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Abstract1

We have created a global atlas of 4,728 metagenomic samples from mass-transit systems in 602

cities across 3 years. This is the first systematic, worldwide study cataloging the urban microbial3

ecosystem. We identify taxonomically-defined microorganisms collected across three years. This4

atlas provides an annotated, geospatial profile of microbial strains, functional characteristics AMR5

markers, and novel genetic elements, including 10,928 viral, 1302 bacteria, and 2 archaea novel6

species. We identify 4,424 species of urban microorganisms and a consistent "core" of 31 species7

found in nearly all samples that is largely distinct from any human commensal microbiome. Profiles8

of AMR genes show geographic variation in type and density. Together, these results constitute a9

high-resolution, global metagenomic atlas, which enables the discovery of new genetic components,10

highlights potential forensic applications, and provides an essential first draft of the global AMR11

burden of the world’s cities.12
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1 Introduction14

The high-density urban environment has historically been home to only a fraction of all people, with15

the majority living in rural areas or small villages. In the last two decades, the situation has reversed;16

55% of the world’s population now lives in urban areas (Ritchie and Roser, 2020; United Nations, 2018).17

Since the introduction of germ theory and John Snow’s work on cholera, it has been clear that people in18

cities interact with microbes in ways that can be markedly different than in rural areas (Neiderud, 2015).19

Microbes in the built environment have been implicated as a possible source of contagion (Cooley et al.,20

1998) and certain syndromes, like allergies, are associated with increasing urbanization (Nicolaou et al.,21

2005). It is now apparent that cities in general have an impact on human health though the mechanisms22

of this impact are broadly variable and often little understood. Indeed, our understanding of microbial23

dynamics in the urban environment outside of pandemics has only begun (Gilbert and Stephens, 2018).24

Technological advances in next-generation sequencing (NGS) and metagenomics have created an25

unprecedented opportunity for rapid, global studies of microorganisms and their hosts, providing re-26

searchers, clinicians, and policymakers with a more comprehensive view of the functional dynamics of27

microorganisms in a city. NGS facilitates culture-independent sampling of the microorganisms in an28

area with the potential for both taxonomic and functional annotation; this is particularly important29

for surveillance of microorganisms as they acquire antimicrobial resistance (AMR) (Fresia et al., 2019).30

Metagenomic methods enable nearly real-time monitoring of organisms, AMR genes, and pathogens as31

they emerge within a given geographical location, and have the potential to reveal hidden microbial32

reservoirs and detect microbial transmission routes as they spread around the world (Zhu et al., 2017).33

There are several different drivers and sources for AMR; including agriculture, farming, and livestock in34

rural and suburban areas, household and industrial sewage, usage of antimicrobials, hard metals, and35

biocides, as well as human and animal waste, all these factors contribute to the complexity of AMR36

transmission (Allen et al., 2009; Martínez, 2008; Singer et al., 2016; Thanner et al., 2016; Venter et al.,37

2017). A molecular map of urban environments will enable significant new research on the impact of38

urban microbiomes on human health.39

The United Nations projects that by 2050, over two-thirds of the world’s population will live in urban40

areas (Ritchie and Roser, 2020). Consequently, urban transit systems - including subways and buses -41

are a daily contact interface for billions of people who live in cities. Notably, urban travelers bring their42

commensal microorganisms with them as they travel and come into contact with organisms and mobile43

elements present in the environment, including AMR markers. The study of the urban microbiome and44

the microbiome of the built environment spans several different projects and initiatives including work45

focused on transit systems (Afshinnekoo et al., 2015; Hsu et al., 2016; Kang et al., 2018; Leung et al.,46

2014; MetaSUB International Consortium. Mason et al., 2016), hospitals (Brooks et al., 2017; Lax et al.,47

2017), soil (Hoch et al., 2019; Joyner et al., 2019), and sewage (Fresia et al., 2019; Maritz et al., 2019),48

among others. However, these efforts for the most part have only been profiled with comprehensive49

metagenomic methods in a few selected cities on a limited number of occasions. This leaves a gap50

in scientific knowledge about a microbial ecosystem, with which the global human population readily51

interacts. Human commensal microbiomes have been found to vary widely based on culture, and thus52

the geography and geographically constrained studies may to miss key differences (Brito et al., 2016).53

Moreover, data on urban microbes and AMR genes are urgently needed in developing nations, where54

antimicrobial drug consumption is expected to rise by 67% by 2030 (United Nations, 2016; Van Boeckel55

et al., 2015), both from changes in consumer demand for livestock products and an expanding use of56

antimicrobials - both of which can alter AMR profiles of these cities.57

The International Metagenomics and Metadesign of Subways and Urban Biomes (MetaSUB) Consor-58

tium was launched in 2015 to address this gap in knowledge on the density, types, and dynamics of urban59

metagenomes and AMR profiles. Since then, we have developed standardized collection and sequencing60

protocols to process 4,728 samples across 60 cities worldwide (Table S1). Sampling took place at three61

major time points: a pilot study in 2015-16 and two global city sampling days (gCSD, June 21st) in62

2016 and 2017. Each sample was sequenced with 5-7M 125bp paired-end reads using Illumina NGS63

sequencers (see Methods). To deal with the challenging analysis of our large dataset, we generated an64

open-source analysis pipeline (MetaSUB Core Analysis Pipeline, CAP), which includes a comprehensive65

set of state-of-the-art, peer-reviewed, metagenomic tools for taxonomic identification, k-mer analysis,66

AMR gene prediction, functional profiling, de novo assembly, annotation of particular microbial species,67

and geospatial mapping.68

To our knowledge this study represents the first and largest global metagenomic study of urban69

microbiomes - with a focus on transit systems - that reveals a consistent “core” urban microbiome across70
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all cities, as well as distinct geographic variation that may reflect epidemiological variation and that71

enables a new forensic, source-tracking capabilities. More importantly, our data demonstrate that a72

significant fraction of the urban microbiome remains to be characterized. Though 1,000 samples are73

sufficient to discover roughly 80% of the observed taxa and AMR markers, we continued to observe74

taxa and genes at an ongoing discovery rate of approximately one new species (previously non-observed)75

and one new AMR marker for every 10 samples. Notably, this genetic variation is affected by various76

environmental factors (e.g., climate, surface type, latitude, etc.) and samples show greater diversity near77

the equator. Moreover, sequences associated with AMR markers are widespread, though not necessarily78

abundant, and show geographic specificity. Here, we present the results of our global analyses and a79

set of tools developed to access and analyze this extensive atlas, including: two interactive map-based80

visualizations for samples (metasub.org/map) and AMRs (resistanceopen.org), an indexed search tool81

over raw sequence data (dnaloc.ethz.ch/), a Git repository for all analytical pipelines and figures, and82

application programming interfaces (APIs) for computationally accessing results (github.com/metasub/83

metasub_utils).84

2 Results85

We have collected 4,728 samples from from the mass transit systems of 60 cities around the world86

(Table 1, Supplementary table S1). These samples were collected from various common surfaces in the87

mass transit systems such as railings, benches, and ticket kiosks and were subjected to metagenomic88

sequencing. We use the microbiome of mass transit systems as a proxy for the urban microbiome as a89

whole and present our key findings here.90

2.1 A Core Urban Microbiome Centers Global Diversity91

We first investigated the distribution of microbial species across the global urban environment. Specifi-92

cally, we asked whether the urban environment represents a singular type of microbial ecosystem or a set93

of related, but distinct, communities, especially in terms of biodiversity. We observed a bi-modal distri-94

bution of taxa prevalence across our dataset, which we used to define two separate sets of taxa based on95

the inflection points of the distribution: the putative “sub-core” set of urban microbial species that are96

consistently observed (>70% of samples) and the less common “peripheral” (<25% of samples) species.97

We also defined a set of true “core” taxa which occur in essentially all samples (>97% of samples). Apply-98

ing these thresholds, we identified 1,145 microbial species (Figure 1C) that make up the sub-core urban99

microbiome with 31 species in the true core microbiome (Figure 1A). Core and sub-core taxa classifica-100

tions were further evaluated for sequence complexity and genome coverage on a subset of samples. Of101

the 1,206 taxa with prevalence greater than 70%, 69 were flagged as being low quality classifications (see102

methods). The sub-core microbiome was principally bacterial, with just one eukaryotic taxon identified103

and not flagged: Saccharomyces cerevisiae. Notably, no archaea or viruses were identified in the group of104

sub-core microorganisms (note that this analysis did not include viruses newly discovered in this study).105

For viruses in particular, this may be affected by the sampling or DNA extraction methods used, by106

limitations in sequencing depth, or by missing annotations in the reference databases used for taxonomic107

Table 1: Sample Counts, The number of samples collected from each region.
Pilot CSD16 CSD17 Other Total

Region

North America 28 284 371 276 959
East Asia 34 26 1297 0 1357
Europe 177 310 939 1 1427
Sub Saharan Africa 0 116 192 0 308
South America 20 44 199 68 331
Middle East 0 100 15 0 115
Oceania 0 94 32 0 126
Background Control 0 0 40 0 40
Lab Control 0 0 20 6 26
Positive Control 0 0 33 6 39
Total 259 974 3138 357 4728
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classification, which is principally problematic with phages. It is worth noting that potentially prevalent108

RNA viruses are omitted with our DNA-based sampling. The three most common bacterial phyla across109

the world’s cities ordered by the number of species observed were Proteobacteria, Actinobacteria, and110

Firmicutes. To test for possible geographic bias in our data, we normalized the prevalence for each taxa111

by the median prevalence within each city. The two normalization methods broadly agreed (Figure ??).112

Despite their global prevalence, the core taxa are not uniformly abundant across all cities. Many113

species exhibited a high standard deviation and kurtosis (calculated using Fisher’s definition and normal114

kurtosis of 0) than other species (Figure 1B). Furthermore, some species show distinctly high mean115

abundance, often higher than the core species, but more heterogeneous global prevalence. For example,116

Salmonella enterica is identified in less than half of all samples but is the 12th most abundant species117

based on the fraction of DNA that can be ascribed to it. The most relatively abundant microbial species118

was Cutibacterium acnes (Figure 1D) which had a comparatively stable distribution of abundance across119

all samples; Cutibacterium acnes is known as a prominent member of the human skin microbiome. To120

test for any biases arising from uneven geographic sampling, we measured the relative abundance of121

each taxon by calculating the fraction of reads classified to each particular taxon, and compared the122

raw distribution of abundance to the distribution of median abundance within each city (This process123

is analogous to the one used for Figure 1C, Figure 1B); the two measures closely aligned. Also, an124

examination of the positive and negative controls indicates that these results are not likely due to125

contamination or batch effect (Supp. Figure S13). In total, we observed 31 core taxa (>97%), 1,145126

sub-core taxa (70-97%) 2,466 peripheral taxa (<25%), and 4,424 taxa across all samples. We term the127

set of all taxa observed the urban panmicrobiome.128

To estimate the number of taxa present in our samples but which were not detected by our experi-129

mental techniques, we performed a rarefaction analysis on the taxa that were identified. By estimating130

the number of taxa identified for different numbers of samples, we see a diminishing trend (Figure 1D),131

which indicates that at some point, the species in every new sample were likely already identified in a132

previous one. Our rarefaction curve did not reach a plateau and, even after including all samples, it still133

shows an expected marginal discovery rate of roughly 1 additional species for every 10 samples added134

to the study. For clarity we note that this analysis only considers taxa already present in reference135

databases, not newly discovered taxa (below). Despite the remaining unidentified taxa, we estimate136

that most (80%) of the classifiable taxa in the urban microbiome could be identified with roughly 1,000137

samples. However, as noted below, this new diversity is likely not evenly distributed across regions.138

As humans are a major part of the urban environment, the DNA in our samples could be expected to139

resemble commensal human microbiomes. To investigate this, we compared non-human DNA fragments140

from our samples to a randomized set of 50 samples from 5 commensal microbiome sites in the Human141

Microbiome Project (HMP) (Consortium et al., 2012) (stool, skin, airway, gastrointestinal tract, urogen-142

ital tract). We used MASH to perform a k-mer based comparison of our samples vs. the selected HMP143

samples, which showed a roughly uniform dissimilarity between MetaSUB samples and those from differ-144

ent human body sites (Figure 1E, Supp. Figure S2A & B). Samples taken from surfaces that were likely145

to have been touched more often by human skin, such as doorknobs, buttons, railings, and touchscreens,146

were indeed more similar to human skin microbiomes than surfaces like bollards, windows, and the floor.147

Given that a large fraction of DNA in our samples could not be classified and that a k-mer based compar-148

ison did not find significant body-site specificity, it is possible that the unclassified DNA in our samples149

is from novel taxa which are not human commensals. Of note, the taxonomic composition of our samples150

do not closely resemble soil samples. We processed 28 metagenomic soil samples (Bahram et al., 2018)151

using the same pipeline as the rest of the data and compared soil samples to our samples using MASH.152

Our samples were very dissimilar from the soil samples (Figure 1F) even in comparison to human skin153

microbiomes. This suggests that the unclassified DNA may represent heretofore uncharacterized taxa154

that are not known commensals being shed into the environment.155

We next estimated the fraction of sequences in our data that did not resemble sequences in known156

reference databases. We took a subset of 10,000 reads from each sample and aligned these reads to157

a number of reference databases using BLASTn (Altschul et al., 1990). We then identified reads that158

mapped to sequences in the reference databases at 80%, 90%, and 95% Average Nucleotide Identity159

(ANI) (Figure 1G). We used a broad set of databases for reference: RefSeq, NCBI’s NT Environmental,160

a large database of Metagenome Assembled Genomes (MAGs) from Pasolli et al. (2019), and MAGs from161

MetaSUB itself (Section 2.5). At 80% ANI, the most permissive threshold, 34.6% of reads did not map162

to any database while 47.3% of reads did not map or only mapped to MAGs from MetaSUB itself. This163

mirrors results seen by previous urban microbiome works (Afshinnekoo et al., 2015; Hsu et al., 2016).164

Next, we analyzed the fraction of sequences that aligned to these same databases by region. Sur-165
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prisingly, samples from Europe had the highest fraction of unaligned reads, followed by the middle east,166

while samples from Sub Saharan Africa had the smallest fraction of unaligned reads (Supp. Figure167

S1C). The proportion of reads aligned to each database did not vary significantly by region. We fur-168

ther investigated the relationship between geography and sample composition. In ecology, an increasing169

distance from the equator is associated with a decrease in taxonomic diversity (O’Hara et al., 2017).170

The MetaSUB data recapitulates this result and identifies a significant decrease in taxonomic diversity171

(though with significant noise, p < 2e16, R2 = 0.06915) as a function of absolute latitude; samples are172

estimated to lose 6.9672 species for each degree of latitude away from the equator (Supp. Figure S1A).173

The effect of latitude on species diversity is not purely monotonic, since several cities have higher species174

diversity then their latitude would predict. This is expected as latitude is only a rough predictor of a175

city’s climate. While this is an observation consistent with ecological theory, we note that our samples176

are heavily skewed by the location of the target cities, as well as the prevalence of those cities in specific177

latitude zones of the northern hemisphere.178

2.2 Global Diversity Varies According to Covariates179

Despite the core urban microbiome present in almost all samples, there was also geographic variation180

in taxonomy and localization. We calculated the Jaccard distance between samples measured by the181

presence and absence of species (which is robust to noise from relative abundance) and performed a182

dimensionality reduction of the data using UMAP (Uniform Manifold Approximation and Projection,183

McInnes et al. (2018)) for visualization (Figure 2A). Jaccard distance was correlated with distance based184

on Jensen-Shannon Divergence (which accounts for relative abundance) and k-mer distance calculated by185

MASH (which is based on the k-mer distribution in a sample, so cannot be biased by a database) (Supp.186

Figure S10A, B, C). In principle, Jaccard distance could be influenced by read depth as low abundance187

species drop below detection thresholds. However we expect this issue to be minor as the total number188

of species identified stabilized at 100,000 reads (Supp. Figure S9B) compared to an average of 6.01M189

reads per sample. Samples collected from North America and Europe were distinct from those collected190

in East Asia, but the separation between other regions was less clear. A similar trend was found in an191

analogous analysis based on functional pathways rather than taxonomy (Supp. Fig S5D), which indicates192

geographic stratification of the metagenomes at both the functional and taxonomic levels. Subclusters193

identified by UMAP roughly corresponded to city and climate but not surface type (Supp. Figure S5A,194

B, C). These findings confirm and extend earlier analyses performed on a fraction of the MetaSUB data195

which were run as a part of CAMDA Challenges in years 2017, 2018, and 2019 (camda.info).196

We quantified the degree to which metadata covariates influence the taxonomic composition of our197

samples using MAVRIC, a statistical tool to estimate the sources of variation in a count-based dataset198

(Moskowitz and Greenleaf, 2018). We identified covariates which influenced the taxonomic composition199

of our samples: city, population density, average temperature in June, region, elevation above sea-level,200

surface type, surface material, elevation above or below ground and proximity to the coast. The most201

important factor, which could explain 19% of the variation in isolation, was the city from which a sample202

was taken followed by region which explained 11%. The other four factors ranged from explaining 2%203

to 7% of the possible variation in taxonomy in isolation (Supp. Table S2). We note that many of204

the factors were confounded with one another, so they can explain less diversity than their sum. One205

metadata factor tested, the population density of the sampled city, had no significant effect on taxonomic206

variation overall.207

To quantify how the principle covariates, climate, continent, and surface material impacted the taxo-208

nomic composition of samples, we performed a Principal Component Analysis (PCA) on our taxonomic209

data normalized by proportion and identified principal components (PCs) which were strongly associated210

with a metadata covariate in a positive or negative direction (PCs were centered so an average direction211

indicates an association). We found that the first two PCs (representing 28.0% and 15.7% of the variance212

of the original data, respectively) associated strongly with the city climate while continent and surface213

material associate less strongly (Figure 2B).214

Next, we tested whether geographic proximity (in km) of samples to one another had any effect on215

the variation, since samples taken from nearby locations could be expected to more closely resemble one216

another. Indeed, for samples taken in the same city, the average JSD (Jensen-Shannon distance) was217

weakly predictive of the taxonomic distance between samples, with every increase of 1km in distance218

between two samples representing an increase of 0.056% in divergence (p < 2e16, R2 = 0.01073, Supp.219

Figure S1B). This suggests a "neighborhood effect" for sample similarity analogous to the effect described220

by Meyer et al. (2018), albeit a very minor one. To reduce bias that could be introduced by samples221
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Figure 1: The core microbiome A) Taxonomic tree showing 31 core taxa, colored by phylum and annotated
according to gram stain, ability to form biofilms, predicted association with a virus, and whether the bacteria
is a human commensal species. B) prevalence and distribution of relative abundances of the 75 most abundant
taxa. Mean relative abundance, standard deviation, and kurtosis of the abundance distribution are shown. C)
Distribution of species prevalence from all samples and normalized by cities. Vertical lines show defined group
cutoffs. D) Rarefaction analysis showing the number of species detected in randomly chosen sets of samples. E)
MASH (k-mer based) similarity between MetaSUB samples and HMP skin microbiome samples, by continent.
F) MASH (k-mer based) similarity between MetaSUB samples and soil microbiome samples, by continent. G)
Fraction of reads aligned (via BLAST) to different databases at different Average Nucleotide Identities.
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Figure 2: Differences at global scale A) UMAP of taxonomic profiles based on Jaccard distance between samples.
Colored by the region of origin for each sample. Axes are arbitrary and without meaningful scale. The color key
is shared with panel B. B) Association of the first 25 principal components of sample taxonomy with climate,
continent, and surface material. C) Distribution of major phyla, sorted by hierarchical clustering of all samples
and grouped by continent. D) Distribution of high-level groups of functional pathways, using the same order
as taxa (C). E) Distribution of AMR genes by drug class, using the same order as taxa (C). Note that MLS is
macrolide-lincosamide-streptogramin.
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taken from precisely the same object we excluded all pairs of samples within 1km of one another.222

At a global level, we examined the prevalence and abundance of taxa and their functional profiles223

between cities and continents. These data showed a fairly stable phyla distribution across samples, but224

the relative abundance of these taxa is unstable (Figure 2C) with some continental trends. In contrast225

to taxonomic variation, functional pathways were much more stable across continents, showing relatively226

little variation in the abundance of high level categories (Figure 2D). This pattern may also be due to227

the more limited range of pathway classes and their essential role in cellular function, in contrast to the228

much more wide-ranging taxonomic distributions examined across metagenomes. Classes of antimicrobial229

resistance were observed to vary by continent as well. Clusters of AMR classes were observed to occur230

in groups of taxonomically similar samples (Figure 2E).231

We quantified the relative variation of taxonomic and functional profiles by comparing the distribution232

of pairwise distances in taxonomic and functional profiles. Both profiles were equivalently normalized233

to give the probability of encountering a particular taxon or pathway. Taxonomic profiles have a mean234

pairwise Jensen-Shannon Divergence (JSD) of 0.61 while pathways have a mean JSD of 0.099. The235

distributions of distances are significantly different (Welch’s t-test, unequal variances, p < 2e−16 ). This236

is consistent with observations from the Human Microbiome Project, where metabolic function varied237

less than taxonomic composition (Consortium et al., 2012; Lloyd-Price et al., 2017) within samples from238

a given body site.239

2.3 Microbial Signatures Reveal Urban Characteristics240

To facilitate characterization of novel sequences we created GeoDNA, a high-level web interface (Figure241

3A) to search raw sequences against our dataset. Users can submit sequences to be processed against242

a k-mer graph-based representation of our data. Query sequences are mapped to samples and a set of243

likely sample hits is returned to the user. This interface will allow researchers to probe the diversity in244

this dataset and rapidly identify the range of various genetic sequences.245

We sought to determine whether a samples taxonomy reflected the environment in which it was246

collected. To this end we trained a Random Forest Classifier (RFC) to predict a sample’s city of origin247

from its taxonomic profile. We trained an RFC with 100 components on 90% of the samples in our248

dataset and evaluated its classification accuracy on the remaining 10%. We repeated this procedure with249

multiple subsamples of our data at various sizes and with 5 replicates per size to achieve a distribution250

(Fig. 3B). The RFC achieved 88% on held out data which compares favorably to the 7.01% that would251

be achieved by a randomized classifier. These results from our RFC demonstrate that city specific252

taxonomic signatures exist and can be predictive.253

We expanded our analysis of environmental signatures in taxonomy to the prediction of features in254

cities not present in our training set. To do this we collated a set of 7 features for each city: population,255

surface material, elevation, proximity to the coast, population density, region, ave June temperature,256

and Koppen climate classification. We trained a RFCs to predict each feature based on all samples that257

were not taken from a given city then used the relevant RFC to predict the feature for samples from258

the held out city and recorded the classification accuracy (Figure 3D). While not all features and cities259

were equally predictable (in particular features for a number of British cities were roughly similar and260

could be predicted effectively) in general the predictions exceeded random chance by a significant margin261

(Supp. Figure S3A). This suggests that certain features of cities generate microbial signatures that are262

present globally and distinct from city specific signatures. The successful geographic classification of263

samples demonstrates distinct city-specific trends in the detected taxa, that may enable future forensic264

biogeographical capacities.265

However, unique, city-specific taxa are not uniformly distributed (Figure 3B). To quantify this, we266

developed a score to reflect how endemic a given taxon is within a city, which reflects upon the forensic267

usefulness of a taxon. We define the Endemicity Score (ES) of a taxa as term-frequency inverse document268

frequency where the document consists of samples from some metadata defined group such as a city or269

region. This score is designed to simultaneously reflect the chance that a taxon could identify a given270

city and that that taxon could be found within the given city. A high ES for a taxon in a given city271

could be evidence of the evolutionary advantage that the taxon has in a particular cities environment.272

However, neutral evolution of microbes within a particular niche is also possible and the ES alone does273

not distinguish between these two hypotheses.274

Note that while the ES only considers taxa which are found in a city, a forensic classifier could also275

take advantage of the absence of taxa for a similar metric. ES show a roughly bimodal distribution for276

regions (Fig. 3C). Each region possesses a number of taxa with ES scores close to 1 and a slightly larger277
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Figure 3: Microbial Signatures A) Schematic of GeoDNA representation generation – Raw sequences of individual
samples for all cities are transformed into lists of unique k-mers (left). After filtration, the k-mers are assembled
into a graph index database. Each k-mer is then associated with its respective city label and other informative
metadata, such as geo-location and sampling information (top middle). Arbitrary input sequences (top right)
can then be efficiently queried against the index, returning a ranked list of matching paths in the graph together
with metadata and a score indicating the percentage of k-mer identity (bottom right). The geo-information of
each sample is used to highlight the locations of samples that contain sequences identical or close to the queried
sequence (middle right). B) Classification accuracy of a random forest model for assigning city labels to samples
as a function of the size of training set. C) Distribution of Endemicity scores (term frequency inverse document
frequency) for taxa in each region. D) Prediction accuracy of a random forest model for a given feature (rows)
in samples from a city (columns) that was not present in the training set. Rows and columns sorted by average
accuracy. Continuous features (e.g. Population) were discretized.
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number close to 0 (note that ES is not bounded in [0, 1]). Some cities, like Offa (Nigeria), host many278

unique taxa while others, like Zurich (Switzerland), host fewer endemic species (Supp. Figure S3B).279

Large numbers of endemic species in a city may reflect geographic bias in sampling. However, some280

cities from well sampled continents (e.g., Lisbon, Hong Kong) also host many endemic species which281

would suggest that ES may indicate interchangeability and local pockets of microbiome variation for282

some locations.283

2.4 Antimicrobial Resistance Genes Form Distinct Clusters284

Quantification of antimicrobial diversity and AMRs are key components of global antibiotic stewardship.285

Yet, predicting antibiotic resistance from genetic sequences alone is challenging, and detection accuracy286

depends on the class of antibiotics (i.e., some AMR genes are associated to main metabolic pathways287

while others are uniquely used to metabolize antibiotics). As a first step towards a global survey of288

antibiotic resistance in urban environments, we mapped reads to known antibiotic resistance genes,289

using the MegaRES ontology and alignment software. We quantified their relative abundance using290

reads/kilobase/million mapped reads (RPKM) for 20 classes of antibiotic resistance genes detected in291

our samples (Figure 4A B). 2,210 samples had some sequence which were identified as belonging to an292

AMR gene, but no consistent core set of genes was identified. The most common classes of antibiotic293

resistance genes were for macrolides, lincosamides, streptogamines (MLS), and betalactams, yet the most294

common class of antibiotic resistance genes, MLS was found in only 56% of the samples where AMR295

sequence was identified.296

Despite being relatively common, antibiotic resistance genes were universally in low abundance com-297

pared to functional genes, with RPKM values for resistance classes typically ranging from 0.1 – 1 com-298

pared to values of 10 - 100 for typical housekeeping genes (AMR classes contain many genes so RPKM299

values may be lower than they would be for individual genes). In spite of the low abundance of the genes300

themselves, some samples contained sequences from hundreds of distinct AMR genes. Clusters of high301

AMR diversity were not evenly distributed across cities (Figure 4C). Some cities had more resistance302

genes identified on average (15-20X) than others (e.g. Bogota) while other cities had bimodal distribu-303

tions (e.g. San Francisco) where some samples had hundreds of genes while others very few. We note304

that 99% of the cases where we detected an AMR genes had an average depth of 2.7x, indicating that305

our global distribution would not dramatically change with altered read depth (Supp. Figure S6E).306

As with taxa, AMR genes can be used to classify samples to cities - albeit with much less accuracy.307

A random forest model analogous to the one trained to predict city classification from taxonomic profiles308

was trained to predict from profiles of antimicrobial resistance genes. This model achieved 37.6% accuracy309

on held out test data (Supp. Figure S6A). While poor for actual classification this accuracy far exceeds310

the 7.01% that would be achieved by randomly assigning labels and indicates that there are possibly311

weak, city specific signatures for antimicrobial resistance genes.312

Multiple AMR genes can be carried on a single plasmid and ecological competition may cause mul-313

tiple taxa in the same sample to develop antimicrobial resistance. As a preliminary analysis into these314

phenomenons we identified clusters of AMR genes that co-occurred in the same samples (Figure 4D).315

We measured the Jaccard distance between all pairs of AMR genes found in at least 1% of samples and316

performed agglomerative clustering on the resulting distance matrix. We identified three large clusters of317

genes and numerous smaller clusters. Of note, these clusters often consist of genes from multiple classes318

of resistance. At this point we do not posit a specific ecological mechanism for this co-occurrence, but319

we note that the large clusters contain far more genes than are typically found on plasmids.320

We performed a rarefaction analysis on the set of all resistance genes in the dataset, which we call321

the “panresistome” (Figure (Supp. Figure S6B). Similar to the rate of detected species, the panresistome322

also shows an open slope with an expected rate of discovery of 1 previously unobserved AMR gene per323

10 samples. Given that AMR gene databases are rapidly expanding and that no AMR genes were found324

in some samples, it is likely that future analyses will identify many more resistance genes in this data.325

Additionally, AMR genes show a “neighbourhood” effect within samples that are geographically prox-326

imal analogous to the effect seen for taxonomic composition (Supp. Figure S6C). Excluding samples327

where no AMR genes were detected, the Jaccard distance between sets of AMR genes increases with328

distance for pairs of samples in the same city. As with taxonomic composition. the overall effect is weak329

and noisy, but significant.330

12

.CC-BY 4.0 International licenseavailable under a
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (whichthis version posted December 2, 2020. ; https://doi.org/10.1101/724526doi: bioRxiv preprint 

https://doi.org/10.1101/724526
http://creativecommons.org/licenses/by/4.0/


Figure 4: Antimicrobial Resistance Genes. A) Prevalence of AMR genes with resistance to particular drug
classes. B) Abundance of AMR gene classes when detected, by drug class. C) Number of detected AMR genes
by city. D) Co-occurrence of AMR genes in samples (Jaccard index) annotated by drug class.
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Figure 5: Novel Biology A) Taxonomic tree for Metagenome Assembled Genomes (MAGs) found in the MetaSUB
data. Outer black and white ring indicates if the MAG matches a known species, inner ring indicates phyla of
the MAG. B) Top: the number of samples where the most prevalent MAGs were found. Bottom: The regional
breakdown of samples where the MAG was found. C) Mapping rate of CRISPR Spacers from MetaSUB data to
viral genomes in RefSeq and viral genomes found in MetaSUB data. D) Geographic distribution of viral genomes
found in MetaSUB data. E & F) Fractional breakdowns of identifiable CRISPR systems found in the MetaSUB
data
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2.5 Widespread Discovery of Novel Biology331

To examine these samples for novel genetic elements, we assembled and identified Metagenome Assembled332

Genomes (MAGs) for viruses, bacteria, and archaea and analyzed them with several algorithms. This333

includes thousands of novel CRISPR arrays that reflect the microbial biology of the cities and 1,304334

genomes from our data, of which 748 did not match any known reference genome within 95% average335

nucleotide identity (ANI). 1302 of the genomes were classified as bacteria, and 2 as archaea. Bacterial336

genomes came predominantly from four phyla: the Proteobacteria, Actinobacteria, Firmicutes, and337

Bacteroidota. Novel bacteria were evenly spread across these phyla (Figure 5A).338

Assembled bacterial genomes were often identified in multiple samples. Several of the most prevalent339

bacterial genomes were novel species (Figure 5B). Some assembled genomes, both novel and not, showed340

regional specificity while others were globally distributed. The taxonomic composition of identifiable341

genomes roughly matched the composition of the core urban microbiome (Section 2.1). The number342

of identified bacterial MAGs was somewhat based on read depth and the sample count per city (Supp.343

Figure S7A). The number of bacterial MAGs discovered in a city which did not match a known species344

was closely correlated to the total number of bacterial MAGs discovered in that city (Supp. Figure S7B).345

Bacterial MAGs were roughly evenly distributed geographically with the notable exception of Offa, which346

had dramatically more novel bacterial species than other cities.347

We investigated assembled contigs from our samples to identify 16,584 predicted uncultivated viral348

genomes (UViGs). Taxonomic analysis of predicted UViGS to identify viral species yielded 2,009 clusters349

containing a total of 6,979 UViGs and 9,605 singleton UViGs for a total of 11,614 predicted viral species.350

Predicted viral species from samples collected within 10, 100 and 1000 kilometers of one another were351

agglomerated to examine their planetary distribution at different scales (Figure 5B). At any scale, most352

viral clusters appear to be weakly cosmopolitan; the majority of their members are found at or near one353

location, with a few exceptions.354

We compared the predicted species to known viral sequences in the JGI IMG/VR system, which355

contains viral genomes from isolates, a curated set of prophages and 730k viral MAGs from other studies.356

Of the 11,614 species discovered in our data 94.1% did not match any viral sequence in IMG/VR (Paez-357

Espino et al., 2019) at the species level for a total of 10,928 novel viruses. We note that this number is358

surprisingly high but was obtained using a conservative pipeline (99.6% precision) and corresponded well359

with our identified CRISPR arrays (below). This suggests that urban microbiomes contain significant360

diversity not observed in other environments.361

Next, we attempted to identify possible bacterial and eukaryotic hosts for our predicted viral MAGs.362

For the 686 species with similar sequences in IMG/VR, we projected known host information onto 2,064363

MetaSUB viral MAGs. Additionally, we used CRISPR-Cas spacer matches in the IMG/M system to364

assign possible hosts to a further 1,915 predicted viral species. Finally, we used a database of 20 million365

metagenome-derived CRISPR spacers to provide further rough taxonomic assignments. Our predicted366

viral hosts aligned with our taxonomic profiles, 41% of species in the core microbiome (Section 2.1) had367

predicted viral-host interactions. Many of our viral MAGs were found in multiple locations (Figure 5D).368

Many viruses were found in South America, North America and Africa. Viral MAGs in Japan often369

corresponded to those in Europe and North America.370

We identified 838,532 CRISPR arrays in our data of which 3,245 could be annotated for specific371

systems. The annotated CRISPR arrays were principally type 1-E and 1-F btu a number of type two372

and three systems were identified as well (Figure 5E, F). A number of arrays had unclear or ambiguous373

type assignment. Critically the spacers in our identified CRISPR arrays closely matched our predicted374

viral MAGs. We aligned spacers to both our viral MAGs and all viral sequences in RefSeq. The total375

fraction of spacers which could be mapped to our viral MAGS and RefSeq was similar (Supp. Figure376

S7C) but the mapping rate to our viral MAGs dramatically exceeded the mapping rate to RefSeq (Figure377

5C). We present this as additional evidence supporting these novel viral MAGs.378

3 Discussion379

MetaSUB is a global network of scientists and clinicians developing knowledge of urban microbiomes by380

studying mass transit systems and hospitals within and between cities. We collected and sequenced 4,728381

samples from 60 cities worldwide (Tables 1 and S1), constituting the first large scale metagenomic study382

of the urban microbiome. We also identified species that are geographically constrained and showed that383

these can be used to determine a samples city of origin (Section 2.2). Many of these species are associated384

with commensal microbiomes from human skin and airways, but we observed that urban microbiomes are385
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nevertheless distinct from both human and soil microbiomes. Notably, no species from the Bacteroidetes,386

a prominent group of human commensal organisms (Eckburg et al., 2005; Qin et al., 2010), was identified387

in the core urban microbiome. We conclude that there is a consistent urban microbiome core (Figure388

1, 2), which is supplemented by geographic variation (Figure 2) and microbial signatures based on the389

specific attributes of a city (Figure 3). Our data also indicates that significant diversity remains to be390

characterized and that novel taxa may be discovered in the data (Figure 5), that environmental factors391

affect variation, and that sequences associated with AMR are globally widespread but not necessarily392

abundant (Figure 4). In addition to these results, we present several ways to access and analyze our393

data including interactive web based visualizations, search tools over raw sequence data, and high level394

interfaces to computationally access results.395

Unique taxonomic composition and association with covariates specific to the urban environment396

suggest that urban microbiomes should be treated as ecologically distinct from both surrounding soil397

microbiomes and human commensal microbiomes. Though these microbiomes undoubtedly interact398

with the urban environment, they nonetheless represent distinct ecological niches with different genetic399

profiles. While our metadata covariates were associated with the principal variation in our samples, they400

do not explain a large proportion of the observed variance. It remains to be determined whether variation401

is essentially a stochastic process or if a deeper analysis of our covariates proves more fruitful. We have402

observed that less important principal components (roughly PCs 10-100) are generally less associated403

with metadata covariates but that PCs 1-3 do not adequately describe the data alone. This is a pattern404

that was observed in the human microbiome project as well, where minor PCs (such as our Figure 2B)405

were required to separate samples from closely related body sites.406

Much of the urban microbiome likely represents novel diversity as our samples contain a significant407

proportion of unclassified DNA. This finding is comparable to many other metagenomic and microbiome408

studies including other work done in subway environments (Afshinnekoo et al., 2015; Hsu et al., 2016),409

airborne microbiomes (Yooseph et al., 2013), work done by the Earth Microbiome Project (Thompson410

et al., 2017), and others. As noted in in Figure 1 more sensitive methodology only marginally increases411

the proportion of DNA that can be classified. We consider the DNA which would not be classified by412

a sensitive technique to be true unclassified DNA and postulate that it may derive from novel genes or413

species. Given that our samples did not closely resemble human commensal microbiomes or soil samples,414

it is possible this represents novel urban DNA sequences.415

Additionally, our discovery of a large number of novel viral sequences in our data suggests that there416

are likely to be additional novel taxa from other domains. The fraction of predicted viral sequences which417

belonged to previously unobserved taxa was particularly high in our study (94.1%) however taxonomic418

associations of these viruses to observed microbial hosts suggests these results are not spurious. This419

rate of discovery may prove prescient for novel taxa in other domains, and novel discovery of taxa may420

help to reduce the large fraction of DNA which cannot currently be classified.421

Many of the identified taxa are frequently implicated as infectious agents in a clinical setting including422

specific Staphylococcus, Streptococcus, Corynebacterium, Klebsiella and Enterobacter species. There is423

no clear indication that these species identified in the urban environment are pathogenic, and further in-424

depth study is necessary to determine the clinical impact of urban microbiomes. This includes microbial425

culture studies, specifically searching for virulence factors and performing strain-level characterization.426

Seasonal variation also remains open to study as the majority of the samples collected here were from two427

global City Sampling Days (June 21, 2016 and 2017). Further studies, some generating novel data, will428

need to explore whether the core microbiome shifts over the course of the year, with particular interest429

in the role of the microbiome in flu transmission (Cáliz et al., 2018; Korownyk et al., 2018).430

The COVID-19 crisis has thrown the need for broad microbial surveillance into sharp relief. Microbial431

genetic mapping of urban environments will give public health officials tools to assess risk, map outbreaks,432

and genetically characterize problematic species. This study identifies a large number of novel viruses in433

the environment as well as antimicrobial resistance genes in bacteria. These data will be an important434

starting point for mitigating future epidemics.435

As metagenomics and next-generation sequencing becomes more and more available for clinical (Wil-436

son et al., 2019) and municipal use (Hendriksen et al., 2019), it is essential to contextualize the AMR437

markers or presence of new species and strains within a global and longitudinal context. The most438

common AMR genes were found for two classes of antibiotic: MLS and beta-lactams. MLS represents439

macrolides, lincosamides and streptogramins, which are three groups of antibiotics with a mechanism440

of action of inhibiting bacterial protein synthesis. Macrolides, with strong Gram-positive and limited441

Gram-negative coverage, are prevalently used to treat upper respiratory, skin, soft tissue and sexually442

transmitted infections amongst others. Beta-lactam antibiotics are a major class of antibiotics including443
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penicillins, cephalosporins, monobactams, carbapenems and carbacephems that are all used to treat a444

wide array of infections. Antimicrobial resistance has surged due to the selection pressure of widespread445

use of antibiotics and is now a global health issue plaguing communities and hospitals worldwide. Antimi-446

crobial resistance genes are thought to spread from a variety of sources including hospitals, agriculture447

and water (Bougnom and Piddock, 2017; Klein et al., 2018). The antimicrobial classes particularly448

impacted by resistance include beta-lactamases, gylcopeptides and fluoroquinolones (Rice, 2012), all of449

which we found antimicrobial resistance genes for across our samples. We found that there was uneven450

distribution of AMR genes across cities. This could be the result of some of combination of different451

levels of antibiotic use, differences in the urban geography between cities (population density, presence452

of untreated wastewater etc), or reflect the background microbiome in different places in the world.453

Techniques to estimate antibiotic resistance from sequencing data remain an area of intense research as454

certain classes of AMR gene (ie. fluoroquinolones) are sensitive to small mutations and it is possible that455

our methods may not fully reflect true resistance. Further research is needed to fully explore AMR genes456

in the urban environment, including culture studies which directly measure the phenotype of resistance.457

One of the challenges in the field of metagenomics of the built environment is dealing with low458

biomass samples. Not only does it introduce the challenge of contamination (Kim et al., 2017) which459

requires standardized sample preparation and the use of positive and negative controls, but there is460

also the challenge in biases and data interpretation (McLaren et al., 2019). Metagenomic studies rely461

on bioinformatics analyses that predict relative abundances of taxa, functional genes, antimicrobial462

resistance genes, etc. When you have low biomass samples, these relative abundances may appear high463

when their absolute abundance is in fact low when considering where the samples came from. However,464

this is an inherent component of metagenomics that studies and examines microbiomes and communities465

based on the metrics and measurements of relative abundances. There are important considerations to466

be made from sample collection to bioinformatics analysis to ensure limited biases are introduced to a467

study (McLaren et al., 2019). Moreover, the overall findings must be interpreted with the proper context468

and scope of the experiment and samples collected.469

In summary, this study presents a first molecular atlas of urban and mass-transit metagenomics from470

across the world. By facilitating large scale epidemiological comparisons, it is a first critical step to-471

wards quantifying the clinical role of environmental microbiomes and provides requisite data for tracking472

changes in ecology or virulence. Moreover, in order to study the transmission of AMRs on a global scales473

this dataset represents only focuses on some of the sources and vectors of the built environment. Indeed,474

datasets from rural and suburban areas with livestock and farms, sewage from cities (Fresia et al., 2019;475

Joseph et al., 2019), and other notable sources of AMRs need to be integrated together to truly capture476

AMR mechanisms at the global scale (Singer et al., 2016; Thanner et al., 2016). Previous studies have477

already demonstrated a role for precision clinical metagenomics in managing infectious disease and global478

health (Afshinnekoo et al., 2017; Gardy and Loman, 2018; Ladner et al., 2019). As demonstrated by the479

coronavirus disease 2019 (COVID-19) pandemic, as an atlas this data has the potential to aid physicians,480

public health officers, government officials, and others in tracing, diagnosis, clinical decision making, and481

policy within their communities.482

3.1 Open Science483

The MetaSUB dataset is built and organized for full accessibility to other researchers. This is consistent484

with the concept of Open Science. Specifically, we built our study with the FAIR principles in mind:485

Findable, Accessible, Interoperable and Reusable.486

To make our study reproducible, we released an open source version-controlled pipeline called the487

MetaSUB Core Analysis Pipeline (CAP). The CAP is intended to improve the reproducibility of our488

findings by making it easy to apply a number of analyses consistently to a large dataset. This pipeline489

includes all steps from extracting data from raw sequence data to producing refined results like taxonomic490

and functional profiles. The CAP itself is principally composed of other open peer-reviewed scientific491

tools, with only a few custom scripts for mundane tasks. Every tool in the CAP is open source with a492

permissive license. The CAP is available as a docker container for easier installation in some instances493

and all databases used in the CAP are available for public download. The CAP is versioned and includes494

all necessary databases allowing researchers to replicate results. The CAP is not designed to produce495

highly novel results but is meant to be a good practice agglomeration of open source tools.496

However, the output of the CAP still consists of a number of different output formats with multiple497

files for each sample. To make our results more reproducible and accessible, we have developed a program498

to condense the outputs of the Core Analysis Pipeline into a condensed data-packet. This data packet499
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contains results as a series of Tidy-style data tables with descriptions. The advantage of this set-up is500

that result tables for an entire dataset can be parsed with a single command in most high level analysis501

languages like Python and R. This package also contains Python utilities for parsing and analyzing data502

packets which streamlines most of the boilerplate tasks of data analysis. All development of the CAP503

and data packet builder (Capalyzer) package is open source and permissively licensed.504

In addition to general purpose data analysis tools essentially all analysis in this paper is available505

as a series of Jupyter notebooks. Our hope is that these notebooks allow researchers to reproduce our506

results, build upon our results in different contexts, and better understand precisely how we arrived at507

our conclusions. By providing the exact source used to generate our analyses and figures, we also hope508

to be able to quickly incorporate new data or correct any mistakes that might be identified.509

For less technical purposes, we also provide web-based interactive visualizations of our dataset (typ-510

ically broken into city-specific groups). These visualizations are intended to provide a quick reference511

for major results as well as an exploratory platform for generating novel hypotheses and serendipitous512

discovery. The web platform used, MetaGenScope, is open source, permissively licensed, and can be run513

on a moderately powerful machine (though its output relies on results from the MetaSUB CAP).514

Our hope is that by making our dataset open and easily accessible to other researchers the scientific515

community can more rapidly generate and test hypotheses. One of the core goals of the MetaSUB516

consortium is to build a dataset that benefits public health. As the project develops we want to make517

our data easy to use and access for clinicians and public health officials who may not have computational518

or microbiological expertise. We intend to continue to build tooling that supports these goals.519

3.2 CAMDA520

Since 2017 MetaSUB has partnered with the Critical Assessment of Massive Data Analysis (CAMDA)521

camda.info, a full conference track at the Intelligent Systems for Molecular Biology (ISMB) Conference.522

At this venue a subset of the MetaSUB data were released to the CAMDA community in the form523

of annual challenge addressing the issue of geographically locating samples: ‘The MetaSUB Inter-City524

Challenge’ in 2017 and ‘The MetaSUB Forensics Challenge’ in 2018 and 2019. In the latter challenge525

the MetaSUB data has been complemented by data from EMP (Thompson et al., 2017) and other526

studies (Delgado-Baquerizo et al., 2018; Hsu et al., 2016). This Open Science approach of CAMDA527

has generated multiple interesting results and concepts relating to urban microbiomics, resulting in528

several publications biologydirect.biomedcentral.com/articles/collections/camdaproc as well529

as perspective manuscript about moving towards metagenomics in the intelligence (Mason-Buck et al.,530

2020). The partnership is continued in 2020 with ‘The Metagenomic Geolocation Challenge’ where the531

MetaSUB data has been complemented by the climate/weather data in order to construct multi-source532

microbiome fingerprints and predict the originating ecological niche of the sample.533

4 Data Access534

Raw sequencing reads from this study contain significant amounts of human DNA and cannot yet be535

made public. However, reads with the majority of human DNA filtered and low quality bases removed are536

available for download from Wasabi (an Amazon S3 clone) with individual URLs located here: https:537

//github.com/MetaSUB/metasub_utils. In addition to raw reads higher level results (e.g. taxonomic538

profiles, functional pathways, etc.) are available in the MetaSUB data packet also available for download539

from Wasabi. For instructional purposes we also provide a simplified data packet for teaching which540

includes balanced numbers of samples from each city and completely filled metadata tables.541

Interactive data visualizations are available on https://pangea.gimmebio.com/contrib/metasub,542

https://www.metagenscope.com and GeoDNA, an interface to search query DNA sequences against543

MetaSUB samples, is available at (dnaloc.ethz.ch/). MetaSUB data may be downloaded from https:544

//pangea.gimmebio.com. MetaSUB metadata is available in the data-packet, on Pangea, or may545

be downloaded from https://github.com/MetaSUB/MetaSUB-metadata. Programs used for analy-546

sis of data may be found at https://github.com/MetaSUB/MetaSUB_CAP and https://github.com/547

dcdanko/capalyzer. Jupyter notebooks used to generate the figures and statistics in this study can be548

found at https://www.github.com/MetaSUB/main_paper_figures. Additional tools and resources are549

described here https://github.com/MetaSUB/bioinformatics_management.550
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7 Methods634

7.1 Metadata Collection and Cleaning635

Metadata from individual cities was collected from a standardized form and set of data fields. The636

principle fields collected were the location of sampling, the material being sampled, the type of object637

being sampled, the elevation above or below ground, and the station or line where the sample was638

collected. However, several cities were unable to use the provided apps for various reasons and submitted639

their metadata as separate spreadsheets. Additionally, certain metadata features, such as those related640

to sequencing and quality control, were added after initial sample collection.641

To collate various metadata sources, we built a publicly available program which assembled a large642

master spreadsheet with consistent sample UUIDs. After assembling the originally collected data at-643

tributes we added normalized attributes based on the original metadata to account for surface material,644

control status, and features of individual cities. A full description of ontologies used is provided as part645

of the collating program.646

7.2 Sample Collection and Preparation647

To obtain a comprehensive picture of microbial communities within a sample it is essential to choose648

a sampling method which absorbs and preserves biological materials during sampling, transport and649

storage until DNA extraction. The effectiveness of a swab may be influenced by a number of factors,650

including most importantly the material of the swab tip affecting the rate at which bacteria are absorbed651

during the sampling process. Furthermore, the design of the transport tube and DNA preserving liquids652

affect the integrity of the material during transport. Finally, the amount of background contamination653

identified for different products should be taken into account.654
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7.2.1 Swab Comparisons655

Surface samples were collected and preserved using a flocked swab with a DNA preservation tube. Two656

different sets of materials were used for collection. The Copan Liquid Amies Elution Swab (ESwab, Copan657

Diagnostics, Cat.:480C) paired with a 1mL of Liquid Amies in a plastic, screw cap tube, referred to as658

‘copan swab’ and the Isohelix Swabs (Mini-Swab, Isohelix Cat.:MS-02) referred to as ’isohelix swabs’,659

which were combined with 2D Thermo ScientificTM MatrixTM storage tubes (3741-WP1D-BR/Matrix 1.0660

ml/EA) referred to as ’matrix tube’. The matrix tubes were prefilled with the preservative liquid Zymo661

Research DNA/RNA Shield reagentTM (R1100-250) referred to as ’Zymo shield’. After samples were662

collected with Copan swabs they were transported at room temperature and stored at -80C until DNA663

extraction. Isohelix swabs have been stored in matrix tubes containing 400µl Zymo shield preservative.664

Matrix tubes were also transported at room temperature and stored at -80C until DNA extraction. We665

tested the absorption strength of Copan and Isohelix swabs for various biological and surface materials666

encountered when sampling subway stations. A single surface was selected for a designated sampling667

area to test the absorption strength. Both swabs were moistened by submerging the swab for a few668

seconds in their preservative media. The area was then swabbed for 3 min. covering the selected surface.669

It was determined that a moistened swab would lead to greater absorption strength.670

7.2.2 Sampling Protocol671

A standard operating procedure (SOP) was developed for the sample collection to be followed by all672

members of the MetaSUB consortium participating in CSD. This protocol was adapted from work by673

Afshinnekoo et al. (2015). The goal was to standardize as much of the sampling procedure and ensure674

high quality control across the various cities and sampling teams. Thus it was recommended that teams675

collect samples from surfaces that are present throughout most subway and transit stations and systems676

around the world. These included ticket kiosks, turnstiles, railings, seats or benches, etc. Some cities677

had to adapt the SOP according to their city especially if they did not have a subway system and were678

collecting samples from other transit systems. Changes to the SOP involved the types of surfaces being679

sampled, not the sampling procedure itself. However, the vast majority of sampling teams collected680

samples from these surfaces. Moreover, a significant amount of metadata was recorded throughout681

sample collections to ensure as much information regarding the samples was captured. All cities also682

developed sampling plans for their collections and submitted them for review to have swabs sent to them,683

this was to ensure consistency across the various sites.684

All principal investigators and MetaSUB city leaders were trained in the sampling instructions and685

this training was further disseminated to the respective sampling teams to ensure consistent and quality686

control sampling. Swabbers were instructed to put on gloves before each sample collection. The swab687

was dipped in the preservative medium to be pre-moistened before collection and sampling was timed688

to 3 minutes to ensure highest yield. Sample collectors used Copan swabs in 2016 and Isohelix swabs689

in 2017. Other key points in training included ensure highest surface area was used for collection (i.e.690

swab entire bench, not just one area) and avoiding any areas that appeared wet, contaminated, and not691

consistent with a subway surface. Any other observations or important notes during sample collection692

that could add more context to data analysis and interpretation were recorded on the notes section of693

the metadata collection apps.694

7.2.3 In-Lab controls CSD2016695

As positive lab control we used 30µl ZymoBiOMICS Microbial Community standard (Catalog #D6300),696

which we added to an empty sterile urine cap, followed by swabbing with Copan Liquid Amies Elution697

Swab (ESwab,Copan Diagnostics, Cat.:480C) for 1.5min / 3 minutes. As negative (background) lab698

control we used 50µl of the final resuspension buffer (MoBio PowerSoil R©DNA Isolation Kit, Cat.:12888-699

100), which we have added to an empty sterile urine cup followed by swabbing for 3 min (Fig.S1).700

Furthermore, the working space has been swabbed for 1.5 min / 3 min before and after treatment with701

10% bleach (Fig. S2) to test for background contamination rates. To identify the background levels of702

biological material in the air at sample areas, a Copan swab has been held for 1.5 min - 3 min in the703

air. To estimate the source and amount of contamination in commercial swab and tube products used704

for MetaSUB, we tested all consumables in triplicates in the sterilized hood (UV light and 10% bleach705

wiped with ethanol).706
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7.2.4 DNA Extraction and Library Preparation707

Different extraction methods were benchmarked on the samples collected across 2015-2017, these in-708

cluded the MoBio Powersoil DNA, Promega Maxwell, and ZymoBiomics 96 MagBead kits. Samples709

were processed per the protocol with modifications highlighted in the Supplemental Methods. Library710

preparation for NGS analysis were prepped at HudsonAlpha Genome Center by the same methods as de-711

scribed in Afshinnekoo et al. (2015). Pilot samples collected in Barcelona and Stockholm were prepared712

using the QIAGEN QIAseq FX DNA Library Kit.713

7.3 Quality Control714

7.3.1 Sequencing quality715

We measured sequencing quality based on 5 metrics: number of reads obtained from a sample, GC716

content, Shannon’s entropy of k-mers, post PCR Qubit score, and recorded DNA concentration before717

PCR. The number of reads in each sample was counted both before and after quality control, we used718

the number of reads after quality control for our results though the difference was slight. GC content719

was estimated from 100,000 reads in each sample after low quality DNA and human reads had been720

removed. Shannon’s entropy of k-mers was estimated from 10,000 reads taken from each samples. PCR721

Qubit score and DNA concentration are described in the wet lab methods.722

7.3.2 Sequencing quality scores show expected trends723

We measured sequencing quality based on 5 metrics: number of reads obtained from a sample, GC724

content (taken after removing human reads), Shannon’s entropy of k-mers (from 10,000 reads sampled725

from each sample), post PCR Qubit score, and recorded DNA concentration before PCR. We observed726

good separation of negative and positive controls based on both PCR Qubit and k-mer entropy (Supp.727

Figure S14). Distributions of DNA concentration and the number of reads were as expected. GC content728

was broadly distributed for negative controls while positive controls were tightly clustered, expected since729

positive controls have a consistent taxonomic profile. Comparing the number of reads before and after730

quality control did not reveal any major outliers.731

7.3.3 Batch effect appears minimal732

Amajor concern for this low-biomass studies and large-scale studies are batch effects. The median flowcell733

used in our study contained samples from 3 cities and 2 continents. However, two flowcells covered 18734

cities from 5 or 6 continents respectively. When samples from these flowcells were plotted using UMAP735

(see Section 2.2 for details) the major global trends we described were recapitulated (Supp. Figure736

S15A). Further, when plotting samples by PCR qubit and k-mer entropy (the two metrics that most737

reliably separated our positive and negative controls) and overlaying the flowcell used to sequence each738

sample only one outlier flowcell was identified and this flowcell was used to sequence a large number of739

background control samples (Supp. Figure S15B). Plots of the number of reads against city of origin and740

surface material (Supp. Figure S15C & D) showed a stable distribution of reads across cities. Analogous741

plots of PCR Qubit scores were less stable than the number of reads but showed a clear drop for control742

samples (Supp. Figure S15E & F). These results led us to conclude that batch effects are likely to be743

minimal.744

7.3.4 Strain Contamination745

We used BLASTn to align nucelotide assemblies from case samples to control samples. We used a746

threshold of 8,000 base pairs and 99.99% identity as a minimum to consider two sequences homologous.747

This threshold was chosen to be sensitive without solely capturing conserved regions. We identified all748

connected groups of homologous sequences and found approximate taxonomic identifications by aligning749

contigs to NCBI-NT using BLASTn searching for 90% nucleotide identity over half the length of the750

longest contig in each group.751

7.3.5 Strain contamination is rare or absent752

Despite good separation of positive and negative controls (see Section 7.3.1) we identified several species753

in our negative controls which were also identified as prominent taxa in the data-set as a whole (See754
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Section 2.1). Our dilemma was that a microbial species that is common in the urban environment755

might also reasonably be expected to be common in the lab environment. In general, negative controls756

had lower k-mer complexity, fewer reads, and lower post PCR Qubit scores than case samples and757

no major flowcell specific species were observed. Similarly, positive control samples were not heavily758

contaminated. These results suggest samples are high quality but do not systematically exclude the759

possibility of contamination.760

Previous studies have reported that microbial species whose relative abundance is negatively cor-761

related with DNA concentration may be contaminants. We observed a number of species that were762

negatively correlated with DNA concentration (Supp. Figure S13A) but this distribution followed the763

same shape (but had a greater magnitude) as a null distribution of uniformly randomly generated rela-764

tive abundances (Supp. Figure S13B) leading us to conclude that negative correlation may simply be a765

statistical artifact. We also plotted correlation with DNA concentration against each species mean rela-766

tive abundance across the entire data-set (Supp. Figure S13C). Species that were negatively correlated767

with DNA concentration were clearly more abundant than uncorrelated species, this suggests that there768

may be a jackpot effect for prominent species in samples with lower concentrations of DNA but is not769

generally consistent with contamination.770

We analyzed the total complexity of case samples in comparison to control samples. Case samples771

had a significantly higher taxonomic diversity (Supp. Figure S12A) than any type of negative control772

sample. We also compared the confidence of taxonomic assignments to control assignments for prominent773

taxa (Supp. Figure S12B) using the number of unique marker k-mers to compare assignments. We found774

that case samples had more and higher quality assignments than could be found in controls. One species,775

Bradyrhizobium sp. BTAi1, was not clearly better in case samples than controls but in this case we were776

able to assemble genomes for this species in several unique samples so we feel it is ambiguous.777

Finally, we compared assemblies from negative controls to assemblies from our case samples searching778

for regions of high similarity that could be from the same microbial strain. We reasoned that uncon-779

taminated samples may contain the same species as negative controls but were less likely to contain780

identical strains. Only 137 case samples were observed to have any sequence with high similarity to781

an assembled sequence from a negative control (8,000 base pairs minimum of 99.99% identity). The782

identified sequences were principally from Bradyrhizobium and Cutibacterium. Since these genera are783

core taxa (See Section 2.1) observed in nearly every sample but high similarity was only identified in a784

few samples, we elected not to remove species from these genera from case samples.785

7.3.6 K-Mer Based Analyses786

We generated 31-mer profiles for raw reads using Jellyfish. All k-mers that occurred at least twice in787

a given sample were retained. We also generated MASH sketches from the non-human reads of each788

sample with 10 million unique minimizers per sketch.789

We calculated the Shannon’s entropy of k-mers by sampling 31-mers from a uniform 10,000 reads per790

sample. Shannon’s entropy of taxonomic profiles was calculated using the CAPalyzer package (Section791

4).792

7.3.7 K-Mer based metrics correlate with taxonomic metrics793

We found clear correlations between three pairwise distance metrics (Supp. Figure S10A, B, C): k-mer794

based Jaccard distance (MASH), taxonomic Jaccard distance, and taxonomic Jensen-Shannon diver-795

gence. This suggests that taxonomic variation reflects meaningful variation in the underlying sequence796

in a sample.797

We also compared alpha diversity metrics (Supp. Figure S10D): Shannon entropy of k-mers, and798

Shannon entropy of taxonomic profiles. As with pairwise distances these metrics were correlated though799

noise was present. This noise may reflect sub-species taxonomic variation in our samples.800

7.3.8 Sequence Preprocessing801

Sequence data were processed with AdapterRemoval (v2.17, Schubert et al. (2016)) to remove low quality802

reads and reads with ambiguous bases. Subsequently reads were aligned to the human genome (hg38,803

including alternate contigs) using Bowtie2 (v2.3.0, fast preset, Langmead and Steven L Salzberg (2013)).804

Read pairs where both ends mapped to the human genome were separated from read pairs where neither805

mate mapped. Read pairs where only one mate mapped were discarded. Hereafter, we refer to the read806

sets as human reads and non-human reads.807
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7.3.9 Unmapped DNA is not similar to any known sequence808

A large proportion of the reads in our samples were not mapped to any references sequences. There809

are three major reasons why a fragment of DNA would not be classified in our analysis 1) The DNA810

originated from a non-human and non-microbial species which would not be present in the databases811

we used for classification 2) Our classifier (KrakenUniq) failed to classify a DNA fragment that was in812

the database due to slight mismatch 3) The DNA fragment is novel and not represented in any existing813

database. Explanations (1) and (2) are essentially drawbacks of the database and computational model814

used, and we can quantify them by mapping reads using a more sensitive aligner to a larger database,815

such as BLASTn (Altschul et al., 1990), or ensemble methods for analysis (McIntyre et al., 2017). To816

estimate the proportion of reads which could be assigned, we took 10k read subsets from each sample817

and mapped these to a set of large database using BLASTn (see 2.1 for details). This resulted in 34.6%818

reads which could not be mapped to any external database compared to 41.3% of reads mapped using819

our approach with KrakenUniq. We note that our approach to estimate the fraction of reads that could820

be classified using BLASTn does not account for hits to low quality taxa which would ultimately be821

discarded in our pipeline, and so represents a worst-case comparison. Explanation (3) is altogether more822

interesting and we refer to this DNA as true unclassified DNA. In this analysis we do not seek to quantify823

the origins of true unclassified DNA except to postulate that it may derive from novel species as have824

been identified in other similar studies.825

7.4 Computational Analysis826

We processed raw reads from all samples into taxonomic, functional and AMR profiles for each sample827

using the MetaSUB Core Analysis Pipeline (Danko and Mason, 2020) (v1.0.0). This includes a prepro-828

cessing stage that consists of AdapterRemoval (Schubert et al., 2016) and Human sequence removal with829

Bowtie2 (Langmead and Steven L Salzberg, 2013). Pre-processed reads were subsequently processed830

according to the methods below.831

7.4.1 Taxonomic Analysis832

We generated taxonomic profiles by processing non-human reads with KrakenUniq (v0.3.2 Breitwieser833

et al. (2018)) using a database based on all draft and reference genomes in NCBI/RefSeq Microbial (bac-834

teria/archaea, fungi and virus) ca. March 2017. KrakenUniq was selected because its high performance,835

as it has been demonstrated to be comparable or having higher sensitivity than the best tools identified836

in a recent benchmarking study (McIntyre et al. (2017)) on the same comparative dataset. In addition,837

KrakenUniq allows for tunable specificity and identifies k-mers that are unique to particular taxa in a838

database. Reads are broken into k-mers and searched against this database. Finally, the taxonomic839

makeup of a sample is given by identifying the taxa with the greatest leaf to ancestor weight.840

KrakenUniq reports the number of unique marker k-mers assigned to each taxon, as well as the total841

number of reads, the fraction of available marker k-mers found, and the mean copy number of those842

k-mers. We found that requiring more k-mers to identify a species resulted in a roughly linear decrease843

in the total number of species identified without a plateau or any other clear point to set a threshold844

(Supp. Figure S9A). In an ongoing but unpublished clinical study we have used a threshold of 512845

marker k-mers to accurately recapitulate the results of culturing while identifying few species which were846

not cultured. Since false positives are less problematic in the current study than in a clinical study and847

because we could use our large number of samples as a partially orthogonal confirmation we chose less848

strict thresholds for KrakenUniq in this study.849

At a minimum we required three reads assigned to a taxa with 64 unique marker k-mers. This setting850

captures a group of taxa with low abundance but reasonable (∼ 10-20%) coverage of the k-mers in their851

marker set (Supp. Figure S9C). However, this also allows for a number of taxa with very high (105)852

duplication of the identified marker k-mers and very few k-mers per read which we believe is biologically853

implausible (Supp. Figure S9D). We filtered these taxa by applying a further filter which required that854

the number of reads not exceed 10
25 times the number of unique k-mers, unless the set of unique k-mers855

was saturated (> 90% completeness). We include a full list of all taxonomic calls from all samples856

including diagnostic values for each call. We do not attempt to classify reads below the species level in857

this study.858

We further evaluated prominent taxonomic classifications for sequence complexity and genome cov-859

erage. For each microbe evaluated we calculated two indices generated using a random subset of 152860

samples: the average topological entropy of reads assigned to the microbe and the Gini-coefficient of read861
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positions on the microbial genome. For brevity we refer to these as mean sequence entropy (MSE) and862

coverage equality (CE). The formula for topological entropy of a DNA sequence is described by Koslicki863

(2011). Values close to 0 correspond to low-complexity sequences and values near 1 are high complexity.864

In this work we use a word size of 3 with an overall sequence length of 64 since this readily fits into865

our reads. To find the MSE of a microbial classification we take the arithmetic mean of the topological866

entropy of all reads that map to a given microbial genome in a sample. The Gini-coefficient is a classic867

economic measure of income inequality. We repurpose it here to evaluate the evenness of read coverage868

over a microbial classification. Reads mapping to a microbial genome are assigned to a contiguous 10kbp869

bin and the Gini-coefficient of all bins is calculated. Like MSE, the Gini-coefficient is bounded in [0, 1].870

Lower values indicate greater inequality, very low values indicate that a taxon may be misidentified from871

conserved and near conserved regions. We downloaded one representative genome per species evaluated872

and mapped all reads from samples to using Bowtie2 (sensitive-local preset). Indices were processed873

from alignments using a custom script. Species classifications with an average MSE less than 0.75 or CE874

less than 0.1 were flagged.875

To determine relative abundance of taxa where applicable we rarefied samples to 100,000 classified876

reads, computed the proportion of reads assigned to each taxon, and took the distribution of values from877

all samples. This was the minimum number of reads sufficient to maintain taxonomic richness (Supp.878

Figure S9B). We chose sub-sampling (sometimes referred to as rarefaction in the literature) based on the879

study by Weiss et al. (2017), showing that sub-sampling effectively estimates relative abundance. Note880

that we use the term prevalence to describe the fraction of samples where a given taxon is found at any881

abundance and we use the term relative abundance to describe the fraction of DNA in a sample from a882

given taxon.883

We compared our samples to metagenomic samples from the Human Microbiome Project and a884

metagenomic study of European soil samples using MASH (Ondov et al., 2016), a fast k-mer based885

comparison tool. We built MASH sketches from all samples with 10 million unique k-mers to ensure886

a sensitive and accurate comparison. We used MASH’s built-in Jaccard distance function to generate887

distances between our samples and HMP samples. We then took the distribution of distances to each888

particular human commensal community as a proxy for the similarity of our samples to a given human889

body site.890

We also compared our samples to HMP and soil samples using taxonomic profiles generated by891

MetaPhlAn v2.0 (Segata et al., 2012). We generated taxonomic profiles from non-human reads using892

MetaPhlAn v2.0 and found the cosine similarity between all pairs of samples.893

We used the Microbe Directory (Shaaban et al., 2018) to annotate taxonomic calls. The Microbe894

Directory is a hand curated, machine readable, database of functional annotations for 5,000 microbial895

species.896

7.4.2 Functional Analysis897

We analyzed the metabolic functions in each of our samples by processing non-human reads with HU-898

MAnN2 (Franzosa et al., 2018). We aligned all reads to UniRef90 using DIAMOND (v0.8.36, (Buchfink899

et al., 2014)) and used HUMAnN2 to produce estimate of pathway abundance and completeness. We900

filtered all pathways that were less than 50% covered in a given sample but otherwise took the reported901

pathway abundance as is after relative abundance normalization (using HUMAnN2’s attached script).902

High level categories of functional pathways were found by grouping positively correlated pathways903

and manually annotating resulting clusters.904

7.5 Assembly and Plasmid Annotations905

All samples were assembled using metaSPAdes (v3.8.1 Nurk et al. (2017)) with default settings. Assem-906

bled scaffolds of at least 1,500bp of length were annotated using PlasFlow (v1.1 Krawczyk et al. (2018))907

using default settings. PlasFlow predicts whether a contig is likely from a chromosome or a plasmid and908

gives a rough taxonomic annotation. Predicting which sequences are from plasmids is a difficult problem909

and some annotations may be incorrect.910

7.5.1 Analysis of Antimicrobial Resistance Genes911

We generated profiles of antimicrobial resistance genes using MegaRes (v1.0.1, Lakin et al. (2017)). To912

generate profiles from MegaRes, we mapped non-human reads to the MegaRes database using Bowtie2913

(v2.3.0, very-sensitive presets, Langmead and Steven L Salzberg (2013)). Subsequently, alignments914
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were analyzed using ResistomeAnalyzer (commit 15a52dd github.com/cdeanj/resistomeanalyzer)915

and normalized by total reads per sample and gene length to give RPKMs. MegaRes includes an ontology916

grouping resistance genes into gene classes, AMR mechanisms, and gene groups. AMR detection remains917

a difficult problem and we note that detection of a homologous sequence to a known AMR gene does918

not necessarily imply an equivalent resistance in our samples. Currently, the gold standard for detecting919

AMR is via culturing.920

Known AMR genes can come from gene families with homologous regions of sequence. To reduce921

spurious mapping from gene homology we used BLASTn to align all MegaRes AMR genes against922

themselves. We considered any connected group of genes with an average nucleotide identity of 80%923

across 50% of the gene length as a set of potentially confounded genes. We collapsed all such groups924

into a single pseudo-gene with the mean abundance of all constituent genes. Before clustering genes we925

removed all genes which were annotated as requiring SNP verification to predict resistance.926

In addition to MegaRes we mapped non-human reads from all samples to the amino acid gene se-927

quences in the Comprehensive Antibiotic Resistance Database (McArthur et al., 2013) using DIAMOND.928

While we do not use this analysis explicitly in this study we provide the results as a data table.929

Assembled contigs were annotated for AMR genes using metaProdigal (Hyatt et al., 2010), HMMER3930

(Eddy, 2011), and ResFam (Gibson et al., 2015) as described by Rahman et al. (2018). All predicted931

gene annotations with an e-value higher than 10−10 were discarded.932

7.5.2 Beta Diversity933

Inter-sample (beta) diversity was measured by using Jaccard distances. We note that Jaccard distances934

do not use relative abundance information. Matrices of Jaccard distances were produced using built in935

SciPy functions treating all elements greater than 0 as present. Hierarchical clustering (average linkage)936

was performed on the matrix of Jaccard distances using SciPy (https://www.scipy.org/).937

Dimensionality reduction of taxonomic and functional profiles was performed using UMAP (McInnes938

et al., 2018) on the matrix of Jaccard distances with 100 neighbours (UMAP-learn package, random939

seed of 42). We did not use Principal Component Analysis as a preprocessing step before UMAP as is940

sometimes done for high dimensional data.941

7.5.3 Alpha Diversity942

Intra-sample (alpha) diversity was measured by using Species Richness and Shannon’s Entropy. We943

took species richness as the total number of detected species in a sample after rarefaction to 1 million944

reads. Shannon’s entropy is robust to sample read depth and accounts for the relative size of each945

group in diversity estimation. Shannon’s entropy is typically defined as H =
∑
ailog2ai where ai is the946

relative abundance of taxon i in the sample. For alpha diversity based on k-mers or pathways, we simply947

substitute the relative abundance of a species for the relative abundance of the relevant type of object.948

7.5.4 GeoDNA Sequence Search949

For building the sequence graph index, each sample was processed with KMC (version 3, [1]) to convert950

the reads in FASTA format into lists of k-mer counts, using different values of k ranging from 13 to 19 in951

increments of 2. All k-mers that contained the character “N” or occurred in a sample less than twice were952

removed. For each value of k, we built a separate index, consisting of a labeled de Bruijn graph, using an953

implicit representation of the complete graph and a compressed label representation based on Multiary954

Binary Relation Wavelet Trees (Multi-BRWT). For further details, we refer to the manuscript [2]. To955

build the index, for each sample the KMC k-mer count lists were transformed into de Bruijn graphs, from956

which path covers in the form of contig sets were extracted and stored as intermediate FASTA files. The957

contig sets of each sample were then transformed into annotation columns (one column per sample) by958

mapping them onto an implicit complete de Bruijn graph of order k. All annotation columns were then959

merged into a joint annotation matrix and transformed into Multi-BRWT format. Finally, the topology960

of the Multi-BRWT representation was optimized by relaxing its internal tree arity constraints to allow961

for a maximum arity of 40.962
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7.6 Novel Biology963

7.7 Identifying Bacteria and Archaea964

Metagenomic Assembly and Binning All samples were re-assembled with metaSPAdes (v3.10.1965

Nurk et al., 2017); generated contigs with length <1000nt were excluded from further analysis. Remaining966

contigs were binned with MetaBAT2 (v2.12.1 Kang et al. (2019)) with default parameters, resulting in967

14,080 bins. As MetaBAT2 uses contig abundance (mean base coverage) in its analysis, we mapped reads968

back to their respective contigs via Bowtie2 (v2.3.4.1 Langmead and Steven L Salzberg (2013))with the969

flags –local –very-sensitive-local to provide accurate coverage metrics. Draft genome quality was assessed970

via CheckM (v1.0.13 Parks et al. (2015)) lineage_wf workflow with default parameters. Using the971

strategy proposed by Parks et al. (2018) we filtered bins by quality score, defined as QS = completeness -972

5 * contamination; bins with QS < 50 were removed from consideration. The remaining 6,107 bins were973

labeled by quality based on the MIMAG standard (Bowers et al. (2018)), with some modification: 1,448974

high quality (completeness >90%, contamination <5%, strain heterogeneity <0.5%) bins, 4,532 medium975

quality (completeness >50%, contamination <5%) bins, all others low quality. Bins of at least medium976

quality were selected as acceptable MAGs (5,980 total).977

MAG Dereplication OTUs (MAG representatives) were chosen with a two-step clustering strategy.978

Single-linkage clustering formed primary clusters of MAGs based on Mash ANI (v2.1.1), with intra-cluster979

identity at 90%. Though Mash ANI can be inaccurate for potentially incomplete genomes (Olm et al.980

(2017)), we can leverage the technique’s speed for the many pairwise comparisons needed in this granular981

step. Within primary clusters, MAGs were compared pairwise by a more accurate whole-genome ANI982

(gANI) via dnadiff (v1.3) from MUMmer (v3.23 Kurtz et al. (2004)). Secondary, more refined clusters983

were grouped based n gANI using average-linkage hierarchical clustering from the R package dendextend984

(v1.12.0 Galili (2015)). A gANI cut-off of 95% resulted in 1,304 representative OTUs.985

OTU to Reference Genome Matching OTUs were compared against reference genomes from Ref-986

Seq (release 96 from November 2019, complete bacterial and archaeal genomes only, with “Exclude987

anomalous” and “Exclude derived from surveillance project” applied) as well as the full Integrated Gut988

Genomes (IGG) dataset (v1.0 Nayfach et al. (2019); 23,790 representative genomes). A MinHash sketch989

was created for each reference genome via Mash (v2.1.1) with default parameters to find Mash distances990

and select candidate “best matches” from each reference database. Then, dnadiff (v1.3) was used to991

further quantify differences between each OTU and its best match from either database. ANI between992

OTUs and their matches was found as “M-to-M AvgIdentity” in the query report column (ANI 95% over993

60% OTU sequence qualified as a match).994

OTU Taxonomic Assignment OTUs were placed into a bacterial or archaeal reference tree (based995

on the Genome Database Taxonomy, GTDB) and then assigned taxonomic classifications using GTDB-996

Tk (v1.0.2 Chaumeil et al. (2019)). GTDB-Tk relies on 120 bacterial and 122 archaeal marker genes;997

domain assignment is chosen based on domain-specific marker content of the OTU sequence. Using the998

GTDB-Tk placements, we built an OTU-only bacterial phylogeny with FastTree (v2.1.10 Price et al.999

(2010)). The tree was visualized using iTOL (v5.5 Letunic and Bork (2019)).1000

7.7.1 Viral Discovery1001

We followed the protocol described by Paez-Espino et al. (2017). Briefly, we used an expanded and1002

curated set of viral protein families (VPFs) as bait in combination with recommended filtering steps to1003

identify 16,584 UViGs directly from all MetaSUB metagenomic assemblies greater than 5kb. Then, the1004

UViGs were clustered with the content of the IMG/VR system (a total of over 730k viral sequences1005

including isolate viruses, prophages, and UViGs from all kind of habitats). The clustering step relied on1006

a sequence-based classification framework (based on 95% sequence identity across 85% of the shortest1007

sequence length) followed by the markov clustering (mcl). This approach yielded 2,009 viral clusters1008

(ranging from 2-611 members) and 9,605 singletons (or viral clusters of 1 member), sequences that failed1009

to cluster with any sequence from the dataset or the references from IMG/VR, resulting in a total of1010

11,614 vOTUs. We define viral species from vOTUs as sequences sharing at least 95% identity over 85%1011

of their length. Out of this total MetaSUB viral diversity, only 686 vOTUs clustered with any known1012

viral sequence in IMG/VR.1013
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7.7.2 Identifying Host Virus Interactions1014

We used two computational methods to reveal putative host-virus connections (Paez-Espino et al., 2016a).1015

(1) For the 686 vOTUs that clustered with viral sequences from the IMG/VR system, we projected the1016

known host information to all the members of the group (total of 2,064 MetaSUB UViGs). (2) We used1017

bacterial/archaeal CRISPR-Cas spacer matches (from the IMG/M 1.1 million isolate spacer database) to1018

the UViGs (allowing only for 1 SNP over the whole spacer length) to assigned a host to 1,915 MetaSUB1019

vOTUs. Additionally, we also used a database of over 20 million CRISPR-Cas spacers identified from1020

metagenomic contigs from the IMG/M system with taxonomy assigned. Since some of these spacers may1021

derive from short contigs these results should be interpreted with caution.1022

7.7.3 CRISPR Array Detection and Annotation1023

Using CRISPRCasFinder the MetaSUB database was investigated to predict CRISPR arrays and an-1024

notate them with their corresponding predicted type based on CRISPR-Cas genes in their vicinity.1025

CRISPRCasFinder was run with default parameters, “-so” and “-cas” options to identify cas genes. The1026

precision and recall of the virus detection was 99.6% and 37.5% respectively, as previously reported by1027

(Paez-Espino et al., 2016b).1028

CRISPR-Cas types were assigned to arrays based on detected cas genes within a 10 kilobases vicinity.1029

Cases where CRISPRCasFinder associated several cas genes of contradicting CRISPR-Cas types with1030

the same CRISPR array were regarded as unclear annotation. This procedure yielded 838,532 predicted1031

CRISPR arrays (with additional CRISPR arrays predicted with default parameters for PILER-CR), of1032

which, 3,245 CRISPR arrays had unambiguous annotation, resulting in 43,656 unique spacers queried1033

against genomic databases using BLASTN.1034

7.8 Organisms/BLAST Databases1035

In order to associate detected spacers within defined groups (plasmids, prophages, viruses) four different1036

genomic databases were aggregated to be searched with BLASTN. The aggregated database consisted1037

of IMG/VR, PHASTER, and PLSDB alongside bacterial and archaeal genomic sequences from the1038

National Center for Biotechnology Information (NCBI). All database downloads were made on the 28th1039

January 2020. Detected and annotated spacers were searched against the databases mentioned above1040

using BLASTN with the following additional arguments, which correspond to the default parameters of1041

CRISPRTarget: word_size=7, evalue=1, gapopen=10, gapextend=2, penalty=-1, reward=1.1042

7.9 MetaSUB Genomic Database and Statistical Analysis1043

Genomic data was acquired from the MetaSUB database and matched by sample names to the cor-1044

responding metadata downloaded from the MetaSUB-metadata github repository (https://github.1045

com/MetaSUB/MetaSUB-metadata). All data derived from MetaSUB and the subsequent steps described1046

above was then analysed using Python 3.6. Python packages plotnine, plotly, matplotlib and seaborn1047

where used for plotting as well as pandas to create and manage dataframes. The heatmap is clustered1048

by Euclidean distance on the columns.1049

1050
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9 Supplemental Materials1394

9.1 Supplemental Methods1395

9.1.1 DNA Extraction from Isohelix swabs using ZymoBiomics 96 MagBead1396

The Isohelix swab head and the entire 400 µl of DNA/RNA Shield-solubilized sample were transferred1397

into ZR BashingBead Lysis Tubes (0.1 & 0.5 mm) (Cat# S6012-50) to which an additional 600 µl of1398

DNA/RNA Shield was added. Mechanical lysis using bead beating was performed on a maximum of 181399

samples simultaneously using the Scientific Industries Vortex-Genie 2 with Horizontal-(24) Microtube1400

Adapter (Cat # SI-0236 and SI-H524) at maximum power for 40 minutes. The resulting lysate (400 µl)1401

was transferred to NuncTM 96-Well Polypropylene DeepWell Storage Plates (Cat # 278743), followed1402

by DNA extraction using the ZymoBIOMICS 96 MagBead Kit (Lysis Tubes) (Catalog # D4308) on the1403

Hamilton Star according to manufacturer instructions.1404

9.1.2 DNA extraction from Copan swabs using MoBio PowerSoil R©DNA1405

Droplets in the Copan Liquid Amies Elution Swab tube (ESwab, Copan Diagnostics, Cat.:480C (http:1406

//goo.gl/8a9uCP)) were spun down at 300rpm/1min. Next, the swab pad was transferred to a Mo-1407

Bio PowerSoil R©DNA vial containing beads using sterile scissors, which we sterilized by flaming with1408

100% ethanol. The remaining 400-500µl Copan Amines liquid has been transferred into an Eppen-1409

dorf tube and centrifuged at full speed to collect bacteria and debris in a pellet. The pellet was1410

finally transferred to the same MoBio PowerSoil R©DNA vial also containing the corresponding swab1411

pad. MoBio PowerSoil R©DNA Isolation Kit, Cat.:12888-100 (https://www.qiagen.com/us/resources/1412

resourcedetail?id=5c00f8e4-c9f5-4544-94fa-653a5b2a6373&lang=en) was used according to man-1413

ufacturer’s instructions except for the following modifications:1414

Both swab and pellet have been re-suspended with 135µl C1 buffer (MoBio PowerSoil R©DNA). Sample1415

homogenization was performed using either TissueLyser II (Qiagen) with 2 cycles of 3 minutes at 30Hz1416

(https://goo.gl/hBg8Lb), or using the Vortex-Genie 2 (Vortex Catalog #13000-V1-24) adaptor and1417

vortex at maximum speed for 10 minutes. The sequencing centers in Stockholm and Shanghai used1418

different procedures for homogenization. Stockholm used a method based on MPI FASTPREP, while1419

Shanghai added 0.6 grams of 100-micron zirconium-silica beads to 2ml tubes containing the swab pad1420

and the media, followed by bead beating for 1 min. The eluted samples have been additionally purified1421

and concentrated by Beckmann Coulter Agencourt AMPure XP (Cat.:A63881) purification (1.8X) and1422

eluted into 12µl - 50µl elution buffer. Subsequently, DNA was quantified using Qubit R© dsDNA HS1423

Assay (Catalog #Q32854).1424

9.1.3 DNA extraction using Promega Maxwell1425

We added 300µl Promega Maxwell Lysis buffer and 30µl Promega Maxwell Proteinase K to Copan swab1426

heads or Isohelix swab heads and transferred the swabs back to their respective collection tube. For lysis1427

the sample tubes containing the swabs and the lysis mixture were incubated in a water bath at 54C for1428

30min. Following lysis, Copan swab heads were cut off their stem using sterile scissors and transferred1429

into a filter tube (Promega V4745). The filter containing the swab was placed into a 2ml Eppendorf tube1430

and spun down at full speed for 2min. This step is necessary since the Copan swab material consists of a1431

foam, which harbors the main liquid containing the extracted DNA. Next, the eluate has been combined1432

with the corresponding sample tube media and added to the first well of the cartridge (Maxwell R© RSC1433

Buccal Swab kit AS1640). Cartridges were processed using the Maxwell R© RSC Instrument (AS4500)1434

following the manufacturer’s default instructions. Extracted DNA was eluted in 50µl Promega Elution1435

Buffer and stored at -80C.1436

The matrix tubes containing the Isohelix swabs and the lysis buffer have been vortexed at full speed for1437

one minute. The Isohelix swab head material is a non-porous material, which allows for easy collection of1438

the lysate. We transferred the lysate to the first cartridge of the Maxwell R© RSC Blood DNA KitAS14001439

using syringes (BD 3 mL Syringes with 18G x 1.5" Luer Lok Tip Blunt Fill Needles) and ran the Promega1440

Maxwell using the Blood program according to manufacturer’s instructions. Samples were subsequently1441

eluted in 50µl elution buffer and stored at -80C.1442
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Table S1: Sample Counts
project Pilot CSD16 CSD17 Other Total

Region city

Control Background Control 0.0 40 0 0.0 40
Lab Control 0.0 20 6 0.0 26
Positive Control 0.0 33 6 0.0 39

East Asia Region Total 26.0 1297 0 34.0 1357
Hanoi 0.0 16 0 0.0 16
Hong Kong 0.0 712 0 12.0 724
Kuala Lumpur 0.0 30 0 0.0 30
Sendai 0.0 32 0 0.0 32
Seoul 0.0 80 0 12.0 92
Shanghai 0.0 0 0 10.0 10
Singapore 0.0 192 0 0.0 192
Taipei 0.0 94 0 0.0 94
Tokyo 26.0 132 0 0.0 158
Yamaguchi 0.0 9 0 0.0 9

Europe Region Total 310.0 939 1 177.0 1427
Barcelona 99.0 0 0 25.0 124
Belfast 0.0 5 0 0.0 5
Berlin 55.0 1 0 0.0 56
Birmingham 0.0 5 1 0.0 6
Bradford 0.0 4 0 0.0 4
Bury 0.0 6 0 0.0 6
Eastbourne 0.0 6 0 0.0 6
Eden 0.0 5 0 0.0 5
Edinburgh 0.0 6 0 0.0 6
Islington 0.0 5 0 0.0 5
Jaywick 0.0 6 0 0.0 6
Kensington 0.0 6 0 0.0 6
Kyiv 0.0 97 0 0.0 97
Lands End 0.0 5 0 0.0 5
Lisbon 60.0 0 0 28.0 88
London 0.0 534 0 0.0 534
Marseille 96.0 16 0 0.0 112
Naples 0.0 16 0 0.0 16
Newcastle 0.0 5 0 0.0 5
Oslo 0.0 16 0 12.0 28
Paris 0.0 16 0 0.0 16
Porto 0.0 0 0 112.0 112
Sofia 0.0 16 0 0.0 16
Stockholm 0.0 62 0 0.0 62
Swansea 0.0 6 0 0.0 6
Vienna 0.0 16 0 0.0 16
Zurich 0.0 79 0 0.0 79

Middle East Region Total 100.0 15 0 0.0 115
Doha 100.0 15 0 0.0 115
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Table S1: Sample Counts Cont.
project Pilot CSD16 CSD17 Other Total

continent city

North America Region Total 284.0 371 276 28.0 959
Baltimore 0.0 23 0 0.0 23
Denver 24.0 23 0 0.0 47
Fairbanks 141.0 0 0 0.0 141
Mexico City 0.0 0 0 10.0 10
Minneapolis 0.0 16 0 0.0 16
New York City 103.0 279 276 0.0 658
Sacramento 16.0 0 0 18.0 34
San Francisco 0.0 30 0 0.0 30

Oceania Region Total 94.0 32 0 0.0 126
Auckland 16.0 0 0 0.0 16
Brisbane 0.0 16 0 0.0 16
Hamilton 16.0 0 0 0.0 16
Honolulu 0.0 16 0 0.0 16
Sydney 62.0 0 0 0.0 62

South America Region Total 44.0 199 68 20.0 331
Bogota 17.0 0 0 0.0 17
Montevideo 0.0 0 0 20.0 20
Ribeirao Preto 0.0 93 0 0.0 93
Rio De Janeiro 0.0 77 68 0.0 145
Santiago 27.0 0 0 0.0 27
Sao Paulo 0.0 29 0 0.0 29

Sub Saharan Africa Region Total 116.0 192 0 0.0 308
Ilorin 90.0 134 0 0.0 224
Offa 26.0 58 0 0.0 84
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Table S2: Covariate Variance. The sample variance that can be explained by each factor, in isolation.
Factor Variance Explained

City 19%
City Population Density 0%
City Ave June Temp 4%
City Elevation 2%
Coastal City 1%
Surface Material 4%
Koppen Climate Classification 8%
Setting 2%
Above/Below Ground 7%
Continent 11%
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Figure S1: Ecological relationships with taxa. A) Correlation between species richness and latitude. Richness
decreases significantly with latitude B) Neighbourhood effect. Taxonomic distance weakly correlates with geo-
graphic distance within cities. C) Fraction of reads assigned to different databases by BLAST for each region, at
different levels of average nucleotide identity
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Figure S2: Comparison to Human Microbiome Project. A) Jaccard similarity of MASH indices to HMP samples
for different surface types. B) Jaccard similarity of MASH indices to HMP samples for different surface types by
region.
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Figure S3: Microbial Signatures, supplemental. A) Classification accuracy that would be achieved by a random
model predicting features (rows) for held out cities (columns) B) Endemicity Score (Term Frequency Inverse
Document Frequency for taxa in cities
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Figure S4: Endemicity scores of particular taxa. A) Heatmap showing the endemicity scores (term-frequency
inverse document frequency) for taxa in different cities. This table is filtered to show only taxa with high
endemicity scores in at least one city.
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Figure S5: A) UMAP of taxonomic profiles colored by city B) UMAP of taxonomic profiles colored by climate
classification C) UMAP of taxonomic profiles colored by surface type D) UMAP of functional profiles colored by
region

45

.CC-BY 4.0 International licenseavailable under a
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (whichthis version posted December 2, 2020. ; https://doi.org/10.1101/724526doi: bioRxiv preprint 

https://doi.org/10.1101/724526
http://creativecommons.org/licenses/by/4.0/


Figure S6: Antimicrobial Resistance Genes, supplemental. A) Classification accuracy of a random forest model
predicting city labels for held out samples from antimicrobial resistance genes. B) Rarefaction analysis of an-
timicrobial resistance genes. Curve does not flatten suggesting we would identify more AMR genes with more
samples. C) Neighbourhood effect. Jaccard distance of AMR genes weakly correlates with geographic distance
within cities. D) Number of AMR genes detected for samples in each region. E) Distribution of reads per gene
(normalized by kilobases of gene length) for AMR gene calls. The vertical red line indicates that 99% of AMR
genes have more than 9.06 reads per kilobase and would still be called at a lower read depth.
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Figure S7: Novel biology, supplemental. A) Relation of read depth to the number of identified bacterial
Metagenome Assembled Genomes (MAGs) in a sample. B) Discovery rate for baterial MAGs in each city.
C) Total fraction of CRISPR spacers aligned to MetaSUB viral MAGs and viral genomes in RefSeq.
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Figure S8: Example Geographic taxonomic Distributions. Distributions of taxa were estimated by fitting
Gaussian distributions to sampling locations where the taxa was found with standard deviations based on the
geographic distance between observations. Top Row) Sampling sites in three major cities Rows 2-4) Estimated
distribution of different example species in major cities Row 5) Estimated distribution of three species together
in major cities
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Figure S9: A) Number of species detected as k-mer threshold increases for 100 randomly selected samples B)
Number of species detected as number of sub-sampled reads increase C) k-mer counts compared to number of
reads for species level annotations in 100 randomly selected samples, colored by coverage of marker k-mer set
D) k-mer counts compared to number of reads for species level annotations in 100 randomly selected samples,
colored by average duplication of k-mers E) Comparison of Mean Sequence Entropy and Coverage Equality for
core and sub-core taxa. Thresholds are shown by red lines.
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Figure S10: A) Jensen-Shannon Divergence of taxonomic profiles vs MASH Jaccard distance of k-mers B)
Jensen-Shannon Divergence of taxonomic profiles vs Jaccard distance of taxonomic profiles. C) Jaccard distance of
taxonomic profilesvs MASH Jaccard distance of k-mers D) Shannon’s Entropy of taxonomic profiles vs Shannon’s
Entropy of k-mers E) Taxonomic richness (number of species) vs Shannon’s Entropy of taxonomic profiles
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Figure S11: A) MASH k-mer Jaccard similarity to representative HMP samples, colored by continent B)
MetaPhlAn v2.0 cosine similarity to representative HMP samples, colored by continent C) Fraction unclassified
DNA by surface material D) Cosine similarity to MetaPhlAn v2.0 skin microbiome profile by surface E) Jensen-
Shannon distance between pairs of taxonomic profiles vs Geographic Distance F) MASH k-mer Jaccard similarity
to representative soil samples, colored by continent
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Figure S12: A) Taxonomic Richness in Cases vs. Types of Controls B) Distributions of k-mer counts in control
types vs cases for 5 most abundant taxa. k-mer count is a marker of assignment confidence.
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Figure S13: A) Correlation of taxonomic (species) relative abundances with DNA concentration B) Correlation
of randomly generated compositional vectors with DNA concentration. Note the same shape but lower magnitude
C) Correlation of taxa with DNA Concentration vs the mean relative abundance of that taxa D) Presence (black)
absence (grey) heatmap of taxa found in controls and other samples. Colored bar at top, red are negative controls,
blue are background, green are positive. Case samples with homology are grey. Case samples without homology
to control sequences are not shown.
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Figure S14: Comparisons of different seuqeuncing quality control metrics with controls marked. A-F) Com-
parisons of the raw reads, PCR Qubit scores, manually recorded DNA concentrations, k-mer Shannon entropy,
and GC fraction of quality controlled reads G) Comparison of read counts before and after quality control but
before human reads were removed H) Histogram showing the number of samples with different k-mer entropies.
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Figure S15: A) UMAP of taxonomic profiles from geographically diverse flowcells B) Flowcells vs quality control
metrics C) Number of reads by region D) number of reads by surface material E) PCR Qubit by surface material
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