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Non-mechanistic ecosystem models are employed in many ecological studies ranging from purely theoretical
to data-driven ones. With such models in mind, we derive fundamental consistency criteria (axioms) from �rst
principles. �ese particularly cover what we call clone consistency: �e outcome does not change if a population
is split into two with identical properties. We mathematically prove that, these axioms are ful�lled if and only
if the model is based on linear combinations of powers of parameters and abundances. Using this insight,
we formulate a framework that allows to quickly assess the consistency of existing models and to build new
models. We demonstrate our approach by invalidating a data-based model proposed for polymicrobial urinary-
tract infections and developing an alternative. We argue that our framework reveals implicit assumptions and
informs the general modelling studies by narrowing the space of possible models or pointing to new forms of
models.

I. INTRODUCTION

Many theoretical and semi-empirical modelling studies of
ecological communities employ general models [1–3], such
as the popular Volterra model [4]. Such models are o�en not
mechanistic or process-oriented, i.e., they do not explicitly
feature agents of interactions, such as nutrients and toxins.
As a result the equations governing each population all have
the same form, and the species of a population only mani-
fests in the values of the associated control parameters. �ese
parameters may describe the properties of a single popula-
tion, the interplay of two populations, or higher-order inter-
actions, i.e., e�ects involving three or more populations [5, 6].
�ey are usually chosen randomly [7–12] or determined from
experiment [13–16].

In particular for microbial ecosystems, recent advances in
automatising experiments have made it feasible to determine
interaction parameters for richer ecosystems [15, 17–19], to
quantify the interaction between two populations with more
than one parameter [15], or to measure higher-order inter-
actions [14, 20]. �ese new experimental scenarios o�en de-
mand new models that can incorporate the respective data,
in particular as there is no single answer as to how multi-
parameter or higher-order interactions should be measured
[2, 6, 15, 18, 21].

One di�culty when building a model is to avoid inconsis-
tencies. As an example, we compare two simulations of a bac-
terial community using the same model (Box 1): �e �rst sim-
ulation is straightforward; we represent each strain of bacte-
ria as one population. For the second simulation, we divide
one population into two with identical properties. Allegori-
cally, we paint half the individuals in a di�erent colour. Al-
though these two simulations describe an identical situation,
their outcomes strongly di�er (Fig. 1, solid and dashed lines),
which is why we consider the model underlying these simu-
lations as inconsistent. �is di�erence cannot be explained
by numerical noise and sensitivity to initial conditions, as
demonstrated by simulations with perturbed initial condi-
tions (do�ed lines) exhibiting a much smaller di�erence. �is
model was taken from a study [15] that featured communities
containing two strains of the same species; therefore the case
of populations with very similar properties is relevant here.
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FIG. 1. Simulation of a urinary-tract-infection community (Com-
munity 3 from Ref. 15) using Eq. 1 from Box 1. Solid lines: plain
simulation; each strain is represented by one population. Dashed
lines: the same, except that there are two Enterococcus populations
with identical parameters and half the initial abundance each. �e
abundance shown for Enterococcus is summed over these two pop-
ulations. Do�ed lines: like plain simulation, except that the initial
abundances were perturbed by 1% in a random direction. (A do�ed
line may be mostly covered by the respective solid line.) See Ap-
pendix A for details of the simulation.

In Appendix B we provide an explicit arithmetic demonstra-
tion of this inconsistency that is independent of some choices
we had to make for this example (see Appendix A).

We here formulate criteria (axioms) that exclude such fun-
damental inconsistencies. Applying methods from functional
analysis, we explore the consequences of these axioms and
derive a framework that allows to easily decide whether
a given model is consistent and to build models that are.
We demonstrate the la�er by building a new semi-empirical
model for polymicrobial urinary-tract infections. Moreover,
we argue that our theoretical results are relevant to all kinds
of ecosystem models and may inform them with respect to
their consistency or implicit assumptions required to main-
tain this consistency.
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Box 1. Our Case Study: Semi-Empirical Models of Urinary-Tract Infections
Ref. 15 used a high-throughput approach to systematically measure ecological interactions be-
tween strains isolated from polymicrobial urinary-tract infections (UTI). Employing this data,
Ref. 15 also proposed a model for ecosystems consisting of such strains. We use this scenario
and the model as an example for applying our concepts.

We brie�y summarise the measurements of the growth characteristics and pairwise interac-
tions of these bacterial strains:
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Le�: Each strain j was cultivated for 48 h in arti�cial urine (solid bold le�ers represent individ-
uals of the respective strain). �e exponential growth rate gj as well as the carrying capacity cj
(named yield in Ref. 15) were experimentally determined via optical densities. For convenience,
abundances of each strain were normalised such that cj = 1. Right: Moreover, for each strain k,
a conditioned medium was produced by le�ing the strain grow for 48 h, mechanically removing
the bacteria to obtain a supernatant, (represented by outline le�ers) and mixing the result with
fresh medium in a ratio of v := 0.4. In each such medium, each strain j was cultivated, and the
conditioned growth rate gjk and carrying capacity cjk were determined as above.

In the model proposed by Ref. 15 using this data, the (normalised) abundancexj of population j
is described by the following di�erential equation (with dze := max(0, z)):

ẋj = xj gj

1 +
∑
k 6=j

ajkxk

︸ ︷︷ ︸
growth term

1− xj⌈
1 +

∑
k 6=j bjkxk

⌉


︸ ︷︷ ︸
capacity term

, (1)

with ajk :=
gjk
gj
− 1 and bjk :=

{
cjk − 1 if cjk ≥ 1
1
v (cjk − 1) if cjk < 1

.

II. IMPACT FUNCTIONS

We consider functions that describe the impact of an
ecosystem consisting of n populations on a species in that
ecosystem, a resource, or similar. Examples of phenomena
described by such impact functions include:

• the e�ective growth rate of a given species

• the remaining size of a niche,

• the availability of some nutrient,

• reproductive services, e.g., pollination.

�e arguments of these functions are the abundances of all
populations in that ecosystem and m parameters per popu-
lation quantifying its impact.

Before we formulate our criteria, we formalise this sce-
nario and introduce some helpful notational conventions: We
denote byX = Rn

+ the space of all possible population abun-
dances, where R+ denotes the non-negative real numbers.
Also, we denote by A = Rn×m the space of all possible pa-
rameter con�gurations of these populations. �e domain of
impact functions is thus X × A. Furthermore, we denote an
arbitrary pair of arguments for impact functions by (x,a),
where x := (x1, . . . , xn) ∈ X and a := (a1, . . . , an) ∈ A
with ai ∈ Rm being the parameter values that describe popu-
lation i. In general, lowercase italic le�ers denote numbers or
parameter con�gurations (tuples of numbers); Greek le�ers
denote functions; boldface le�ers denote vectors or similar;
uppercase le�ers denote sets of respective contents. Finally,
we use non-italic sans-serif le�ers to identify modi�cations
of speci�c components of arguments of these functions (sim-
ilar to named arguments in many programming languages)
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I1: commutativity I2: parameters tied to population

I3: parameters quantify impact I4: clone consistency
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FIG. 2. Examples of the axioms that we require impact functions to ful�l. Circles, squares, and triangles represent individuals of di�erent
populations. Numbers on the le� of the vats represent the parameter governing the respective population. �e similar sign (∼) indicates that
two situations are equivalent as arguments of an impact function, i.e., they should yield the same result.

to obtain notational abbreviations like the following:

φ(x,a, x2 = y) := φ((x1, y, x3, . . . , xn), (a1, . . . , an)).

Here the arguments of the function φ are x and a except for
the abundance of the second population (x2) being changed
to y.

A. Ensuring Consistency

As our requirements have a very broad scope of applica-
tion and to distinguish them from model-speci�c criteria, we
call them axioms. �e axioms we require an impact func-
tion φ : X ×A→ R to ful�l are:

I1: �ere are no population-speci�c mechanisms in the gen-
eral form of the model – the properties of a given pop-
ulation are completely captured by its associated pa-
rameters. A speci�c model can still feature population-
speci�c mechanisms, e.g., when a speci�c parameter
has a value of 0 for all but one populations (also see
Axiom I3). �is way, the axiom can also be ful�lled by
a typical mechanistic model.
Codifying this axiom mathematically, the order of pop-
ulations does not ma�er, and the impact function
does not change when parameters and populations are
swapped simultaneously (Fig. 2, top le�):

φ(x,a, xi = xj , xj = xi, ai = aj , aj = ai)

= φ(x,a) ∀ i 6= j.

Following mathematical nomenclature, we refer to this
axiom as commutativity.

I2: Parameters describe only their associated populations.
Hence, when a population is absent, the associated pa-
rameters have no e�ect (Fig. 2, top right):

φ(x,a, x1 = 0, a1 = a1)

= φ(x,a, x1 = 0, a1 = b1) ∀ a1, b1 ∈ Rm

I3: Parameters quantify the impact of the associated popula-
tion and are scaled such that all parameters associated
to a given population being zero corresponds to no im-
pact of that population (Fig. 2, bo�om le�):

φ(x,a, x1 = x1, a1 = 0)

= φ(x,a, x1 = y1, a1 = 0) ∀x1, y1 ∈ R+

Note that while we chose zero as the parameter value
corresponding to no impact, it is straightforward to
translate our results to any other choice of this con-
stant.

I4: Suppose two populations have identical parameter val-
ues. �is means that they feature identical individuals
(clones) within the limitations of the model. �en the
impact of these two populations should only depend on
their total abundance, and not on how it is distributed
onto the two populations (Fig. 2, bo�om right):

φ(x,a, x1 = x1 + z, x2 = x2 − z, a1 = a2 = b)

= φ(x,a, a1 = a2 = b) ∀ z ∈ [−x1, x2]

If this requirement is not ful�lled, the resulting model
can produce di�erent outcomes when implementing
the same scenario in di�erent ways, as exempli�ed in
Fig. 1. We refer to this axiom as clone consistency.

Note that through commutativity (I1), the other axioms ap-
ply to all arguments or pairs of arguments, respectively. Also,
clone consistency (I4) of more than two populations is cov-
ered by applying the respective axiom repeatedly. Further-
more note that the above axioms do not explicitly capture
(but also do not exclude) the case that a parameter is associ-
ated with more than one population, which is relevant for a
higher-order interaction.
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Box 2. �e Functional Algebra of Impact Functions
In this box we explain the mathematical concepts of the following theorem and provide the main
parts of a proof:

�eorem 1. Let Λk :=
{
x,a 7→

∑n
i=1 a

j
kixi

∣∣∣ j ∈ {1, . . .}} denote the set of linear combinations
of powers of values of the k-th parameter and abundances. Denote the set of all such functions
as Λ =

⋃m
i=1 Λi. Let Ξ := Λ ∪ Γ, where Γ is the set of constant functions. Let Φ be the smallest

closed functional algebra that contains Ξ. �en Φ contains all impact functions.

�at the impact functions form a functional algebra Φ means that each product or sum of
two impact functions is again an impact function and that each multiple of an impact function
is an impact function. �is algebra being closed means that the limit of uniformly converging
sequences of impact functions is again an impact function.

Φ being the smallest such algebra containing Ξ means that all impact functions can be built
from elements of Ξ using addition, multiplication, and taking a limit. In mathematical terms, Φ is
the generated set of Ξ, and conversely, Ξ is the generating set of Φ, where taking the limit of a
uniformly converging sequence is considered amongst the generating operations.

To prove �eorem 1, we apply Bishop’s �eorem [22, 23], which states, when reduced to al-
gebras of real-valued functions:

Bishop’s �eorem. Let Z be a compact Hausdor� space. Let Ψ be a closed unitial subalgebra of
C(Z,R). Let φ ∈ C(Z,R). Suppose that φ|S is constant for each subset S ∈ Z such that ψ|S is
constant for all ψ ∈ Ψ. �en φ ∈ Ψ.

As Z can be any su�ciently large compact subset ofX×A, we can identify Ψ with Φ, i.e., the
generated set of Ξ. Unitial means that the functional algebra shall contain the constant functions,
which is ful�lled by construction for Ψ. �us, to show that the functional algebra Ψ contains all
impact functions, it only remains to be shown that for an arbitrary impact function φ for any
x, x̂ ∈ X and a, â ∈ A:

ψ(x,a) = ψ(x̂, â) ∀ψ ∈ Ψ =⇒ φ(x,a) = φ(x̂, â),

or, in the language of functional analysis, Ψ has to point-separate, except where impact functions
do not point-separate either. Since point-separations are una�ected by algebraic operations of
functions and limits, Ψ is point-separating, if and only if Ξ is. Moreover, since the functions form
Γ are constant everywhere (and thus point-separating nowhere), this is equivalent to Λ being
point-separating. Finally, since for any i 6= j, the functions from Λi are constant wherever the
functions from Λj are not, it su�ces to consider one Λi only. �is case in turn is covered by the
following lemma, which we prove in Appendix C:

Lemma 1. Suppose x, x̂ ∈ X and a, â ∈ A are such that:
∑n

i=1 a
j
ixi =

∑n
i=1 â

j
i x̂i ∀j ∈ {1, . . .}.

Let φ be an impact function. �en φ(x,a) = φ(x̂, â).

Examples of impact functions that will be important in the
remainder of the paper are:

• Linear combinations of parameter values and abun-
dances: x,a 7→

∑n
i=1 aixi, where Y 7→ Z denotes

the function that maps Y to Z . �ese are for example
featured in the interaction term of most variations of
the Volterra model [4].

• Constant functions: x,a 7→ h,with h ∈ R. �ese cover
the case that some quantity is not in�uenced by the
ecosystem at all.

B. Basic Building Blo�s of Ecosystem Models

In Box 2 we state and prove a theorem on the composition
of impact functions, which facilitates testing whether models
comply with the axioms and building models that do. It has
two important implications for modelling:

�e �rst is that everything built from impact functions via
addition, multiplication, function composition, etc. is again
an impact function, formally: If φ1, . . . , φl are impact func-
tions and χ : Rl → R is an arbitrary function combining the
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results of these impact functions, then:

x,a 7→ χ(φ1(x,a), . . . , φl(x,a)),

is also an impact function. As an illustrative example consider
a population that can diauxically live on two nutrients P and
Q with e�ciency eP and eQ. On the one hand, we can use two
impact functions γP and γQ to describe the concentrations of
these nutrients in dependence of the other populations in the
ecosystem that produce or consume them. On the other hand,
we can also use the impact function x,a 7→ ePγP(x,a) +
eQγQ(x,a), which describes how much our population can
grow on the nutrients provided by the ecosystem.

�e other implication of the theorem is that all impact
functions can be wri�en using (possibly in�nitely many) el-
ements from a set Ξ of basic building blocks, namely lin-
ear combinations of powers of parameter values and abun-
dances and constant functions. Conversely, all models com-
plying with our axioms must be decomposable into these ba-
sic building blocks. For application, it is arguably more con-
venient to use the equivalent set of basic building blocks that
have the form:

x,a 7→ ζ

(
n∑

i=1

κ(ai)xi

)
, (2)

where ζ : R→ R, κ : R→ R with κ(0) = 0. Here, the func-
tions ζ and κmay comprise in�nite series of elements from Ξ,
thus simplifying the representation. On the other hand, all el-
ements from Ξ can be represented in this form. We refer to
these as basic impact functions from now on.

A corresponding basic building block featuring general
second-order interactions is:

x,a 7→ ζ

 n∑
i=1

n∑
j=1

κ(aij)xixj

, (3)

which is an impact function no ma�er whether aij is con-
sidered a parameter associated to population i or to j. Anal-
ogous building blocks exist for even higher interaction or-
ders. Such building blocks are featured in existing models of
higher-order interactions [11, 12, 16].

Many ecosystem models feature a change of abundances,
having forms like ẋj = Rj(xj) or xj(t+ 1) = xj(t) +
Rj(xj(t)). If we assume for simplicity’s sake that there is no
delay, noise, or similar, we can write the right-hand sideR of
the equation in the form:

Rj(xj) = βj(xj , φj(x,a))

with βj : R × R → R. If, similar to Axiom I4, we consider
the case of two populations j and k with identical properties
with abundances y and z, their total growth must be the same
as if all individuals were assigned to one population:

Rj(y) +Rk(z) = Rj(y + z) +Rk(0) = Rj(y + z).

Using that j and k are identical as well as the properties of
impact functions, we can conclude from this that:

βj(y, w) + βj(z, w) = βj(y + z, w),

with w = φj(x,a, xj = y + z, xk = 0). �erefore β must be
proportional in its �rst argument. Practically this means that
all dependencies of Rj on x must either happen within an
impact function or in the form of a single factor xj .

We can now easily verify for most models whether they
comply with our consistency requirements by checking
whether they are built from impact functions. �is in turn
we can do by looking for terms of the above form (Eq. 2). For
instance, the Volterra model [4] (with the carrying capacity
for each population normalised to 1) can be rewri�en as fol-
lows:

ẋj = gjxj

1− xj −
∑
k 6=j

ajkxk

 = gjxj

(
1−

∑
k

ajkxk

)
,

with ajj = −1. �is is clearly built from a linear combination
and a factor xj and we can thus be sure that it complies with
our axioms.

In another example, we can look at the model given by
Eq. 1 from Box 1 within our framework: Both the capacity and
growth term correspond to impact functions, and a and b are
the parameters quantifying these impacts. However, it is clear
that neither is built from linear combinations (with complete
sums). From this, we can deduce that the model violates at
least one of our axioms. Since it clearly ful�ls Axioms I1–
I3, it must fail to be clone-consistent (Axiom I4), which we
observed in Fig. 1. Note that completing the sums with ap-
propriate choices of ajj and bjj would not su�ce to address
this since it still leaves a solitary xj in the numerator of the
capacity term.

Beware that a representation using the above basic impact
functions may not be immediately obvious, as in the le�-hand
sides of the following examples:

n∏
i=1

(1 + ai)
xi = exp

(
n∑

i=1

ln(1 + ai)xi

)
;

(a1 − a2)
2
a1a2x1x2

= (a1x1 + a2x2)
(
a31x1 + a32x2

)
−
(
a21x1 + a22x2

)2
.

However, we expect such functions to be a rare occurrence
in application.

III. BUILDING MODELS

We can use impact functions as an ansatz for construct-
ing consistent ecosystem models tailored to a given experi-
mental scenario. �is is particularly relevant when deducing
a model from assays of a huge number of populations, which
become increasingly available thanks to high-throughput
experiments. Such assays usually do not provide su�cient
information to include all relevant agents (nutrients, tox-
ins, etc.) into the model, thus rendering the models non-
mechanistic. Moreover, in such approaches, one can rarely
exclude the case of populations with nearly identical proper-
ties.
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When building a model (that does not feature higher-order
interactions), it is o�en appropriate to assume that there
is one building block of the form of Eq. 2 for each of the
m experimentally determined interaction parameters. Fewer
building blocks would mean unused parameters, while more
building blocks would result in models that are usually overly
complex. For illustration of the la�er, the arguably simplest
impact function that requires two building blocks of the form
of Eq. 2 while featuring only one parameter is:

x1, x2, a1, a2 7→ (a1x1 + a2x2)
(
a21x1 + a22x2

)
.

In many applications, such complexity does not level with
our knowledge about the system and would thus violate Oc-
cam’s razor by trying to model observations in an overly
complex manner. If we have only one building block for a
given parameter, we can simplify Eq. 2 to:

x,a 7→ ζ

(
n∑

i=1

bixi

)
, with bi := κ(ai). (4)

�is is appropriate if a and κ are beyond the scope of the
model in question, for example because they are not experi-
mentally accessible.

A. Example: Deducing a Model for Urinary-Tract Infections

As a demonstration of our framework, we apply it to con-
struct a new model for the scenario of polymicrobial urinary-
tract infections from Ref. 15 (see Box 1). �is model shall use
the same data and also employ ordinary di�erential equa-
tions. We have two experimental interaction parameters and
therefore make an ansatz using two basic impact functions
for the reasons outlined above:

ẋj = Rj(x,a) := xjρj

(
n∑

k=1

rjkxk

)
ςj

(
n∑

k=1

sjkxk

)
(5)

where aj1 := rj and aj2 := sj .
Like the model from Ref. 15 (Eq. 1 from Box 1), we assume

that a population’s abundance also represents its footprint,
i.e., the nutrients, toxins, and other relevant substances pro-
duced or depleted by that population. Hence featuring the
death of individuals in our model could lead to implausible
outcomes, as it would undo its footprint. �is simpli�cation
is justi�ed as we assume the major cause of declining popu-
lations to be dilution of the entire system, which also a�ects
the footprint. Note that this is another limitation of the model
from Ref. 15, as it allows populations to decline without di-
lution (see, e.g., Fig. 1). We furthermore assume that there is
no lag phase caused by populations adapting to a new envi-
ronment since we lack the data to quantify it.

In the situations that were experimentally investigated,
this model should reproduce the observed growth rates and
capacities. First, in the absence of other strains, the initial ex-
ponential growth rate of strain j should be gj :

dRj

dxj

(
~0,a
)

= gj , (6)

where ~0 denotes a length-n vector of zeroes (abundances are
zero unless speci�ed otherwise). Also, if all other strains are
absent and strain j has reached its saturation abundance cj =
1, it should not grow anymore:

Rj

(
~0,a, xj = 1

)
= 0. (7)

Like Ref. 15, we assume that the medium conditioned by
strain k is equivalent to an ecosystem where the strain k is
�xed to an abundance of v, as the footprint of strain k is the
same in both situations and makes up for most of the inter-
action between the strains. For the medium conditioned by
strain k, the initial exponential growth rate of strain j should
be gjk:

dRj

dxj

(
~0,a, xk = v

)
= gjk. (8)

Moreover, strain j should stop growing when it reaches cjk:

Rj

(
~0,a, xj = cjk, xk = v

)
= 0. (9)

From Eqs. 5–9, it is straightforward to derive constraints
on the functions ρj and ςj and to determine the parameters
rjk and sjk in dependence of these functions, gj , gjk and cjk
(see Appendix D). Making simple choices for ρj and ςj within
these constraints and accounting for singularities and discon-
tinuities (see Appendix D), we arrive at the following model
(with dze := max(0, z)):

ẋj = xj

⌈
gj +

n∑
k=1

gjk − gj
v

xk

⌉
·

⌈
1−

⌈
n∑

k=1

1− cjk
v

xk

⌉q⌉
.

(10)
To compare this model with the previous one (Eq. 1 from

Box 1), we use both to simulate the scenario of a growth ex-
periment with regular dilution that has a known outcome
(see Fig. 3). We note that quantitatively predicting exper-
imental scenarios such as these without in-depth knowl-
edge about the involved strains is a highly di�cult challenge.
Moreover, the high-throughput interaction data is restricted;
for example, it does not feature higher-order interactions, and
the supernatant used to determine interactions will not con-
tain toxins whose production is triggered by products of its
target. We therefore do not expect either model to have a high
absolute predictive power. We assume that the abundances
had converged when they were experimentally observed (see
Fig. 3), and thus the experimental results are not a snapshot
of an oscillatory behaviour (beyond the expected e�ects or a
regular dilution). �is is corroborated by the replicates being
in good agreement and oscillations only occurring in one of
the 16 simulations. We �nd that both models are in equally
good or bad agreement with the experiment for six communi-
ties (1, 2, 4, 5, 6, and 8), while the predictions of Eq. 10 are bet-
ter for two communities (3 and 7). Given the low number of
samples, we refrain from further quantifying the agreements.
�ese results indicate that models satisfying our criteria are
at least equally suitable for describing ecosystem dynamics.
Our results do not challenge the conclusions of Ref. 15, which
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FIG. 3. Comparison of the �nal relative abundances of in-vitro experiments from Ref. 15 (cf. Fig. S7 B) and simulations with our model
(Eq. 10) and the model from Ref. 15 (see Box 1). Communities are numbered as in Ref. 15. For the in-vitro experiments, each strain was
inoculated at a �xed optical density (OD600 = 0.001) grown for 4 × 30 h and diluted by a factor of 1

36
in between. Each experiment

was performed in triplicate. Final abundances were determined from colony-forming units on Chromagar. �e simulations mimicked the
experimental procedure. Diamonds at the bo�om indicate an abundance of the respective population between 10−3 and 10−2. Community
2 featured two strains of Enterococcus faecium, for which we only report the summed populations since they could not be distinguished in
experiment. All simulations converged, except for the model from Ref. 15 and Community 7, which exhibited strong chaotic �uctuations.
See Appendix A for details of the simulation.

is expected to some extent since both models have the same
�xed points if the growth term is ignored and cjk < 1 ∀j, k
and thus can be expected to yield similar �nal states (see for
example Fig. 1).

IV. DISCUSSION

While we motivated and exempli�ed our framework with
applications to non-mechanistic models based on high-
throughput data, our axioms can be required for all models
that operate on the population level. We consider exceptions
from this to be rare and deserving justi�cation. For instance,
if we can be sure that populations do not interbreed (i.e., con-
tain species as de�ned by Mayr), replacing a population with
two copies with half the abundance a�ects the availability
of partners for sexual reproduction. �us, the function mod-
elling this availability must not be clone-consistent. While
many popular models such as most variations of the Volterra
model [4] comply with our axioms, others do not (the models
from Ref. 24–27, Eqs. 3, 11, and 12 in Ref. 28, the NFR model in
Ref. 29, Eq. 3 in Ref. 30, Figs. 3b and c in Ref. 2, and Eq. 1 from
Box 1). However, for reasons we elaborate in the following,
this does not necessarily mean that they should be dismissed
outright.

In case of mechanistic models, applying our framework
usually means that each mechanism is covered by its own
(typically basic) impact function with many zero parameters,
namely whenever the respective population is not involved
in the mechanism. Taking this approach to the extreme, it
is possible to extend every term to an impact function with
enough assumptions. For instance, suppose a population j
exclusively occupies its niche (which implies no other pop-

ulations with identical properties) and u − xj is the size of
the remaining niche available to this population. �en we can
extend the la�er term to an impact function:

u− xj = u−
∑
k

ajkxk, (11)

where ajk describes to what extent population k occupies
the niche of population j and per our assumptions has the
values akk = 1 and ajk = 0 for j 6= k. Here, the value of
our framework is to prompt the question: What assumptions
need to be made to comply with the axioms and are these
assumptions justi�ed?

Many pure modelling studies use a model of the general
form:

ẋj = xj

(
gj +

n∑
k=1

ηjk(xk)

)
,

where gj is the unperturbed growth rate of population j. If
all ηjk are linear, this kind of model employs a single basic im-
pact function and requires no further assumption. If, on the
other hand, the ηjk are non-linear, each of them has to corre-
spond to one basic impact function, which requires justi�ca-
tion that each of them only depends on one population. One
assumption yielding this would be that each ηjk re�ects one
interaction mechanism which is exclusive to the impact of
population k on population j. Moreover, models of the above
form can either feature 1 orn impact functions (depending on
whether ηjk is linear), but do not capture the middle ground
in between. Since these basic impact functions can be roughly
associated with interaction mechanisms, this limitation may
be relevant beyond our framework. As an alternative �lling
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this gap, our framework suggests general models of the form:

ẋj = xjgj

l∏
i=1

ηi

(
n∑

k=1

ajkixk

)
, (12)

where l is the number of impact functions. In Sec. III A we
used such a model with l = 2 as an ansatz (gj was in-
corporated in the �rst factor of the big product). To cover
higher-order interactions, the approaches of Eqs. 3 and 12
can be combined. Amongst others, the above general model
may inform studies employing random interaction parame-
ters (e.g., Ref. 11), general modelling [31], or machine learn-
ing by narrowing down or expanding the space of possible
models taken into consideration. We note that for a high l, it
may make sense to regard a distribution of parameters that
contains a considerable amount of zeroes, corresponding to
populations not participating in some mechanism.

Finally we emphasise that our approach is general and not
limited to the types of models featured in our examples: It
is not restricted to models employing ordinary di�erential
equations, but can also be applied to models with discrete
time, noise, or delay. Also, higher-order interactions are cov-
ered by our framework. Moreover, while we mainly used
impact functions to describe the impact of a set of popula-
tions on a population, both the targets and the source may
be something else, e.g., a resource or toxin concentration or
an aggregated observable such as the pH value. For exam-
ple, the impact of the ecosystem on substances in the model
proposed by Ref. 32 can be described in terms of impact func-
tions. We particularly note the parallels to two pharmacolog-
ical approaches to describe the cumulative e�ect of two drugs
that are not synergistic or antagonistic, i.e., are not subject to
higher-order interactions [33, 34]:

• Loewe additivity, which is based on arguments simi-
lar to clone consistency (I4) and holds if the two drugs
a�ect the same component of the cell,

• Bliss independence, which violates clone consis-
tency (I4) at �rst glance and holds if the two drugs af-
fect di�erent components of the cell.

In our framework, drugs that target the same cell component
would correspond to using the same interaction mechanism
and thus would be captured by the same basic impact func-
tion. �e e�ect of a complex drug cocktail could be captured
by several Bliss-independent basic impact functions, each of
which comprises a series of Loewe-additive components.

V. CONCLUSION

We introduced impact functions, which are basic building
blocks of ecosystem models adhering to axioms capturing
fundamental consistency requirements. We mathematically
proved that such impact functions must have linear combina-
tions of parameters and abundances at their core. We demon-
strated that impact functions can be used to easily build mod-
els complying with the axioms to capture a speci�c experi-
mental scenario – though one should still beware that the

model makes sense in respects not covered by the axioms.
Our framework also informs the form of more general mod-
els, pointing out potential new directions of research in this
area or outlining the space of possible models. Conversely,
the absence of impact functions in a model points out that
it makes implicit assumptions or has consistency problems.
We are therefore con�dent that our framework can form a
backbone for a wide range of ecological modelling studies.
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Appendix A: Simulation Details

For simulations with both, the model from Ref. 15 (Eq. 1
from Box 1) and our model described by Eq. 10, we use the
data from Ref. 15 as is, with the exception of data describing
interactions between two identical strains: First, in the ex-
periment, a strain cannot grow on the portion of the medium
that is its own supernatant, but only on the portion that is
fresh medium, which makes up 1 − v = 0.6 of the medium.
We set cii = 1 − v to adhere to this ideal. Second, in the
medium conditioned by itself, a strain’s growth rate should
at best slightly lower than in an unconditioned medium and
at worst be proportional to the concentration of nutrients,
and thus to 1 − v. We therefore restrict gii to the interval
[(1− v)gi, (1− ε)gi] with ε = 0.01. Without these adjust-
ments, we would obtain implausible results, e.g., in case of
cii > 1 − v, the respective strain could never stop growing
since it e�ectively increases the size of its own niche.

We performed all simulations with JiTCODE [35] using
the DoPri5 method. To obtain continuity as required by the
integration method, we approximate dze = max(0, z) ≈
1
2

(
z +
√
z2 + ε2

)
with ε = 0.001.

We converted abundances in the simulation results to op-
tical densities by undoing the respective normalisation of
abundances (�xing cj = 1 in Box 1). We then converted the
optical densities to displayed abundances (in Figs. 1 and 3) by
approximating that optical density is proportional to biovol-
ume.

Appendix B: Arithmetic Example for Inconsistencies in a Model

We here provide an arithmetic example for an inconsistent
behaviour of the model described by Eq. 1 from Box 1. �is ex-
ample features no growth interaction and thus does not rely
on how we chose identical populations to a�ect each other’s
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growth (see Appendix A) – a choice that is not clear without
experiment.

We consider the case of three populations {1, 2, 3} =: J
with the �rst two populations having identical properties. We
choose gj = 1 ∀j ∈ J , aj,k = 0 ∀j, k ∈ J×J , i.e., the growth
term is not a�ected by interaction and is always 1. Finally, we
let the coe�cients of the capacity term be:

b =

 · −1 1
4

−1 · 1
4

1
4

1
4 ·

 .

b12 = −1 and b21 = −1 re�ects that two populations
with identical properties deplete each other’s niches. Now,
consider two states of the ecosystem x =

(
1
4 ,

1
4 , 1
)

and
x̂ =

(
1
2 , 0, 1

)
. As the �rst two populations are indistinguish-

able, these states describe an equivalent situation. �us, they
should also evolve equivalently, i.e., the temporal derivative
of the summed populations 1 and 2 should be the same in
both cases: ẋ1 + ẋ2 = ˙̂x1 + ˙̂x2 = ˙̂x1. However,

ẋ1 + ẋ2 = 2ẋ1 = 2
1

4

(
1−

1
4⌈

1− 1
4 + 1

4

⌉) =
3

8

6= ˙̂x1 =
1

2

(
1−

1
2⌈

1 + 0 + 1
4

⌉) =
1

2

(
1− 4

10

)
=

3

10
.

Appendix C: Mathematical proofs

To prove Lemma 1 as stated in Box 1, we �rst prove two
other lemmas:

Lemma 2. Suppose x, x̂ ∈ X and a, â ∈ A are such that:

n∑
i=1

ajixi =

n∑
i=1

âji x̂i ∀j ∈ {1, . . .}. (C1)

Let a1 > a2 > . . . > as >= 0 be the sequence of ordered
absolute non-zero values of ai and âi for all i ∈ 1, . . . , n. For
each p ∈ 1, . . . , s let E+

p , E−p , Ê+
p , and Ê−p be the maximal

sets of indices for which the absolute value of ap is assumed,
more speci�cally:

ak = ap ∀k ∈ E+
p , ak = −ap ∀k ∈ E−p ,

âk = ap ∀k ∈ Ê+
p , âk = −ap ∀k ∈ Ê−p .

(C2)

We denote Ep := E+
p ∪ E−p and Êp := Ê+

p ∪ Ê−p . �en:

z+p :=
∑
i∈E+

p

xi =
∑
i∈Ê+

p

x̂i =: ẑ+p ∀p ∈ {1, . . . , s},

z−p :=
∑
i∈E−

p

xi =
∑
i∈Ê−

p

x̂i =: ẑ−p ∀p ∈ {1, . . . , s}.
(C3)

We show Eq. C3 by induction over p. We �rst note that
the lemma trivially holds for all p ∈ {}. In the following we

show that, if lemma holds for all p ∈ {1, . . . , r − 1} with
r ∈ {0, . . . , s}, it also holds for all p ∈ {1, . . . , r}. To this
end, we show that the linear combinations must also be equal
when only considering coe�cients with absolute value ar+1

or lower (for all j):

s∑
p=r

∑
i∈Ep

ajixi =
s∑

p=1

∑
i∈Ep

ajixi −
r−1∑
p=1

∑
i∈Ep

ajixi

C2
=

n∑
i=1

ajixi −
r−1∑
p=1

ajp
∑
i∈E+

p

xi + (−ap)j
∑
i∈Êp

xi


C1,C3
=

n∑
i=1

âji x̂i −
r−1∑
p=1

ajp
∑
i∈Ê+

p

x̂i + (−ap)j
∑
i∈Ê−

p

x̂i


C2
=

s∑
p=1

∑
i∈Êp

âji x̂i −
r−1∑
p=1

∑
i∈Êp

âji x̂i =
s∑

p=r

∑
i∈Êp

âji x̂i (C4)

If z+p + z−p 6= 0 and ẑ+p + ẑ−p 6= 0 the above equality will be
dominated by ajr for j →∞, which gives us:

1
C4
= lim

j→∞
j even

s∑
p=r

∑
i∈Ep

ajixi

s∑
p=r

∑
i∈Êp

âji x̂i

= lim
j→∞
j even

∑
i∈Er

ajixi∑
i∈Êr

âji x̂i

C2
= lim

j→∞
j even

∑
i∈Er

ajrxi∑
i∈Êr

ajrx̂i
=

∑
i∈Er

xi∑
i∈Êr

x̂i

C3
=
z+p + z−p

ẑ+p + ẑ−p

=⇒ z+p + z−p = ẑ+p + ẑ−p (C5)

In case that exactly one of z+p + z−p and ẑ+p + ẑ−p is zero,
the above yields a contradiction due to the limit evaluating
as either 0 or ∞, and hence this cannot be the case. If both
are zero, the concluded equation holds without further ado.
Analogously, we obtain:

1
C4
= lim

j→∞
j odd

s∑
p=r

∑
i∈Ep

ajixi

s∑
p=r

∑
i∈Êp

âji x̂i

= lim
j→∞
j odd

∑
i∈Er

ajixi∑
i∈Êr

âji x̂i

C2
= lim

j→∞
j odd

∑
i∈E+

r

ajrxi +
∑

i∈E−
r

(−a)jrxi∑
i∈Ê+

r

ajrx̂i +
∑

i∈Ê−
r

(−a)jrx̂i

=

∑
i∈E+

r

xi −
∑

i∈E−
r

xi∑
i∈Ê+

r

x̂i −
∑

i∈Ê−
r

x̂i

C3
=
z+p − z−p
ẑ+p − ẑ−p

=⇒ z+p − z−p = ẑ+p − ẑ−p (C6)

By adding and subtracting Eqs. C5 and C6, respectively, we
arrive at z+p = ẑ+p and z−p = ẑ−p .
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Lemma 3. Denote x, a, ap, s, E+
p , E−p , z+p , and z−p as in

Lemma 2. Let:{
q+1 , . . . , q

+
w+

}
:=
{
p ∈ {1, . . . , s}

∣∣ z+p 6= 0
}
,{

q−1 , . . . , q
−
w−

}
:=
{
p ∈ {1, . . . , s}

∣∣ z−p 6= 0
}
,

such that aq+i > aq+j
and aq−i

> aq−j
if i < j. De�ne:

x̃ =
(
z+
q+1
, . . ., z+

q+
w+

, z−
q+1
, . . ., z−

q−
w−
, 0, . . . , 0

)
,

ã =
(
aq+1

, . . ., aq+
w+
,−aq−1 , . . .,−aq−w−

, 0, . . . , 0
)
,

where the number of zeros at the end is n − w+ − w−. Let φ
be an impact function. �en φ(x,a) = φ(x̃, ã).

We show this by transforming blocks of arguments to the
target form (with some zero arguments added if necessary)
using the impact-function axioms, and �nally reorder the in-
dices (populations) using Axiom I1.

�e �rst kind of block we consider are blocks of equal pos-
itive parameters (ai), i.e., E+

i for some i. Let {e1, . . . , ev} :=
E+

q+i
. �en for some x̌, ǎ:

φ
(
x̌, xe1 = xe1 , xe2 = xe2 , . . . , xev = xev ,

ǎ, ae1 = aq+i
, ae2 = aq+i

, . . . , aev = aq+i

)
I4
= φ

(
x̌, xe1 =

∑
i∈E+

q
+
i

xi, xe2 = 0 , . . . , xev = 0,

ǎ, ae1 = aq+i
, ae2 = aq+i

, . . . , aev = aq+i

)
C3
= φ

(
x̌, xe1 = z+

q+i
, xe2 = 0 , . . . , xev = 0,

ǎ, ae1 = aq+i
, ae2 = aq+i

, . . . , aev = aq+i

)
I2
= φ

(
x̌, xe1 = z+

q+i
, xe2 = 0 , . . . , xev = 0,

ǎ, ae1 = aq+i
, ae2 = 0 , . . . , aev = 0

)
.

Blocks of equal negative parameters (E−i ) can be transformed
analogously.

If a parameter ai is zero, we transform the single-index
block {i} to zero (for some x̌, ǎ):

φ(x̌, ǎ, xi = x̌i, ai = 0)
I3
= φ(x̌, ǎ, xi = 0, ai = 0).

Finally, if an abundance xi is zero, we transform the single-
index block {i} to zero (for some x̌, ǎ):

φ(x̌, ǎ, xi = 0, ai = ǎi)
I2
= φ(x̌, ǎ, xi = 0, ai = 0).

Lemma 1. Suppose x, x̂ ∈ X and a, â ∈ A are such that:

n∑
i=1

ajixi =
n∑

i=1

âji x̂i ∀j ∈ {1, . . .}.

Let φ be an impact function. �en φ(x,a) = φ(x̂, â).

To prove this, we only need to note how the transformed
arguments x̃ and ã only depend on the parameters values ai
corresponding to non-zero total abundance z+i and zti . �ose
in turn are equal per Lemma 2. �us:

φ(x,a)
L. 3
= φ(x̃, ã)

L. 2
= φ

(
˜̂x, ˜̂a
)

L. 3
= φ(x̂, â).

Appendix D: Deriving a New Model for UTI strains – the
Legwork

Expanding Eq. 7, we obtain: 0 = Rj

(
~0,a, xj = 1

)
=

ρj(rjj)ςj(sjj). Assuming that the two factors do not “take
turns” in being zero for di�erent j, this means that either
ρj(rjj) = 0 or ςj(sjj) = 0. Without loss of generality, we
assume that the la�er applies, thus assigning ςj the role of
quantifying the carrying capacity. Furthermore, we choose
sjj = 1 and ςj(0) = 1. �ese are normalisation choices, as
they can be compensated by including a respective factor in
ςj or ρj respectively. Using this and expanding Eq. 9, we ob-
tain:

0 = Rj

(
~0,a, xj = cjk, xk = v

)
= cjk ρj(rjjcjk + rjkv) ςj(cjk + sjkv).

Assuming that ςj is again responsible for the product be-
ing zero and it has only one root, namely 1, we arrive at:
cjk + sjkv = 1, and thus: sjk =

1−cjk
v . Note that since

sjj = 1, this is consistent with our choice of cjj = 1 − v
(see Appendix A).

Using the above, we can expand Eqs. 6 and 8:

gj =
dRj

dxj

(
~0,a
)

= ρj(0)ςj(0),= ρj(0), (D1)

gjk =
dRj

dxj

(
~0,a, xk = v

)
= ρ(vrjk)ς(vsjk)

=⇒ ρ(vrjk) =
gjk

ς(vsjk)
=

gjk
ς(1− cjk)

.
(D2)

We choose the arguably simplest function to ful�l the cri-
teria for ρ, namely ρj(z) := gj+z.�is has the consequence:

ρjk =
1

v

(
gjk

ς(1− cjk)
− gj

)
. (D3)

A group of functions ful�lling the criteria for ς is: ςj(z) :=
1 − dzeq with q > 0 and dze := max(0, z). Here, the free
parameter q controls how early and smoothly the saturation
e�ect of a depleted niche kicks in. Note that this choice results
in terms similar to what Ref. 36 named hyperlogistic.

Finally, like Ref. 15, we constrain the growth and capac-
ity term to be non-negative. Pu�ing everything together, we
arrive at the model:

ẋj = xj

⌈
gj +

n∑
k=1

1

v

(
gjk

1− d1− cjkeq
− gj

)
xk

⌉

·

⌈
1−

⌈
n∑

k=1

1− cjk
v

xk

⌉q⌉
. (D4)
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A problem with this model is that for 0 < xk < 1, we
have: limcjk→0 ẋj = limcjk→0Rj(x,a) =∞. Now, cjk = 0
means that there is no growth of strain j in the medium con-
ditioned by strain k and thus we already have a problem with
experimentally determining gjk . �us, one might argue that
the actual point of the singularity requires a dedicated case
distinction anyway. However, limcjk→0 ẋj =∞. also means
that ẋj becomes arbitrarily large for small cjk . A way to ad-
dress this problem is to consider the case q → ∞, or more
speci�cally:

dςj(z)e =

{
1 if z < 1

0 if z ≥ 1

In this case, the term ς(1− cjk) in Eq. D2 can be assumed
to be 1 (otherwise, we would have the aforementioned prob-
lem of not being able to experimentally determine gjk). �is
eliminates the singularity, but also renders the model not
continuously di�erentiable.

In our simulations, we therefore make a trade-o� between
complying with Eq. 8 and the numerical bene�ts of a contin-
uously di�erentiable model by se�ing q = 10 and approxi-
mating ς(1− cjk) ≈ limp→∞ ς(1− cjk) = 1 in Eq. D2, thus
arriving at:

ẋj = xj

⌈
gj +

n∑
k=1

gjk − gj
v

xk

⌉
·

1−

⌈
n∑

k=1

1− cjk
v

xk

⌉10
.

(D5)
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