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Abstract 15 

Background 16 

Over the past three decades, Nile tilapia industry has grown into a significant 17 

aquaculture industry spread over 120 tropical and sub-tropical countries around the 18 

world accounting for 7.4% of global aquaculture production in 2015. Across species, 19 

genomic selection has been shown to increase predictive ability and genetic gain, 20 

also extending into aquaculture. Hence, the aim of this paper is to compare the 21 

predictive abilities of pedigree- and genomic-based models in univariate and 22 

multivariate approaches, with the aim to utilize genomic selection in a Nile tilapia 23 

breeding program. A total of 1444 fish were genotyped (48,960 SNP loci) and 24 

phenotyped for body weight at harvest (BW), fillet weight (FW) and fillet yield (FY). 25 

The pedigree-based analysis utilized a deep pedigree, including 14 generations. 26 

Estimated breeding values (EBVs and GEBVs) were obtained with traditional 27 

pedigree-based (PBLUP) and genomic (GBLUP) models, using both univariate and 28 

multivariate approaches. Prediction accuracy and bias were evaluated using 5 29 

replicates of 10-fold cross-validation with three different cross-validation approaches. 30 

Further, impact of these models and approaches on the genetic evaluation was 31 

assessed based on the ranking of the selection candidates. 32 

Results 33 

GBLUP univariate models were found to increase the prediction accuracy and 34 

reduce bias of prediction compared to other PBLUP and multivariate approaches. 35 

Relative to pedigree-based models, prediction accuracy increased by ~20% for FY, 36 

>75% for FW and >43% for BW. GBLUP models caused major re-ranking of the 37 

selection candidates, with no significant difference in the ranking due to univariate or 38 

multivariate GBLUP approaches. The heritabilities using multivariate GBLUP models 39 
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for BW, FW and FY were 0.19 ± 0.04, 0.17 ± 0.04 and 0.23 ± 0.04 respectively. BW 40 

showed very high genetic correlation with FW (0.96 ± 0.01) and a slightly negative 41 

genetic correlation with FY (-0.11 ± 0.15). 42 

Conclusion 43 

Predictive ability of genomic prediction models is substantially higher than for 44 

classical pedigree-based models. Genomic selection is therefore beneficial to the 45 

Nile tilapia breeding program, and it is recommended in routine genetic evaluations 46 

of commercial traits in the Nile tilapia breeding nucleus.47 
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Background 48 

Over the past three decades, Nile tilapia (Oreochromis niloticus) industry has grown 49 

into a significant aquaculture industry spread over 120 tropical and sub-tropical 50 

countries around the world accounting for 7.4% of global production in 2015 [1]. Nile 51 

tilapia has also been called the “aquatic chicken” [2] as it is well-suited for 52 

aquaculture in wide range of trophic and ecological adaptations, from backyards to 53 

intensive cages. Since the early days, the industry has recognized the potential 54 

gains from selective breeding and the challenge was to develop a strain, suitable for 55 

production across varieties of production environments. This led to the establishment 56 

of the Genetically Improved Farmed Tilapia (GIFT) base strain in early 1990s by the 57 

crossing of 8 different Nile tilapia strains from Africa and Asia [3]. This GIFT strain 58 

has been widespread over the world and serves as the base in majority of the 59 

farmed Nile tilapia. GenoMar Supreme Tilapia (GST®) strain was derived from GIFT 60 

and has undergone 27 generations of selection for growth, fillet yield and 61 

robustness. 62 

For a long time, the aquaculture breeding industry has relied on pedigree information 63 

for genetic improvement, but in the last half-decade, top international breeding 64 

companies have started to use routine genomic selection and other genomic 65 

technologies in their genetic improvement programs for Atlantic salmon [4], catfish 66 

[5], common carp [6] and rainbow trout [7]. Tilapia has two genome assemblies [8,9], 67 

five linkage maps of varying resolutions constructed using different types of markers 68 

[10–14] and two recent 50K SNP-Arrays [14,15]. With these recent developments in 69 

SNP-Arrays and HD linkage maps being supported by the commercial industries, it is 70 

believed that this has opened a new door of the genomic era in Nile tilapia also. 71 
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Genomic selection helps to utilise the within- and between-family variation in the 72 

population, even for sib-evaluated traits. For such traits, the pedigree-based classical 73 

selection methods are just able to utilise between-family variation [16]. Across 74 

species, including aquaculture, genomic selection methods has been shown to 75 

increase the predictive ability and genetic gain by deriving more accurate breeding 76 

values [17,18]. Hence, the first aim of this paper is to perform genetic analysis using 77 

either genomic and pedigree-based information in univariate and multivariate 78 

statistical models for the commercial traits in Nile tilapia. The second objective is to 79 

compare the predictive abilities of the pedigree- and genomic-based models. 80 

Methodology 81 

Experimental design and rearing procedure 82 

The study was carried out on generation 26 of the GST® strain of Nile tilapia, which 83 

is a continuation of the GIFT program [3]. Each generation of GST® consists of 8 84 

batches that follow a revolving breeding scheme where males from batch n are 85 

mated to females from batch n-1. This way only about 30 families are produced in 86 

each batch, significantly reducing the age difference within a batch compared to 87 

spawning all the 250 families in a generation at once. The families in one batch were 88 

created by mating the selected parents in a 1:1 mating design, where one male and 89 

one female were placed in a small breeding hapa. After mating, eggs were collected, 90 

and the families were kept separate until hatching.   91 

After hatching, 40 fries were randomly selected from each family and pooled 92 

together, which were then reared in a nursery pond for 4 weeks and treated with 93 

hormones to produce an all-male population, mimicking the normal practice in 94 
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commercial operations. After the nursery stage, they were then transferred to larger 95 

pond for a 30 week grow-out period. 96 
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Figure 1: Dates showing different stages of lifecycle in Nile tilapia. The population 98 

were reared in 8 different batches during 2017-18 99 

Harvesting 100 

Fish from the experiment were grown for the entire 30-week period without any 101 

selection. At the end, all the surviving fish were slaughtered and measured for three 102 

commercial traits: body weight at harvest (BW), fillet weight (FW) and fillet yield (FY).  103 

Pedigree 104 

True pedigree was unavailable, since all the offspring were reared communally 105 

immediately after hatching to reduce the maternal environmental and/or full-sib 106 

and/or tank effects. Thus, lateral fin clips were obtained for microsatellite parentage 107 

assignment and pedigree was constructed as described in [19]. This is the routine 108 

pedigree construction method in the commercial production of GST® strain and 109 

micro-satellite constructed pedigrees were available for the last 14 generations (i.e. 110 

pedigree back to generation 12 with the records of 110,900 fish). Since one male 111 

was mated to 1 female in each of the 253 families, only full-sibs were present in the 112 

dataset.  113 

Genotypes:  114 

Lateral fin clips were obtained for DNA extraction during harvesting. DNA extraction 115 

was done at BioBank (https://biobank.no/) and sent to CIGENE lab, NMBU 116 

(https://cigene.no/) for genotyping using Onil50® array [14]. The raw dataset 117 

contained 58,466 SNPs. Of these, 50,275 SNPs (86.75%) were classified as 118 

“PolyHighResolution” (formation of three distinctive clusters of homozygous and 119 

heterozygous genotype) and “NoMinorHom” (formation of two distinctive clusters 120 

with one homozygous genotype missing) using Axiom Analysis Suite Software [20]. 121 
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These high-resolution genotypes were further cleaned for low minor allele frequency 122 

(MAF <0.05) using PLINKv1.07 [21] and the remaining 48,960 SNPs (83.74%) were 123 

used for genomic analysis. Similarly, 3 animals were filtered for low genotyping call 124 

rate (individual call rate <0.9) and only the 1444 animals with the phenotype, 125 

pedigree and genotypes were used for further statistical analysis. The final dataset 126 

contained 188 full-sib families with an average of 7.68 offspring per full-sib family 127 

(range 1 to 15; standard deviation = 4.48). 128 

Statistical analysis 129 

Statistical analysis for three commercial traits was performed using two different 130 

approaches, namely univariate and multivariate, and two different models (PBLUP 131 

and GBLUP) within each approach; as described below 132 

Univariate approach 133 

DMUv6 [22] was used to fit mixed linear models, using REML to estimate the 134 

variance components, heritability and the breeding values. Univariate BLUP models 135 

were used for the three commercial Nile tilapia traits described as; 136 

y = Xb + Zu + e 137 

where, y is the vector of phenotypes, b is the vector of fixed effects that account for 138 

batch (7 levels), difference of age during harvesting (15 levels), filleter for the traits 139 

FW and FY (2 levels); u is the vector of random genetic effects; e is the vector of the 140 

residual errors; and X and Z are the corresponding design matrices for the fixed and 141 

random effects. For PBLUP, the distributional assumption of the random effects was 142 

multivariate normal, with mean zero and 143 

��� ���� � 	
��� 00 ���� 
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Where, ��� and ��� are additive genetic variances and residual variance respectively, 144 

A is the numerator relationship matrix obtained using micro-satellite generated 145 

pedigree and I is an identity matrix. The phenotypic variance was calculated as 146 

��� � ��� � ��� and the heritability (h2) was calculated as the ratio of ���  and ���. 147 

For GBLUP, the numerator relationship matrix A was replaced with the genomic 148 

relationship matrix (G). The G matrix was constructed [23] as follows: 149 

� � ���∑ ∑ 2���1 � ����
�

 

where � is a centered marker matrix, the sum in the denominator is over all loci and 150 

�� is the allelic frequency at locus i. 151 

Multivariate approach 152 

Multivariate models were built on the univariate models and are described as; 153 

���	�
	�
� � � �� 0 00 � 00 0 �� ���	�
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	�
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where, the symbols represent the same vectors as described in the univariate 154 

analysis, with the subscripts BW, FW and FY denoting the traits the vectors are 155 

associated with. For PBLUP models in multivariate approach, the distributional 156 

assumption of the random effects are structured as; 157 
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The symbols represent the same variance components as described in the 158 

univariate analysis with the subscripts denoting the trait the variance components 159 

are associated with. The elements �����,��	 and �����,��	 denotes the genetic and 160 

residual covariances between two traits, with the subscripts. 161 

For GBLUP models, the numerator relationship matrix was replaced by the genomic 162 

relationship matrix (G). 163 

Predictive ability 164 

Comparison between the predictive ability of PBLUP and GBLUP models was 165 

performed by both univariate and multivariate approaches using 5 replicates of 10-166 

fold cross validation in different cross-validation methods. 10-fold cross validation 167 

allows us to mask the phenotypes of ~10% of animals, which is predicted using the 168 

phenotypes of the rest of the 90% phenotypes. 169 

Three different cross-validation methods were used to quantify the prediction 170 

accuracy of the models. With the “random cross-validation” method, the dataset was 171 

randomly divided into 10 batches, predicting one batch at a time using the 172 

phenotypes of the remaining 9 batches. Similarly, with “within family cross-validation” 173 

method, the phenotypes of (as close as possible to) 10% of the animals within a full-174 

sib family are masked and phenotypes of the unmasked members of the family and 175 

other families are used to predict the masked phenotype. This scenario is important 176 

with the sib-testing strategy usually done for invasively measured traits like FY. 177 

Finally, with the “across family cross-validation” method, the phenotypes of all the 178 

animals in a full-sib are masked and the phenotypes of the individuals from other 179 

families are used to predict the masked phenotype. This scenario is appropriate 180 
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where phenotype collection for all the population is very expensive and we measure 181 

the phenotypes in few families only or in different cohorts of fish. 182 

Predictive ability of the GBLUP and PBLUP models were calculated as the 183 

Pearson’s correlation between GEBVs or EBVs of all predicted phenotypes adjusted 184 

for the fixed effects in one replicate. Results were averaged over the 5 replicates. 185 

The obtained mean value of correlation was converted to the expected prediction 186 

accuracy by dividing the correlation coefficient by the square root of the heritability. 187 

Heritabilities obtained from multivariate genomic models were used to assess the 188 

prediction accuracy. Standard error of prediction accuracy was calculated as [24]; 189 

1 � ��*+,-.,/0 �--1��-2�3!/. /5 ��6,+�.,/0 �0,7�68 � 1 

In addition, regression coefficient of phenotypes adjusted for the fixed effects on 190 

GEBVs or EBVs were used as to assess the bias of the prediction. Theoretically, a 191 

regression coefficient of 1 indicates unbiased prediction, whereas the value <1 192 

indicates inflation of GEBV or EBV and >1 indicates deflation of GEBV or EBV. The 193 

mean value and standard error of the mean of the regression coefficient was 194 

calculated from the five replicates. 195 

196 
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Results 197 

Descriptive Statistics 198 

Descriptive statistics for the three traits: BW, FW and FY are presented in Table 1. 199 

The mean (± standard deviation) phenotypic measurements for BW, FW and FY 200 

were 817.37 (± 261.11) g, 300.01(± 107.34) g and 36.40% (± 2.5%), respectively. 201 

The coefficient of variation ranged from about 7% for FY to as high as 36% for fillet 202 

weight. The scatterplot and phenotypic correlations between the traits are presented 203 

in Supplementary Figure S1. 204 

Table 1: Descriptive statistics for the three commercial traits of Nile tilapia 205 

 Units Min Max Median Mean Mean (SE) SD CV% 

BW g 138.70 1893.70 780.30 817.37 6.87 261.11 31.95 

FW g 39.10 754.60 284.25 300.01 2.82 107.34 35.78 

FY % 20.83 46.64 36.56 36.40 0.07 2.50 6.90 

Note: Min is the smallest phenotype, Max is the largest phenotype, SD is the 206 

standard deviation, SE is the standard error and CV is the coefficient of variation 207 

expressed as percentage. The traits BW represents body weight at harvest, FW 208 

represents fillet weight and FY represents fillet yield. 209 

Estimates of heritabilities 210 

Estimates of variance components and heritabilities using univariate and multivariate 211 

approaches are presented in Table 2, whereas the genetic and phenotypic 212 

correlation between the traits obtained using multivariate approach is presented in 213 

Table 3. All the traits were found to have medium heritabilities. GBLUP models were 214 

found to give lower heritability estimates compared to PBLUP models in both 215 
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univariate and multivariate approaches. Heritabilities using multivariate approach 216 

were slightly higher for the traits BW and FW, compared to univariate approach.  217 

The results indicated a slightly unfavorable genetic correlation between FY and BW 218 

(albeit non-significantly different from 0). The genetic correlations with the trait FY 219 

was higher for PBLUP models in multivariate approach, compared to GBLUP. 220 

Table 2: Heritabilities and variance parameters for PBLUP and GBLUP models using 221 

univariate and multivariate approaches.  222 

Approaches Traits Model  σ
2
a σ

2
e σ

2
p h2 se σ

2
a* h2* 

Univariate BW PBLUP 7131 25394 32525 0.22 0.06 7262 0.22 

BW GBLUP 5467 26742 32209 0.17 0.04 5437 0.17 

FW PBLUP 1230 4076 5306 0.23 0.06 1253 0.24 

FW GBLUP 842 4384 5226 0.16 0.04 837 0.16 

FY PBLUP 1.80 3.69 5.49 0.33 0.07 1.83 0.33 

FY GBLUP 1.21 4.13 5.34 0.23 0.04 1.21 0.23 

Multivariate BW PBLUP 9279 24068 33348 0.28 0.06 9449 0.28 

BW GBLUP 6168 26366 32534 0.19 0.04 6134 0.19 

FW PBLUP 1488 3930 5419 0.27 0.06 1516 0.28 

FW GBLUP 899 4369 5268 0.17 0.04 894 0.17 

FY PBLUP 1.82 3.68 5.50 0.33 0.07 1.85 0.33 

FY GBLUP 1.26 4.11 5.37 0.23 0.04 1.25 0.23 

Note: σ2
a* and h2* are the additive genetic variance and heritability corrected to the 223 

base generation as per [25] . The additive variance was multiplied by mean of 224 

corresponding diagonal relationship matrix – mean of the corresponding relationship 225 

matrix and the heritability was calculated based on this variance parameter. The 226 
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mean of the diagonal and whole matrix for A were 1.018322 and 0, and for G were 227 

0.9951903 and 0.000689405 respectively. 228 

Table 3: Heritabilities, phenotypic and genetic correlation using multivariate 229 

approach.  230 

PBLUP  BW FW FY GBLUP BW FW FY 

BW 0.28 ± 0.06 0.96 ± 0.01 0.23 ± 0.02 BW 

0.19 ± 0.04 

0.96 ± 

0.01 

0.23 ± 

0.02 

FW 0.96 ± 0.01 0.27 ± 0.07 0.47 ± 0.02 FW 

0.96 ± 0.01 

0.17 ± 

0.04 

0.47 ± 

0.02 

FY -0.04 ± 0.17 0.23 ± 0.16 0.33 ± 0.07 FY -0.11 ± 

0.15 

0.19 ± 

0.15 

0.23 ± 

0.04 

Note: The values on the left (4x4 square) are the estimates from PBLUP models, 231 

whereas the values on the right (4x4 square) are based on GBLUP. Heritabilities are 232 

presented in the diagonal, genetic correlations below the diagonal and phenotypic 233 

correlations above the diagonal. The standard errors are presented after ± sign. 234 

Impact on the genetic evaluation 235 

The correlation of the EBVs and/or GEBVs using two different approaches, namely 236 

univariate and multivariate, and two different models (PBLUP and GBLUP) within 237 

each approach are presented in Figure 2.  238 

In general, the use of multivariate vs. univariate approaches affected the ranking of 239 

the breeding values, with correlations between EBVs/GEBVs ranging 0.86 to 0.98. 240 

There was less reranking among GBLUP univariate and multivariate approaches, 241 

compared with the PBLUP. Further, models within the same approach (i.e. PBLUP 242 

and GBLUP models within univariate and multivariate approaches) for three different 243 

traits revealed similar correlation in the range of 0.80 to 0.83. In overall, FY had 244 
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higher correlation between models and approaches and BW had lowest correlation 245 

between models and approaches. Thus, FY showed the least differences and BW 246 

showed the major differences in the genetic evaluation by the use of different models 247 

and approaches, based on correlation of the EBVs. A lower correlation may indicate 248 

that careful selection of the model and approach has to be done, so that the genetic 249 

gain can be maximised. 250 

These differences in the estimated breeding values also brought the change in the 251 

ranking of the 100 best animals (see table in the bottom right axis in Figure 2). Using 252 

PBLUP univariate approach as the reference group, major changes in the top 100 253 

animals were observed using different models (PBLUP and GBLUP) and 254 

approaches (univariate and multivariate). GBLUP was less sensitive to 255 

univariate/multivariate modelling and the changes were more pronounced when 256 

going from PBLUP to GBLUP, which is consistent with the outcomes of the 257 

correlation of the breeding values. No major differences in the list of top 100 animals 258 

were observed using GBLUP univariate and GBLUP multivariate approaches, as 259 

these approaches also had the highest correlation of the estimated breeding values. 260 

These observations were similar across all the traits. 261 
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 262 

Figure 2: Impact of different models and approaches on the genetic evaluation. The 263 

models with univariate approach are shown as PBLUP and GBLUP, whereas the 264 

models with multivariate approaches have suffix “multi” in the models. The first three 265 

figures show the scatterplot and correlation between the EBVs and GEBVs for 3 266 

different traits. The table on the bottom right axis shows the impact of model choice 267 

for the top 100 animals after ranking the animals based on EBVs or GEBVs. Since 268 

the comparison is based on PBLUP model in univariate approach, the 0 for PBLUP 269 

is by definition. 270 
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Prediction accuracy 271 

Estimates for the prediction accuracy in different cross-validation methods are 272 

presented in Figure 3. As expected, prediction accuracy was lower in “across-family” 273 

and similar in “random” and “within family” cross validation methods, for all three 274 

traits. Prediction accuracies using PBLUP models in across-family cross validation 275 

methods were found to be very low, while GBLUP models increased the prediction 276 

accuracy by 119% for FY to as high as 759% for BW. This huge increase in 277 

accuracy is expected, as the PBLUP models have very limited potential for across-278 

family prediction in this material (no half-sibs available). For both random and within-279 

family cross-validation methods, GBLUP models were found to increase the 280 

prediction accuracy by ~20% for FY, >75% for FW and >43% for BW, compared to 281 

PBLUP models in univariate approach. Similar differences were found using PBLUP 282 

and GBLUP models in multivariate approach. In the majority of the cases (GBLUP 283 

and PBLUP), going from univariate to multivariate models did not improve prediction 284 

accuracy. However, for traits BW and FW in random cross-validation approach, a 285 

GBLUP multivariate model was found to slightly increase the prediction accuracy. In 286 

contrast, PBLUP multivariate models performed worse than univariate models, even 287 

giving negative prediction accuracy for BW and FY using the across-family cross 288 

validation method. 289 

Prediction bias 290 

Estimates for the prediction bias using PBLUP vs GBLUP models in different cross-291 

validation methods are presented in Figure 3. Pedigree based models were found to 292 

inflate the estimated breeding values compared to GBLUP models. The prediction 293 

bias showed similar pattern to the prediction accuracy across all the models and 294 

methods. The PBLUP multivariate models were negatively biased for BW and FW in 295 
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the across model cross-validation method.296 

 297 

Figure 3: First figure showing accuracy of prediction and second one showing 298 

prediction bias. “Across family cross-validation” method is presented as “across”, 299 

“within family cross-validation” method as “within” and “random cross-validation” 300 

method as “random. The models with univariate approach are shown as PBLUP and 301 

GBLUP, whereas the models with multivariate approaches have suffix “multi” in the 302 

models. The lines in the bar charts represent ± standard errors. 303 

 304 

.CC-BY-NC-ND 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under 

The copyright holder for this preprint (which was notthis version posted August 5, 2019. ; https://doi.org/10.1101/725143doi: bioRxiv preprint 

https://doi.org/10.1101/725143
http://creativecommons.org/licenses/by-nc-nd/4.0/


20 

 

Discussion 305 

Genomic heritabilities have previously been reported for the commercial traits in Nile 306 

tilapia [26,27], but these studies fail to report the predictive abilities of the genomic 307 

and pedigree based models. In another study, increase in prediction accuracies was 308 

indeed reported for Nile tilapia [28], based on univariate single-step GBLUP models. 309 

Thus, to the best of our knowledge this is the first report comparing prediction 310 

accuracy using both univariate and multivariate approaches with GBLUP models and 311 

pedigree-based models in Nile tilapia. Thereby, these are the first reports on 312 

heritabilities and correlations using multivariate genomic models. 313 

Genomic selection increases prediction accuracy in Nile tilapia 314 

The increase in the prediction accuracy using GBLUP models, is due to the more 315 

accurate construction of the relationship matrices with better estimation of the 316 

Mendelian sampling effects using genomics (Figure 4). Using PBLUP models all full-317 

sibs (without own phenotype) have identical EBVs, which is the parental average. 318 

Whereas, GBLUP can capture the Mendelian segregation among the full-sibs and 319 

the putatively best (unphenotyped) candidates within a full-sib family can be 320 

identified. This explains the very low accuracy (near to 0) in across-family cross-321 

validation methods using PBLUP. Thus, the benefit of using genomics to predict the 322 

breeding values is very significant for invasive traits, where the breeding values of 323 

the animals in different full-sib families might have to be predicted based on 324 

phenotypes on other full-sib families. For example, disease challenge test in a 325 

handful of full-sib families due to expensive phenotype measurement. 326 
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 327 

Figure 4: Distribution of GEBVs (g) for BW in a family with 15 offspring. The cross-328 

validation using PBLUP predicted only one breeding value (shown as a horizontal 329 

line) for all the full-sibs. Whereas the GBLUP predicted different breeding values for 330 

all the full-sibs based on Mendelian segregation.  331 

The lower prediction accuracy for the traits BW and FW, compared to FY across all 332 

the models and approaches may be related to the heritability and the genetic 333 

architecture of the trait [29,30]. The expected accuracy of prediction has been given 334 

as [31,32]: 335 

�� � !9�!9� � 4!�; 

where, r is the accuracy of prediction, N is the number of animals in the training set, 336 

h2 is the heritability, Ne is the effective population size and L is the genome size in 337 

Morgan. Given the same training set and phenotypes being measured in the same 338 

animals, accuracy of prediction decreases with the decrease in heritability [33]. Joshi 339 
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et al. [19,34] have shown the substantial contribution of non-additive genetic effects 340 

and maternal effects for BW and substantial contribution of maternal effects for FW 341 

in Nile tilapia. Thus, for BW and FW, maternal effect and non-additive genetic effects 342 

are part of the genetic architecture, but the model used cannot separate these 343 

effects in our data, which may affect predictive ability. Whereas, the trait FY was 344 

shown to favor simple additive model, like the model we have used in this study. 345 

Hence using the model corresponding to its genetic architecture might have 346 

increased the prediction accuracy for FY, compared to BW and FW.  The mating 347 

design used in the current study made it impossible to fit complicated models to 348 

separate non-additive and maternal effects. 349 

Further, the prediction accuracy for these commercial traits is somewhat lower than 350 

that have been reported in Nile tilapia [28] and other species [5,6]. One of the 351 

reasons for this might be our data structure. In the study we have 20 full-sib families 352 

with only one observation per family and a few more families with only 2 or 3 animals 353 

per family. Prediction of the phenotypes for the individuals in these families based on 354 

the information from other families gives lower accuracy, which might have affected 355 

our overall value of the prediction accuracy. Another reason for overall lower 356 

prediction accuracy might be the sample size. It has been stated that 2NeL number 357 

of animals are required to achieve accuracies higher than 0.88 [33], and the 358 

accuracy decreases with the decrease in the sample size and vice versa. In GST® 359 

strain of Nile tilapia, this suggests that we need at least 2304 animals  (Ne= 83 360 

(unpublished result) and L= 14.70 [14]) in training set for higher prediction accuracy, 361 

but this study uses 1444 samples. 362 
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Multivariate approaches were not found to increase the prediction accuracy in Nile 363 

tilapia 364 

Multivariate approaches account for the genetic and phenotypic correlation between 365 

the traits and are supposed to increase the prediction accuracy and decrease the 366 

bias [35] depending on the genetic correlation between the traits. On one hand, 367 

various studies have shown an increase in prediction accuracy for traits with low 368 

heritabilities, when used together with a correlated trait of higher heritability [36]. On 369 

the other hand, it has also been shown that when the genetic correlation between 370 

the traits is low (like BW and FY in our case), there is no improvement in accuracy 371 

using multivariate approaches over univariate approaches [37,38]. No consistent 372 

differences in the prediction accuracy was found between univariate and multivariate 373 

GBLUP models which might also be related to the types of traits used in this study. 374 

The three traits studied are not independent, as FW is a part of BW, while FY is a 375 

ratio of the two former traits. 376 

The obvious question now is; which method is the best and should be used in the 377 

evaluation in the current Nile tilapia breeding program. Theoretically, the models 378 

giving best prediction value, minimising mean-squared error and giving unbiased 379 

estimates of the EBVs should be used [42,43], whereas practically this also depends 380 

on the selection schemes, for example the selection among the single generation of 381 

individuals, like in Nile tilapia, depends only in the prediction accuracy, as they share 382 

the common mean and bias is not concern. Whereas, it is strongly recommended to 383 

consider bias in the selection of the prediction model, if the aim is to compare 384 

between multiple generations and to predict the genetic potential of the young 385 

animals [39]. 386 
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Estimates of variance components and heritabilities 387 

Our study showed moderate heritabilities for BW, FW and FY, which have also been 388 

reported in previous studies [19,26,28,34,44–46]. Similarly, the genetic and 389 

phenotypic correlations between the traits are similar to what has been published 390 

earlier [47], but there are some studies indicating a positive genetic correlation 391 

between BW and FY [44,46], while our estimates are negative. Negative genetic 392 

correlation between BW and FY suggests a relatively larger increase in head, gut 393 

and/or skeleton tissues with increasing body size, which is undesirable. Few studies 394 

recognize that the variance parameters and the corresponding heritabilities obtained 395 

using different relationship matrices, for example numerator and genomic 396 

relationship matrices in PBLUP and GBLUP models in our study, are different 397 

estimates for different base population. Hence, re-scaling of the relationship matrices 398 

to the same base population [25] is necessary to make sense of the comparison as it 399 

has been shown that the large differences in the pedigree and genomic based 400 

heritabilities can be accounted for by this difference [25,34,48]. Hence, it will not be 401 

wise to compare our estimates of heritabilities with the published estimates without 402 

converting them to the same base (these kinds of estimates are difficult to come by 403 

for Nile tilapia). 404 

The difference in heritabilities using PBLUP and GBLUP models were high in the 405 

univariate approach compared to the multivariate approach. Comparing the 406 

heritabilities based on different approaches, FY gave similar heritabilities for both 407 

multivariate and univariate approaches, given the same model. For BW and FW, 408 

multivariate models gave slightly higher (but not significantly different) heritabilities 409 

compared to univariate models, whereas PBLUP models gave generally higher 410 

heritabilities compared to GBLUP models. This suggests that the markers used in 411 
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GBLUP was not able to capture all genetic variance (especially if the family structure 412 

is not that strong). 413 

An earlier study [34] has also shown the higher pedigree based heritabilities 414 

compared to genomics for these three traits (which were scaled to the same base) 415 

for the population out-crossed from generation 22 of the GST® strain (in this study 416 

we are using generation 27 of the GST® strain). Comparing the value of the 417 

estimates, heritabilities obtained using GBLUP models in our study were similar to 418 

theirs, whereas the heritabilities using PBLUP in our study was lower than theirs. 419 

CONCLUSION: 420 

Genomic selection is beneficial to the Nile tilapia breeding program as it increases 421 

prediction accuracy and gives more unbiased estimates of the breeding values 422 

compared to the pedigree. It is recommended to use an univariate GBLUP approach 423 

in the routine genetic evaluation for the commercial traits in Nile tilapia. 424 

425 
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List of abbreviations 426 

Acronym Full Form 

BW Body Weight at Harvest 

FW Fillet Weight 

FY Fillet Yield 

GBLUP Genomic Best Linear Unbiased Prediction 

GST GenoMar Supreme Tilapia  

G(EBVs) (Genomic) Estimated Breeding Values 

PBLUP Pedigree Best Linear Unbiased Prediction 
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Supplementary 578 

 579 

Figure S1: Scatterplots and correlation between different phenotypes. Phenotypic 580 

correlation between the traits is not corrected for fixed effects in the plot. Table 3 581 

shows the phenotypic correlation corrected for fixed effects.  582 
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