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ABSTRACT 

 

Endocytosis is a conserved process that mediates the internalization of nutrients and plasma membrane 

components, including receptors, for sorting to endosomes and the vacuole (lysosome). We combined 

systematic yeast genetics, high-content screening, and neural network-based image analysis of single 

cells to screen for genes that influence the morphology of four main endocytic compartments: coat 

proteins, actin patches, late endosome, and vacuole. This unbiased approach identified 17 mutant 

phenotypes and ~1600 genes whose perturbation affected at least one of the four compartments. 

Numerous mutants were associated with multiple phenotypes, indicating that morphological pleiotropy 

is often seen within the endocytic pathway. Morphological profiles based on the 17 aberrant phenotypes 

were highly correlated for functionally related genes, enabling prediction of gene function. Incomplete 

penetrance was prevalent, and single-cell analysis enabled exploration of the mechanisms underlying 

cellular heterogeneity, which include replicative age, organelle inheritance, and stress response. 
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Endocytosis is a highly conserved bioprocess that plays a central role in eukaryotic cell biology, 

mediating the internalization of receptors, nutrients, and other molecules, controlling the lipid and protein 

composition of the plasma membrane and the coupling of different intracellular compartments1. 

Endocytosis initiates with vesicle formation at specific sites at the plasma membrane. In yeast, proteins 

that are required for vesicle formation have been grouped into five functional modules based on their 

dynamic behaviour: the early proteins, the coat module, the WASp/myosin module, the actin module and 

the scission module2. Coat proteins perform several roles, including cargo uptake and regulation of actin 

dynamics, functioning as adaptors to link cargo, coat, plasma membrane and actin network components. 

Actin patches represent a later stage in internalization; their appearance coincides with the membrane 

invagination and coat internalization step3. The modular design of yeast endocytic vesicle formation is 

largely recapitulated in mammalian cells4. After cargo uptake, endocytic vesicles fuse with early 

endosomes, allowing cargo to be recycled to the plasma membrane, or targeted through more mature 

endosomes and multivesicular bodies (MVBs) for vacuolar (lysosomal) degradation. The endocytic 

intracellular trafficking pathway impinges on a number of cellular physiological processes and is often 

associated with the pathology of human diseases, including atherosclerosis, some cancers, and 

Alzheimer's disease5, 6. 

 

Large-scale genetic screens have been combined with cell biological analysis to explore different aspects 

of endocytic trafficking in yeast and higher eukaryotes. These studies have defined several core 

components and regulators of the endocytic pathway7-10. However, most cell biological approaches 

applied thus far use population-level measurements as a phenotypic read-out, which precludes 

quantitative analysis of cell-to-cell heterogeneity11. Here we explore the yeast endocytic pathway using 

systematic genetic analysis combined with high-content screening. We examined 5292 unique yeast 

genes for roles in endocytic compartment morphology, applying live-cell fluorescence microscopy and 

neural network-based, single-cell image analysis. In total, we identified ~1600 genes whose perturbation 

affects at least one endocytic compartment, revealing both new biology and insights into mechanisms 

underlying cellular heterogeneity. The experimental and computational pipeline developed here can be 

generalized to other unrelated compartments, pathways or phenotypes, which will allow us to expand our 

knowledge on the inner workings of a cell. Importantly, the computational analysis framework we 

developed is also species independent, and we provide the tools for its implementation. 
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RESULTS 

 

Combined experimental-computational pipeline for quantitative single-cell assessment of mutant 

phenotypes of endocytic compartments 

 

To enable a quantitative analysis of the morphology of the main endocytic compartments, we developed 

a high-throughput (HTP) image-based pipeline coupled to single-cell image analysis (Figure 1a). We 

constructed a series of query strains with a fluorescent protein (FP) at the C-terminus of four endogenous 

yeast proteins, each serving as a marker for a unique endocytic compartment. We focused on: [1] SLA1, 

encoding an endocytic adaptor protein, marking the coat complex associated with early endocytic sites 

at the plasma membrane; [2] SAC6, encoding yeast fimbrin, marking actin patches that are also required 

for early endocytosis events; [3] a late endosomal marker, SNF7, encoding a subunit of the ESCRT-III 

complex involved in the sorting of transmembrane proteins into the multivesicular body (MVB) pathway; 

and [4] a marker for the vacuolar membrane, VPH1, encoding subunit 'a' of the vacuolar ATPase (V-

ATPase) VO domain (Figure 1b). 

 

We introduced each marker into both the yeast deletion collection12, and the collection of temperature-

sensitive (TS) mutants of essential genes13, 14, using the synthetic genetic array (SGA) approach15. We 

acquired live cell images of log phase cultures with an automated HTP microscope. CellProfiler16 was 

used to identify individual cells and subcellular compartments, and extract quantitative features 

describing these segmented compartments. The final dataset included quantitative data for ~16.3 million 

cells from 5627 mutant strains (5292 unique ORFs or ~90% of yeast genes), with an average of 640 cells 

for each mutant strain. 

To find mutants with abnormal compartment morphology, we used an automated method to identify 

“outlier” cells with non-wild-type morphology (see Methods) and then visually inspected strains with 

many outlier cells to identify common patterns of morphological defects that we used to define 

phenotypes. From these strains, and a set of positive control strains for mutants with known endocytic 

defects (Supplementary Table 1), we defined 21 endocytic phenotypes: 4 wild-type, one per 

compartment, and 17 showing aberrant morphology (Figure 1c). 
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We then labelled a representative set of cells displaying these 21 phenotypes using a custom-made, 

single-cell labelling tool; this "training set" was used to train a neural network to automatically classify 

other cells. To confirm that the CellProfiler features derived from the cell images were sufficient to 

distinguish the different mutant phenotypes, we performed non-linear dimensionality reduction using t-

SNE17 on the training set feature vectors, and confirmed that cells with different phenotypes occupied 

distinct regions of the 2D reduced feature space (Supplementary Figure 1a). We then used the labelled 

dataset to train a 2-hidden-layer fully connected neural network (2NN) for each of the endocytic markers. 

For each single cell, the marker-associated 2NN estimated the probability of each phenotype and we 

assigned each cell the phenotype with the highest probability. We used CellProfiler features instead of 

those learned using a convolutional neural network (CNN) because, unlike recent studies18-21, the CNN 

performed poorly on our relatively small training set (data not shown). The average classification 

accuracy on held-out data across all markers and phenotypes was 88.4%, and 18 of the 21 phenotypes 

had an average classification accuracy >80% (Supplementary Figure 1b-c, Supplementary Table 1, see 

Methods). 

 

Statistical analyses validated the quality of our pipeline, confirming reproducibility and accuracy of the 

single cell phenotypic classifications (see Methods; Supplementary Figure 1d-h). Applying our 2NN to 

the entire dataset allowed us to accurately detect even a small fraction of aberrant cells, enabling 

quantification of the variety and penetrance of mutant phenotypes associated with a given mutation (see 

below). 

 

Hundreds of yeast genes affect endocytic compartment morphology  

 

To capture the spectrum of phenotypes associated with each mutant strain, we determined the fraction of 

cells in a mutant strain population that displayed each of the 21 phenotypes using our classifiers described 

above (Figure 1c). We called a strain a specific phenotype mutant (SPM) if the fraction of cells assigned 

an aberrant phenotype was significantly greater than that assigned the same phenotype in a control wild-

type strain population (see Methods). In total, we identified 1486 mutants as SPMs (Figure 1d), with 

many mutants classified as SPMs for more than one phenotype. We defined a subset of 363 mutants as 

stringent SPMs, as they had a relatively larger fraction of cells with a specific defect (see Methods). We 
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also identified a small set of non-phenotype-specific mutants (137 unique genes; Figure 1d) which 

showed a significant increase in the total percentage of the cell population displaying an aberrant 

phenotype for a given compartment, even if none of the individual phenotype fractions were high enough 

for a given strain to be classified as an SPM. 

 

In total, we identified 1623 yeast genes (~30% of screened ORFs) that affect the morphology of one or 

more endocytic compartments (referred to as morphology mutants; Supplementary Table 2). Thus, yeast 

endocytosis is remarkably sensitive to single gene perturbation, consistent with previous siRNA screens 

in mammalian cells9. 

 

For each marker, some of the morphology mutants showed multiple phenotypes (Figure 1d). Overall, 

approximately half of the 1623 morphology mutants showed aberrant phenotypes with more than one of 

the four markers screened, and approximately half of the SPMs displayed more than one of the 17 

aberrant phenotypes (Figure 1e), indicating that morphological pleiotropy, which we define as occurring 

when a mutant has two or more aberrant morphological phenotypes, is prevalent within the endocytic 

pathway and that numerous genes impinge on multiple stages of endocytosis. The most pleiotropic 

mutants (those causing six or more specific phenotypes; 116 SPM genes) were involved in vesicle 

organization, exocytosis, protein lipidation, and membrane fusion. Genes associated with multiple 

morphological outcomes tended to affect a larger fraction of the cell population (Figure 1f). Morphology 

mutants were also enriched for TS alleles of essential genes (Supplementary Figure 2a-b) and the fraction 

of essential gene mutants increased with the number of morphological phenotypes (Supplementary 

Figure 2c). However, morphological pleiotropy was not confined to essential genes. For example, 

mutants of both the essential exocyst complex and the nonessential ESCRT complexes led to phenotypic 

defects spanning the early and late endocytic compartments (Supplementary Table 2). 

 

Genes annotated with roles in a wide range of functions appear to impinge on the endocytic pathway. 

Only 286 (~18%) of the identified mutant genes were annotated to GO Slim biological process terms 

associated with endocytosis and the endomembrane system (Supplementary Table 2). Similarly, while 

morphology mutants were enriched for genes conserved between yeast and human (~40% of conserved 

morphology mutants compared to ~26% on the array, p-value < 0.0001; Supplementary Figure 2d), this 

enrichment was not due to known endocytosis machinery components (Supplementary Figure 2e), but 
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included genes involved in a range of bioprocesses, such as DNA replication and repair, transcription 

and splicing. 

 

Automated image analysis identifies the spectrum of possible endocytic compartment 

morphologies 

 

Of the 17 aberrant morphological phenotypes associated with the four endocytic markers, 15 correspond 

to previously described phenotypes (Supplementary Table 1). The unsupervised outlier detection analysis 

identified two novel phenotypic groups: mislocalization of the late endosomal marker to the vacuolar 

membrane ("late endosome: membrane" in Figure 1c), and a previously unappreciated vacuolar mutant 

phenotype characterized by small vacuoles and increased cytosolic localization of the vacuolar marker, 

Vph1. Because most of the SPMs in this class were genes involved in various aspects of Golgi vesicle 

transport, we refer to this vacuolar morphology as the ‘class G’ phenotype. We confirmed that the class 

G was a distinct phenotype, and not an intermediate stage of one of the known vacuolar phenotypes, by 

imaging in a 24h time-course at 37oC (Supplementary Figure 3a). Since Golgi vesicle transport affects 

trafficking pathways to the vacuole, the class G phenotype could be a consequence of abnormal vacuolar 

membrane composition that leads to defects in vacuole formation or membrane fusion and fission. 

 

Comparisons to a panel of gene attributes (Supplementary Figure 3b, Supplementary Table 3) revealed 

that morphology mutants in all four compartments were enriched for the same set of features: high 

conservation across different species, ample genetic interactions (GIs) and protein-protein interactions 

(PPIs), pleiotropy and multifunctionality, enrichment for fitness defects, and tendency to act as 

phenotypic capacitors. 

 

Mutants with aberrant phenotypes were often enriched in multiple bioprocesses, both closely related and 

apparently unrelated to the compartment associated with the aberrant phenotype, suggesting that multiple 

mechanisms can lead to a particular phenotype (Figure 2, Supplementary Table 3). Stringent SPMs were 

enriched for more specific protein complexes and biological pathways, which may be suggestive of the 

mechanisms underlying their aberrant morphological phenotypes (Supplementary Table 3). Phenotypes 

that occur in a relatively high fraction of the population in wild-type strains, such as depolarized patches 
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or multilobed vacuoles (Figure 2), may result from a general cellular response to different stress 

conditions (environmental or genetic). These phenotypes tend to be associated with a larger number of 

SPMs (Figure 2), whereas phenotypes with few SPMs more likely indicate responses associated with a 

specialized pathway. 

 

The comparison of SPMs for several markers allowed us to search for new connections both within and 

between the endocytic compartments. We found that different morphology defects can be enriched 

among genes with roles in the same bioprocesses (Supplementary Table 3), possibly reflecting a common 

biological mechanism. We evaluated whether pairs of phenotypes shared more stringent SPMs than 

expected by chance (Supplementary Table 5). Of the 136 possible phenotype pairs, 36 pairs shared a 

significantly (p-value < 0.05, FDR < 0.2) overlapping set of causative gene mutations, and for 15 of these 

pairs the overlapping set was enriched in specific protein complexes (Figure 3a, Supplementary Table 5). 

This analysis identified a core set of 13 protein complexes that affect endocytic compartment morphology 

at multiple levels (Figure 3b). Some of the related endocytic morphology defects are likely sequential, 

while others may stem from independent events. For example, mutations in genes encoding components 

of the ESCRT complexes caused three connected phenotypes: coat aggregates, condensed late 

endosomes, and class E vacuoles. Defects in ESCRT complex assembly and MVB formation lead to 

accumulation of cargo at the late endosome - all three phenotypes therefore mark an exaggerated 

prevacuolar endosome-like compartment22. In contrast, mutation of genes encoding general 

transcriptional regulators such as TFIIH and the core mediator caused pleiotropic endocytic phenotypes 

which may reflect a series of independent defects in transcription. 

 

To explore the extent to which the 17 aberrant endocytic compartment morphologies translate into a 

defect in endocytic internalization, we compared our list of SPMs with the published results of a 

quantitative assay for endocytic recycling of the non-essential gene-deletion collection, based on a GFP-

Snc1-Suc2 chimeric protein8. All sets of SPMs derived from the 17 aberrant phenotypes were associated 

with a decrease in endocytic internalization (p-value < 0.01; Supplementary Figure 3c, Supplementary 

Table 6), with the exception of SPMs for the vacuolar class G phenotype. This observation may be due 

to a lack of power, because the class G SPMs were mostly essential genes (58/79 SPMs, including all of 

the stringent SPMs, Supplementary Figure 2b). We next tested each phenotype class to determine whether 

the mutants with a more penetrant version of the phenotype were more likely to have an endocytic 
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internalization defect. We compared the defect levels of stringent SPMs to non-stringent SPMs, and 

found a significant increase in defects for four phenotypes: decreased number of actin patches, coat 

aggregate, condensed late endosome and class E vacuole (Supplementary Figure 3c, Supplementary 

Table 6). These phenotypes are likely directly linked to an endocytic internalization defect. The 

internalization defects of the stringent SPMs for actin patches were the highest of the four compartments 

(Supplementary Table 2, Supplementary Table 6). The actin module is the driving force in endocytic 

internalization and studies have previously shown that mutants with a reduced number of actin structures 

have defective endocytosis3. The remaining three phenotypes linked with internalization defects were 

those associated with defects in ESCRT complex and MVB formation. 

 

Subcellular morphology information and phenotype profiles support prediction of gene function 

 

For virtually all 17 aberrant morphological phenotypes, we found several genes that had not been 

previously linked to the assessed morphological defects, including ~130 morphology mutants 

corresponding to largely uncharacterized genes. For example, YDL176W caused a decrease in the number 

of actin patches and concomitant increase in the number of coat patches when mutated. This suggests a 

defect in actin patch assembly that causes a delay in patch internalization and accumulation of upstream 

components. Indeed, a ydl176wΔ mutant harbouring Sla1-GFP and Sac6-tdTomato markers exhibited a 

55% increase in the lifetime of Sla1-GFP patches (p-value < 0.0001) and a modest but significant increase 

in the lifetime of Sac6-tdTomato (7.6% increase, p-value = 0.0012) (Figure 4a). Moreover, the YDL176W 

deletion mutant has an endocytic internalization defect8, and YDL176W shows a strong negative GI with 

SLA213, which encodes an adapter protein that links actin to clathrin and endocytosis. We thus named the 

YDL176W open reading frame IPF1 for involved in actin patch formation. 

 

As we have shown, half of our SPMs affect multiple compartments and some lead to phenotypes that are 

present only in a small fraction of the population. To facilitate functional prediction for these genes, we 

used a multivariate approach that considers all the morphology phenotype classes. For each mutant strain, 

we assembled a phenotype profile composed of the fraction of cells with aberrant morphology for each 

of the 17 mutant classes, and computed the similarity of phenotype profiles between each pair of 

morphology mutant genes. Functionally related gene pairs exhibited significantly higher phenotype 
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profile similarities, indicating that phenotype profiles were predictive of a functional relationship 

(Supplementary Figure 4a). Hierarchical clustering of phenotype profiles identified clusters enriched in 

functionally related genes, including clusters of genes involved in ER to Golgi transport, vacuole 

organization and exocytosis (Figure 4b). Interestingly, one cluster contained genes encoding regulators 

of actin and RNA splicing. Unlike most yeast genes, many actin regulatory genes, such as COF1, and 

ARP2, contain introns and thus depend on mRNA splicing to produce functional proteins and normal 

regulation of actin cytoskeleton organization (Figure 4b). The same cluster also includes the newly 

named IPF1 gene (see above), additionally linking its function to actin cytoskeleton regulation. 

 

Two poorly characterized genes, YEL043W and NNF2 (YGR089W), had highly correlated phenotype 

profiles (PCC = 0.89) that were most similar to profiles of genes involved in Golgi vesicle and endosomal 

transport (Figure 4c, Supplementary Figure 4b). Both gene products are localized to the ER20, 23, 24 and 

contain coiled-coil domains that are often associated with vesicle tethering proteins25. Moreover, the 

coiled-coil domains of Yel043w and Nnf2 physically interact with each other26, 27 and the GI profiles of 

YEL043W and NNF2 are both enriched for interactions with genes involved in vesicle trafficking13, 

suggesting these two proteins work together to promote vesicle trafficking. We named the YEL043W 

open reading frame GTA1, for Golgi vesicle trafficking associated. 

 

In addition, many protein complexes that affect at least one of the screened endocytic markers had a high 

within-complex phenotype profile correlation (Supplementary Figure 4c, Supplementary Table 7). 

Phenotype profiles were more similar between components of the same protein complex structure that 

are in direct contact when compared to those that are not (Figure 4d). In some cases, these profiles were 

able to differentiate between closely related complexes, and between functional subunits of a complex. 

For example, ESCRT complex mutants led to the vacuolar class E and related phenotypes. Phenotype 

profiles were able to differentiate between ESCRT-I and ESCRT-II/III components (and to a lesser extent 

also between ESCRT-II and ESCRT-III components) (Figure 4e). In another example, phenotypic profiles 

differentiated two distinct functional subunits of the SPOTS complex, involved in sphingolipid 

homeostasis (Figure 4f). This modularity is consistent with the known biochemistry: the catalytic activity 

depends on Lcb1 and Lcb2, and is stimulated by Tsc3, whereas Sac1, Orm1, and Orm2 are believed to 

play regulatory roles (Figure 4f)28. 
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Penetrance is an informative indicator of gene function 

 

Besides specific phenotype information, an important output of our single-cell analysis was 

quantification of penetrance, defined as the total percentage of the population with an aberrant phenotype, 

in each mutant for each compartment. Among the morphology mutants were 1216 penetrance mutants 

that had a significant increase in penetrance compared to the control strain (Supplementary Table 2). For 

~90% of these mutants, the morphology defect was incompletely penetrant (Figure 5a). We binned 

mutants based on low, intermediate, or high penetrance and found that each group of genes was enriched 

for distinct functions (Supplementary Table 8). We previously showed that a network based on genetic 

interaction profiles provides a global view of the functional organization of the cell13. Thus, we next 

examined where these genes localized relative to biological process-enriched clusters on the global 

genetic interaction profile similarity network using spatial analysis of functional enrichment29 (SAFE) 

(Figure 5b). Highly penetrant mutants localized in close proximity to bioprocesses that are closely related 

to the function of the screened marker, genes corresponding to intermediate penetrance mutants mapped 

to "neighbouring" processes, and low penetrance mutants localized to clusters enriched for more 

functionally “distant” processes. For example, genes with highly penetrant Snf7-GFP phenotypes 

reflecting defects in late endosome morphology, mapped to clusters on the global genetic network 

representing multi-vesicular body sorting and vesicle trafficking, while genes exhibiting intermediate 

penetrance were located within vesicle trafficking-, glycosylation-, and polarity-enriched network 

clusters. Finally, low penetrance mutants tend to localize to regions of the global genetic network 

corresponding to vesicle trafficking, polarity, mRNA processing and transcription (Figure 5b). 

 

Replicative age, asymmetric inheritance, and stress all contribute to incomplete penetrance in an 

isogenic cell population 

 

Several factors have been suggested to affect penetrance in isogenic populations, including cell cycle 

position, cell size, replicative age, asymmetric segregation of molecular components, daughter-specific 

expression, and environmental factors30-36. Our quantitative single-cell analysis of the morphological 

defects associated with each marker provided a unique opportunity to explore the potential molecular 

and cellular mechanisms underlying penetrance. 
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Replicative Age and Penetrance 

In yeast, replicative age can be assessed by staining chitin-rich bud scars to distinguish mother cells of 

different ages37. The average replicative lifespan for wild-type yeast (S288c) is 20-30 generations38, 39, 

thus old mothers are rare in a cell population. We examined wild-type control cells and five mutants with 

vacuole defects that had incomplete penetrance, including three mutants (rrd2Δ, cka2Δ, and rpl20bΔ) 

that are known to display a modestly extended replicative lifespan39, and two vacuole inheritance 

mutants40 (vac8Δ and vac17Δ). We stained and sorted the cells into bins roughly corresponding to number 

of bud scars, thus of unequal size, and assessed whether each cell had a vacuole defect. 

 

For wild-type and all five mutants the fraction of outliers was lowest in the cells with lowest bud scar 

staining, corresponding to new daughters, and increased in mother cells with each cell division (Figure 

6a, upper panel). In the bin with highest bud scar staining, corresponding to 5+ generations and consisting 

of ~3% of the population, approximately half of the wild-type cells (53%) and from 51% to 94% of the 

mutant cells had a vacuolar morphology defect (Figure 6a-b). Thus, aberrant vacuolar morphology 

increases with the number of cell divisions even in young cells. 

 

Much of the work on replicative aging has been done on old mother cells but more recent studies have 

identified a number of factors that accumulate in relatively young mothers including oxidized proteins, 

protein aggregates and reactive oxygen species34. Multiple studies have reported that cell size increases 

in old mother cells41, 42. We quantified the size of our bud-scar-stained cells and confirmed that mother 

cells increased in size with replicative age, even in their first five generations (Figure 6a, lower panel), 

with no significant difference in cell size between wild-type cells and the mutants we assayed. Thus, in 

these experiments, increased penetrance seems to correlate with increased replicative age. 

 

Asymmetric Organelle Inheritance and Penetrance 

Organelle inheritance is an intrinsic component of cell division and mutations that affect this process can 

lead to cellular heterogeneity. In yeast, VAC8 and VAC17 are required for vacuole movement and 

partitioning between the mother and daughter cell40. We imaged cells of wild type and vac17Δ strains, 

with markers for vacuole and nucleus, stained for bud scars, and compared vacuole morphology defects 

in old and young cells of the two strains (Figure 6c). In these inheritance mutants, multilobed vacuoles 
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were associated with aging and appeared at a much younger age compared to the wild-type background, 

leading to an increase in the fraction of the population that had a vacuolar morphology defect (Figure 6a, 

6c). Thus, the observed cell-to-cell variability in deletion mutants of these two genes is a result of at least 

two factors: (1) defects in vacuole inheritance where daughter cells do not inherit a vacuole from their 

mother, but rather have to make one de novo (mother-daughter heterogeneity); and (2) replicative aging 

contributing to the accumulation of vacuole fission products with each cell division cycle, leading to 

multilobed vacuoles of increasing severity (replicative age-dependent heterogeneity). Similar to these 

vacuole mutants, asymmetric inheritance of many cellular components could affect penetrance. 

 

Stress Response and Penetrance 

Exposure to stress can lead to heterogeneous survival rates of isogenic yeast cells35, and can reduce 

penetrance in Caenorhabditis elegans43. Single cell analysis allowed us to address whether there was any 

relationship between levels of stress response and penetrance of morphology defects. We examined the 

unfolded protein response (UPR), which monitors folding of membrane and secreted proteins in the 

endoplasmic reticulum44. We first compared penetrance mutants with a study that had assayed UPR in 

the gene deletion collection using flow cytometry45. For actin and coat, an increased UPR was associated 

with mutants that had high penetrance in our screens (Supplementary Table 8). To explore the relationship 

between penetrance and the stress response in single cells, we crossed a reporter gene under the control 

of unfolded protein response elements45 (UPREs) into mutants that had incomplete penetrance for actin 

or vacuole defects (Supplementary Table 8). We then measured reporter activity as a proxy for the stress 

response level in each cell, divided by the cell area to normalize for cell size, and quantified penetrance 

as a function of stress response. 

 

The relationships between penetrance and the UPR were different for the two assayed compartments, but 

the results were consistent with our correlation analysis (Supplementary Table 8). For approximately half 

of the mutants affecting actin, an increased UPR was associated with increased penetrance (Figure 6d, 

left panel, clusters 1 and 2), while the penetrance of vacuolar morphology was fairly constant across 

different levels of UPR for most mutants (Figure 6d, right panel, cluster 1). These findings indicate that 

UPR activation is correlated with penetrance of actin-based endocytosis phenotypes. At the molecular 

level, the UPR has been proposed to indirectly affect actin cytoskeleton remodelling by activating the 
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cell wall integrity pathway46-48, which suggests that the connection between the UPR and actin-based 

endocytosis phenotypes may be causal. 
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DISCUSSION 

 

Here we describe a high-content screening pipeline that allowed us to interrogate sets of yeast mutants 

for effects on the morphology of the major endocytic compartments. Using a single-cell-level neural 

network classifier, we assigned over 16 million cells to one of 21 distinct endocytic phenotypes and 

obtained penetrance information for four markers for ~5600 different yeast mutants (corresponding to 

~5300 genes, or ~90% of the genes in the yeast genome). We found that ~1600 unique yeast genes affect 

the morphology of one or more endocytic compartments. This dataset provides rich quantitative 

phenotypic information revealing roles of specific genes in shaping endocytic compartment morphology 

and the functional connections between genes and the compartments they perturb. 

 

We used machine learning to perform outlier detection followed by classification of phenotypes to 

describe endocytic compartment morphology. These data allowed us to define possible morphologies for 

several functionally important cell compartments and also to build phenotype profiles, which summarize 

all assayed phenotypes associated with a specific genetic perturbation. The resulting phenotypic profiles 

predicted gene function and revealed functional information at the level of bioprocesses and protein 

complexes that was not evident by considering individual phenotypes.  

 

Our analysis focused on markers that report on endocytosis, but the combined experimental and 

computational pipeline that we describe can be readily extended to other unrelated markers and 

phenotypes, enabling broader functional resolution. At this stage, the budding yeast system remains 

ideally suited to a large morphological survey of subcellular compartment morphology, given the 

availability of arrayed reagents for assessing loss- and gain-of-function perturbations in both essential 

and non-essential genes, and the ease of live cell imaging of strains carrying fluorescent markers49, 50. No 

matter the system used, a systematic analysis of phenotype profiles will greatly enhance our 

understanding of cellular function and lead to a more refined hierarchical model of the cell. 

 

The rich phenotype information associated with single cell images enables the precise quantification of 

the prevalence of morphological phenotypes in a given cell population. We discovered that both 

incomplete penetrance, in which only a fraction of cells in a population have a mutant phenotype, and 
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morphological pleiotropy, in which a specific mutation causes several phenotypically distinct 

subpopulations, are prevalent among mutant strains with defects in endocytic compartment morphology. 

More than half the morphology mutants we identified showed aberrant phenotypes for more than one of 

the four screened compartments, with the most pleiotropic mutants (those causing six or more specific 

phenotypes) being the most penetrant. Systematic analysis allows us to begin to explore the biological 

relevance and mechanisms of variable penetrance. For example, we were able to associate specific 

bioprocesses with high and low penetrance mutants, and to identify a number of protein complexes whose 

mutation is associated with morphological pleiotropy. 

 

Many studies in mammalian cell systems have begun to address cellular heterogeneity using single-cell 

transcriptomics to identify sub-populations of cells in specific states, such as cancer, or during the cell 

cycle, cell differentiation, and exposure to stress51-55. Others have used cell imaging techniques to 

quantify both the structural and spatio-temporal properties of complex biological systems at the single 

cell level56-59. Regardless of the read-out, phenotypic heterogeneity appears to be a general feature of cell 

populations and so far, most studies have not directly addressed the biology underlying incomplete 

penetrance. Our ability to systematically assess single cell phenotypes in mutant cell arrays enabled us 

to show that replicative age, asymmetric organelle inheritance, and stress response all contribute to the 

incomplete penetrance of single gene mutations. 

 

A number of other deterministic and regulated factors, such as noise in biological systems, micro-

environment, epigenetic regulation, and the lipid and metabolic state of the cell have the potential to 

affect the penetrance and expressivity of a trait. In fact, for the majority of mutants, variability in 

morphological phenotypes between individual cells in an isogenic cell population is likely not driven 

solely by a genotype-to-phenotype relationship, but rather by a combination of smaller contributions 

from various effects that impact single cells differently depending on their physiological state. A deeper 

understanding of this variability may also have broad medical implications and should provide insight 

into the variable penetrance of genes affecting developmental programs60, 61 and disease genes62, 63.  
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METHODS 

 

Query strain construction and construction of mutant arrays for imaging 

 

To visualize endocytic compartments in living yeast cells, we C-terminally tagged 4 yeast proteins 

selected to visualize the endocytic compartments of interest with the yeast enhanced green fluorescent 

protein (yEGFP) or tdTomato. We used the polymerase chain reaction (PCR) to amplify an integration 

fragment containing: i) homologous regions 45 bp up- and down-stream of the target ORF's C-terminus; 

ii) the fluorescent protein (FP) ORF and; iii) the selection marker. Plasmids pKT20964 (pFA6a-link-

yEGFP-CaURA3), and pFA6a-link-tdTomato-CaURA3 were used as templates. Plasmid pFA6a-link-

tdTomato-CaURA3 was constructed by replacing the yEGFP-ADH1term fragment between sites 

SalI/BglII in pKT209 with the tdTomato-ADH1term fragment. Switcher plasmid p4339 was used to 

exchange the CaURA3MX4 cassette with the NATMX4 resistance cassette to generate yEGFP-NATMX4-

tagged strains65. Primers (starting with MMU_*) used to PCR FP-tagging cassettes for genomic 

integration are listed in the Supplementary Table 9. The lithium acetate transformation method66 was 

used to introduce the PCR product into yeast cells. The yeast proteins used as markers were: Sac6 for the 

actin module of actin cortical patches; Sla1 for the coat module of actin cortical patches; Snf7 for late 

endosomes; and Vph1 for vacuoles. All four proteins have been used previously as markers for these 

compartments67-69. S. cerevisiae strains and oligonucleotides used in the study are listed in the 

Supplementary Table 9. 

 

To test for possible growth or other functional defects associated with the fluorescent protein tags, we 

performed the following tests: a) staining with FM 4-64 to check for a potential defect in endocytic 

internalization; b) real-time fluorescence microscopy imaging to check for potential fluorescent tag-

effects on Sla1 and Sac6 endocytic patch formation dynamics; c) assessment of growth using serial spot 

dilutions on standard rich YPD media (1% (w/v) yeast extract, 2% (w/v) peptone, 2% (w/v) dextrose, 2% 

(w/v) agar) at different temperatures; d) mating of constructed FP-tagged query strains with strains 

carrying mutations in genes that had genetic interactions with SAC6, SLA1, SNF7 or VPH1, followed by 

diploid selection, sporulation, and tetrad dissection to assess the growth of the double mutant progeny. A 

list of genetic interactions was obtained from13, 70. All of these experiments revealed no effect of the 
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fluorescent tag on the tagged protein’s function, except for Snf7-GFP (and Snf7-tdTomato), where we 

confirmed an effect of the C-terminal fluorescent tag on Snf7p’s function, as has been observed 

previously with all ESCRT-III complex components68. 

 

The constructed FP-tagged query strains were crossed to the haploid MATa deletion collection12 and to 

a collection of mutant strains carrying temperature sensitive (TS) alleles of essential genes13, 14. Haploid 

strains carrying both the fluorescent protein marker and the gene mutation from the mutant strain 

collections were selected using the SGA method15. All SGA selection steps involving a TS allele were 

conducted at permissive temperature (26°C). All SGA selection steps involving nonessential gene 

deletion mutants were conducted at 30°C. Sporulation was conducted at 22°C. For secondary, medium-

scale screens, used also to determine penetrance reproducibility, false positive (FPR) and false negative 

rates (FNR), 1910 strains (36% of the complete array) were chosen from strains with both significant and 

non-significant phenotype fractions and SGA was done in biological duplicate. Strains included in the 

secondary array are marked in Supplementary Table 2. 

 

Preparation and imaging of live yeast cells 

 

High-throughput microscopy 

Yeast cell cultures were prepared for microscopy and imaged as previously described23, 71, with some 

modifications. Briefly, haploid mutant MATa strains expressing tagged FPs derived from SGA were 

grown and imaged in low fluorescence synthetic minimal medium64 supplemented with antibiotics and 

2% glucose. Nonessential gene deletion mutants were grown and imaged in logarithmic phase at 30°C, 

and TS mutants of essential genes were first grown to mid-logarithmic phase and imaged at 26°C, and 

then incubated for three hours at 37°C and imaged at 37°C. Cells were transferred to a Concanavalin A 

(ConA) coated 384-well PerkinElmer CellCarrier Ultra imaging plate and centrifuged for 45 seconds at 

500 rpm before imaging. To aid in cell segmentation, Dextran Alexa Fluor 647 (Molecular Probes) was 

added to cells in low fluorescence medium to a final concentration of 10 µg/ml before imaging. 

 

For genome wide screens, micrographs were obtained on the Opera (PerkinElmer) automated spinning 

disk confocal microscope. Three fields with Z-stacks of 5 optical sections with 0.8 µm spacing were 

collected per well, with each field of view containing 50 - 150 cells. Secondary screens were imaged on 
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an Opera Phenix (PerkinElmer) automated microscope. All imaging was done with a 60x water-

immersion objective. Acquisition settings included using a 405/488/561/640 nm primary dichroic mirror. 

yEGFP was excited using a 488 nm laser, and emission collected through a 520/35 nm filter. tdTomato 

was excited using a 561 nm laser, and emission collected through a 600/40 nm filter. Dextran Alexa Fluor 

647 was excited using a 640 nm laser, and emission collected through a 690/50 nm filter. 

 

Monitoring the formation and progression of vacuolar class G phenotype with time-lapse fluorescence 

microscopy 

Strains his3Δ (DMA1) and sec18-1 (TSA54) from the MATa deletion and TS collections were crossed to 

strain Y15251. Haploid FP-tagged mutant clones were selected using the SGA method. Imaging plates 

were prepared as described above. Imaging was done using the Opera Phenix (PerkinElmer) automated 

system. Z-stacks of 5 optical sections with 0.8 um spacing were first acquired at room temperature, the 

temperature was then shifted to 37°C, and images were acquired at 1 h time intervals for 24 hours. 

Maximum z-projections, adjustment of intensity levels to optimize phenotype visualization, and image 

sequences were made with ImageJ72. 

 

Assessing endocytic vesicle formation dynamics with live-cell imaging 

Strains deleted for YDL176W (DMA754) or HIS3 (DMA1; wild-type control) expressing Sla1-GFP and 

Sac6-tdTomato were grown to mid-log phase, immobilized on ConA-coated coverslips, and sealed to 

standard glass slides with vacuum grease (Dow Corning). Imaging was done at room temperature using 

a spinning-disc confocal microscope (WaveFX, Quorum Technologies) connected to a DMI 6000B 

fluorescence microscope (Leica Microsystems) controlled by Volocity software (PerkinElmer), and 

equipped with an ImagEM charge-coupled device camera (Hamamatsu C9100-13, Hamamatsu 

Photonics) and 100x/NA1.4 Oil HCX PL APO objective. Images were acquired continuously at a rate of 

1 frame/second and analysed using ImageJ72. One hundred patches from 10-20 cells from two 

independent replicates were analysed per strain. Statistical significance was assessed with the unpaired 

t-test. 

 

Follow-up experiments related to the assessment of incomplete penetrance 

 

Penetrance as a function of replicative age or vacuole inheritance 
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Strains his3Δ (DMA1), rrd2Δ (DMA4876), rpl20bΔ (DMA4693), cka2Δ (DMA4484), vac17Δ 

(DMA520), and vac8Δ (DMA1262) from the haploid MATa deletion collection were crossed to strain 

BY5841. Haploid mutants expressing the three FPs (VPH1-GFP HTA2-mCherry and RPL39pr-

tdTomato) were selected using the SGA method. Cells were grown to logarithmic phase in standard 

conditions, washed in PBS, and stained with 400 µl 0.5 µg/ml CF640R wheat germ agglutinin (WGA) 

conjugate (CF640R WGA; Biotium) in PBS, nutating for 20 minutes at room temperature in the dark. 

Cells were then washed 3x with PBS, placed in low fluorescence medium, and transferred to a ConA 

treated imaging plate. Acquisition of z-stacks was done on the Opera Phenix (PerkinElmer) automated 

microscope as described above. Maximum z-projections, channel merging and adjustment of intensity 

levels to optimize subcellular signal visualization (used only for figures) were made with ImageJ72. The 

experiment was done in biological triplicates. 

 

Effect of the UPR pathway 

A URA3::UPRE-mCherry cassette, which encodes mCherry driven by a minimal CYC1 promoter and 

four tandem unfolded protein response elements (UPREs), was amplified using PCR from pPM4773 and 

integrated at the URA3 locus in BY4741. Primers used (URA3pr-F and dn_mCherry-R) are listed in the 

Supplementary Table 9. Plasmid pPM47 was a gift from Feroz Papa. The strain with integrated UPRE-

mCherry was crossed to query strains containing SAC6-GFP::NATMX4 or VPH1-GFP::NATMX4 and 

tetrads were dissected to obtain query strains with a GFP-tagged morphology marker and UPRE-mCherry 

(strains BY6279 and BY6285). 

 

A mini-array of gene-deletion strains identified as intermediate penetrance mutants for actin was chosen 

and crossed to BY6285. Likewise, a mini-array of vacuole mutants was crossed to BY6279. SGA was 

used to select haploid strains with both the marked morphology compartment and the stress reporter. 

Cells were grown for imaging using standard conditions and imaged in low fluorescence medium 

containing 5 µg/ml Dextran Alexa Fluor 647 on an Opera Phenix (PerkinElmer) automated system as 

described above. 
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Determining Single Mutant Fitness (SMF) of the DMA-SLOW collection 

 

In order to determine the single mutant fitness for slow-growing nonessential gene deletion strains 

(DMA-SLOW collection), that were previously excluded from the global genetic interaction analysis13 

(~400 ORFs), we carried out 5 SGA screens where a WT query strain carrying a NATMX marker inserted 

at a neutral locus (Y8835) was crossed to the KANMX-marked DMA-SLOW collection. SGA screens 

were performed at 30°C. Colony size was quantified using SGATools74. 

 

Image analysis and object quality control 

 

Image pre-processing, object segmentation and quantitative feature extraction 

Acquired stacks were compressed into a maximal z-projection using ImageJ72. CellProfiler16 was used 

for object segmentation and quantitative feature extraction. Cells were segmented from intensity-inverted 

Dextran Alexa Fluor 647-channel images. Cell intensity measurements of the Dextran Alexa Fluor 647 

channel were collected for quality control purposes. Segmented cell boundaries were then applied to the 

endocytic marker channel to segment secondary objects (endocytic compartments), define tertiary 

objects (cytoplasm), and extract area, shape, intensity, and texture measurements of the segmented 

endocytic compartments, cytoplasm and whole cell. Two additional features were calculated from the 

extracted CellProfiler features: a) fraction of the cell occupied by the screened compartment(s) 

(compartment_areashape_area divided by cell_areashape_area); and b) compartment diameter ratio 

(compartment_areashape_maxferetdiameter divided by compartment_areashape_minferetdiameter). In 

total, we extracted quantitative information for approximately 21 million single cells, and approximately 

73 million individual endocytic compartments. The raw data were imported into a custom-made 

PostgreSQL database. 

 

Cell quality control 

To reduce noise in the analysis due to segmentation artifacts and ensure only high-quality objects were 

included in downstream analyses, a quality control filter was applied to all segmented cells. First, the 

quality control filter discarded low-quality cell objects based on shape, size and intensity measurements 

collected from the Dextran Alexa Fluor 647 signal. These low-quality objects included badly segmented 

cells, ghost objects (segmented background), clumps of cells, and dead cells. Second, all images with < 
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5 cells were excluded. Third, all wells with only 1 good site (out of the 3 acquired) were excluded. 

Additionally, we trained a 2-layer fully connected neural network to identify and exclude from the dataset 

small buds that had been segmented independently of mother cells, and bad cells missed by other quality 

control filters (see below for details). Across all screens, the used filters discarded 20% of cell objects, 

leaving approximately 16.3 million good cells for subsequent analysis. On average, 640 good cells for 

each strain from 2.6 biological replicates were retained for downstream analyses. 

 

Data processing, outlier detection, and classification 

 

Data pre-processing 

The extracted features were standardized by computing mean and standard deviation of features from 

wild-type control strains (negative controls) to remove feature means and scale to unit variance separately 

for each imaged 384-well plate in a screen. Means and standard deviations of features from each imaged 

plate were analysed to identify potential batch effects on plates. 

 

Selection of positive controls 

Positive control mutants were selected based on phenotypes annotated in the Saccharomyces genome 

database (SGD, https://www.yeastgenome.org) and published literature (Supplementary Table 1). Only 

mutants for which we were able to visually confirm the published phenotype in our images were included 

in the positive control set. Additionally, to ensure all main phenotypes were included in our classifier, an 

unsupervised outlier detection approach was used to search for mutants with unpublished or poorly 

annotated phenotypes (see below for details). The two approaches combined gave us a set of 21 different 

subcellular morphologies, comprising 4 wild-type and 17 mutant phenotypes. We note that our vacuole 

phenotypes do not perfectly overlap with the vacuolar morphological classes that have been described 

previously75 (classes A to F). To avoid confusion, we adopted descriptive names for most of our vacuolar 

phenotype classes (Figure 1c, Figure 2). 

 

The lists of positive control strains associated with each mutant phenotype were subsequently used to 

compile the classifier training set (see below for details). Visual inspection of all micrographs from 

positive control mutants was used to assign each mutant to a penetrance bin (100 - 80%, 80 - 60%, 60 - 

40%, 40 - 20%, 20 - 0%). These manual penetrance assignments were used to validate the accuracy of 
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computational penetrance assignments obtained through classification (see below for details). Positive 

control mutants and their manual penetrance assignments are listed in Supplementary Table 1. 

 

Unsupervised outlier detection 

An unsupervised outlier detection approach was used to identify additional positive control strains (see 

Selection of positive controls). First, principal component analysis (PCA) was applied to the extracted 

CellProfiler features to reduce the redundancy and correlation of features in the data76. The number of 

PCs was selected so that at least 80% of the variance in the complete data was explained. Next, to identify 

mutant strains that affect the morphology of the imaged subcellular compartment, an outlier detection 

method was implemented with the goal of detecting cells whose morphology differed substantially from 

the negative (wild-type) controls. In the feature space, we identified cells with non-wild-type 

morphologies based on their distances from the negative control distribution. To quantify these distances, 

we implemented a one-class support vector machine (OC-SVM)-based outlier detection method77. We 

used OC-SVM implemented in Python’s scikit-learn package with default hyper-parameters (radial basis 

function kernel, kernel hyper-parameter gamma set to 1/N where N is the number of used PCs, and hyper-

parameter nu set to 0.5 in order to define a stringent population of negative control cells). For each single 

cell in the complete dataset, we calculated the distances to OC-SVM decision function. Next, we applied 

a threshold on the calculated distance at the 20th percentile of the negative control cells to differentiate 

in- and outliers. 

 

For each mutant strain, unsupervised penetrance was defined as the percentage of outlier cells obtained 

from the unsupervised outlier detection approach. The statistical significance of penetrance was 

calculated using a hypergeometric test (identical to one-tailed Fisher’s exact test)78, with negative 

controls as the background. For each endocytic marker, top scoring mutant strains were visually inspected 

to identify any major mutant phenotypes that had been previously missed, and additional positive control 

strains (see above). 

 

Single cell labelling and classification 

 

Single cell labelling tool 
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The custom-made single cell image viewer is a Django-based web application written in Python which 

allows the user to input different parameters or filters and then view the cells satisfying the set conditions. 

The web interface is developed using HyperText Markup Language (HTML 5), Cascading Style Sheets 

(CSS3) and JavaScript. Taking advantage of Django's capability to use multiple databases, the primary 

PostgreSQL database containing raw CellProfiler features and unique cell IDs was used in this tool to 

pull the information needed to display each single cell. The information needed was: the image to which 

the cell belongs, the image's location on the server, and the x- and y-coordinates of the cell. The tool 

allows the user to label and save a phenotype for a specific cell which would then be saved to the single 

cell viewer database and used to compile the cells' features for the training set. 

 

Manual labelling of single cells 

For each marker, and separately for the primary genome-wide and secondary medium-scale screens, 

single cells from positive control mutant strains as well as negative control wild-type strains were 

manually assigned to a mutant or wild-type phenotype class using the single cell labelling tool. In total, 

42 sets of labelled cells were compiled (2 types of screens x 21 phenotypes; i.e. 4 wild type and 17 mutant 

phenotypes). 

 

For cell quality control purposes (see Cell quality control above), for each Sla1 and Sac6 screen, we 

manually labelled approximately 320 small buds, that had been segmented independently of their mother 

cells ("small bud" class), and approximately 250 badly segmented cells ("bad" class). We trained a 2-

layer fully connected neural network (see below for details) with these two cell quality control classes 

and the wild-type class to identify small buds that had been segmented independently of mother cells, 

and bad cells missed by other quality control filters. All cells that were assigned to the "small bud" or 

"bad" classes with an average prediction probability across 10 random initializations of >=85% were 

excluded from the final set of good cells. 

 

Training set clean-up 

To identify cells in the training set that were mislabelled, we did an initial training run with all of the 

labelled positive and negative control cells, as described above. For training, 5-fold cross–validation on 

the labelled dataset was used. Each fold was split into 80% for training set (20% of training set is used 

for validation set) and 20% for test set during neural network training. Each fold was used for training a 
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fully connected 2 hidden-layer neural network (2NN) 10 times with different random initializations. With 

this approach on 5-fold cross-validation and 10 random initializations, we obtain 10 separate predictions 

for each of the labelled cells. Any cells that were incorrectly classified in two or more random 

initializations were manually inspected and cells that were originally mislabelled were removed from the 

final labelled set. Up to 12% of the labelled cells were removed from each training set using this 

approach. All subsequent training of the 2NNs was on this cleaned dataset. The final number of labelled 

cells in each phenotype ranged from 35 to 982, with an average of 420 cells. 

 

Visualization of the training set feature space with t-SNE 

To assess whether the extracted CellProfiler features could be used to accurately distinguish between 

different phenotypes, the high-dimensional feature space for each of the single cells from the training 

sets was visualized using a non-linear dimensionality reduction technique - t-distributed stochastic 

neighbour embedding17 (t-SNE). Python’s scikit-learn package (version 0.19.0) was used for t-SNE with 

default hyper-parameter settings except for perplexity. The perplexity hyper-parameters chosen for the 4 

markers were: 50 for Sac6, 30 for Sla1, 60 for Snf7, and 50 for Vph1. 

 

Classification: single-cell level assignment of mutant phenotypes 

To classify all cells from the final dataset (see Cell quality control above) into different mutant 

phenotypes, the training sets comprised of labelled single cells were used to train a fully connected 2 

hidden-layer neural network (2NN). We trained a 2NN for each of the endocytic markers and screen 

types, totalling eight trained 2NNs. We opted for separate training sets for the two screen types (genome-

wide and secondary screen), as this strategy gave us better classification accuracy (possibly because the 

two screen types were imaged using different microscopes). The 2NN was implemented using Keras 

(https://keras.io) with TensorFlow backend (https://tensorflow.org). 

 

The input layer consisted of the scaled single-cell CellProfiler features and we used a soft-max output 

layer79. The first hidden layer had 54 units and the second hidden layer had 18 units. The hidden layers 

used ReLU activation functions80. All the hyper-parameters used in the training for the Stochastic 

Gradient Descent optimizer81 are specified at https://github.com/BooneAndrewsLab/ODNN. We used 

the same architectures and hyper-parameter settings for each network; these hyper-parameters were 
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selected to provide good performance without overfitting, with a short training period on the whole 

unfiltered training sets. 

 

For training, 5-fold cross–validation on the labelled dataset was used. Each fold was split into 80% for 

training set (20% of training set is used for validation set) and 20% for test set during neural network 

training. Each fold was used for training a 2NN 10 times with different random initializations, resulting 

in 10 predictions for each cell in the test set. The final probability of each cell in the test sets was 

calculated by averaging the probabilities from these 10 randomly initialized 2NNs. The class with the 

maximum average probability was used for the predicted label. The combined test set predictions were 

displayed in a confusion matrix and used to assess the neural network's performance. Most phenotypes 

could be classified with very high accuracy, except those with the smallest training sets (Supplementary 

Figure 1c). 

 

The 2NN employs a relatively new strategy for creating an ensemble classifier; to ensure that this strategy 

did not create bias in its classifications, we compared it to two more traditional approaches to creating 

an ensemble classifier. Specifically, 10 base classifiers in the ensemble differed only in their random 

initializations but shared hyperparameters and training sets. This strategy permits us to use the entire 

training set to train each classifier rather than only the ~68% used in bagging. For classifiers with multiple 

local optima, such as neural networks, the new strategy has shown better performance generalization and 

uncertainty calibration than bagging82. However, to validate this method in our context, we compared it 

to two other approaches using the Sac6 and Vph1 genome-wide screens. One approach (2NN – CVx1) 

employed the same training strategy as 2NN, but predictions of unlabelled cells in the full dataset were 

done during each of the 10 random initializations and 5-fold cross-validations. In other words, we 

averaged the output of 50 networks trained on five different, partially overlapping, training sets. The 

second approach (2NN – CVx10) did not include 10 random initializations, and the training was done 

using 10 independent runs of 5-fold cross-validations. Here, we averaged the output of 50 networks 

trained on 50 different, partially overlapping, training sets. Similar to 2NN – CVx1 approach, with this 

third approach, we predicted the entire dataset of unlabelled cells during each of the 10 independent runs 

and 5-fold cross-validations. We assigned cells in a screen the phenotype with the highest average 

probability across the 50 2NNs for both 2NN – CVx1 and 2NN – CVx10. The average correlation 

between these three approaches on penetrance values and phenotype fractions across all genes in the two 
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genome-wide datasets was 0.95 (Supplementary Table 1). We thus concluded that our use of the same 

training sets and hyperparameters in the ensemble in our 2NN classifier did not introduce biases 

compared to a scheme which employed different training sets on each classifier. 

 

After estimating the general performance of the 2NNs using cross-validation, to make predictions on the 

entire dataset of unlabelled cells, we retrained the networks on the entire filtered training set. Similar to 

the approach described above, we trained 10 separate 2NNs starting from different random initializations 

and assigned cells in a screen the phenotype with the highest average probability across the 10 2NNs. 

Mean single-cell prediction probabilities are included in Supplementary Table 1. The 2NN classifier 

assigned the highest classification probabilities to those cells that were most similar to those in the 

manually labelled training sets (Figure 2), but at the same time allowed us to correctly assign cells with 

different severity of a particular phenotype to the same class. 

 

Additionally, to identify any strains with phenotypes not included in our classifiers, we assigned all cells 

with low classification probabilities to a "None" class. Cells were assigned to the "None" class when the 

maximum probability was lower than 2/N (where N = number of phenotypes). Visual inspection of strains 

with the highest fraction of cells assigned to the "None" class for each marker revealed no additional 

phenotypes (Supplementary Table 2). This approach does not exclude the possibility that cells with 

additional rare or non-penetrant phenotypes were incorrectly classified. For example, we did not include 

the class F phenotype (large central vacuole surrounded by several fragmented vacuolar structures) in 

our vacuole classifier, since none of the previously reported mutants had significant fractions of the 

population displaying the phenotype75. The class F cells were therefore classified as wild-type, enlarged 

or multilobed. 

  

All cells assigned a non-WT phenotype were defined as outliers. For each strain, the fraction of the cell 

population displaying each phenotype (specific phenotype fraction), as well as the penetrance (defined 

as: penetrance = 1 - % WT cells) were calculated. The phenotype fractions and penetrance calculated 

from 2NN classification were used in all subsequent analyses. 
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Custom scripts for data pre-processing, running the supervised 2 hidden-layer fully connected neural 

network for single cell classification, and penetrance calculation are available at: 

https://github.com/BooneAndrewsLab/ODNN. 

 

Penetrance reproducibility 

 

Estimating penetrance reproducibility 

To assess the quality of our computed penetrance values, we first compared them to visually assigned 

penetrance estimates and found a strong agreement for all four screened markers (average Pearson 

correlation coefficient (PCC) = 0.87) (Supplementary Figure 1d, Supplementary Table 1). We next 

assessed penetrance reproducibility by determining: (i) the difference in the calculated penetrance; and 

(ii) the Pearson correlation coefficient (PCC) between replicates of mutant strains for each marker and 

screen type. Across all screens and markers, the average PCC between replicates is 0.65 (two-tailed p-

value = 0). Finally, we focused on the replicate pairs with a penetrance difference > 30, and determined 

the prevalent causes leading to penetrance irreproducibility. Cell number had the biggest impact on 

penetrance reproducibility, since replicates with low cell counts represented 60% of replicate pairs with 

highest penetrance differences (Supplementary Figure 1e). Among low cell count replicates, 2/3 were 

from strains with considerable growth defects, making single mutant fitness (SMF) a good indicator of 

penetrance reproducibility. For the remaining 40% of replicates with a large penetrance difference, 42.6% 

could be attributed to temperature sensitive strains (35.2% of large difference replicates) and technical 

artifacts (cross-contamination, bad segmentation, failed quality control, or misclassification) (7.4% of 

large difference replicates), while for 57.4% of replicates we could not identify a clear cause. The 

increased penetrance difference between biological replicates of TS strains could be a consequence of 

small differences in growth and imaging temperature between replicates. 

 

Bootstrapping to determine sufficient cell count 

Since different strains and plates varied greatly in the number of imaged cells, we used a bootstrapping 

approach to determine the standard deviation between replicates of varying cell counts and to estimate 

the minimal cell number required to obtain a confident penetrance calculation (Supplementary Figure 

1f). Increasing numbers of cells were sampled from every screen individually, screens combined by 

marker, and all screens combined. Sampling was done on two scales: first on a small scale ranging from 

.CC-BY-NC-ND 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under 

The copyright holder for this preprint (which was notthis version posted August 4, 2019. ; https://doi.org/10.1101/724989doi: bioRxiv preprint 

https://github.com/BooneAndrewsLab/ODNN
https://doi.org/10.1101/724989
http://creativecommons.org/licenses/by-nc-nd/4.0/


   29 

10 to 100 cells in increments of 10, then on a larger scale ranging from 125 cells to 1000 cells in 

increments of 25. Cell sampling was done one hundred times from populations of approximately 200,000 

- 670,000 cells (for individual screens), and the average penetrance and standard deviation of the 100 

independent samplings for each sample size were calculated and plotted (Supplementary Figure 1f). 

Based on the wide distribution of wild-type replicate penetrances (Supplementary Figure 1g), we chose 

a relative standard deviation of 0.2 (which is equal to approximately +/- 4 penetrance points for a wild-

type population) as our confidence threshold. The average minimum required cell number across 

different markers and screens was 98 cells, and this criterion was satisfied by 83.4% of imaged samples. 

We next examined the potential impact of cell-density effects, such as gradients, on penetrance, and 

observed no significant effects (Supplementary Figure 1h). R2 between cell number and calculated 

penetrance for all replicates that met the minimum cell count was 0.0047. 

 

Identification of morphology mutants, calculation of accuracy, false positive and false negative 

rates 

 

Specific phenotype mutants (SPMs) 

For each phenotype (17 mutant phenotypes representing 4 for patch actin module, 4 for patch coat 

module, 3 for late endosome, 6 for vacuole) and screening condition (room temperature, 30°C, or 37°C), 

the threshold (thr) for the specific phenotype fraction was defined as the phenotype fraction value 

corresponding to the 98th percentile of the distribution of the specific phenotype fraction across all wild-

type replicates. Since each 384-well imaging plate had wild-type strains at 76 positions (all border wells), 

a full genome-wide screen had more than 1800 wild-type replicates. In cases where this calculated 

threshold was < 0.05, the threshold was set to 0.05. Additionally, the stringent threshold for the fraction 

of a specific phenotype was defined as: str = (max - thr) x 0.25 + thr; where max is the highest observed 

penetrance for that phenotype. 

 

The final specific phenotype fraction for each mutant strain was calculated from the genome-wide and 

secondary screen values as the replicate number-weighted mean phenotype fraction. Each mutant strain 

had to satisfy the following criteria in order to be considered an SPM: a) weighted mean phenotype 

fraction >= phenotype fraction threshold (or stringent threshold for stringent SPMs); b) >=50 good cells 
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and; c) >=10 cells assigned with the phenotype in question. SPMs, stringent SPMs and thresholds are 

listed in Supplementary Table 2.  

 

Penetrance mutants 

For each marker (Sac6, Sla1, Snf7, and Vph1), and screening condition (room temperature, 30°C, or 

37°C) the penetrance threshold was defined as the penetrance value corresponding to the 95th percentile 

of the penetrance distribution of all wild-type replicates. The final penetrance for each mutant strain was 

calculated from the genome-wide and secondary screen values as the replicate number-weighted mean 

penetrance. Each mutant strain had to satisfy the following criteria in order to be considered a penetrance 

mutant for a given marker: a) weighted mean penetrance >= calculated penetrance threshold; b) >= 50 

good cells; c) Bonferroni corrected p-value < 0.05 (for strains not included in the secondary array). 

Penetrance mutants and thresholds are listed in Supplementary Table 2. 

 

The specific phenotype and penetrance mutant groups comprise 1623 yeast genes, of which 66.5% (1079) 

were both SPMs and penetrance mutants, 25.1% were only SPMs (407), and 8.4% (137) were only 

penetrance mutants (also referred to as non-phenotype-specific mutants; see Figure 1d). In general, the 

ORFs that qualified as only non-phenotype-specific mutants or only SPMs were either (i) SPMs with 

significant but smaller mutant phenotype fractions that did not qualify as penetrance mutants, or (ii) non-

phenotype-specific mutants with one or more mutant phenotypes with fractions below the specific 

phenotype significance thresholds. For example, a deletion mutant of RRD2, which encodes a component 

of a serine/threonine protein phosphatase involved in Tor1/2 signalling, had 42% of cells with aberrant 

vacuolar morphology, which is above the ~32% penetrance threshold for the vacuolar marker. However, 

none of the six specific vacuolar phenotype fractions exceeded the respective SPM thresholds (see 

Supplementary Table 2 for details). 

 

We note that although a number of TS strains displayed increased levels of non-wild-type-looking cells 

even at room temperatures (data available at thecellvision.org/endocytosis), consistent with previous 

work14, we used only data from TS strains grown at 37°C for the identification of morphology mutants 

and downstream analyses. 
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Accuracy, FPR, FNR 

The accuracy, false positive (FPR) and false negative (FNR) rates were calculated from biological 

replicates (same query strain, same screening condition, same microscopy setup) of mutant strains as 

follows: 

 

Accuracy = (TP + TN) / (TP + TN + FP + FN) 

 

FPR = FP / (FP + TN) 

 

FNR = FN / (FN + TP) 

 

A replicate pair was called a true positive (TP), if both measurements satisfied the criteria for penetrance 

mutants described above (penetrance > threshold, >= 50 cells, and corrected p-value < 0.05). Similarly, 

a replicate pair was called a true negative (TN) when neither of the two replicates satisfied the criteria 

for penetrance mutants. False positives (FP) and false negatives (FN) were those pairs where one replicate 

was a penetrance mutant, while the other was not. The estimated average accuracy was 86.6%. The 

estimated false positive rate was 9.5%. We estimate that the false positives are mainly found in the 

intermediate penetrance range. The false negative rate was higher at ~24.9%, as expected from a stringent 

cut-off. 

 

List of consensus morphology mutants 

A consensus rule for genes with multiple screened alleles was used. For each marker and phenotype, a 

gene was considered a penetrance mutant or SPM if half or more of its alleles satisfied the respective 

significance criteria. Consensus morphology mutants are listed in Supplementary Table 2 (labelled as 

consensus_*). 

 

For penetrance bin-dependent analysis, for genes with multiple alleles and with a penetrance mutant in 

the consensus list, we defined the penetrance as the maximum penetrance among the screened alleles that 

qualified as a penetrance mutant (see above). Penetrance bins of all consensus morphology mutants are 

listed in Supplementary Table 2. 
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Enrichment and correlation analyses 

 

Data standards used in the analyses 

 

Protein complex standard: The protein complex standard was downloaded from the EMBL-EBI Complex 

Portal (https://www.ebi.ac.uk/complexportal/home) and is included in Supplementary Table 4. 

 

Gene ontology biological process standard: Biological process categories for functional enrichment were 

derived from a standard set of GO Slim biological process term sets downloaded from the Saccharomyces 

Genome Database (www.yeastgenome.org/). 

 

Biological pathway standard: The pathway standard was downloaded from the KEGG database83 and is 

included in Supplementary Table 4. 

 

Gene features used in the analyses: Numeric features 

 

Marker abundance data: For each mutant strain, the mean FP intensity (CellProfiler feature 

cell_intensity_meanintensity) extracted from the genome-wide screens was used to calculate the relative 

marker abundance ("Marker relative abundance") and relative standard deviation of marker abundance 

("Marker abundance CV"). For each mutant strain, the calculations were normalized to the per-plate 

wild-type strain values. The relative marker abundance and marker abundance CV data are included in 

Supplementary Table 4. 

 

Cell size data: For each mutant strain, raw single-cell size data (corresponding to cell area in pixels; 

CellProfiler feature cell_areashape_area) extracted from the genome-wide screens was used to calculate 

the relative mean cell size ("Relative cell size") and relative standard deviation of cell size ("Cell size 

CV"). For each mutant strain, the calculations were normalized to the per-plate wild-type strain values. 

The relative cell size and cell size CV data are included in Supplementary Table 4. 

 

Single mutant fitness: Single mutant fitness (SMF) values for nonessential gene deletion strains (DMA), 

and essential gene temperature-sensitive strains (TSA) were taken from Costanzo et al., 201613. For the 

.CC-BY-NC-ND 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under 

The copyright holder for this preprint (which was notthis version posted August 4, 2019. ; https://doi.org/10.1101/724989doi: bioRxiv preprint 

https://doi.org/10.1101/724989
http://creativecommons.org/licenses/by-nc-nd/4.0/


   33 

slow-growing nonessential gene deletion collection (DMA-SLOW), mean colony size measurements 

from 5 wild-type SGA screens were used to estimate single mutant fitness. Colony size was quantified 

using SGATools74. SMF was calculated as the relative colony size compared to wild-type84. The SMFs 

of all strains used in this study are listed in Supplementary Table 2. 

 

Broad conservation: Broad conservation is a count of how many species, out of a set of 86 non-yeast 

species, have an ortholog of a given gene. Broad conservation was assessed as described in Costanzo et 

al., 201613. 

 

Positive, negative, and total number of genetic interactions: The numbers of positive, negative and all 

genetic interactions ("Positive GI/Negative GI/Total GI") for each mutant strain were extracted from 

TheCellMap85 (www.thecellmap.org). For genes with multiple alleles, the number of GIs was averaged 

across alleles. 

 

PPI degree: Protein-protein interaction data was retrieved from BioGRID86 and refers to the union of five 

high-throughput studies87-91.  

 

Pleiotropy: Pleiotropy data were from Dudley et al., 200592. The number of conditions (out of 22 tested) 

that lead to reduced fitness was used as a measure of pleiotropy. 

 

Multifunctionality: The total number of annotations across a set of functionally distinct GO terms 

described in Myers et al., 200693 was used as a multi-functionality index. Multifunctionality was assessed 

as described in Costanzo et al., 201613. 

 

Phenotypic capacitance: The phenotypic capacitance was used directly from Levy and Siegal94 and 

captures variability across a range of morphological phenotypes upon deletion of each of the nonessential 

genes. 

 

Co-expression degree: This measure is derived from a co-expression network based on integration of a 

large collection of expression datasets95. Co-expression degree was assessed as described in Costanzo et 

al., 201613. Pairs of genes with a MEFIT value above 1.0 were defined as co-expressed. 
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Expression level and transcript counts: The expression level values reflect the mRNA transcript levels of 

all yeast genes in wild-type cells grown in YPD measured using DNA microarrays96. Transcript counts 

indicate the number of mRNA copies of each transcript per cell97. 

 

Molecules per cell: Protein abundance data was derived from the unified protein abundance dataset 

compiled from 21 quantitative analyses98. The "mean molecules per cell" values were used for analysis. 

 

Expression variance measured under different environmental conditions: For each gene, the variance in 

expression across all conditions surveyed in Gasch et al., 200099, was measured. This dataset contains 

yeast gene expression levels measured in response to a number of different environmental conditions. 

For details refer to Costanzo et al., 201613. 

 

Protein abundance and localization variation: Data on protein abundance variation ("Protein abundance 

RV"), and subcellular spread ("Subcellular spread RV") were from Handfield et al., 2015100. 

 

UPRE level: Data for UPR-levels was from Jonikas et al., 200945. 

 

Gene features used in the analyses: Binary features 

 

Whole genome duplicates: This binary feature reflects whether each gene has a paralog that resulted from 

the whole genome duplication event101. 

 

Other datasets 

Endocytic internalization dataset: Data on endocytic internalization levels in nonessential gene deletion 

mutants was from Burston et al., 20098. Deletion strains with an invertase score below the median (no 

assigned value in the published dataset) were assigned a value of 0. 

 

Orthologs: A set of Homo sapiens orthologs of S. cerevisiae were obtained from the InParanoid 

eukaryotic ortholog database version 8.0 (http://inparanoid.sbc.su.se). 
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Essential and Nonessential Gene Sets: The essential and nonessential gene lists were obtained from 

Saccharomyces Genome Database (SGD; www.yeastgenome.org/). 

 

Morphology mutant enrichment analyses 

 

GO Slim biological process: We performed the GO biological process enrichment analysis for each set 

of SPMs using the GO Slim mapping file available through the Saccharomyces Genome Database 

(www.yeastgenome.org/). SciPy's hypergeometric discrete distribution package was used to calculate p-

values. P-values were adjusted using the Bonferroni correction. Fold enrichment was calculated as 

(mutants in term / all mutants) / (term size / all background). 

 

Protein complex and biological pathway: For each phenotype, we calculated the number of mutants that 

coded for members of each protein complex and tested for enrichment by using one-sided Fisher’s exact 

tests. To identify specific enrichments associated to phenotypes, and not associations caused by genes 

that were morphology mutants in many phenotypes, we randomized the phenotype-gene associations. 

Then, for each randomized network, we calculated the number of morphology mutants that belonged to 

each complex. We only reported phenotype/complex enrichments with a Fisher’s p-value (see 

“p_greater”) below 0.05 and with phenotype/complex overlaps in the real network (see “P1”) higher than 

95% of the overlaps observed in the randomized networks (see “p_rnd”). The same approach was used 

to evaluate morphology mutant enrichment of KEGG biological pathways. Used standards are included 

in Supplementary Table 4. Enrichment results are included in Supplementary Table 3. 

 

Gene feature: We compared the values of morphology mutants and genes not identified as morphology 

mutants against a panel of gene features. We computed statistics by performing one-sided Mann-Whitney 

U tests for numeric features (p-value < 0.05), and by one-sided Fisher’s exact tests for binary features 

(p-value < 0.05). For features with data for multiple alleles, values for different alleles were averaged. 

For each numeric feature, we performed a z-score normalization in which we used the median (instead 

of the mean) and standard deviation of non-morphology-mutants. Since all median z-scores of the non-

morphology-mutant sets were centred to zero, in plots we reported only the median z-score values for 

morphology mutants. For each binary feature, we calculated the fraction of morphology mutants (f_hits) 
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and non-morphology-mutants (f_nonhits) with that particular feature. Then, we calculated the fold 

enrichment as the logarithm of f_hits divided by f_nonhits. 

 

We followed the same approach to compare: i) morphology mutants and non-morphology-mutants of 

each individual marker (vacuole, late endosome, coat, and actin); ii) penetrance mutants with high (>= 

75%), intermediate (75% > x >= 50%), and low (< 50%) penetrance values vs non-morphology-mutants 

for each individual marker; iv) SPMs vs genes that were not morphology mutants for each of the 17 

mutant phenotypes. Results of these analyses are provided in Supplementary Table 3 and Supplementary 

Table 8. 

 

46 ORFs that are present in the screened array, but have been deleted from SGD, were excluded from 

analysis (list of excluded ORFs is available at thecellvision.org/endocytosis). 

 

Comparison of direct and indirect protein contacts 

We used Interactome3D102 (version 2019_01) to select available protein complex structures in the PDB 

with three or more yeast proteins, and identified which of the proteins in the complex were in direct 

contact. Interactome3D defines direct contacts between two proteins if they have at least five residue-

residue contacts, which can include disulphide bridges (i.e., two sulphur atoms of a pair of cysteines at a 

distance ≤2.56 Å), hydrogen bonds (i.e., atom pairs N-O and O-N at a distance ≤3.5 Å), salt bridges (i.e., 

atom pairs N-O and O-N at a distance ≤5.5 Å), and van der Waals interactions (i.e., pairs of carbon atoms 

at a distance ≤5.0 Å). We classified proteins in the same complex structure that did not meet our criteria 

for direct contact as indirect contacts. Additionally, we compiled a list of protein pairs belonging to 

different protein complex structures. 

 

For each screened gene, we built a profile with its 17 specific phenotype fractions (phenotype profile; 

phenotype fraction data is provided in Supplementary Table 2). For genes with several screened alleles, 

we used the mean specific phenotype fraction across alleles. Strains with incomplete profiles (missing 

data for any of the 4 markers) were excluded from the analysis. For each pair of profiles, we calculated 

their Pearson’s correlation. 

Correlation values were then grouped by the relationship of proteins in experimental structures: i) protein 

pairs in contact in a protein complex structure; ii) protein pairs in the same experimentally solved protein 
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complex structure but not in direct contact; or iii) protein pairs that do not belong to the same solved 

protein complex structure. Difference between the sets of correlation values was evaluated by one-sided 

Mann-Whitney U tests. Files with gene-averaged specific phenotype profiles, and profile PCCs are 

available at thecellvision.org/endocytosis. 

 

Functional similarity of penetrance mutants and SPMs vs non-morphology-mutants 

We calculated the Pearson’s correlation for every pair of phenotype profiles as described above. Next, 

we grouped gene pairs by different functional criteria: i) gene pairs that encoded members of the same 

protein complex or members of different protein complexes; ii) gene pairs that encoded proteins in the 

same pathway or in different pathways; iii) gene pairs that had significantly correlated genetic interaction 

profiles or not13, 85 (PCC > 0.2, GI PCC dataset downloaded from thecellmap.org); and iv) gene pairs that 

were co-expressed or not. Functionally related gene pairs were defined as those that belong to the same 

protein complex or pathway, have a significant GI profile similarity, or are co-expressed. We used one-

sided Mann-Whitney U tests to evaluate whether differences between the correlation sets were 

significant. 

 

Mean specific phenotype fraction per protein complex and within-complex PCC 

For each protein complex and mutant phenotype, we calculated the mean specific phenotype fraction and 

standard deviation across genes encoding members of the complex. For genes with more than one allele 

screened, we used the mean phenotype fraction across alleles. We calculated the Pearson’s correlation 

for every pair of mutant phenotype profiles for genes coding for members of the complex, and calculated 

the mean PCC of all complex gene pairs. Results are included in Supplementary Table 7. 

 

Assessing mutant phenotype relatedness 

 

Common SPMs between mutant phenotypes: For each pair of phenotypes, we evaluated whether they 

tended to share more stringent SPMs than expected by chance. We calculated p-values using one-sided 

Fisher’s exact tests, and the False Discovery Rate (FDR) to correct for multiple tests. Additionally, for 

every phenotype we built a profile using specific phenotype fraction values of all genes. Next, we 

computed Pearson’s and Spearman’s correlation across all pairs of phenotype profiles. Results are 

included in Supplementary Table 5. 
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Enrichment of protein complexes between mutant phenotypes: For each pair of phenotypes, we retrieved 

the set of SPMs that shared both phenotypes and calculated if the common set was enriched for protein 

complexes. Protein complexes with p-value < 0.01 and at least 2 shared protein complex components 

were considered significant. Additionally, we required the overlap of common SPMs with members of a 

complex to be higher than 95% of the overlaps obtained in randomized phenotype-gene networks. Results 

are included in Supplementary Table 5. 

 

Quantification of follow-up experiments related to the assessment of incomplete penetrance 

 

Quantifying penetrance as a function of replicative age 

CellProfiler was used for cell segmentation and quantitative feature extraction (including cell size and 

mean WGA intensity). A 2NN was used to assign each cell a phenotype class and WGA intensity was 

used as a proxy for replicative age. For each mutant strain, cells were sorted based on their mean WGA 

intensity, and grouped into 6 bins as follows: 50% of cells with the lowest mean WGA intensity 

corresponding approximately to virgin daughters; the next 25% of cells corresponding approximately to 

mother cells that had undergone 1 division; the next 12.5% of cells corresponding approximately to 

mother cells that had undergone 2 divisions; and so on, up to the last bin containing 3.13% of the cell 

population with the highest WGA intensities that were assumed to have undergone 5 or more cell 

divisions. For each strain and aging bin we then determined the fraction of outliers. On average, 

approximately 3800 cells were analysed for each strain for each replicate. 

 

Effect of the UPR pathway: Clustering of penetrance profiles 

CellProfiler was used for cell segmentation and quantitative feature extraction (including mean UPRE-

mCherry intensity). OC-SVM outlier detection was used to assign each cell to the wild-type or outlier 

group. For each mutant strain, cells were sorted based on their stress response-level (mean UPRE-

mCherry signal intensity), and grouped into 10 bins of equal cell numbers. For each bin we determined 

the fraction of outliers (unsupervised penetrance). STEM software103 was used to cluster mutant strains 

into groups with distinct UPR profiles using k-means clustering. On average, 600 cells were analysed for 

each strain. 

 

.CC-BY-NC-ND 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under 

The copyright holder for this preprint (which was notthis version posted August 4, 2019. ; https://doi.org/10.1101/724989doi: bioRxiv preprint 

https://doi.org/10.1101/724989
http://creativecommons.org/licenses/by-nc-nd/4.0/


   39 

Data and software availability 

 

Data Resources 

All penetrance and phenotype results are available at: https://thecellvision.org/endocytosis. 

Normalized feature data of single cells used for neural network training, and additional files that support 

the analyses are available at: https://thecellvision.org/endocytosis/supplemental. 

All raw extracted quantitative features of segmented single cells will be provided upon request. 

 

Images 

All images are available for browsing at: https://thecellvision.org/endocytosis. 

Batch transfer of raw images will be provided upon request. 

 

Source code 

Code for the single cell labelling tool, unsupervised ocSVM for outlier detection, and 2 hidden-layer 

fully connected neural network for single-cell classification is available at: https://thecellvision.org/tools. 

 

Further information and requests for resources and reagents should be directed to and will be fulfilled by 

Brenda J. Andrews (brenda.andrews@utoronto.ca). 
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FIGURES 
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Figure 1: Twenty-one subcellular endocytic phenotypes identified using computational analysis of 

single cell images (see also Supplementary Figure 1, Supplementary Figure 2, Supplementary Table 1, 

Supplementary Table 2). 

 

(a) Diagram of the experimental and computational workflow. Yeast mutant arrays harbouring 

fluorescently-tagged proteins marking specific endocytic compartments were constructed using the 

synthetic genetic array (SGA) method and imaged using automated high-throughput microscopy. Image 

and data pre-processing steps included object segmentation and feature extraction, low-quality object 

clean-up and data standardization. Positive controls and classification training sets were used to train a 

fully connected 2-hidden-layer neural network (2NN), allowing assignment of phenotypes at the single-

cell level and calculation of penetrance. 

 

(b) Illustration of endocytosis process and compartment markers. The four endocytic compartment 

markers used in this study are indicated: Sla1 as a marker of the protein coat component of the endocytic 

patch (light purple); Sac6 as a marker of the actin component of the endocytic patch (blue); Snf7 as a 

marker of the late endosome (orange); Vph1 as a marker of the vacuolar membrane (red).  The colours 

chosen for each marker are used throughout this study. FP: fluorescent protein. 

 

(c) Example micrographs of yeast cells for each of the 21 subcellular endocytic phenotypes identified in 

this study. The relevant markers are listed to the left of the micrographs. Scale bar: 5 µm. 

 

(d) Pie charts showing the proportion of specific phenotype mutants (SPMs) that have one or more 

distinct aberrant phenotypes, and non-phenotype-specific mutants for each of the compartments 

screened. 

 

(e) Pie charts showing the proportion of mutant strains that are morphology mutants for one or more 

markers (left) and specific phenotype mutants (SPMs) that cause one or more aberrant morphological 

phenotypes (right). The number of mutants in each category is listed within each section. 

 

(f) Box plot illustrating the distribution of the fraction of non-wild-type (WT) cells for specific phenotype 

mutants grouped by the number of phenotypes they cause. ** denotes a significant difference between 
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two groups (p-value < 0.01; significance was determined using analysis of variance (ANOVA) with a 

post-hoc Bonferroni test). Whiskers extend to the 5th and 95th percentile. 
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Figure 2: The spectrum of endocytic compartment morphologies: properties of 17 mutant 

phenotypes. (see also Supplementary Figure 3, Supplementary Table 3). 

 

Representative images of wild-type and mutant cells organized by marker and phenotype (labels on the 

left of each panel). For each phenotype, three cells labelled for the training set (labelled single cells) and 

cells identified by the 2NN classifier (identified single cells) are shown. The table to the right of the 

images shows (from left to right): [1] the occurrence of each phenotype in a wild-type population (% in 

WT); [2] the number of specific phenotype mutants (all) and stringent specific phenotype mutants (str) 

for each of the 17 mutant morphologies; [3] the most significantly enriched GO Slim biological process 

and; [4] the most significantly enriched protein complex. # denotes term below statistical significance. 
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Figure 3: Analysis of the common morphology mutants of endocytic compartment phenotypes and 

the relationship to known protein complexes (see also Supplementary Table 5). 

 

(a) Matrix showing significant overlap of stringent specific phenotype mutants (p-value < 0.05; 

significance was determined using Fisher’s exact tests). Circle size corresponds to the log value of the 
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overlap odds ratio. Orange circles denote same-compartment phenotype pairs. Dark blue fill colour 

indicates phenotype pairs with at least one enriched protein complex in the overlapping set. LE: late 

endosome. 

 

(b) Diagram illustrating co-occurrence of endocytic morphology phenotypes associated with protein 

complex perturbation. Shown are significant protein complexes from (a) with biological processes and 

linked phenotype pairs. # denotes a phenotype pair without significant enrichment. Phenotype names are 

color-coded by endocytic marker, using the colour key described in Figure 1 and indicated on the yeast 

cell diagram. 
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Figure 4: Predicting gene function from phenotype profiles (see also Supplementary Figure 4). 

 

(a) Endocytic patch formation dynamics in the ydl176wΔ (ipf1Δ) strain. Patch dynamics were examined 

using time-lapse fluorescence microscopy of wild-type (WT) and ipf1Δ deletion strains carrying reporters 

for the coat (Sla1–GFP; green), and actin (Sac6-tdTomato; red) modules. Left: Representative 

kymographs for the WT and ipf1Δ strains. Right: Box plot illustrating the distribution of lifetimes of 

Sla1-GFP and Sac6-tdTomato patches. Significance was determined using unpaired t-tests. Scale bar: 10 

seconds. 

 

(b) Examples of gene clusters obtained with hierarchical clustering of phenotype profiles composed of 

the 17 specific phenotype fractions. Phenotypes 1-17: [1] coat: increased patch number; [2] coat: 

aggregate; [3] vacuole: class E; [4] late endosome: condensed; [5] actin: bright patches; [6] late 

endosome: membrane; [7] actin: aggregate; [8] coat: decreased patch number; [9] actin: decreased patch 

number; [10] late endosome: fragmented; [11] coat: depolarized patches; [12] actin: depolarized patches; 

[13] vacuole: multilobed; [14] vacuole: fragmented; [15] vacuole: enlarged; [16] vacuole: class G; [17] 

vacuole: V-ATPase defect. 

 

(c) Interaction network of NNF2 and YER043W (GTA1). Genes with phenotype profiles with a 

correlation > 0.7 and genetic interaction profiles with a correlation > 0.2, and at least two significant 

correlations to NNF2 and/or GTA1 were included in the network. 

 

(d) Analysis of phenotype profile similarity between mutants in genes encoding proteins in same or 

different protein complex structures. Box plot indicates distribution of PCCs between pairs of phenotype 

profiles for genes that encode protein pairs in direct contact in a protein complex experimental structure 

(Yes - Direct), code for protein pairs in the same protein complex structure but not in direct contact (Yes 

- Indirect), and code for protein pairs that do not belong to the same protein complex structure (No). The 

number of pairs evaluated in each set is shown on the x-axis. Significance was determined using one-

sided Mann-Whitney U tests. ***p-value < 0.001. 

 

(e, f) Differentiation of functionally related protein complexes and protein complex organization using 

phenotype profiles. Heatmaps showing PCCs between components of the ESCRT complexes (e) and the 
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SPOTS complex (f). A more intense blue colour indicates a higher PCC (scale bar at the top left of each 

heat map). 

 

 

 

 

 

 

 

 

 

 

 

 

 

.CC-BY-NC-ND 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under 

The copyright holder for this preprint (which was notthis version posted August 4, 2019. ; https://doi.org/10.1101/724989doi: bioRxiv preprint 

https://doi.org/10.1101/724989
http://creativecommons.org/licenses/by-nc-nd/4.0/


   59 

 

 

 

.CC-BY-NC-ND 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under 

The copyright holder for this preprint (which was notthis version posted August 4, 2019. ; https://doi.org/10.1101/724989doi: bioRxiv preprint 

https://doi.org/10.1101/724989
http://creativecommons.org/licenses/by-nc-nd/4.0/


   60 

Figure 5: Functional analysis of incomplete penetrance (see also Supplementary Table 8). 

 

(a) Stacked bar graph with fractions of penetrance mutants belonging to each penetrance bin for the four 

endocytic markers. act: actin; LE: late endosome; vac: vacuole. 

 

(b) SAFE (Spatial Analysis of Functional Enrichment) of penetrance mutants grouped according to 

penetrance. Top: Bioprocess key for interpreting the global similarity network for yeast genetic 

interactions visualized using SAFE, which identifies regions of the network enriched for specific 

biological processes (Costanzo et al., 2016). Coloured dots denote the localization of the 4 marker genes 

within the global similarity network. Below: SAFE of penetrance mutants grouped according to their 

penetrance and marker. Orange: genes whose mutation caused high penetrance; grey: intermediate 

penetrance genes; blue: low penetrance genes. Numbers in brackets refer to the number of unique ORFs 

in each group. 
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Figure 6: Factors contributing to incomplete penetrance (see also Supplementary Table 8). 

 

(a) Penetrance as a function of replicative age. Top: Bar graph showing the fraction of outliers in 

populations of increasing replicative age (# of divisions) for wild-type (WT), and 5 mutant strains (rrd2Δ, 

rpl20bΔ, cka2Δ, vac8Δ and vac17Δ). Data are presented as mean of 3 biological replicates +/- SD. 

Bottom: Box plot with the distribution of cell sizes for the same populations of cells. Whiskers extend to 

the 5th and 95th percentile. 
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(b) Micrographs of young (top row of images) and older (bottom row of images) wild-type (WT) cells 

expressing Vph1-EGFP (green vacuole) and stained with CF640R WGA (magenta bud scars). Scale bar: 

5 µm. 

 

(c) Combined effect of replicative age and a vacuole inheritance defect on penetrance. Micrographs of 

wild-type and vac17Δ cells expressing Vph1-EGFP (green vacuole) and Hta2-mCherry (red nucleus), 

stained with CF640R WGA (magenta bud scars). Cells with increasing bud-scar staining (replicative age) 

are shown from left to right. Scale bar: 5 µm. 

 

(d) Relationship between stress response and penetrance. Single-cell UPRE-RFP levels were measured 

in ~60 different mutant strains that we had identified as penetrance mutants with intermediate penetrance 

with defects in actin or vacuole morphology. Cells were binned into equal-sized bins, from low to high 

stress response, assessed as outlier or inlier, and clustered based on their penetrance profile (composed 

from the fraction of outliers in each stress-response bin). Each line plot represents a penetrance profile. 

* denotes the cluster with a profile most similar to wild-type. Insert pie charts show the proportion of 

mutant strains in each cluster. 
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SUPPLEMENTARY FIGURES 
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Supplementary Figure 1: Factors affecting classification accuracy and penetrance. Related to 

Figure 1, Supplementary Table 1. 

 

(a) High-dimensional feature space for single cells (color-coded by phenotype) from the training sets 

visualized with 2D t-SNE. Numbers follow the phenotype order listed in Figure 1c. 

 

(b) Confusion matrices illustrating the classification accuracies of the 2NN classifiers for all phenotypes. 

Numbers in the matrix reflect the mean accuracy of both genome-wide and secondary screens. * denotes 

phenotypes where the difference in accuracy between the genome-wide and secondary screens was 

greater than 0.10. Numbers in brackets indicate the total number of labelled cells in the two filtered 

training sets for each phenotype. The classifiers for the two ‘aggregate’ phenotypes (denoted1,2) were 

trained using less than 100 labelled cells in one or both of the screen types. The intensity of the blue 

colour in each block of the matrix indicates the fraction of cells classified from each class predicted to 

be in a given class (scale bar to the right). Classification accuracy for each class is indicated by the 

number in each block. 

 

(c) Scatter plot showing the 2NN classifier accuracy and number of labelled cells for each training set 

separately (N = 42), where each dot represents one phenotype class. No outline: training set for genome-

wide screen. Black outline: training set for secondary screen. 

 

(d) Comparison of the manually assigned and computationally derived penetrance of positive control 

strains (see Supplementary Table 1 for list of strains). Each dot represents one positive control from either 

the genome-wide (GW) screens (light blue dots) or secondary screens (dark blue dots), and grey dots are 

wild-type controls.  LE = late endosome. 

 

(e) Analysis of penetrance in biological replicates. The bar graph shows the fraction of biological 

replicates grouped according to their difference in penetrance (N = 15398 replicate pairs). Less than 10% 

of replicates have a penetrance difference > 30 (grey bars), with an average penetrance difference of 11.2.  

Insert pie chart shows a break-down of the underlying cause of large penetrance differences. 
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(f) Bootstrapping on wild-type cell populations to determine the number of cells sufficient to obtain a 

confident penetrance calculation. The shaded area indicates the range of the minimum sample size across 

the four screened markers (defined as the sample size where the relative standard deviation falls below 

0.2). Data are presented as the mean penetrance across 100 independent samplings for each sample size 

(blue line) +/- SD (error bars). 

 

(g) Penetrance frequency distribution of wild-type replicates for each of the four markers extracted from 

genome-wide screening data. The shaded area indicates the mean (vertical dashed lines) +/- 0.2 x mean. 

Colours represent the different endocytosis markers as shown in the legend. 

 

(h) Evaluation of possible batch effects in the penetrance analysis. Representations of two screened plates 

illustrating cell count (grey) and computationally derived penetrance (blue) in each well are shown. A 

darker shade (of grey or blue) indicates increased cell number or penetrance as shown on the key below 

the plate representations. Even though uneven growth conditions can lead to plate-layout effects, such as 

gradients (top plate) or more favourable edge conditions (bottom plate), the cell density differences due 

to experimental artifacts do not significantly affect penetrance analysis. 
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Supplementary Figure 2: Emerging properties of mutant phenotypes. Related to Figure 2, 

Supplementary Table 2. 

 

(a) Comparison of the fraction of mutants screened and the fraction identified as morphology mutants in 

each strain collection. Stacked bar graphs show the fractions of strains in the screened array (array) and 

in the set of morphology mutants grouped based on the mutant strain collection for each individual 

marker (deletion mutant collection – dark blue; slow-growing nonessential gene deletion collection – 

medium blue; collection of strains with TS mutations in essential genes – light blue). LE: late endosome; 

vac: vacuole. 
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(b) Relationship between specific phenotype mutants (SPMs) and essential genes. Bar graph showing the 

fraction of essential genes in sets of SPMs (light blue) and stringent SPMs (dark blue) for each individual 

phenotype. The black dashed line represents the fraction of essential genes in the screened mutant array. 

Blue dashed lines indicate the fraction of essential genes for all SPMs (light blue) and stringent SPMs 

(dark blue). LE: late endosome. 

 

(c) Bar graph illustrating the relationship between essential genes and morphological pleiotropy. Bar 

graph showing the fraction of essential genes in specific phenotype mutants (SPMs; light blue) and 

stringent SPMs (dark blue) grouped by the number of phenotypes they affect. Blue dashed lines indicate 

the fraction of essential genes for all SPMs (light blue) and stringent SPMs (dark blue). The black dashed 

line represents the fraction of essential genes in the screened mutant array. 

 

(d) Relationship between conserved genes and morphological phenotypes. Bar graph showing the 

fraction of conserved genes in specific phenotype mutants (SPMs; light blue) and stringent SPMs (dark 

blue) grouped by the number of phenotypes they affect. The black dashed line represents the fraction of 

conserved genes in the screened mutant array. Blue dashed lines indicate the fraction of conserved genes 

for all SPMs (light blue) and stringent SPMs (dark blue). 

 

(e) Bar graph showing the fraction of conserved genes in our morphology mutant sets for each of the 

markers for the full dataset, and a truncated dataset with excluded genes annotated to GO Slim biological 

process terms associated with endocytosis and the endomembrane system. Black dashed line denotes the 

fraction of conserved genes in the screened mutant array. LE: late endosome. 
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Supplementary Figure 3: Properties of specific mutant phenotypes. Related to Figure 3, 

Supplementary Table 3, Supplementary Table 6. 

 

(a) Time-course analysis of vacuolar class G phenotype formation. Wild-type and sec18-1 strains 

expressing Vph1-EGFP were first imaged at room temperature (RT), the temperature was then shifted to 

37°C, and images were acquired at the indicated time points (in hours after shift). Signal intensity of the 

magnified inserts (in solid boxes within the micrographs) was adjusted to optimize phenotype 

visualization. Scale bar: 10 µm. 

 

(b) Gene feature enrichment analysis of the morphology mutants for each endocytic marker. Significance 

was determined using one-sided Mann-Whitney U tests for numeric features, and one-sided Fisher’s 

exact tests for binary features. For numeric features, dots represent median z-score normalized values. 

For binary features (below the solid black line), dots represent fold enrichment. Gene features derived 

from our genome-wide screens are indicated with "GW screen data" (shown above the black dotted line). 

CV: coefficient of variation. GI: genetic interaction. RV: relative variability. LE: late endosome; vac: 

vacuole. 

 

(c) Horizontal bar graph showing the distribution of endocytic internalization defect (invertase score as 

assessed in (Burston et al., 2009)) for nonessential specific phenotype mutants (SPMs). Several 

phenotypes show a significant difference between SPMs with a high specific phenotype fraction (dark 

blue circle) compared to those with a lower specific phenotype fraction (light blue circle). *, ** denote 

phenotypes with a significant difference between the two groups (p-value < 0.05, or < 0.01; significance 

was calculated using Kolmogorov-Smirnov tests). Black triangle: mean; black line: median; black dashed 

line: mean of phenotypically wild-type mutants. Numbers in the right-most column indicate the number 

of genes included in the analysis. Whiskers extend to the 5th and 95th percentile. LE: late endosome. 
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Supplementary Figure 4: Relationship between phenotype profiles and functionally related gene 

pairs. Related to Figure 4, Supplementary Table 7. 

 

(a) Phenotype profile similarity of functionally related pairs of genes. Box plot indicates the distribution 

of Pearson correlation coefficients (PCCs) between pairs of specific phenotype profiles for genes 

encoding members of the same or different protein complex (co-complex); proteins in the same or 

different pathway (co-pathway); genes that are co-expressed or not (co-expressed), and gene pairs that 

have a significant GI profile similarity or not (significant GI profile PCC). The number of pairs evaluated 

in each set is shown on the x-axis. Significance was determined using one-sided Mann-Whitney U tests. 

***p-value < 0.001. 
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(b) Phenotype profile cluster containing NNF2 and YER043W (GTA1) (highlighted in blue). Phenotypes 

1-17: [1] coat: increased patch number; [2] coat: aggregate; [3] vacuole: class E; [4] late endosome: 

condensed; [5] actin: bright patches; [6] late endosome: membrane; [7] actin: aggregate; [8] coat: 

decreased patch number; [9] actin: decreased patch number; [10] late endosome: fragmented; [11] coat: 

depolarized patches; [12] actin: depolarized patches; [13] vacuole: multilobed; [14] vacuole: fragmented; 

[15] vacuole: enlarged; [16] vacuole: class G; [17] vacuole: V-ATPase defect. 

 

(c) Relationship between protein complexes and morphological phenotype profile correlations. Scatter 

plot showing mean mutant phenotype fraction (Y axis) and mean within-complex phenotype profile 

PCCs (Pearson Correlation Coefficient; X axis) for individual protein complexes (n = 202). The insert 

pie chart shows the proportion (and number) of protein complexes that affect 1, 2, 3, or all 4 markers. 

Mean penetrance was calculated only from affected markers. Complexes are color-coded based on the 

number of markers they affect. 
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SUPPLEMENTARY TABLES 

 

Supplementary Table 1: List of positive controls for each marker and screen type, information on 

training set size and 2NN accuracy. Related to Figure 1 and Supplementary Figure 1. 

 

Supplementary Table 2: Main results table. Contains data on phenotype, penetrance and threshold 

information for each screened mutant strain, and consensus morphology mutant lists. Related to Figure 

1, Figure 2, Figure 3, and Figure 5. 

 

Supplementary Table 3: Enrichment results of the morphology mutants. Related to Figure 2, and 

Supplementary Figure 3. 

 

Supplementary Table 4: Protein complex, localization, cell size and marker abundance standards. 

Related to Figure 2, Figure 3, Supplementary Figure 3, and Supplementary Figure 4. 

 

Supplementary Table 5: Analysis of the common morphology mutants of endocytic compartment 

phenotypes. Related to Figure 3. 

 

Supplementary Table 6: Endocytic internalization defect comparison of the mutant phenotypes. Related 

to Supplementary Figure 3. 

 

Supplementary Table 7: Within-complex phenotype profile similarity. Related to Supplementary Figure 

4. 

 

Supplementary Table 8: Factors contributing to incomplete penetrance. Related to Figure 5, Figure 6. 

 

Supplementary Table 9: List of strains, plasmids and oligonucleotides used in this study. 

 

Supplementary tables 1-8 are available at https://thecellvision.org/endocytosis/supplemental. 
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Supplementary Table 9 List of strains, plasmids and oligonucleotides used in this study. 

 

Yeast Strains Reference 

S. cerevisiae: DMA#, DMA-SLOW# 

MATa xxxΔ::KANMX his3Δ1 leu2Δ0 ura3Δ0 met15Δ0 

Yeast Deletion 

Collection [1] 

S. cerevisiae: TSA# 

MATa xxx-ts::KANMX his3Δ1 leu2Δ0 ura3Δ0 met15Δ0 

Yeast Collection of 

Temperature-sensitive 

Strains (v6) [2,3] 

S. cerevisiae: BY4741 

MATa his3Δ1 leu2Δ0 ura3Δ0 met15Δ0 

[4] 

S. cerevisiae: Y7092 

MATα can1Δ::STE2pr-Sp_his5 lyp1Δ his3Δ1 leu2Δ0 ura3Δ0 met15Δ0 

[5] 

S. cerevisiae: Y8835 

MATα ura3Δ::NATMX; can1Δ::STE2pr-Sp_his5 lyp1Δ his3Δ1 leu2Δ0 

ura3Δ0 met15Δ0 

[6] 

S. cerevisiae: BY5841 

MATα VPH1-GFP::HIS3 HTA2-mCherry::NATMX can1pr::RPL39pr-

tdTomato::CaURA3::can1Δ::STE2pr-LEU2 lyp1Δ his3Δ1 leu2Δ0 

ura3Δ0 

this study 

S. cerevisiae: BY6285 

MATα SAC6-yEGFP::NATMX ura3Δ0::URA3::UPRE-CYC1pr-

mCherry can1Δ::STE2pr-Sp_His5 lyp1Δ leu2Δ0 his3Δ1 ura3Δ0 

met15Δ0 

this study 

S. cerevisiae: BY6279 

MATα VPH1-yEGFP::NATMX ura3Δ0::URA3::UPRE-CYC1pr-

mCherry can1Δ::STE2pr-Sp_His5 lyp1Δ leu2Δ0 his3Δ1 ura3Δ0 

met15Δ0 

this study 

S. cerevisiae: Y15247 

MATα VPH1-yEGFP::NATMX SLA1-tdTomato::URA3 

can1Δ::STE2pr-Sp_his5 lyp1Δ his3Δ1 leu2Δ0 ura3Δ0 met15Δ0 

this study 

S. cerevisiae: Y15248 

MATα SLA1-yEGFP::NATMX SAC6-tdTomato::URA3 

can1Δ::STE2pr-Sp_his5 lyp1Δ his3Δ1 leu2Δ0 ura3Δ0 met15Δ0 

this study 

S. cerevisiae: Y15249 

MATα SLA1-yEGFP::NATMX SNF7-tdTomato::URA3 

can1Δ::STE2pr-Sp_his5 lyp1Δ his3Δ1 leu2Δ0 ura3Δ0 met15Δ0 

this study 

S. cerevisiae: Y15250 

MATα SNF7-yEGFP::NATMX VPH1-tdTomato::URA3 

can1Δ::STE2pr-Sp_his5 lyp1Δ his3Δ1 leu2Δ0 ura3Δ0 met15Δ0 

this study 

S. cerevisiae: Y15251 

MATα VPH1-yEGFP::NATMX can1Δ::STE2pr-Sp_his5 lyp1Δ his3Δ1 

leu2Δ0 ura3Δ0 met15Δ0 

this study 

S. cerevisiae: Y15252 this study 
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MATα SNF7-yEGFP::NATMX can1Δ::STE2pr-Sp_his5 lyp1Δ his3Δ1 

leu2Δ0 ura3Δ0 met15Δ0 

S. cerevisiae: Y15253 

MATα SAC6-yEGFP::URA3 can1Δ::STE2pr-Sp_his5 lyp1Δ his3Δ1 

leu2Δ0 ura3Δ0 met15Δ0 

this study 

S. cerevisiae: Y15254 

MATα SLA1-yEGFP::NATMX can1Δ::STE2pr-Sp_his5 lyp1Δ his3Δ1 

leu2Δ0 ura3Δ0 met15Δ0 

this study 

S. cerevisiae: Y15255 

MATα VPH1-tdTomato::URA3 can1Δ::STE2pr-Sp_his5 lyp1Δ his3Δ1 

leu2Δ0 ura3Δ0 met15Δ0 

this study 

S. cerevisiae: Y15256 

MATα SAC6-tdTomato::URA3 can1Δ::STE2pr-Sp_his5 lyp1Δ his3Δ1 

leu2Δ0 ura3Δ0 met15Δ0 

this study 

Plasmids Reference 

pPM47 [7] 

pKT209 [8] 

pFA6a-link-yEGFP-NATMX4 Boone lab 

Oligonucleotides Reference 

Primer: URA3pr-F: 

CAAAGAAGGTTAATGTGGCTGTGGTTTCAGGGTCCATAAAGC 

TTTTCAATTCATCATTTTTTTTTTATTCTTTTTTTTGATTTCGG 

this study 

Primer: dn_mCherry-R: 

CTGTTACTTGGTTCTGGCGAGGTATTGGATAGTTCCTTTTTATA 

AAGGCCCCTCGAGGTCGACGGTATCG 

this study 

Primer: MMU-Sla1-F: 

CAAGCCAACATATTCAATGCTACTGCATCAAATCCGTTTGGAT 

TCGGTGACGGTGCTGGTTTA 

this study 

Primer: MMU-Sla1-R: 

TTGCCATTTTCACGAGTATAAGCACAGATTGTACGAAACTATT 

TCGATATCATCGATGAATTCG 

this study 

Primer: MMU-Sac6-F: 

CGTGCAAGATTAATTATTACTTTTATCGCTTCGTTAATGACTTT 

GAACAAAGGTGACGGTGCTGGTTTA 

this study 

Primer: MMU-Sac6-R: 

CGTATAACGGAGCATTGGAACAAGAAAGCTGAGTAGAAAAC 

AGGTGATATCATCGATGAATTCG 

this study 

Primer: MMU-Snf7-F: 

GAAGATGAAAAAGCATTAAGAGAACTACAAGCAGAAATGGG 

GCTTGGTGACGGTGCTGGTTTA 

this study 

Primer: MMU-Snf7-R: 

AGAACACCTTTTTTTTTTCTTTCATCTAAACCGCATAGAACAC 

GTGATATCATCGATGAATTCG 

this study 

Primer: MMU-Vph1-F: 

GACATGGAAGTCGCTGTTGCTAGTGCAAGCTCTTCCGCTTCA 

this study 
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AGCGGTGACGGTGCTGGTTTA 

Primer: MMU-Vph1-R: 

GTGGATTGGATTGCAAGTCTAACGTTTTCATGAGATAAGTTTG 

GCGATATCATCGATGAATTCG 

this study 
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