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Accurate disease risk prediction is essential in healthcare to provide personalized disease prevention and 
treatment strategies not only to the patients, but also to the general population. In addition to demographic 
and environmental factors, advancements in genomic research have revealed that genetics play an 
important role in determining the susceptibility of diseases. However, for most complex diseases, 
individual genetic variants are only weakly to moderately associated with the diseases. Thus, they are 
not clinically informative in determining disease risks. Nevertheless, recent findings suggest that the 
combined effects from multiple disease-associated variants, or polygenic risk score (PRS), can stratify 
disease risk similar to that of rare monogenic mutations. The development of polygenic risk score 
provides a promising tool to evaluate the genetic contribution of disease risk; however, the quality of the 
risk prediction depends on many contributing factors including the precision of the target phenotypes. In 
this study, we evaluated the impact of phenotyping errors on the accuracies of PRS risk prediction. We 
utilized electronic Medical Records and Genomics Network (eMERGE) data to simulate various types 
of disease phenotypes. For each phenotype, we quantified the impact of phenotyping errors generated 
from the differential and non-differential mechanism by comparing the prediction accuracies of PRS on 
the independent testing data. In addition, our results showed that the rate of accuracy degradation 
depended on both the phenotype and the mechanism of phenotyping error.  
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1.  Introduction 

Understanding the risk factors underlying diseases has long been pursued in healthcare in order to 
screen and prevent disease onset for high-risk individuals. Proper quantification of the risk factors 
could help stratify patients based on their risk profiles, which in turn can be beneficial for 
developing personalized disease prevention and treatment strategies1. With the development of 
high-throughput sequencing technologies, it is now a reality to systematically evaluate the 
genetics’ contribution to disease risks. Genetic twin studies have shown that many human 
phenotypes and diseases are highly hereditable; however, early genome-wide association studies 
have identified many single nucleotide polymorphisms (SNPs) that are only weakly to moderately 
associated with the diseases. In addition, for the associated SNPs, they only explain a small 
amount of the disease risks2–4. Recent studies have discovered that many phenotypes are polygenic 
in nature, meaning a phenotype is associated with more than one gene5,6. Thus, the polygenic risk 
score (PRS) method was developed to capture the small effects from many genetic factors in order 
to combine their effects into a single predictive variable6,7. The PRS has been evaluated for its role 
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in determining disease risk in many complex diseases including coronary artery disease, atrial 
fibrillation, type 2 diabetes, inflammatory bowel disease, breast cancer8, obesity9, schizophrenia10, 
and antipsychotic drug treatment11. For some of the diseases, the predictive power of PRS has 
reached clinical significance similar to that of monogenic mutations8.  
 

For the past decade, electronic health record (EHR) linked genetic data has proven to be a 
valuable data source for identifying genetic associations for diseases. EHR with linked genetic 
data has the advantages of having a large sample of the patient population as well as a rich source 
of matching clinical phenotypes to conduct genomics research. In addition, several EHR data have 
already been used to conduct PRS research, including the UK Biobank8 and eMERGE12. While 
the genetic data is an integral part of PRS prediction, the phenotype used to construct PRS is 
equally as important. A crucial step in constructing a PRS is to determine the marginal association 
of each SNP with the phenotype. Thus, the quality of the associations determines the utility of the 
constructed PRS. However, there are unavoidable biases and measurement errors associated with 
the EHR derived phenotypes. Existing studies have evaluated the impact of phenotyping errors on 
statistical inference and showed that the errors decreased the power13 as well as inflated the type 1 
error14 of the associations. Nevertheless, so far, there has been no investigation on the impact 
phenotyping error on the predictive ability of PRS. 
 

In this study, we used real EHR data from eMERGE to simulate three types of phenotype 
under two phenotyping error mechanisms. We systematically quantified the PRS predictive ability 
in different phenotypes under different severities of phenotyping error and error mechanisms. Our 
results showed that as more errors were added to the phenotypes, non-differential phenotyping 
errors lowered the PRS prediction accuracies similarly among different phenotypes. In contrast, 
differential phenotyping errors affected the PRS prediction differently depending on the 
underlying phenotype model. We believe that our results could better inform researchers and 
clinicians of the robustness of PRS when assessing disease risk. 

2.  Method 

To evaluate the impact of phenotyping error on PRS prediction, we used simulated datasets where 
we knew the ground truth to quantify the change in prediction accuracy. The evaluation was carried 
out in five stages. 1) Use real patients’ genetic data from eMERGE EHR as input to construct PRS. 
2) Simulate known phenotypes under various underlying true models. The phenotypes were 
constructed to have true associations with demographic, environmental, clinical, and genetic factors 
(PRS). 3) Inject errors into the known phenotypes under two different error generating mechanisms: 
differential and non-differential 4) Adjust the strength of the phenotyping error 5) Quantitatively 
evaluate the predictive ability of PRS on the testing data under each simulation scenario. 

2.1.  eMERGE EHR genetic data 

In order to simulate realistic PRS, we utilized the patients’ genetic data from the electronic 
medical records and genomics network (eMERGE, dbGaP accession: phs000888.v1.p1)15. Recent 
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studies suggested that PRS does not perform well across multiple ethnic groups; thus we restricted 
our study samples to only one ethnicity16,17. To maximize the sample size, we extracted white 
patients from nine different hospitals under eMERGE: Children's Hospital of Pennsylvania, 
Cincinnati Children's Hospital Medical Center/Boston's Children's Hospital, Geisinger Health 
System, Group Health/University of Washington, Essentia Institute of Rural Health, Marshfield 
Clinic, Pennsylvania State University (Marshfield), Mayo Clinic, Icahn School of Medicine at 
Mount Sinai School, Northwestern University, and Vanderbilt University. The SNP genotyping 
was performed using the Illumina 660W-Quad BeadChip at the Center for Genotyping and 
Analysis at the Broad Institute, Cambridge, MA. Genome imputation was performed by eMERGE 
according to the standard pipeline18. Overall, 31,183 patients’ 38,040,165 autosomal SNP 
genotypes were extracted.  

2.2.  Phenotype Simulation 

We simulated three types of phenotype under different underlying true models (Figure 1, solid 
arrows on top). First, a phenotype was simulated to be associated with the demographic variables, 
a set of causal SNPs, and an environmental factor. All variables were independently associated 
with the phenotype; thus, it was named the independent model. Second, a phenotype was 
simulated to be associated with the demographic variables, a set of casual SNPs and a related 
diagnosis. In this case, the related diagnosis was also associated with a subset of the causal SNPs, 
though the associations were different from that of the phenotype. For example, a subset of causal 
SNPs may have pleiotropic effects between hypertension and heart failure, but the pleiotropic 
associations with the two diseases are distinct. In addition, diagnosis in hypertension is also one of 
the factors in determining heart failure status. Because the related diagnosis (hypertension) shared 
a subset of causal SNPs with the phenotype (heart failure) and the associations were distinct, the 
model was called the weakly correlated model. Finally, a phenotype was similarly simulated to be 
associated with demographic variables, a set of causal SNPs, and a related diagnosis as in the 
weakly correlated model. However, the set of pleiotropic SNPs had the same effects on the related 
diagnosis as on the phenotype. An example would be that a subset causal SNPs are similarly 
associated with cardiac arrest (related diagnosis) as well as heart failure (phenotype). Furthermore, 
cardiac arrest is also associated with heart failure diagnosis. In this study, this model was named 
strongly correlated model. The SNPs in all models were randomly selected from the common 
SNPs (minor allele frequency > 5%) in the eMERGE EHR genetic data. The mathematical models 
for the phenotype simulation are presented in the following sections. 
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Fig. 1. Phenotypes generating mechanism.  
The phenotypes were generated using patients’ age, gender, SNP genotypes, and an environmental 
factor or a related diagnosis status. The top solid arrows represent the true phenotype generating 
mechanism. In the independent model, all factors were independently associated with the 
phenotype. In the weakly correlated model, the related diagnosis and the phenotype shared a 
subset of causal SNPs, but the associations 𝛾"  and	 𝛽% were independent. In the strongly correlated 
model, the subset of shared casual SNPs had the same associations, as in	𝛽" is a subset of 𝛽%. The 
bottom dotted arrows indicate the phenotype error generating mechanism. The biased phenotypes 
were generated based on the values of the true phenotype and the environmental factor or the 
related diagnosis.  
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2.2.1.  Independent model 

In this model, the phenotype Y was generated through the logistic model.  
 
Phenotype: 

Logit(Y)~ − 3 − 0.3 ∗ Age + 0.1 ∗ Gender +<β> ∗ 𝑆𝑁𝑃>

%

>

− 2 ∗ 𝐸𝑛𝑣_𝑓𝑎𝑐𝑡𝑜𝑟 

The coefficients for the intercept, age, gender, and environmental factors (Env_factor) were 
selected so that the disease prevalence was around 30%.  The same coefficients were also used for 
the weakly correlated and the strongly correlated model so that the models were comparable. The 
distributions of the random variables in all equations were listed in Table 1.  

2.2.2.  Weakly correlated model 

In the weakly correlated model, a related diagnosis was first generated using q SNPs, where q was 
a subset of p SNPs that were used to generate the phenotype. In addition, the coefficients 𝛾 for 
generating the related diagnosis were independent of β that were used to generate the phenotype.  
 
Related diagnosis: 

Logit(Related	diagnosis)~<𝛾> ∗ 𝑆𝑁𝑃>

"

>

; 	q ⊆ 𝑝	 

Phenotype: 

Logit(Y)~ − 3 − 0.3 ∗ Age + 0.1 ∗ Gender +<β> ∗ 𝑆𝑁𝑃>

%

>

− 2 ∗ 𝑅𝑒𝑙𝑎𝑡𝑒𝑑	𝑑𝑖𝑎𝑔𝑛𝑜𝑠𝑖𝑠 

 

2.2.3.  Strongly correlated model 

The strongly correlated model was the same as the weakly correlated model except that the related 
diagnosis and the phenotype shared a subset of q SNPs as well as their coefficients. 
 
Related diagnosis: 

Logit(Related	diagnosis)~<β> ∗ 𝑆𝑁𝑃>	; 	q ⊆ 𝑝	; 	𝛽" ⊆ 𝛽%	
"

>

 

Phenotype: 

Logit(Y)~ − 3 − 0.3 ∗ Age + 0.1 ∗ Gender +<β> ∗ 𝑆𝑁𝑃>

%

>

− 2 ∗ 𝑅𝑒𝑙𝑎𝑡𝑒𝑑	𝑑𝑖𝑎𝑔𝑛𝑜𝑠𝑖𝑠	 



 
 

 

 

2.3.  Biased phenotype due to errors 

As shown in Figure 1, the biased phenotypes were generated based on the value of the true 
phenotypes as well as the environmental factor or the related diagnosis (Figure 1, dotted arrows at 
the bottom). The intuition was that, first, the biased phenotype would be expected to be a deviation 
from the true phenotype. Second, many of the phenotyping algorithms utilized by EHR systems 
used environmental and diagnosis variables to determine the phenotype or disease status, thus, the 
precision of the phenotype was also associated with these factors19–21. Mathematically, the 
phenotyping errors were determined by the sensitivity and specificity: 
 

𝑆𝑒𝑛𝑠𝑖𝑡𝑖𝑣𝑖𝑡𝑦 = 	 ^_`a	%bc>d>ea
^_`a	%bc>d>eafghica	jakhd>ea

 ; 𝑆𝑝𝑒𝑐𝑖𝑓𝑖𝑐𝑖𝑡𝑦 = 	 ^_`a	jakhd>ea
^_`a	jakhd>eafghica	%bc>d>ea

 
 
 
In the independent model, the biased phenotype was generated using the following 2x2 tables.  
 
 
 
   
 
 
 

For example, the SensitivityExposure controlled the sensitivity of the biased Y when the true 
phenotype Y = 1 and Env_factor = 1. The new phenotype value under this combination was 
generated using the Bernoulli distribution with the probability equaled to SensitivityExposure. In contrast, 
the SpecificityExposure determined the probably of the biased Y = 0, when true Y = 0 and the Env_factor 
= 0. The value was generated by Bernoulli (1- SpecificityExposure). Thus, the degree of phenotyping 
errors was controlled by the values of the sensitivity of specificity. As a special case, a phenotype 
was the gold standard when sensitivity = specificity = 100%. 

 Y=1 Y=0 
ENV_FACTOR = 1 SensitivityExposure SpecificityExposure 
ENV_FACTOR = 0 Sensitivitynon_Exposure Specificitynon_Exposure 

 

Table 1.  Parameter values for phenotype simulation  

Variable Value 
Total randomly selected SNPs 500 
Phenotype associated SNPs  p = 100 
Diagnosis associated SNPs  q = 50 
Age Normal (40, 10) 
Gender Bernoulli (p = 0.5) 
Environmental factor (Env_factor) Bernoulli (p = 0.5) 
Phenotype ~ SNP associations   𝛽 ~ Normal (0, 0.3) 
Related diagnosis ~ SNP associations  𝛾 ~ Normal (0, 0.3) 

 



 
 

 

For biased phenotypes, the phenotyping error was non-differential when the sensitivities and 
specificities were the same across the two Env_factor levels; otherwise, the error was differential. 
For instance, a phenotype that is more error-prone for patients with lower levels of environmental 
exposure would be differentially biased.  
 
 
 
 
 
 
 
 
 
 
 
 
The biases for the weakly correlated and strongly correlated models were generated in the same 
fashion except that the Env_factor was replaced with the related diagnosis. 

2.4.  Biased phenotype generation 

For all phenotypes (independent, weakly correlated, and strongly correlated), a range of 
phenotyping errors were introduced using different levels of sensitivity and specificity. In addition, 
differential and non-differential error generating mechanisms were applied at each sensitivity and 
specificity level. To simplify the presentation of the results, the same value of sensitivity and 
specificity for the non-differential phenotyping error was used (Table 2). For differential 
phenotyping error, one sensitivity and specificity were kept at 99%, while the others varied (Table3). 
Overall, 60 biased phenotypes were generated.  
 

Table 2. Sensitivity and specificity for the non-differential phenotyping error 
Error model name Error mechanism  
Gold standard No error 
X = (95, 90, 85, 80, 
75, 70, 65, 60, 55, 50) 

 Y=1 Y=0 
Env_factor or Diagnosis =1 Sensitivity = X%   Specificity = X% 
Env_factor or Diagnosis =0 Sensitivity = X% Specificity =  X% 

 

 
 
 

Table 3. Sensitivity and specificity for the differential phenotyping error 
Error model name Error mechanism  
Gold standard No error 
X = (95, 90, 85, 80, 
75, 70, 65, 60, 55, 50) 

 Y=1 Y=0 
Env_factor or Diagnosis =1 Sensitivity = X% Specificity = 99% 
Env_factor or Diagnosis =0 Sensitivity = 99%   Specificity = X% 

 

 

NON-DIFFERENTIAL PHENOTYPING ERROR 
    Y=1   Y=0 
ENV_FACTOR = 1 a% b% 
ENV_FACTOR = 0 a% b% 

 
DIFFERENTIAL PHENOTYPING ERROR 

 Y=1 Y=0 
ENV_FACTOR = 1 a% c% 
ENV_FACTOR = 0 b% d% 

 



 
 

 

2.5.  Evaluation of PRS prediction 

The effect of the phenotyping errors on PRS prediction was evaluated in the following steps.  
 

1. Split the data into training and testing Data = 70%	Dataopqrs+	30%	Dataotuo 
2. Sample sizes of the data split Training: 21,827; Testing: 9355 
3. Obtain coefficients for the SNPs using 

the training data 
𝑌opqrs~βwr,opqrs ∗ SNPr,opqrs 

 
4. Construct PRSs in both training and 

testing data PRSopqrs,| =<βwr,opqrs ∗ SNPopqrs,r

|

r}~

 

PRSotuo,| =<βwr,opqrs ∗ SNPotuo,r

|

r}~

 

 
5. Build a predictive model using the 

PRS in the training data 
 

 
	Yopqrs~	𝜆����,opqrs ∗ PRSopqrs,| 

6. Apply the model to the test data 
 

	𝑌wotuo = 𝜆����,opqrs ∗ PRSotuo,| 
 

7. Compare the predicted phenotype 
value to the true phenotype value 

𝐴𝑈𝐶	(		𝑌wotuo, 𝑌dacd)) 

 
 

The data was split into the training and testing datasets, with the testing dataset being held out for 
evaluation. Using the training data, all SNPs’ marginal association, βwr,opqrs , with the biased 
phenotypes were obtained. The marginal associations from the training data were then used to 
construct PRSs in both the training and testing data. Next, a predictive model was built using the 
PRS in the training data; the model was subsequently applied to the testing PRS to obtain the 
predicted phenotype. The predicted phenotype was compared with the true phenotype in the testing 
data to obtain the testing area-under-the-curve (AUC) value. The entire process, from phenotype 
simulation to PRS prediction, was repeated 100 times using different random seeds to obtain 100 
replications of the results. 
 

3.  Result 

In all simulations, gold standard results were included to serve as the baselines for comparison. The 
gold standards demonstrated the maximum obtainable prediction accuracies from PRSs that were 
generated using the true phenotype. Figure 1 showed a change in PRS prediction accuracy as more 
non-differential errors were added into the phenotype. The accuracies gradually decreased from gold 
standard to 50% sensitivity and specificity. At 50% sensitivity and specificity, the biased phenotype 
was generated the same way as coin-flipping. Thus, the prediction accuracies of PRS at this error 
level was also around 50%. Notably, the gold standard accuracies were also different even when the 
simulation parameter values were the same for all three phenotypes.  



 
 

 

 

 
Figure 2. Performance of PRS prediction under non-differential phenotyping error. Each boxplot represents 
100 replications of the same experiment using different datasets. The x-axis indicates the sensitivity and 
specificity level set by variable X in table 2. The y-axis shows the prediction AUC on the testing data. 
 
 
For differentially misclassified phenotypes, the PRS prediction accuracies also decreased as more 
differential errors were added to the phenotypes (Figure 3). However, the rates of the accuracy 
decrease were different for the three types of phenotypes. The PRS derived from the strongly 
correlated model showed the fastest reduction in prediction accuracy. The accuracy from the 
weakly correlated model also decreased faster than that of the independent model.  
 

 
Figure 3. Performance of PRS prediction under differential phenotyping error. Each boxplot represents 100 
replications of the same experiment using different datasets. The x-axis indicates the sensitivity and 
specificity level set by variable X in table 3. The y-axis shows the prediction AUC on the testing data. 
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4.  Discussion 

Disease risk prediction utilizing genetic information via PRS has shown great promise in many 
complex human diseases. With the increasing availability of linked genetic data in EHR systems, 
PRS prediction can be widely applied to many phenotypes and diseases to identify high-risk patients 
for better disease prevention and treatment care. Nevertheless, patients’ true disease statuses are 
often unknown. Thus, the observed disease status is only a proxy for the true disease status, and the 
observed status will be biased due to phenotyping errors. In this study, we quantified the degradation 
of PRS prediction using three different types of phenotype under the differential and non-differential 
phenotyping errors. 
 

We utilized the eMERGE EHR genetic data so that the SNPs had the minor allele 
frequency distribution and correlation structure that are observed in the real patients’ data. Using 
the SNPs data along with other demographic and clinical variables, we simulated three different 
phenotypes with increasing levels of complexity (Figure 1). For the phenotype generated under the 
independent model, all variables independently related to the phenotype. Here, we assumed that an 
individual’s genetic factors do not affect one’s environmental exposure. Under the weakly 
correlated model, we used a related diagnosis status to determine the phenotype status, and the 
two were associated with a common subset of SNPs through pleiotropic effects. In this case, we 
assumed that the associated effects were different between the related diagnosis and the 
phenotype. This is likely when the phenotypes are regulated through different biological 
mechanisms, such as between heart diseases and mental disorders22–24. Finally, in the strongly 
correlated model, the diagnosis and the phenotype were assumed to be more similar due to the 
shared underlying SNPs as well as their coefficients. This reflects a possible scenario when a 
subtype of disease is used to diagnose the main disease.  
 

As expected, as more phenotyping errors were added to the three phenotypes, the 
prediction accuracy of PRS decreased. However, the rates of the decrease depended on the type of 
phenotyping errors. First, the gold standards’ accuracy in Figure 2 and Figure 3 were similar 
because they both represented PRS predictive power without any phenotyping errors. 
Interestingly, the PRS achieved the best performance in the phenotype generated from the weakly 
correlated model, followed by the independent and strongly correlated model. This can be 
explained by the different amount of genetic contribution to the phenotype. In the weakly 
correlated model, SNPs contributed to the phenotype through two mechanisms: 1. direct 
associations with the phenotype. 2. Indirect associations through the related diagnosis. Because the 
indirect associations were independent of the direct associations, the SNPs contributed “twice” to 
the phenotype. In contrast, in the independent model, the SNPs were only associated with the 
phenotype through their direct associations. And in the strongly correlated model, the SNPs’ 
associations were diminished because part of the associations was mediated by the related 
diagnosis. Second, non-differential phenotyping errors similarly affected all phenotypes. The 
relative order of PRS prediction accuracies did not change as more non-differential phenotyping 
errors were added.  Finally, differential phenotyping errors, which are more likely to be observed 



 
 

 

in real data, exhibited different accuracy trajectories for the phenotypes. The independent model 
was affected the least, likely because the SNPs and the environmental factor were independent. 
Thus, differential phenotyping errors induced by the environmental factor did not have a major 
impact on the PRS prediction accuracy. However, in the weakly correlated and strongly correlated 
model, both the phenotype and the related diagnosis were associated with the SNPs. Thus, 
differential errors based on these variables had a severe impact on the PRS, with the strongest 
impact in the strongly correlated model. In summary, non-differential phenotyping errors affected 
PRS prediction equally among the phenotypes. Differential phenotyping errors had an increased 
impact on PRS prediction if the target phenotype and the variables used to determine the 
phenotype have a shared genetic component.   

 
While it is useful to understand the impact of phenotyping errors on PRS prediction, it is 

also important to identify approaches that can minimize the error. One effective approach to 
reducing error is through manual chart review of patients’ comprehensive clinical histories by 
doctors or domain experts. However, manual review is both time-consuming and expensive. A 
potential alternative approach is to chart review a subset of patients to determine the amount of 
phenotyping error as well as the error mechanism. Then, the results presented in this study could 
serve as a guideline to determine whether the errors are within the acceptable range. If not, the 
phenotype quality needs to be improved. For future studies, the impact of phenotyping errors on 
the continuous outcome can be explored. Furthermore, more complex error patterns that depend 
on multiple environmental or clinical variables are likely to be more realistic and should be 
investigated. Finally, some studies suggested that AUC may not be the best metric for evaluating 
classification accuracy. Thus, other accuracy metrics, such as net reclassification improvement or 
integrated discrimination improvement can be used25.  
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