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Abstract 
Constructing antibody repertoires is an important error-correcting step in analyzing immunosequencing datasets that 
is important for reconstructing evolutionary (clonal) development of antibodies. However, the state-of-the-art 
repertoire construction tools typically miss low-abundance antibodies that often represent internal nodes in clonal 
trees and are crucially important for clonal tree reconstruction. Thus, although repertoire construction is a 
prerequisite for follow up clonal tree reconstruction, the existing repertoire reconstruction algorithms are not well 
suited for this task. Since clonal analysis has the potential to reveal errors in the constructed repertoires and 
contribute to constructing more accurate repertoires, we advocate a tree-guided construction of antibody repertoires 
that combines error correction and clonal reconstruction as interconnected (rather than independent) tasks. We 
developed the IgEvolution algorithm for simultaneous repertoire and clonal tree reconstruction and applied it for 
analyzing multiple immunosequencing datasets representing antigen-specific immune responses. We demonstrate 
that analysis of clonal trees reveals highly mutable positions that correlate with antigen-binding sites and light-chain 
contacts in crystallized antibody-antigen complexes. We further demonstrate that this analysis leads to a new 
approach for identifying complementarity determining regions (CDRs) in antibodies.  
 

Introduction 
Diversification of antibody repertoires is achieved by various processes that include V(D)J 
recombination, intergenic insertions, heavy and light chain pairing, and somatic hypermutagenesis. This 
paper focuses on somatic hypermutagenesis that introduces somatic hypermutations (SHMs) into evolving 
antigen-specific antibodies (secondary diversification of antibodies). After a successful antibody-antigen 
binding, the corresponding B-cell undergoes a cell division in a lymph node (clonal expansion) that aims 
to increase the pool of antibodies that bind to an antigen. At the same time, the activation-induced 
deaminase is activated in such B-cell and its clones to introduce SHMs into immunoglobulin genes. 
Although SHMs change the three-dimensional structure of an antibody (and thus its ability to bind to an 
antigen) in a random way, the regulatory mechanisms of the immune system play the role of the natural 
selection for maximizing the antigen-binding abilities of antibodies. They expand B-cells with high 
affinity to an antigen and kill self-reactive B-cells with potentially harmful mutations (Figure S1).   
 
Secondary diversification turns a naive antibody repertoire into a set of clonal lineages, where each clonal 
lineage is formed by descendants of a single naive B-cell. The immunoglobulin genes within the same 
clonal lineage share the same V(D)J recombination (including intergenic insertions and exonuclease 
removals) and differ by SHMs only. Reconstructing evolution of antibody repertoires using 
immunosequencing (Rep-Seq) datasets has important biomedical applications, such as evaluating vaccine 
efficiency, monitoring immune response, and optimizing antibody drugs.  
 
Evolution of B-cells in each clonal lineage is described by a clonal tree, where each vertex corresponds to 
a B-cell and each B-cell is connected by a directed edge with all its immediate descendants. Antibodies 
evolve under selection pressure that often results in convergent evolution (Thorsélius et al., 2006; 
Parameswaran et al., 2013; Jackson et al., 2014) when similar or identical antibodies are present in 
different repertoires. In the case of a single repertoire, convergent evolution is manifested in the identical 
mutations at the same position that occur multiple times in different branches of the clonal tree. 
Moreover, different paths in the tree may result in the same antibody produced by different B cells 
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(Krause et al., 2011; Wu et al., 2011). Analysis of convergent evolution within a single clonal lineage 
remains an open computational problem that requires accurate algorithms for clonal tree reconstruction.  
 
Emergence of Rep-seq technologies triggered developments of various clonal tree reconstruction 
approaches (Barak et al., 2008, Davidsen and Matsen, 2018) such as likelihood-based ImmuniTree (Sok 
et al., 2013) and IgPhyML (Hoehn et al., 2017) algorithms. Horns et al., 2016 proposed a minimum 
spanning tree (MST) algorithm for clonal tree reconstruction and applied it to barcoded Rep-seq datasets 
that were error-corrected using unique molecular identifiers (a similar MST-based BRILIA tool was 
developed by Lee et al., 2017).  
 
These approaches, while useful, have not adequately addressed the challenge of dealing with sequencing 
and amplification errors in Rep-seq datasets. Some algorithms for clonal tree reconstruction (such as 
IgPhyML) even assume that the antibody repertoire is error-free and thus propagate errors in Rep-seq 
datasets into the constructed clonal trees. Since various sample preparation artifacts introduce artificial 
diversity in Rep-seq datasets (thus complicating follow-up clonal tree reconstruction), correcting errors in 
these datasets (repertoire construction) is a prerequisite for all clonal tree reconstruction algorithms. 
However, Shlemov et al., 2017 demonstrated that the state-of-the-art repertoire construction tools perform 
well on background repertoires (that have not undergone the selection process after stimulation by the 
antibody-antigen binding) but deteriorate on stimulated repertoires (e.g., repertoires evolved in response 
to vaccination or disease), arguably the most important type of repertoires for various biomedical studies. 
Although some Rep-seq protocols include molecular barcoding step, most publicly available Rep-seq 
datasets (including studies of stimulated repertoires) do not contain molecular barcodes and thus remain 
poorly analyzed from the point of view of clonal tree reconstruction.  
 
We thus argue that generation of an antibody repertoire and clonal tree reconstruction are two 
interconnected problems that should be addressed together rather than independently as before. To 
integrate these problems, we developed the IgEvolution algorithm for simultaneous error correction and 
clonal tree reconstruction. Extending the BRILIA algorithm (Lee et al., 2017), IgEvolution decomposes a 
Rep-seq dataset into clonal lineages, constructs an MST for each clonal lineage, and analyzes leaves in 
the constructed trees to identify erroneous sequences. In difference from BRILIA that arbitrarily selects 
one of many MSTs (and does not correct some erroneous sequences), IgEvolution finds an MST that 
maximizes the number of leaves (leading to a more comprehensive error correction), and further performs 
an iterative (rather than a single round as in BRILIA) error correction.  
 
We applied IgEvolution for constructing clonal trees from multiple immunosequencing datasets. To 
analyze the constructed clonal trees, we introduced the concept of clonal mutability of each position in an 
antibody and analyzed whether highly mutable positions correlate with the antigen-binding sites and 
light-chain contacts in crystallized antibody-antigen complexes. Since paired datasets that contain 
information about an antibody repertoire and a crystallized antibody-antigen complex resulting from this 
repertoire are currently not available, we analyzed antigen-binding sites and light-chain contacts in all 
publicly available crystallized antibody-antigen complexes. Even though our Rep-seq datasets originate 
from different sources than antibody-antigen complexes, we show that highly mutable positions and 
positions with convergent SHMs derived from the clonal trees correlate with antigen-binding sites and 
light-chain contacts.  
 
We further use the concept of mutability to refine the bounds of CDRs computed using the existing 
similarity-based methods (Kabat et al., 1979; Chothia and Lesk, 1987; Giudicelli et al., 1997).  We 
demonstrate that CDRs identified by these algorithms often miss some antigen-binding sites, leading to 
“shrinkage” of these important regions. Also, these algorithms do not reflect the fact that some regions of 
CDRs rarely contribute to antigen-binding sites as compared to other regions, e.g., the first half of CDR1 
contributes to much fewer antigen-binding sites than its second path. Analyzing highly mutable positions 
in clonal trees provides an alternative to the classical similarity-based approach for identifying CDRs.   
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Finally, we illustrate how analysis of clonal trees may contribute to revealing alleles of germline IGHV 
genes that are associated with specific immune responses.  

Methods 
Limitations of existing repertoire construction tools. Repertoire construction is an important step for 
correcting sample preparation errors and finding putative receptor sequences among error-prone 
sequences in Rep-seq datasets. The existing repertoire construction tools, such as pRESTO (Vander 
Heiden et al., 2014), MiXCR (Bolotin et al., 2015), and IgReC (Shlemov et al., 2017) define the 
abundance of an antibody as the number of reads with the same (or nearly the same) sequence and further 
report high-abundance antibodies as putative receptor sequences. As a result, they typically reconstruct 
sequences from abundant B-cells but often miss low-abundance sequences representing evolutionary 
development of these B-cells that are important for clonal tree reconstruction.  
 
In the past, clonal analysis used the constructed repertoire to infer the clonal trees but never changed the 
initially constructed repertoire based on the insights gained during the clonal analysis. This is unfortunate 
since clonal analysis has the potential to reveal errors in the constructed repertoires and contribute to 
constructing more accurate repertoires. A more accurate repertoire allows one to generate a more accurate 
clonal tree, thus resulting in a feedback loop between repertoire construction and clonal analysis. We thus 
advocate a tree-guided construction of antibody repertoires that combines error correction and clonal 
reconstruction of an antibody repertoire as interconnected (rather than independent) tasks.  
 
Hamming graphs. Safonova et al., 2015 introduced the concept of the Hamming graph (HG) for 
representing similarities between sequences in a Rep-seq library. All reads with the same sequence in a 
library corresponds to a vertex in the HG and two vertices are connected by an (undirected) edge if the 
Hamming distance between them does not exceed a distance threshold. The weight of an edge is defined 
as the Hamming distance between vertices it connects. The abundance of a vertex is defined as the 
number of reads that contributed to this vertex.  
 
Since repertoire reconstruction tools attempt to identify reads derived from identical immunoglobulins, 
the IgReC tool (Safonova et al., 2015; Shlemov et al., 2017) uses a rather small default distance threshold 
for defining edges in the HG. Since clonal reconstruction tools attempt to identify reads derived from 
clonally related (rather than identical) immunoglobulins, IgEvolution increases this threshold as 
described in Supplemental Note “Constructing Hamming graphs for follow-up clonal tree 
reconstruction”.  

 
Tree-guided construction of antibody repertoires. IgEvolution constructs an MST of the HG and 
further analyzes it with the goal to iteratively remove vertices representing amplification and sequencing 
errors. A vertex in an MST is classified as a low-abundance vertex if either (i) its abundance is below 
minAbundance threshold (the default value is 5) or (ii) its abundance is at least ratioAbundance times 
lower than the abundance of one of its neighbors (the default value is 20). Supplemental Note “Setting a 
threshold for detecting low-abundance receptor sequences” describes how IgEvolution automatically 
selects a dataset-specific abundance thresholds depending on the number of PCR cycles applied during 
the sample preparation.  
 
Analysis of various immunosequencing datasets revealed that the vast majority of low-abundance vertices 
represent leaves of the MST. Moreover, many low-abundance leaves are organized into large star 
subgraphs, i.e., are connected to the same vertex in an MST. Figure 1 shows an MST of the largest HG 
for the of FLU1-4 dataset that contains 125,050 reads sampling a heavy chain repertoire taken from the 
same individual at different time points after flu vaccination (donor 4 from the FLU1 dataset described in 
Table S2). IgEvolution constructed 2406 clonal lineages, with the largest clonal lineage containing 12,445 
(328) reads before (after) removing low-abundance leaves.   
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We emphasize a distinction between low-abundance leaves (that likely represent 
amplification/sequencing errors or dead-end evolutionary developments) and low-abundance internal 
vertices in an MST that are important for reconstructing antibody evolution. Since the existing repertoire 
construction tools do not distinguish between these two types of low-abundance vertices, they often 
remove all low-abundance vertices and thus make it difficult to reconstruct clonal trees. In contrast, 
IgEvolution iteratively removes low-abundance leaves in the MST but preserves low-abundance internal 
vertices so that all low-abundance vertices in the resulting clonal tree belong to paths connecting high-
abundance vertices. Since there are usually multiple MSTs for a given HG, IgEvolution selects one of 
them as described in Supplemental Note “Prioritizing equally-weighted edges in the Hamming graph”. 
Supplemental Note “Performance of repertoire construction tools on clonally expanded datasets” reveals 
limitations of existing repertoire construction tools by benchmarking them on the FLU1-4 dataset.   

 
Figure 1. An MST of the largest Hamming graph in the of FLU1-4 dataset. IgEvolution iteratively deletes some 
low-abundance vertices (shown in pink) but retains low-abundance vertices shown in green (high-abundance 
vertices are shown in black). Black and blue edges represent the MST constructed after removing low-abundance 
vertices (an edge is pink if it is adjacent to a removed vertex). 265 black edges connect vertices with different amino 
acid sequences while 62 blue edges connect vertices with identical amino acid sequences (such vertices are glued in 
the clonal graph).  
 
From clonal tree to clonal graph. Nucleotide sequences in different vertices of the clonal tree may 
correspond to identical amino acid sequences. “Gluing” vertices with identical amino acid sequences 
transforms a clonal tree into a clonal graph that may contain cycles. Each vertex w of a clonal graph 
corresponds to a protein sequence and two vertices w and w’ are adjacent if there exist adjacent vertices v 
and w’ in the clonal tree such that (i) amino acid sequence of v coincides with w and (ii) amino acid 
sequence of v’ coincides with w’. In some cases, the clonal graph preserves the topology of the clonal tree 
(e.g., when gluing is limited to pairs of vertices that are connected by an edge in an MST (like for the 
graph in Figure 1). We say that a clonal graph was derived from a triplet of V, D, and J genes if nearly all 
sequences from this graph are aligned to these genes. See Supplemental Note “Types of clonal graphs”. 
 
From clonal graph to SHM graphs. IgEvolution aligns all sequences in the clonal graph to compare the 
amino acids occurring at the same position. Given a position i, we color each vertex of a clonal graph 
according to the amino acid at position i resulting in a colored clonal graph. We refer to an edge in a 
clonal graph as an i-unicolored edge if it connects two sequences with the same amino acid at position i.  
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Given an edge (v, w) in the graph, we define its contraction as substituting v and w by a single vertex u 
and adding edges connecting u with all vertices that v and w were connected with. Given a position i in a 
clonal graph, we define the SHM graph (referred to as SHMGraph(i)) as the result of contracting all i-
unicolored edges in the clonal graph. We define the multiplicity of a vertex in the SHM graph as the 
number of vertices in the clonal graph that were contracted into this vertex. We classify a vertex of an 
SHM graph as a low-multiplicity vertex if its multiplicity does not exceed a threshold multSHM (see 
Supplemental Note “IgEvolution parameters”). IgEvolution removes low-multiplicity leaves from the 
SHM graphs and refers to the remaining edges as salient SHMs. In contrast to the usual approach that 
simply counts the number of different amino acids at each position, this approach allows one to identify 
positions accumulating many SHMs.  
 
Figure 2 shows the colored clonal graphs for the largest lineage in the FLU1-4 dataset (with vertices 
colored according to amino acids) at position 34 (located in FR2) and 57 (located in CDR2) as well as 
SHM graphs SHMGraph(34) and SHMGraph(57). Both positions are characterized by several amino 
acids (4 amino acids at position 34 and 7 amino acids at position 57). However, as Figure 2 illustrates, 
SHMs affecting position 34 correspond to edges leading to low-multiplicity leaves that likely represent 
dead-end evolutionary development in this lineage. Thus, position 34 is characterized by a single 
dominant amino acid (Met) and zero salient SHMs. In contrast, position 57 is characterized by 5 
dominant amino acids and 19 salient SHMs. Thus, using SHM graphs, we can classify position 34 as 
conservative and position 57 as highly mutable.  
 
In general, we expect that positions participating in antigen binding are characterized by higher diversity 
of SHMs (as they reflect multiple optimizing steps in an antibody evolution) as compared to conservative 
positions that are mostly responsible for maintaining antibody’s stability. We thus define the mutability of 
a position in a clonal graph as the fraction of salient SHMs at this position among all salient SHMs.  
 
The challenge of SHM analysis. Given an antibody repertoire, a still unsolved problem is to figure out 
which SHMs in this repertoire are important for antibody-antigen binding and which ones represent 
“dead-ends” in an evolutionary development of a repertoire. The SHMs for a single antibody are defined 
as all differences between its sequence and the closest germline gene. Each such SHM is defined by a 
pair: the nucleotide (amino acid) position in the germline gene and the nucleotide (amino acid) 
corresponding to this position in the antibody (we refer to this approach as individual SHM counting). 
Previous studies assumed that all antibodies in a clonal lineage have the same length and defined the 
SHM-set for a clonal lineage as all such distinct pairs across all antibodies in a clonal lineage (we refer to 
this approach as lineage SHM counting). Note that individual and clonal SHM counting usually do not 
account for SHMs in CDR3s since it is difficult to infer which D gene and non-genomic insertions 
contributed to a given antibody.  
 
Many studies have analyzed the distributions of the number of SHMs across all individual antibodies 
(Wendel et al., 2017; Lee et al., 2019) or across all clonal lineages (Ellebedy et al., 2016; Nielsen et al., 
2019; Horns et al., 2019) in an antibody repertoire. These approaches, while valuable, face the difficulty 
of finding the closest D genes and identifying non-genomic insertions, leading to complications in 
deriving SHMs in CDR3s. Moreover, they do not account for the fact that SHMs arise on the edges of the 
clonal trees. As a result, they deviate from the classical approach to mutation analysis accepted in modern 
phylogenetics, corrupt real multiplicities of SHMs, and make it difficult to analyze convergent SHMs that 
shed light on functionally important antibodies.  

Stern et al., 2014 and Magri et al., 2017 argued that the lineage SHM counting approach is deficient and 
instead analyzed SHMs defined by all edges of a clonal tree. However, since it is not clear how to derive 
a repertoire for a clonal tree reconstruction, these studies used stringent thresholds for repertoire 
construction that resulted in rather small clonal lineages. Here, we describe a large-scale clonal graph 
based SHM counting across multiple clonal lineages and its applications to analyzing SHMs that affect 
antibody-antigen binding.  
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We computed the mutability of all positions in the amino acid sequences of the largest clonal graph of the 
FLU1-4 dataset (referred below as FluGraph) and compared it with the mutability computed using 
individual and lineage SHM counting approaches. Figure 3 shows that each approach reveals a different 
set of highly mutable positions. In the case of individual SHM counting, these positions correspond to 
early SHMs occurring in many sequences from the lineage and thus counted as SHMs in each of them. 
The lineage SHM counting approach provides a better estimate of mutability but fails to identify 
convergent SHMs and distinguish conservative positions (e.g., position 34 in Figure 2) from positions 
with high amino acid diversity (e.g., position 57 in Figure 2), thus overestimating the mutability of 
conservative sites.  

Position 34 (FR2) Position 57 (CDR2) 

 

  

  
Figure 2. Colored clonal graphs and corresponding SHMs graphs for amino acid position 34 in FR2 (left) and 
amino acid position 57 in CDR2 (right) in FluGraph. The color scale for twenty amino acids is shown at the top. 
Every vertex in the SHM graph corresponds to a unicolored component in the clonal graph. High-multiplicity (low-
multiplicity) vertices of the SHM graphs are shown as circles (squares).  
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Figure 3. Individual counting (left), lineage counting (middle), and clonal graph counting (right) applied to 
FluGraph. A bar at position i shows the mutability of position i in FluGraph. Red bars correspond to positions of 
CDRs according to the IMGT notation. 

Results 
Datasets. We used IgEvolution to analyze the following immunosequencing datasets (Table S1): 

● FLU 1: antibody repertoires of four humans taken at 7th, 14th, and 28th days after a flu 
vaccination (PRJNA324093 project, Ellebedy et al., 2016).  

● FLU 2: antibody repertoires of four humans taken after a flu vaccination (PRJNA512111 project, 
Horns et al., 2019). 

● INTESTINAL: intestinal antibody repertoires from four humans (PRJNA355402 project, Magri et 
al., 2017). 

We combined all samples corresponding to the same individual (see Supplemental Note 
“Immunosequencing datasets”) and launched IgEvolution on each combined dataset. A lineage is 
classified as large if it includes at least minReadNumber reads (the default value minReadNumber = 50). 
A clonal graph is classified as large if it includes at least minVertexNumber vertices (the default value 
minVertexNumber = 50). Table S2 shows that the number of clonal lineages is typically ~10 times smaller 
than the number of distinct reads in a Rep-seq dataset and that large clonal lineages form only 1–8% of 
the total number of clonal lineages (across all datasets). The clonal tree-based error correction 
significantly reduces the number of sequences and simplifies the choice of interesting clonal lineages (the 
average number of large clonal graphs across all datasets is 7). Supplemental Note “Clonal analysis of rat 
antibody repertoires” describes applications of IgEvolution to ten rat repertoires analyzed in VanDuijn et 
al., 2017).  
 
Mutability of CDRs and FRs. Mutabilities of positions in CDRs (corresponding to most antigen-binding 
sites) across 78 large clonal graphs vary by three orders of magnitude from 0.0005 to 0.26 with the 
median 𝑚𝑢𝑡$%& = 0.031. We say that a position i in a clonal graph is highly mutable if its mutability 
exceeds 𝑚𝑢𝑡$%&(see Supplemental Note “Finding highly mutable positions”).  
 
The mutability of a region is defined as the average mutability of positions in this region. Figure 4 shows 
the distribution of mutabilities across CDRs and FRs in 78 large clonal graphs and reveals that, as 
expected, the average mutability of CDRs (0.015) is higher than the average mutability of FRs (0.005). 
Somewhat surprisingly, CDR1s and CDR2s have higher average mutabilities than CDR3s and FR3s has 
similar mutability to CDR3, suggesting that there exist alternative antigen-binding sites in FR3.  
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Figure 4. Mutability of FRs and CDRs. (Top left) Mutability of FRs and CDRs across 78 large clonal graphs. 
(Top right, bottom left, bottom right) Mutability of CDR1–CDR3 and FR1–FR4 regions in the FLU1, FLU2, and 
INTESTINAL datasets. Since the reads from the FLU1 and INTESTINAL datasets do not cover the first 50 
nucleotides of FR1s, we normalized mutability by the length of the FR1 segment present in these datasets.  

Analysis of antibody-antigen 3D structures. Figure 3 suggests that some antibodies undergo extensive 
optimization at positions outside the conventional antigen binding sites. We thus analyzed three-
dimensional structures of all 745 crystallized human antibody-antigen complexes from the SAbDab 
database (Dunbar et al., 2014) to identify non-conventional antigen binding sites and to check whether 
they correlate with highly mutable positions revealed by IgEvolution. For each complex, we identified 
positions in the variable region of the heavy chain contacting the antigen (binding sites) and the light 
chain (contact sites) as described in Supplemental Note “Finding binding and contact sites in antibody-
antigen complexes” (Figure 5).  
 
As Figure 5 illustrates, binding and contact sites are often conserved among multiple antibodies. In 
contrast to CDR1 and CDR2 that contain binding sites (and hardly any contact sites), CDR3 contains both 
binding and contact sites. In contrast to FR1 that has hardly any contact sites, FR2 has many contact sites. 
Also the first 1–3 and the last 1–2 positions of FR2 often represent binding sites, suggesting that the 
IMGT definition of CDR1 and CDR2 misses some important positions. The first 1–8 and the last 1–7 
positions of FR3 also correspond to both binding sites (extending CDR2 and CDR3) and contact sites. 
Also, many FR3s contain non-conventional binding sites centered at distance 16 from the beginning of 
FR3 (this region named CDR4 in Kirik et al., 2017). The last position of FR4 corresponds to contact sites 
that are extended in constant regions.  
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Since the lengths of CDRs and FRs vary across different antibodies, below we explain how to select 
representative lengths for each CDR/FR and analyze mutability of positions in each CDR/FR region 
along its length.  
 
Highly mutable positions in clonal graphs correlate with binding and contact sites. To check whether 
highly mutable positions in clonal graphs correlate with binding and contact sites in antibodies, we limit 
the analysis to regions (FR1, CDR1, FR2, CDR2, FR3, and FR4) of the same typical length. For example, 
the FR1s has a typical length 25 aa in 74% (78%) of the crystallized antibodies (the clonal graphs). 86%, 
99%, 77%, 96%, and 95% of CDR1, FR2s, CDR2, FR3s, and FR4 have lengths 8, 17, 8, 38, and 11 aa 
across all heavy chain sequences in the crystallized antibodies. Below we refer to such equally-sized 
regions as typical regions. Note that the concept of typical length is not applicable to CDR3.   
 
Below we describe the joint analysis of all 3D antibody structures and clonal graphs for typical regions 
(FR1, CDR1, FR2, CDR2, FR3, and FR4). For each position in each typical region, we computed (i) the 
percentage of the structures where this position corresponds to a binding or/and a contact site, and (ii) the 
percentage of clonal graphs where this position is highly mutable. On average, a position is highly 
mutable in 𝑝𝑒𝑟𝑐𝑒𝑛𝑡$%& = 8% of clonal graphs.  
 
Finally, we analyze salient SHMs from all positions in each typical region. Each such SHM is defined by 
a pair: its position within a typical region and a new amino acid at this position. A multiplicity of a SHM 
is the number of times its pair appears in clonal graphs. We define a SHM as convergent if its multiplicity 
exceeds 𝑚𝑢𝑙𝑡$./ (the default 𝑚𝑢𝑙𝑡$./= 12 is the upper quartile of all SHM multiplicities).  
 
Analyzing highly mutable positions in CDR1. Figures 5 and 6 illustrate that some positions within 
typical CDR1 (8 aa long) have a large contribution to antigen binding (e.g., position 6 is a binding site in 
53% of antibodies) while some positions have a small contribution (e.g., each of positions 1, 2, and 4 is a 
binding site in less than 8% of antibodies). Figure 6 also shows that non-binding positions 1, 2, and 4 in 
CDR1 rarely mutate in the clonal graphs (these positions are classified as highly mutable in only 4 – 8% 
of clonal graphs), while the most frequent binding position 6 is also the most mutable among all positions 
(represents a highly mutable position in 36% of clonal graph). The binding sites with the highest 
mutability in CDR1 (positions 3, 5, and 6) feature the largest number of distinct SHMs (varying from 43 
to 64).  
 
Figures 6 and S2 shows the results of the same analysis applied to other regions except for CDR3 (since 
there is no typical length for CDR3s) and FR4 (since no clonal graph has highly mutable positions in 
FR4). This analysis revealed interesting properties that shed light on functions of various regions of 
antibodies (Supplemental Note “Analyzing highly mutable positions in typical FR1, FR2, and CDR2”). In 
particular, the first and the last positions of FR2 and FR3 have high mutability in clonal graphs thus likely 
extending the bounds of CDR1 and CDR2.   
  
Analyzing highly mutable positions in FR3. We partitioned a typical FR3 region into four subregions: 
(i) positions 1–8 with frequent contact sites in 3–39% of 3D structures; (ii) positions 9–18 with non-
conventional binding sites in 2–11% of 3D structures; (iii) positions 19–31 with hardly any contact sites 
in 3D structures; and (iv) positions 32–38 with frequent contact sites in 3–31% of 3D structures. 
Interestingly, the non-contacting subregion (iii) has high mutability in the largest percent of clonal graphs 
among all subregions. Only 9 out of 13 positions have high mutability in more than 𝑝𝑒𝑟𝑐$%& (9–41%) of 
clonal graphs. These positions also contain many convergent SHMs. While the role of these positions is 
unclear, we assume that the abundance of the convergent SHMs at these positions suggests that they may 
contribute to the structural properties of antibodies, e.g., conformation of CDRs (Ovchinnikov et al., 
2018).  
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Figure 5. Maps of mutability (top), antigen contacts (middle), and light chain contacts (bottom). Mutability 
map is computed using 78 large clonal graphs from all four analyzed immunosequencing datasets. Maps of contacts 
were computed using 745 heavy chain antibody sequences extracted from antibody-antigen complexes. Sequences 
of heavy chains are aligned by the first position and cropped after position 140. Each heavy chain antibody sequence 
corresponds to a row in the map. Positions of FR and CDR regions are derived according to the IMGT notation and 
are shown in blue and red, respectively. (Top) Mutability of a position is shown according to a color palette. 
(Middle, bottom) Positions corresponding to contacts are shown in a darker color.  

  
Figure 6. Characteristics of typical CDR1 (left) and FR3 (right). For each region, we computed four plots 
described below. (i) A bar at a position within a typical region shows the percentage of binding sites (green), contact 
sites (orange), and both binding and contact sites (blue) at this position. (ii) A bar at a position shows the percentage 
of clonal graphs where this position is highly mutable. (iii) A bar at a position shows the number of distinct SHMs 
appearing at this position across all large clonal graphs. (iv) A bar at a position shows the percentage of convergent 
SHMs appearing at this position across all large clonal graphs. The percentage is computed with respect to the 
number of distinct SHMs appearing at this position.   
 
Usage of V genes in clonal lineages. The usage of a germline gene is defined as the fraction of reads in a 
repertoire aligned to this gene. Although this concept (that we refer to as the simple usage) proved to be 
useful (Wendel et al., 2017; Lee et al., 2019), it does not accurately estimate the number of VDJ 
recombinations that include a given germline gene, particularly for stimulated repertoires with expanded 
clonal lineages. Since each clonal lineage reveals a single VDJ recombination, we define the clonal usage 
of a germline gene as the fraction of clonal graphs derived from this gene (Figure 7). Filtering trivial 
clonal graphs allows us to lower the impact of V genes coming from background B cells and detect V 
genes that are important for antigen specific immune response (Figure 7). We found that three most used 
V genes in the FLU1 dataset are among the five most used V genes for the FLU2 dataset: IGHV3-7 (16% 
and 9% of clonal graphs in FLU1 and FLU2, respectively), IGHV4-39 (13% and 6%), and IGHV1-69 
(7% and 15%). In contrast, the INTESTINAL datasets have completely different most used V genes 
(IGHV5-51 (26%) and IGHV4-59 (17%)), suggesting a correlation between most used V genes and 
antigens.   
 
Clonal usage also reveals the differences between repertoires developed in different individuals in 
response to the same antigen. Figure 7 shows the clonal usage for the FLU1 dataset (flu vaccination, 
hemagglutinin specific B cells) and illustrates that IGHV1-69 (that was implicated in the immune 
response to hemagglutinin in previous studies) is heavily used by donors 4 and 8 (clonal usage 7% and 
18%, respectively), but is not used by donors 5 and 6 (clonal usage is 0% in both donors 5 and 6).    

not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprint (which wasthis version posted August 27, 2019. ; https://doi.org/10.1101/725424doi: bioRxiv preprint 

https://doi.org/10.1101/725424


12 
 

  

 
Figure 7. Clonal usage of V genes. Clonal usage is computed based on clonal graphs with at least 2 vertices. (Top 
left) Clonal usage of V genes across FLU1 (F1), FLU2 (F2), and INTESTINAL (I) datasets. (Top right) Clonal 
(blue) and simple (orange) usages of V genes for the FLU1-4 dataset. Usage values are shown only for V genes 
from the left plot. (Bottom) Heatmap of V genes in FLU1, FLU2, and INTESTINAL dataset ordered in the 
decreasing order of their clonal usage. The color of a cell represents the fraction of clonal graphs derived from 
corresponding V gene. 

Different alleles of IGHV1-69 shape flu-specific responses. The FLU1 datasets consist of receptor 
sequences specific to hemagglutinin (HA), one of the antigens of the flu virus. Recent studies showed that 
many HA-neutralizing antibodies use IGHV1-69 and that genomics variations in IGHV1-69 influence the 
binding ability of corresponding antibodies (Lingwood et al., 2012; Avnir et al., 2016). The IMGT 
database includes 14 alleles of the IGHV1-69 gene (Figure 8), including F-alleles (with Phe at the amino 
acid position 55) and L-alleles (with Leu at the same position). Lingwood et al., 2012 demonstrated that 
the F-alleles result in antibodies with higher affinity to HA as compared to antibodies derived from the L-
alleles. Avnir et al., 2016 showed that the usage of L-alleles in HA-stimulated antibody repertoires is 
much lower compared to F-alleles.   
 
Analysis of IGHV1-69 alleles in the FLU1 dataset.  To derive the IGHV1-69 alleles of FLU1 donors, 
we analyzed naïve datasets corresponding to these donors (Supplemental Note “Test immunosequencing 
datasets”). For each naïve dataset, we collapsed reads with identical CDR3s, aligned them against known 
human V genes (we used the first alleles only), and identified reads aligned to IGHV1-69. Afterwards, we 
selected candidates for germline variations in IGHV1-69 as positions in the alignment where at least 40% 
of aligned reads vote for a non-germline nucleotide. As a result, we selected four nucleotide positions: 
148, 163, 170, and 220 corresponding to amino acid at positions 50, 55, 57, and 74, respectively. 
Afterwards, we analyzed two alternative amino acids at four selected positions. Figure 8 shows that the 
found positions are confirmed by known alleles of IGHV1-69. 
 
Figure 8 shows that donors 4 and 8 have F-alleles (both donors have Phe at amino acid position 55), 
donor 5 has L-allele, and donor 6 is heterozygous with both F- and L-alleles. Amino acids at three other 
detected positions also separate donors 4 and 8 from donors 5 and 6. We refer to amino acids at positions 
50, 55, 57, and 74 inferred from the naive datasets for both donors 4 and 8 as dominant and to alternative 
amino acids at these positions as recessive. This analysis revealed that amino acids G (R), F (L), T (I), 
and E (K) at positions 50, 55, 57, and 74 are dominant (recessive).     
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Since donors 4 and 8 have F-alleles (that provide effective flu response), donor 5 has L-alleles (that lack 
effective flu response), and donor 6 has both F- and L-alleles, we expect high clonal usage of IGHV1-69 
in donors 4 and 8 and low clonal usage in donors 5 and 6 (Lingwood et al., 2012, Avnir et al., 2016). 
Indeed, IGHV1-69 is utilized in clonal graphs of donors 4 and 8 but missing in clonal graphs of donors 5 
and 6 (Figure 7). Interestingly, our analysis reveals that, in addition to position 55 in IGHV1-69 (that has 
known impact on contribution to response against HA), positions 50, 57, and 74 (that also separate donors 
4 and 8 from donors 5 and 6) may also represent candidate positions affecting the immune response 
against HA. 

 
AA position 50 55 57 74 

Donor 4 G F T E / K 

Donor 5 R L I K 

Donor 6 G F / L T / I E / K 

Donor 8 G F T E 
 

 
Figure 8. Germline variations of the IGHV1-69 gene in four individuals in the FLU1 dataset. (Top) A table 
shows amino acids at four positions selected as candidates for genomic variations. (Bottom) Amino acid sequences 
of 14 known alleles of IGHV1-69. Dominant and recessive amino acids corresponding to the detected germline 
differences are shown in green and red, respectively. Grey substrings highlight CDR1 and CDR2.  

Clonal graphs reveal the role of IGHV1-69 alleles. Clonal graphs derived from IGHV1-69 may shed 
light on the role of germline variations in immune response. If an amino acid is important for antigen 
binding or maintaining the antibody structure, we expect to see a strong selection against changing this 
amino acid during immune response. If an amino acid is not important, then it will likely be substituted 
by another amino acid during clonal development. We thus conjecture that some dominant amino acids of 
IGHV1-69 do not mutated in clonal graphs derived from this gene in the FLU datasets. Finding such 
amino acids helps us to analyze associations between alleles of V genes and specific immune response. 

To check this hypothesis, we selected clonal graphs derived from IGHV1-69 for FLU1-4 and FLU1-8 
datasets that represent individuals with dominant alleles. For each selected clonal graph, we analyzed 
positions 50 (Gly / Arg), 55 (Phe / Leu), 57 (Thr / Ile), and 74 (Lys / Glu) (Figure 8). Figure S3 shows 
that Gly at position 50 and Thr at position 57 are preserved in all selected clonal graphs. Phe at position 
55 is preserved in all clonal graphs except for one where it is partially substituted with Ser. Lys at 
position 74 is preserved in all clonal graphs except for one where it is substituted with Thr. 

To extend this analysis, we analyzed all 33 clonal graphs derived from the IGHV1-69 in the FLU2 
datasets. Although the FLU2 datasets were not sorted against HA, they were sequenced after flu 
vaccination and thus are likely to include some HA-stimulated lineages. Figure S4 shows amino acid 
content in the selected clonal graphs at positions 50, 55, 57, and 74 and confirms that amino acids Gly, 
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Phe, and Thr are present in most clonal graphs at positions 50, 55, and 57, respectively. Thus, we 
conjecture that positions 50, 55, and 57 in IGHV1-69 are associated with the immune response to flu.  
 
However, for position 55, we found that the largest clonal graph in the FLU2 datasets has similar 
fractions of Phe and Leu (Figure 9). This case suggests that sequences containing Phe and Leu evolve 
independently and thus the absence of Phe does not necessarily lead to a complete loss of binding 
properties of the antibody.  

 
Figure 9. The largest clonal graph derived from IGHV1-69 in the FLU2-3 dataset. Vertices of the graph are 
colored according to amino acids presented at the position 55 (F – green, L – red, other amino acids – grey). 

Discussion 
Although clonal analysis of immunosequencing data has important applications in monitoring treatment, 
measuring vaccine efficacy, and designing antibody drugs, the existing tools for constructing clonal trees 
have limitations. Moreover, it remains unclear how to pre-process immunosequencing datasets for follow-
up clonal tree reconstruction: constructing clonal trees on all reads faces the challenge of dealing with 
high error rates in Rep-seq dataset (Lee et al., 2017), while constructing clonal trees on error-corrected 
antibody repertoires faces the challenge of constructing accurate antibody repertoires in the case of 
stimulated Rep-seq datasets (Shlemov et al., 2017). Although the latter challenge can potentially be 
addressed by molecular barcoding techniques (Horns et al., 2017), these techniques are still rarely used 
(most publicly available Rep-seq datasets do not contain molecular barcodes). As a result, clonal analysis 
of biomedically important immunosequencing samples (such as antibody repertoires after flu vaccination) 
remains challenging. IgEvolution addresses this challenge by developing an algorithm for simultaneous 
error correction and clonal reconstruction of antibody repertoires. Extending previous approaches for 
clonal reconstruction (Horns et al., 2017; Lee et al., 2017), IgEvolution decomposes raw Rep-seq reads 
into clonal lineages, constructs the minimum spanning tree for each clonal lineage, and iteratively 
identifies erroneous sequences located in leaves. We applied IgEvolution to analyze multiple 
immunosequencing datasets, described an approach to identify salient SHMs based on clonal tree 
analysis, and demonstrated that it reveals novel interesting features of antigen-specific antibody 
repertoires.  
 
IgEvolution identified many large clonal graphs that we further analyzed to reveal various characteristics 
of structural regions (CDRs and FRs) in antibodies. To understand the properties of SHMs in these 
regions, we analyzed all crystallized human antibody-antigen complexes in the SAbDab database 
(Dunbar et al., 2014) and identified positions of the contacts of the heavy chain with the light chain (LC) 
and the antigen (Ag). This analysis revealed that structural regions of VDJ sequence have conservative 
functions: FR1 rarely contacts LC and Ag; CDR1 and CDR2 contact Ag; FR2 contacts LC; CDR3 
contacts both LC and Ag; and FR4 contacts LC. For FR3, we revealed four subregions with different 
properties:  (i) LC contacts; (ii) non-conventional Ag binding site (present in ~10% of antibodies); (iii) 
non-contacting subregion; and (iv) LC contacts.      
 
We compared the binding and contact positions (based on analysis of crystallized 3D structures) with 
highly mutable positions derived from the clonal graphs and found that these two sets of positions are 
well correlated in CDR1 and CDR2. We also demonstrated that regions responsible for light chain 
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binding (FR2, FR4, and prefix/suffix of FR3) rarely mutate with notable exception of the highly mutable 
first/last positions of FR2 and FR3 that correspond to binding sites and extend bounds of CDR1 and 
CDR2 as defined by traditional similarity-based tools (Kabat et al., 1979; Chothia and Lesk, 1987; 
Giudicelli et al., 1997). Our analysis of rat antibodies led to similar results with respect to highly mutable 
positions in various CDRs and FRs.  
 
Since Rep-seq dataset that include antibodies with known 3D structures are currently unavailable, our 
analysis of clonal graphs and crystallized Ab-Ag complexes was performed on unrelated datasets.  
However, even this imperfect analysis revealed that it would be beneficial to resolve three-dimensional 
structure of antibody-antigen complexes and trace their evolutionary development using Rep-seq data. 
We hope that such paired datasets will emerge in the future and shed light on the role of SHMs in CDRs 
and FRs (especially FR3). At the same time, we believe that the results described in this paper can already 
be used in the design of antibody drugs and humanization of non-human immunoglobulins.  
 
We also analyzed the usage of V genes in stimulated Rep-seq datasets and showed that it correlates with 
genomic variations of V genes. We analyzed the usage of various alleles of IGHV1-69 (V gene that is 
associated with hemagglutinin (HA) specific antibodies) and demonstrated that F-alleles of IGHV1-69 are 
used in HA-specific clonal graphs, thus providing independent support for a recent discovery of 
correlations between specific alleles and vaccine responses (Avnir et al., 2016). We also showed that 
amino acids that distinguish F-alleles from L-alleles of IGHV1-69 rarely mutate in HA-specific clonal 
graphs and thus undergo strong selection during the clonal development. We also analyzed alleles of 
IGHV3-11 and IGHV4-39 that are used differently in clonal graphs and found positions corresponding to 
genomic variations that undergo selection pressure (Supplemental Note “Alleles of IGHV3-11 and 
IGHV4-39 shape immunoglobulin response”). We thus suggest that clonal analysis of various alleles has 
a potential for identifying important genomic variations that contribute to responses to vaccination and 
disease. Our analysis indicates that high-throughput clonal analysis of Rep-seq datasets from antigen-
exposed antibody repertoires will result in a database of putative associations between germline alleles 
and specific immune responses. Such database may enable personalized immunogenomics approaches   
by predicting efficiency of individual antibody response to a specific antigen.  
 
Availability of data and materials. IgEvolution is available at 
https://immunotools.github.io/immunotools. Results of IgEvolution on test immunosequencing datasets 
are available at https://immunotools.github.io/ig_evolution_results/.  
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