








Supplementary Figure 13 - Effect of PL-NAc optogenetic stimulation in two cohorts. (a) Schematic of optical
stimulation parameters for cohort 1. On 10% of unrewarded trials, optical stimulation began when the mouse entered the
central nosepoke and ended 1s into the intertrial interval (ITI), which began at the end of the 500ms CS– tone. On 10% of
rewarded trials, stimulation began with nose poke and ended after the mouse left the reward port. (b) Schematic for cohort 2.
Unlike cohort 1, optical stimulation ended on the same timescale on both rewarded and unrewarded trials, 1s after the end of
CS presentation. (c) Logistic regression model similar to that in Figure 1e demonstrating the effect of PL-NAc stimulation on
lever choice in cohort 1 mice (n=10 mice, see Methods for model details). Rewarded trials with stimulation one and two trials
back decreased stay probability compared with rewarded trials without stimulation. Stimulation had an opposite effect on
unrewarded trials, for which there was an increase in stay probability following stimulation one trial back compared to trials
without stimulation. (d) Same as c except data from cohort 2 (n=4 mice). Effect of optical stimulation of PL-NAc neurons was
qualitatively similar across the two cohorts.
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Supplementary Figure 14 - Similar RPE signatures for ideal observer and Q-learning simulation during reversal
learning. Given previous evidence that dopamine signals can reflect knowledge of task structure (Bromberg-Martin et al.,
2010; Sadacca et al., 2016), we used modeling to gain insight into how clearly RPE in the probabilistic reversal learning task
(a bandit task) can indicate the use of model-based inference of block reversals for different reward probability structures.
This was done by simulating task performance using an ideal observer model with knowledge of the block structure, and a
Q-learning model which did not have information about the block structure (see Methods for more details). a-d) To confirm
that our ideal observer simulation captured a previously reported RPE signature of model-based block reversal inference,
we first simulated behavior of 100,000 trials of a task similar to that used in Bromberg-Martin et al. (2010). (a) In this task,
one option was rewarded 100% of the time while the other was never rewarded, and the identity of the high probability
choice randomly reversed with a probability of 0.05 on each trial. (b) Example performance of the ideal observer simulation
(top) and the Q-learning simulation (bottom). Choice is determined by the difference between expected reward for the

available actions, , for the ideal observer and the difference between the action values, , for the Q-learning simulation
(these values are plotted in gray). (c) To evaluate RPE signatures of model-based block reversal inference, we compared the
estimated RPE (experienced reward minus expected reward for the chosen action) on trial 1 and trial 2 of the new block.
The RPE on trial 2 was low for the high probability choice in the new block even without direct experience of that
action-outcome pairing. This means that the ideal observer infers the block reversal, so the new, not yet experienced
reward contingency is expected and the RPE is low. (d) In contrast, because the Q-learning model only updates the value
of the chosen action, on trial 2, when the simulation is rewarded for the previously low-probability choice, the reward
remains unexpected and the RPE is high. e-i) Simulated performance of 100,000 trials using the reward probabilities from
this study. (e) The high probability action was rewarded 70% of the time while the low probability action was rewarded 10%
of the time and the blocks reversed according to the same rule as in a. (f) Example performance of the ideal observer (top)
and the Q-learning (bottom) simulations in this task. (g) To determine whether there is a strong qualitative RPE signature of
block reversal inference in this task, we compared RPE on the 4 possible trial-1 types to RPE on the subsequent rewarded
switch trials (i.e. choice on trial 2 was different than trial 1, meaning that any changes in RPE must be inferred). We focus on
rewarded trials to aid comparison with reward responses recorded in dopamine terminals during this task (Parker et al.,
2016). In this case, inference of the block reversal is not obviously reflected in the RPE, since the RPE for a given action on
trial 1 and trial 2 are similar (comparing the same color bars for rewarded actions on trials 1 and 2). This is because, even
though the ideal observer updates the predicted reward for both the chosen and unchosen actions, when reward delivery is
probabilistic, predicted reward remains moderate for both actions and RPE changes only subtly. (h) Same as in g for the
Q-learning simulation. As expected, RPE looks very similar on trial 1 and trial 2 for a given rewarded action because the
Q-learning simulation does not update the value of the unchosen action on trial 1. (i) Consistent with the results from both
simulations, GCaMP6f zscored dF/F from dopaminergic axons in the NAc recorded in Parker et al. (2016) is also very similar
for a given rewarded action on trial 1 and trial 2. Note that the mice did not make all possible choices in this task, so some
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trial types are missing. The simulations also rarely made these choices (e.g., switch following a rewarded new high
probability choice).
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