting including specific 
Staphylococcus, Streptococcus, Corynebacterium, Klebsiella and Enterobacter species. However, there is no 
clear indication that the species identified in the urban environment are pathogenic and further in-depth study is 
necessary to determine the clinical impact of urban microbiomes. This includes microbial culture studies, 
specifically searching for virulence factors and performing strain-level characterization. Seasonal variation also 
remains open to study as the majority of the samples collected here were from two summer global City 
Sampling Days (June 21, 2016 and 2017). Further studies, some generating novel data, will need to explore 
whether the core microbiome shifts over the course of the year, with particular interest in the role of the 
microbiome in flu transmission (Cáliz et al., 2018; Korownyk et al., 2018). 
 
As metagenomics and next-generation sequencing becomes more available for clinical (Wilson et al., 2019) and 
municipal use (Hendriksen et al., 2019), it is essential to contextualize the AMR markers or presence of new 
species and strains within a global and longitudinal context. The most common AMR genes were found for two 
classes of antibiotics: MLS (macrolide-lincosamide-streptogramin) and beta-lactams. MLS represents three 
groups of antibiotics with a mechanism of action of inhibiting bacterial protein synthesis. Macrolides, with 
strong Gram-positive and limited Gram-negative coverage, are prevalently used to treat upper respiratory, skin, 
soft tissue and sexually transmitted infections, amongst others. Beta-lactam antibiotics are a major class of 
antibiotics including penicillins, cephalosporins, monobactams, carbapenems and carbacephems, all of which 
are widely used to treat infections. Antimicrobial resistance has surged due to the selection pressure of 
widespread use of antibiotics and is now a global health issue plaguing communities and hospitals worldwide. 
Antimicrobial resistance genes are thought to spread from a variety of sources including hospitals, agriculture 
and water (Bougnom and Piddock, 2017; Klein et al., 2018). The antimicrobial classes particularly impacted by 
resistance include beta-lactamases, gylcopeptides and fluoroquinolones, all of which we found antimicrobial 
resistance genes for across our samples, notably with uneven distribution of AMR genes across cities. This 
could be the result of some of combination of different levels of antibiotic use, differences in the urban 
geography between cities, population density, presence of untreated wastewater, or reflect the background 
microbiomes in different places in the world. Techniques to estimate antibiotic resistance from sequencing data 
remain an area of intense research, as certain classes of AMR gene (ie. fluoroquinolones) are sensitive to small 
mutations and it is possible that our methods represent a broader metric of resistance. Further research is needed 
to fully explore AMR genes in the urban environment, including culture studies, which directly measure the 
phenotype of resistance. 
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In summary, this study presents a first molecular atlas of urban and mass-transit metagenomics from across the 
world. By facilitating large scale epidemiological comparisons, it represents a first critical step towards 
quantifying the clinical role of environmental microbiomes and provides requisite data for tracking changes in 
ecology or virulence. Previous studies have already demonstrated a role for precision clinical metagenomics in 
managing infectious disease and global health (Afshinnekoo et al., 2017; Gardy and Loman, 2018; Ladner et al., 
2019). As an AMR and genetic metagenomic atlas, this data has the potential to aid physicians, public health 
officers, government officials, and others in diagnosis, clinical decision making and policy within their 
communities. 
 
Data Availability 
Reads with the human DNA filtered and low quality bases removed are available for download from Wasabi (an 
Amazon S3 clone) with individual URLs located here: https: //github.com/MetaSUB/metasub_utils. In addition 
to raw reads higher level results (e.g. taxonomic profiles, functional pathways, etc.) are available in the 
MetaSUB data packet also available for download from Wasabi. For instructional purposes, we also provide a 
simplified data packet for teaching which includes balanced numbers of samples from each city and completely 
filled metadata tables. 
 
Jupyter notebooks used to generate all the figures and statistics in this study can be found at 
https://www.github.com/MetaSUB/main_ paper_figures. Interactive data visualizations are available on 
https://www.metagenscope.com and GeoDNA, an interface to search query DNA sequences against MetaSUB 
samples, is available at (dnaloc.ethz.ch/). MetaSUB metadata is available in the data-packet or may be 
downloaded from https://github.com/ MetaSUB/MetaSUB-metadata. Programs used for analysis of data may be 
found at https://github.com/ MetaSUB/MetaSUB_CAP and https://github.com/dcdanko/capalyzer. Additional 
tools and resources are described here https://github.com/MetaSUB/ bioinformatics_management. 
 
The MetaSUB dataset is built and organized for full accessibility to other researchers. This is consistent with the 
concept of Open Science. Specifically, we built our study with the FAIR principles in mind: Findable, 
Accessible, Interoperable and Reusable. To make our study reproducible, we released an open source version-
controlled pipeline, called the MetaSUB Core Analysis Pipeline (CAP). The CAP is intended to improve the 
reproducibility of our findings by making it easy to apply a number of analyses consistently to a large dataset. 
This pipeline includes all steps from extracting data from raw sequence data to producing refined results like 
taxonomic and functional profiles.  The CAP itself is principally composed of other open peer-reviewed 
scientific tools, with some bridging and parsing scripts. Every tool in the CAP is open-source with a permissive 
license. The CAP is available as a docker container for easier installation in some instances and all databases 
used in the CAP are available for public download. The CAP is versioned and includes all necessary databases 
allowing researchers to replicate results.  
 
To make our results more reproducible and accessible, we have developed a program to condense the outputs of 
the Core Analysis Pipeline into a condensed data-packet. This data packet contains results as a series of Tidy-
style data tables with descriptions. The advantage of this setup is that result tables for an entire dataset can be 
parsed with a single command in most high-level analysis languages like Python and R. This package also 
contains Python utilities for parsing and analyzing data packets which streamlines most of the boilerplate tasks 
of data analysis. All development of the CAP and data packet builder (Capalyzer) package is open-source and 
permissively licensed. 
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Materials and Methods 
 
Metadata Collection and Cleaning 
Metadata from individual cities was collected from a standardized form and set of fields using the Kobo 
Toolbox MetaSUB App and website. The principle fields collected were the location of sampling, the material 
being sampled, the type of object being sampled, the elevation above or below ground, and the station or line 
where the sample was collected. However, several cities were unable to use the provided apps for various 
reasons and submitted their metadata as separate spreadsheets, which were uploaded later. Additionally, certain 
metadata features, such as those related to sequencing and quality control, were added after initial sample 
collection. 
 
To collate various metadata sources, we built a publicly available program which assembled a large master 
spreadsheet with consistent sample unique ID (UUIDs). After assembling the originally collected data at- 
tributes we added normalized attributes based on the original metadata to account for surface material, control 
status, and features of individual cities. A full description of ontologies used is provided as part of the collating 
program. 
 
Sample Collection and Preparation 
In this study we have benchmarked various types of swabs and DNA preservative tubes, including Copan Liquid 
Amies Elution Swab (ESwab,Copan Diagnostics, Cat.:480C, 2016) referred to as ’copan swab’ and Isohelix 
Swabs (Mini-Swab, Isohelix Cat.:MS-02, 2017) referred to as ’isohelix swabs’, which were combined with 2D 
Thermo ScientificTM MatrixTM storage tubes (3741-WP1D-BR/Matrix 1.0 ml/EA) referred to as ’matrix tube’, 
which have been prefilled with the preservative liquid Zymo DNA/RNA ShieldTM (R1100-250) referred to as 
‘Zymo shield.’ Copan swabs do not contain a preservative and need to be kept on ice after sampling until DNA 
extraction to prevent DNA degradation. Samples collected with Copan swabs have therefore been transported on 
dry ice and stored at -80C. Isohelix swabs have been stored in matrix tubes containing 400µl Zymo shield 
preservative. Matrix tubes have been transported at RT and stored at -80C until DNA extraction. All the Isohelix 
swabs were moistened by submerging the swab for a few seconds in preservative media, and all surfaces in the 
subway were swabbed for 3 min during the two global city sampling days in 2016 and 2017. 
 
In-Lab controls  
As positive lab controls, we used 30µl of the ZymoBiOMICS Microbial Community standard (Catalog 
#D6300), which we added to an empty sterile cup, followed by swabbing with Copan Liquid Amies Elution 
Swab (ESwab, Copan Diagnostics, Cat.:480C) for 1.5min / 3 minutes. As negative (background) lab control we 
used 50µl of the final resuspension buffer (MoBio PowerSoil R DNA Isolation Kit, Cat.:12888- 100), which we 
have added to an empty sterile cup followed by swabbing for 3 min (Fig.S1). Furthermore, the working space 
has been swabbed for 1.5 min / 3 min before and after treatment with 10% bleach (Figure S2) to test for 
background contamination rates. To identify the background levels of biological material in the air at sample 
areas, a Copan swab has been held for 1.5 min - 3 min in the air. To estimate the source and amount of 
contamination in commercial swab and tube products used for MetaSUB, we tested all consumables in 
triplicates in the sterilized hood (UV light and 10% bleach wiped with ethanol, Figure S2). 
 
DNA Extraction from Isohelix swabs using ZymoBiomics 96 MagBead 
The Isohelix swab head and the entire 400 µl of DNA/RNA Shield-solubilized sample were transferred into ZR 
BashingBead Lysis Tubes (0.1 & 0.5 mm) (Cat# S6012-50) to which an additional 600 µl of DNA/RNA Shield 
was added. Mechanical lysis using bead beating was performed on a maximum of 18 samples simultaneously 
using the Scientific Industries Vortex-Genie 2 with Horizontal-(24) Microtube Adapter (Cat # SI-0236 and SI-
H524) at maximum power for 40 minutes. The resulting lysate (400 µl) was transferred to NuncTM 96-Well 

.CC-BY 4.0 International licenseavailable under a
not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (which wasthis version posted October 4, 2019. ; https://doi.org/10.1101/724526doi: bioRxiv preprint 

https://doi.org/10.1101/724526
http://creativecommons.org/licenses/by/4.0/


18 
 

Polypropylene DeepWell Storage Plates (Cat # 278743), followed by DNA extraction using the ZymoBIOMICS 
96 MagBead Kit (Lysis Tubes) (Catalog # D4308) on the Hamilton Star according to manufacturer instructions. 
 
DNA extraction from Copan swabs using MoBio PowerSoil DNA  
Droplets in the Copan Liquid Amies Elution Swab tube (ESwab, Copan Diagnostics, Cat.:480C 
(http://goo.gl/8a9uCP)) were spun down at 300rpm/1min. Next, the swab pad was transferred to a Mo-Bio 
PowerSoil R DNA vial containing beads using sterile scissors, which we sterilized by flaming with 100% 
ethanol. The remaining 400-500µl Copan Amines liquid has been transferred into an Eppendorf tube and 
centrifuged at full speed to collect bacteria and debris in a pellet. The pellet was finally transferred to the same 
MoBio PowerSoil R DNA vial also containing the corresponding swab pad. Mo- Bio PowerSoil R DNA 
Isolation Kit, Cat.:12888-100 (https://goo.gl/65rcn2) was used according to manufacturer’s instructions except 
for the following modifications: Both swab and pellet have been re-suspended with 135µl C1 buffer (MoBio 
PowerSoil R DNA). Sample homogenization was performed using either TissueLyser II (Qiagen) with 2 cycles 
of 3 minutes at 30Hz (https://goo.gl/hBg8Lb), or using the Vortex-Genie 2 (Vortex Catalog #13000-V1-24) 
adaptor and vortex at maximum speed for 10 minutes. The eluted samples have been additionally purified  and 
concentrated by Beckmann Coulter Agencourt AMPure XP (Cat.:A63881) purification (1.8X) and eluted into 
12µl - 50µl elution buffer. Subsequently, DNA was quantified using Qubit R Assay (Catalog #Q32854). 
 
Quality Control 
Sequencing quality 
We measured sequencing quality based on 5 metrics: number of reads obtained from a sample, GC content, 
Shannon’s entropy of k-mers, post PCR Qubit score, and recorded DNA concentration before PCR. The number 
of reads in each sample was counted both before and after quality control, we used the number of reads after 
quality control for our results though the difference was slight. GC content was estimated from 100,000 reads in 
each sample after low quality DNA and human reads had been removed. Shannon’s entropy of k-mers was 
estimated from 10,000 reads taken from each sample.  
 
Strain Contamination 
We used BLASTn to align nucleotide assemblies from case samples to control samples. We used a threshold of 
8,000 base pairs and 99.99% identity as a minimum to consider two sequences homologous. This threshold was 
chosen to be sensitive without solely capturing conserved regions. We identified all connected groups of 
homologous sequences and found approximate taxonomic identifications by aligning contigs to NCBI-NT using 
BLASTn searching for 90% nucleotide identity over half the length of the longest contig in each group. 
 
K-Mer Based Analyses 
We generated 31-mer profiles for raw reads using Jellyfish. All k-mers that occurred at least twice in a given 
sample were retained. We also generated MASH sketches from the non-human reads of each sample with 10 
million unique minimizers per sketch. We calculated the Shannon’s entropy of k-mers by sampling 31-mers 
from a uniform 10,000 reads per sample. Shannon’s entropy of taxonomic profiles was calculated using the 
CAPalyzer package. 
 
Sequence Preprocessing 
Sequence data were processed with AdapterRemoval (v2.17, Schubert et al., 2016) to remove low quality reads 
and reads with ambiguous bases. Subsequently reads were aligned to the human genome (hg38, including 
alternate contigs) using Bowtie2 (v2.3.0, fast preset, Langmead and Steven L Salzberg, 2013). Read pairs where 
both ends mapped to the human genome were separated from read pairs where neither mate mapped. Read pairs 
where only one mate mapped were discarded. Hereafter, we refer to the read sets as human reads and non-
human reads. 
 
Computational Analysis 
Taxonomic Analysis 
We generated taxonomic profiles by processing non-human reads with KrakenUniq (v0.3.2 Breitwieser et al. 
(2018)) using a database based on all draft and reference genomes in RefSeq Microbial (bacteria, fungi, virus, 
and archaea) ca. March 2017. KrakenUniq was selected because it was highly performant, as it has been 
demonstrated to be comparable or having higher sensitivity than the best tools identified in a recent 
benchmarking study (McIntyre et al., 2017) on the same comparative dataset. KrakenUniq reports the number of 
unique marker k-mers assigned to each taxon, as well as the total number of reads, the fraction of available 
marker k-mers found, and the mean copy number of those k-mers. We found that requiring more k-mers to 
identify a species resulted in a roughly linear decrease in the total number of species identified without a plateau 
or any other clear point to set a threshold (Figure S2A).  
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At a minimum we required three reads assigned to a taxa with 64 unique marker k-mers. This setting captures a 
group of taxa with low abundance but reasonable (10-20%) coverage of the k-mers in their marker set (Figure 
S2C). However, this also allows for a number of taxa with very high (105) duplication of the identified marker 
k-mers and very few k-mers per read, which is unlikely (Figure S2D). Thus, we further filtered these taxa by 
applying a filter where the number of reads not exceed 10 times the number of unique k-mers, unless the set of 
unique k-mers was saturated (> 90% completeness). We include a full list of all taxonomic calls from all 
samples including diagnostic values for each call. We do not attempt to classify reads below the species level in 
this study. 
 
We further evaluated prominent taxonomic classifications for sequence complexity and genome coverage. For 
each microbe evaluated, we calculated two indices: the average topological entropy of reads assigned to the 
microbe and the Gini-coefficient of read positions on the microbial genome. For brevity we refer to these as 
mean sequence entropy (MSE) and coverage equality (CE). The formula for topological entropy of a DNA 
sequence is described by Koslicki (2011). Values close to 0 correspond to low-complexity sequences and values 
near 1 are high complexity. In this work we use a word size of 3 with an overall sequence length of 64 since this 
readily fits into our reads. To find the MSE of a microbial classification we take the arithmetic mean of the 
topological entropy of all reads that map to a given microbial genome in a sample. Reads mapping to a 
microbial genome are assigned to a contiguous 10kbp bin and the Gini-coefficient of all bins is calculated. Like 
MSE, the Gini-coefficient is bounded in [0, 1]. Lower values indicate greater inequality, very low values 
indicate that a taxon may be misidentified from conserved and near conserved regions. We downloaded one 
representative genome per species evaluated and mapped all reads from samples to using Bowtie2 (sensitive-
local preset). Indices were processed from alignments using a custom script. Species classifications with an 
average MSE less than 0.75 or CE less than 0.1 were flagged as low quality. 
 
To determine relative abundance of taxa, we rarefied samples to 100,000 classified reads, computed the 
proportion of reads assigned to each taxon, and took the distribution of values from all samples. This was the 
minimum number of reads sufficient to maintain taxonomic richness (Figure S2B). We chose sub-sampling 
(rarefaction) based on the study by Weiss et al. (2017), showing that sub-sampling effectively estimates relative 
abundance. Note that we use the term prevalence to describe the fraction of samples where a given taxon is 
found at any abundance and we use the term relative abundance to describe the fraction of DNA in a sample 
from a given taxon. 
 
MASH Analysis 
We compared our samples to metagenomic samples from the Human Microbiome Project and a metagenomic 
study of European soil samples using MASH (Ondov et al., 2016), a fast k-mer based comparison tool.  We built 
MASH sketches from all samples with 10 million unique k-mers to ensure a sensitive and accurate comparison. 
We used MASH’s built-in Jaccard distance function to generate distances between our samples and HMP 
samples. We then took the distribution of distances to each particular human commensal community as a proxy 
for the similarity of our samples to a given human body site. 
 
We also compared our samples to HMP and soil samples using taxonomic profiles generated by MetaPhlAn 
v2.0 (Segata et al., 2012). We generated taxonomic profiles from non-human reads using MetaPhlAn v2.0 and 
found the cosine similarity between all pairs of samples. We used the Microbe Directory (Shaaban et al., 2018) 
to annotate taxonomic calls. The Microbe Directory is a hand curated, machine readable, database of functional 
annotations for 5,000 microbial species. 
 
Functional Analysis 
We analyzed the metabolic functions in each of our samples by processing non-human reads with HUMAnN2 
(Franzosa et al., 2018). We aligned all reads to UniRef90 using DIAMOND (Buchfink et al., 2014) and used 
HUMAnN2 to produce estimate of pathway abundance and completeness. We filtered all pathways that were 
less than 50% covered in a given sample but otherwise took the reported pathway abundance as is after relative 
abundance normalization (using HUMAnN2’s built-in script). High level categories of functional pathways 
were found by grouping positively correlated pathways and manually annotating resulting clusters. 
 
Assembly and Plasmid Annotations 
All samples were assembled using metaSPAdes (v3.8.1 Nurk et al. (2017)) with default settings. Assembled 
scaffolds of at least 1,500bp of length were annotated using PlasFlow (v1.1 Krawczyk et al. (2018)) using 
default settings. PlasFlow predicts whether a contigs is likely from a chromosome or plasmid and gives a rough 
taxonomic annotation.  
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Analysis of Antimicrobial Resistance Genes 
We generated profiles of antimicrobial resistance genes using MegaRes (v1.0.1, Lakin et al. (2017)). To 
generate profiles from MegaRes, we mapped non-human reads to the MegaRes database using Bowtie2 (v2.3.0, 
very-sensitive presets, Langmead and Salzberg, 2013).  Subsequently, alignments were analyzed using 
ResistomeAnalyzer (commit 15a52dd github.com/cdeanj/resistomeanalyzer) and normalized by total reads per 
sample and gene length to give RPKMs. MegaRes includes an ontology grouping resistance genes into gene 
classes, AMR mechanisms, and gene groups. To reduce spurious mapping from gene homology we used 
BLASTn to align all MegaRes AMR genes against themselves. We considered any connected group of genes 
with an average nucleotide identity of 80% across 50% of the gene length as a set of potentially confounded 
genes. We collapsed all such groups into a single metagene with the mean abundance of all constituent genes. 
Before clustering genes, we removed all genes which were annotated as requiring SNP verification to predict 
resistance. 
 
In addition to MegaRes, we mapped non-human reads from all samples to the amino acid gene sequences in the 
Comprehensive Antibiotic Resistance Database (McArthur et al., 2013) using DIAMOND. While we do not use 
this analysis explicitly in this study, we provide the results as a data table. Assembled contigs were annotated for 
AMR genes using metaProdigal (Hyatt et al., 2010), HMMER3 (Eddy, 2011), and ResFam (Gibson et al., 2015) 
as described by Rahman et al. (2018). All predicted gene annotations with an e-value higher than 10−10 were 
discarded. 
 
Beta Diversity 
Intersample (beta) diversity was measured by using Jaccard distances. We note that Jaccard distances do not use 
relative abundance information. Matrices of Jaccard distances were produced using built in SciPy functions 
treating all elements greater than 0 as present. Hierarchical clustering (average linkage) was performed on the 
matrix of Jaccard distances using SciPy (https://www.scipy.org/). Dimensionality reduction of taxonomic and 
functional profiles was performed using UMAP (McInnes et al., 2018) on the matrix of Jaccard distances with 
100 neighbors (UMAP-learn package, random seed of 42). We did not use Principal Component Analysis as a 
preprocessing step before UMAP as is sometimes done for high dimensional data. 
 
Alpha Diversity 
Intrasample (alpha) diversity was measured by using Species Richness and Shannon’s Entropy. We took species 
richness as the total number of detected species in a sample after rarefaction to 1 million reads. Shannon’s 
entropy is robust to sample read depth and accounts for the relative size of each group in diversity estimation. 
Shannon’s entropy is typically defined as H = ∑𝑎#𝑙𝑜𝑔'𝑎#, where ai is the relative abundance of taxon i in the 
sample. For alpha diversity based on k-mers or pathways, we substituted the relative abundance of a species for 
the relative abundance of the relevant type of object. 
 
GeoDNA Sequence Search 
For building the sequence graph index, each sample was processed with KMC (version 3) to convert the reads in 
FASTA format into lists of k-mer counts, using different values of k ranging from 13 to 19 in increments of 2. 
All k-mers that contained the character “N” or occurred in a sample less than twice were removed. For each 
value of k, we built a separate index, consisting of a labeled de Bruijn graph, using an implicit representation of 
the complete graph and a compressed label representation based on Multiary Binary Relation Wavelet Trees 
(Multi-BRWT). To build the index, for each sample the KMC k-mer count lists were transformed into de Bruijn 
graphs, from which path covers in the form of contig sets were extracted and stored as intermediate FASTA 
files. The contig sets of each sample were then transformed into annotation columns (one column per sample) 
by mapping them onto an implicit complete de Bruijn graph of order k. All annotation columns were then 
merged into a joint annotation matrix and transformed into Multi-BRWT format. Finally, the topology of the 
Multi-BRWT representation was optimized by relaxing its internal tree arity constraints to allow for a maximum 
arity of 40. The site for searching is publicly available (dnaloc.ethz.ch). 
 
Viral Discovery 
We followed the protocol described by Paez-Espino et al. (2017). Briefly, we used an expanded and curated set 
of viral protein families (VPFs) as bait in combination with recommended filtering steps to identify 16,584 
UViGs directly from all MetaSUB metagenomic assemblies greater than 5kb. Then, the UViGs were clustered 
with the content of the IMG/VR system (a total of over 730k viral sequences including isolate viruses, 
prophages, and UViGs from all kind of habitats). The clustering step relied on a sequence-based classification 
framework (based on 95% sequence identity across 85% of the shortest sequence length) followed by the 
Markov clustering (mcl). This approach yielded 2,009 viral clusters (ranging from 2-611 members) and 9,605 
singletons (or viral clusters of 1 member), sequences that failed to cluster with any sequence from the dataset or 
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the references from IMG/VR, resulting in a total of 11,614 vOTUs. We define viral species from vOTUs as 
sequences sharing at least 95% identity over 85% of their length. Out of this total MetaSUB viral diversity, only 
686 vOTUs clustered with any known viral sequence in IMG/VR. 
 
Identifying Host-Virus Interactions 
We used two computational methods to reveal putative host-virus connections (Paez-Espino et al., 2016). First, 
for the 686 vOTUs that clustered with viral sequences from the IMG/VR system, we projected the known host 
information to all the members of the group (total of 2,064 MetaSUB UViGs). Second, we used 
bacterial/archaeal CRISPR-Cas spacer matches (from the IMG/M 1.1 million isolate spacer database) to the 
UViGs (allowing only for 1 SNP over the whole spacer length) to assigned a host to 1,915 MetaSUB vOTUs. 
Additionally, we also used a database of over 20 million CRISPR-Cas spacers identified from metagenomic 
contigs from the IMG/M system with taxonomy assigned. Since some of these spacers may derive from short 
contigs these results should be interpreted with caution. 
 
Unmapped DNA is not similar to any known sequence 
A large proportion of the reads in our samples were not mapped to any reference sequences. To estimate the 
proportion of reads which could be assigned with more permissive metrics, we took 10k read subsets from the 
reads of 152 samples (post-human removal) and mapped the subsets to the NCBI-NT database with BLASTn. 
On average, 46.3% of non-human reads could be mapped to some known reference sequence ( >90% average 
BLAST nucleotide identity roughly equivalent to the rank of Genus or Family) compared to an average 41.3% 
of reads mapped using our approach with KrakenUniq. We note that our approach to estimate the fraction of 
reads that could be classified using BLASTn does not account for hits to low quality taxa which would 
ultimately be discarded in our pipeline regardless.  
 
Sequencing quality scores show expected trends 
We measured sequencing quality based on 5 metrics: number of reads obtained from a sample, GC content 
(taken after removing human reads), Shannon’s entropy of k-mers (from 10,000 reads sampled from each 
sample), post PCR Qubit score, and recorded DNA concentration before PCR. We observed good separation of 
negative and positive controls based on both PCR Qubit and k-mer entropy (Figure S7). Distributions of DNA 
concentration and the number of reads were as expected. GC content was broadly distributed for negative 
controls while positive controls were tightly clustered, expected since positive controls have a consistent 
taxonomic profile. Comparing the number of reads before and after quality control did not reveal any major 
outliers. 
 
Testing for batch effects 
A major concern for this study was that our results could be conflated with batch effect. For practical purposes, 
most of the flowcells used to sequence our samples contained samples from a randomly selected region. The 
median flowcell used in our study contained samples from just 3 cities and 2 continents. However, two flowcells 
covered 18 cities from 5 or 6 continents respectively. When samples from these flowcells were plotted using 
UMAP, the major global trends we described were recapitulated (Figure S8A). Further, when plotting samples 
by PCR qubit and k-mer entropy (the  two metrics that most reliably separated our positive and negative 
controls) and overlaying the flowcell used to sequence each sample, only one outlier flowcell was identified, 
which was the used to sequence a large number of background control samples (Figure S8B). Plots of the 
number of reads against city of origin and surface material (Figures S8C & D) showed a stable distribution of 
reads across cities. Analogous plots of PCR Qubit scores were less stable than the number of reads, but showed 
a clear drop for control samples (Figures S8E & F). These results indicate that batch effects are likely to be 
minimal.  
 
Strain contamination is rare or absent 
Despite good separation of positive and negative controls, we identified several species in our negative controls 
which were also identified as prominent taxa in the dataset as a whole. Our dilemma was that a microbial 
species that is common in the urban environment might also reasonably be expected to be common in the lab 
environment. In general, negative controls had lower k-mer complexity, fewer reads, and lower post-PCR Qubit 
scores than case samples, and no major flowcell-specific species were observed. Similarly, positive control 
samples were not heavily contaminated. These results suggest samples are high quality but do not systematically 
exclude the possibility of contamination. 
 
Previous studies have reported that microbial species whose relative abundance is negatively correlated with 
DNA concentration may be contaminants. We observed a number of species that were negatively correlated 
with DNA concentration (Figure S6A), but this distribution followed the same shape as a null distribution of 
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uniformly randomly generated relative abundances (Figure S6B). We also plotted correlation with DNA 
concentration against each species mean relative abundance across the entire dataset (Figure S6C). Species that 
were negatively correlated with DNA concentration were clearly more abundant than uncorrelated species, this 
suggests that there may be a jackpot effect for prominent species in samples with lower concentrations of DNA, 
but is not generally consistent with contamination. 
 
Finally, we compared assemblies from negative controls to assemblies from our case samples searching for 
regions of high similarity that could be from the same microbial strain. We reasoned that uncontaminated 
samples may contain the same species as negative controls but were less likely to contain identical strains. Only 
137 case samples were observed to have any sequence with high similarity to an assembled sequence from a 
negative control (8,000 base pairs minimum of 99.99% identity). The identified sequences were principally from 
Bradyrhizobium and Cutibacterium. Since these genera are core taxa (observed in nearly every sample) and high 
similarity was only identified in a few samples, we elected not to remove species from these genera from case 
samples. 
 
K-Mer based metrics correlate with taxonomic metrics 
We found clear correlations between three pairwise distance metrics (Figures S3A, B, C): k-mer based Jaccard 
distance (MASH), taxonomic Jaccard distance, and taxonomic Jensen-Shannon divergence. This suggests that 
taxonomic variation reflects meaningful variation in the underlying sequence in a sample. We also compared 
alpha diversity metrics (Figure S3D): Shannon entropy of k-mers, and Shannon entropy of taxonomic profiles. 
These metrics for pairwise distances were correlated, though some noise was present (Figure S3). 
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Supplemental Materials 
  Table S1: Sample Counts  
 

 
Region 

project / city Pilot CSD16 CSD17 Other Total 

Control Background Control 0 18 49 0 67 
 Lab Negative Control 9 0 24 7 40 
 Positive Control 9 1 33 7 50 
East Asia Continent Total 22 25 1244 0 1291 
 Hanoi 0 0 16 0 16 
 Hong Kong 0 0 713 0 713 
 Kuala Lumpur 0 0 14 0 14 
 Sendai 0 0 16 0 16 
 Seoul 12 0 78 0 90 
 Shanghai 10 0 0 0 10 
 Singapore 0 0 192 0 192 
 Taipei 0 0 94 0 94 
 Tokyo 0 25 112 0 137 
 Yamaguchi 0 0 9 0 9 
Europe Continent Total 131 235 845 71 1282 
 Barcelona 7 96 0 0 103 
 Belfast 0 0 0 5 5 
 Berlin 0 55 0 0 55 
 Birmingham 0 0 0 7 7 
 Bradford 0 0 0 4 4 
 Bury 0 0 0 6 6 
 Eastbourne 0 0 0 6 6 
 Eden 0 0 0 5 5 
 Edinborough 0 0 0 6 6 
 Islington 0 0 0 5 5 
 Jaywick 0 0 0 6 6 
 Kensington 0 0 0 5 5 
 Kyiv 0 0 96 0 96 
 Lands End 0 0 0 5 5 
 Lisbon 0 84 0 0 84 
 London 0 0 535 0 535 
 Marseille 0 0 16 0 16 
 Naples 0 0 16 0 16 
 Newcastle 0 0 0 5 5 
 Oslo 12 0 16 0 28 
 Paris 0 0 16 0 16 
 Porto 112 0 0 0 112 
 Sofia 0 0 16 0 16 
 Stockholm 0 0 64 0 64 
 Swansea 0 0 0 6 6 
 Vienna 0 0 16 0 16 
 Zurich 0 0 54 0 54 
Middle East Continent Total 0 66 14 0 80 
 Doha 0 66 14 0 80 
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  Table S1: Sample Counts Cont.  
 

 
continent 

project city Pilot CSD16 CSD17 Other Total 

North America Continent Total 28 221 158 184 591 
 Baltimore 0 0 14 0 14 
 Denver 0 23 16 0 39 
 Fairbanks 0 100 0 0 100 
 Mexico City 10 0 0 0 10 
 Minneapolis 0 0 16 0 16 
 New York City 0 82 96 184 362 
 Sacramento 18 16 0 0 34 
 San Francisco 0 0 16 0 16 
Oceania Continent Total 0 31 32 0 63 
 Auckland 0 15 0 0 15 
 Brisbane 0 0 16 0 16 
 Hamilton 0 16 0 0 16 
 Honolulu 0 0 16 0 16 
South America Continent Total 20 43 29 34 126 
 Bogota 0 17 0 0 17 
 Montevideo 20 0 0 0 20 
 Rio De Janeiro 0 0 0 34 34 
 Santiago 0 26 0 0 26 
 Sao Paulo 0 0 29 0 29 
Sub Saharan Africa Continent Total 0 92 191 0 283 
 Ilorin 0 66 191 0 257 
 Offa 0 26 0 0 26 

 
Table S2: Covariate Variance.  
The sample variance that can be explained by each factor, in isolation. 
 
 

Factor Variance Explained 
City Population Density 0% 
City Ave June Temp 4% 
City Elevation 4% 
Coastal City 2% 
Surface Material 3% 
Koppen Climate Classification 3% 
Setting 6% 
Above/Below Ground 7% 
Continent 11% 

 
Table S3: Classification Accuracy for Different Metadata Features. Mean classification accuracy for a 
classifier trained to predict a given feature using all samples except those from a given city and tested      
on the held out city. Reported number is the mean of the mean accuracy in each city. 
 

Feature Accuracy 
city_ave_june_temp_c 0.552829 
city_elevation 0.576737 
city_koppen_climate 0.385825 
city_latitude 0.515680 
city_longitude 0.522026 
city_population_density 0.532092 
city_total_population 0.658395 
coastal_city 0.601269 
continent 0.585694 
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surface_ontology_coarse 0.622925 
surface_ontology_fine 0.374484 
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Figure S1: Sample and Taxonomic Distributions. A) Correlation of taxonomic (species) relative abundances 
with DNA concentration B) Correlation of randomly generated compositional vectors with DNA concentration. 
Note the same shape but lower magnitude C) Correlation of taxa with DNA Concentration vs the mean relative 
abundance of that taxa D) Presence (black) absence (grey) heatmap of taxa found in controls and other samples. 
Colored bar at top, red are negative controls, blue are background, green are positive. Case samples with 
homology are grey. Case samples without homology to control sequences are not shown. 
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Figure S2: A) MASH k-mer Jaccard similarity to representative HMP samples, colored by continent B) 
MetaPhlAn v2.0 cosine similarity to representative HMP samples, colored by continent C) Fraction unclassified 
DNA by surface material D) Cosine similarity to MetaPhlAn v2.0 skin microbiome profile by surface E) Jensen- 
Shannon distance between pairs of taxonomic profiles vs Geographic Distance F) MASH k-mer Jaccard 
similarity to representative soil samples, colored by continent.
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Figure S3: K-mer Diveristy of Samples. A) Jensen-Shannon Divergence of taxonomic profiles vs 
MASH Jaccard distance of k-mers B)  Jensen-Shannon Divergence of taxonomic profiles vs Jaccard 
distance of taxonomic profiles. C) Jaccard distance of taxonomic profilesvs MASH Jaccard distance 
of k-mers D) Shannon’s Entropy of taxonomic profiles vs Shannon’s Entropy of k-mers E) Taxonomic 
richness (number of species) vs Shannon’s Entropy of taxonomic profiles. 
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Figure S4: Sequencing Quality Control Metrics. A) Number of species detected as k-mer threshold increases 
for 100 randomly selected samples B) Number of species detected as number of sub-sampled reads increase C) 
k-mer counts compared to number of reads for species level annotations in 100 randomly selected samples, 
colored by coverage of marker k-mer set D) k-mer counts compared to number of reads for species level 
annotations in 100 randomly selected samples, colored by average duplication of k-mers E) Comparison of 
Mean Sequence Entropy and Coverage Equality for core and sub-core taxa. Thresholds are shown by red lines. 
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Figure S5: Climate and Geographical Clustering. A) UMAP of taxonomic profiles colored by climate 
classification B) UMAP of functional pathways colored by continent 
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Figure S6:  Predictive Capacity Testing. A) Confusion matrix of SVM classifier on test data.  White lines are 
cities which were not in test   set B) Heatmap showing classification accuracies of classifiers trained to predict a 
given feature using all samples except those from a given city and tested on the held out city C) Performance of 
Linear SVM Classifier with Increasing Data D) Effect of noise on a Linear SVM trained to predict a sample’s 
city from its taxonomic profile. Noise is scaled to the magnitude of each taxa within the profile. 
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Figure S7: Example Geographic taxonomic Distributions. Distributions of taxa were estimated by fitting 
Gaussian distributions to sampling locations where the taxa was found with standard deviations based on the 
geographic distance between observations. Top Row) Sampling sites in three major cities Rows 2-4) Estimated 
distribution of different example species in major cities Row 5) Estimated distribution of three species together 
in major cities. 
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Figure S8: Comparisons of different sequencing quality control metrics with controls marked. A-F) Comparisons of 
the raw reads, PCR Qubit scores, manually recorded DNA concentrations, k-mer Shannon entropy, and GC fraction of 
quality controlled reads G) Comparison of read counts before and after quality control but before human reads were removed 
H) Histogram showing the number of samples with different k-mer entropies.
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Figure S9: UMAP profiles. A) UMAP of taxonomic profiles from geographically diverse flowcells B) Flowcells vs quality 
control metrics C) Number of reads by region D) number of reads by surface material E) PCR Qubit by surface material. 
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