1 1 **Title:**

- 2 The results of biodiversity-ecosystem functioning experiments are realistic
- 3

4 **Running headline:**

- 5 Realism of biodiversity experiments
- 6

7 Authors:

- 8 Jochum, Malte^{1, 2, 3}, Fischer, Markus¹, Isbell, Forest⁴, Roscher, Christiane^{5, 2}, van der Plas, Fons⁶, Boch,
- 9 Steffen^{1,7}, Boenisch, Gerhard⁸, Buchmann, Nina⁹, Catford, Jane A.¹⁰, Cavender-Bares, Jeannine⁴,
- 10 Ebeling, Anne¹¹, Eisenhauer, Nico^{2, 3}, Gleixner, Gerd⁸, Hölzel, Norbert¹², Kattge, Jens^{2, 8}, Klaus, Valentin
- 11 H.⁹, Kleinebecker, Till¹³, Lange, Markus⁸, Le Provost, Gaëtane¹⁴, Meyer, Sebastian T.¹⁵, Molina-
- 12 Venegas, Rafael^{1, 16}, Mommer, Liesje¹⁷, Oelmann, Yvonne¹⁸, Penone, Caterina¹, Prati, Daniel¹, Reich,
- 13 Peter B.^{19, 20}, Rindisbacher, Abiel¹, Schäfer, Deborah¹, Scheu, Stefan^{21, 22}, Schmid, Bernhard^{23, 24}, Tilman,
- 14 David^{25, 26}, Tscharntke, Teja²⁷, Vogel, Anja^{2, 3, 11}, Wagg, Cameron²⁸, Weigelt, Alexandra^{2, 29}, Weisser,
- 15 Wolfgang W.¹⁵, Wilcke, Wolfgang³⁰, Manning, Peter¹⁴
- 16

17 Affiliations:

- 18 1. Institute of Plant Sciences, University of Bern, Altenbergrain 21, 3013 Bern, Switzerland
- 19 2. German Centre for Integrative Biodiversity Research (iDiv) Halle-Jena-Leipzig, Deutscher Platz 5e, 04103
- 20 Leipzig, Germany
- 21 3. Leipzig University, Institute of Biology, Deutscher Platz 5e, 04103 Leipzig, Germany
- 22 4. Department of Ecology, Evolution and Behavior, University of Minnesota, 1479 Gortner Ave, Saint Paul MN
- 23 55108
- 24 5. UFZ, Helmholtz Centre for Environmental Research, Department Physiological Diversity, Permoserstrasse 15,

2

- 25 04318 Leipzig, Germany
- 26 6. Systematic Botany and Functional Biodiversity, Institute of Biology, Leipzig University, Johannisallee 21-23,
- 27 04103 Leipzig, Germany
- 28 7. WSL Swiss Federal Research Institute, Zürcherstr. 111, 8903 Birmensdorf, Switzerland
- 8. Max Planck Institute for Biogeochemistry, Hans-Knoell Str. 10, 07745 Jena, Germany
- 30 9. Institute for Agricultural Sciences, ETH Zürich, Universitätstr. 2, 8092 Zürich, Switzerland
- 31 10. Department of Geography, King's College London, 30 Aldwych, London, WC2B 4BG, UK
- 32 11. Institute of Ecology and Evolution, University of Jena, Dornburger Str. 159, 07743 Jena, Germany
- 33 12. Institute of Landscape Ecology, University of Münster, Heisenbergstr. 2, 48149 Münster, Germany
- 34 13. Institute of Landscape Ecology and Resources Management, Giessen University, Heinrich-Buff-Ring 26,
- 35 35392 Giessen, Germany
- 36 14. Senckenberg Gesellschaft für Naturforschung, Senckenberg Biodiversity and Climate Research Centre
- 37 (SBIK-F), Senckenberganlage 25, 60325 Frankfurt, Germany
- 38 15. Terrestrial Ecology Research Group, School of Life Sciences Weihenstephan, Technical University of
- 39 Munich, Hans-Carl-von-Carlowitz-Platz 2, 85354 Freising, Germany
- 40 16. Departamento de Ciencias de la Vida, Universidad de Alcalá, 28871 Madrid, Spain
- 41 17. Plant Ecology and Nature Conservation Group, Dept. of Environmental Sciences, Wageningen University,
- 42 PO box 47; 6700 AA, Wageningen, the Netherlands
- 43 18. Geoecology, Geoscience Department, University of Tübingen, Rümelinstr. 19-23, 72070 Tübingen, Germany
- 44 19. Department of Forest Resources, University of Minnesota, 1530 Cleveland Avenue N, St. Paul, MN 55108,
- 45 USA
- 46 20. Hawkesbury Institute for the Environment, Western Sydney University, Penrith South DC, NSW 2751,
- 47 Australia
- 48 21. JF Blumenbach Institute of Zoology and Anthropology, University of Goettingen, Untere Karspüle 2, 37073
- 49 Göttingen, Germany
- 50 22. Centre for Biodiversity and Sustainable Land Use, Von-Siebold Str. 8, University of Goettingen, 37075

- 3
- 51 Göttingen, Germany
- 52 23. Department of Geography, University of Zürich, Winterthurerstrasse 190, 8057 Zürich, Switzerland
- 53 24. Institute of Ecology, College of Urban and Environmental Sciences, Peking University, 100871 Beijing,
- 54 China
- 55 25. Department of Ecology, Evolution, and Behavior, University of Minnesota, St. Paul, MN, 55108, USA
- 56 26. Bren School of Environmental Science and Management, University of California, Santa Barbara, CA,
- 57 93106, USA
- 58 27. Agroecology, Dept. of Crop Sciences, University of Göttingen, Grisebachstrasse 6, 37077 Göttingen
- 59 28. Department of Evolutionary Biology and Environmental Studies, University of Zürich, Winterthurerstrasse
- 60 190, Zürich CH-8047, Switzerland
- 61 29. Leipzig University, Institute of Biology, Johannisallee 21-23, 04103 Leipzig, Germany
- 62 30. Karlsruhe Institute of Technology (KIT), Institute of Geography and Geoecology, Reinhard-Baumeister-Platz
- 63 1, 76131 Karlsruhe, Germany
- 64
- 65 Materials and Correspondence: Please address requests to malte.jochum@idiv.de.

4

66 Summary

67 A large body of research shows that biodiversity loss can reduce ecosystem functioning, thus providing support for the conservation of biological diversity¹⁻⁴. Much of the evidence for this relationship is 68 drawn from biodiversity-ecosystem functioning experiments (hereafter: biodiversity experiments), in 69 70 which biodiversity loss is simulated by randomly assembling communities of varying species diversity, and ecosystem functions are measured⁵⁻⁹. This random assembly has led some ecologists to question 71 72 the relevance of biodiversity experiments to real-world ecosystems, where community assembly may 73 often be non-random and influenced by external drivers, such as climate or land-use intensification¹⁰⁻¹⁸. Despite these repeated criticisms, there has been no comprehensive, quantitative assessment of how 74 75 experimental and real-world plant communities really differ, and whether these differences invalidate 76 the experimental results. Here, we compare data from two of the largest and longest-running grassland 77 biodiversity experiments globally (Jena Experiment, Germany; BioDIV, USA) to related real-world 78 grassland plant communities in terms of their taxonomic, functional, and phylogenetic diversity and 79 functional-trait composition. We found that plant communities of biodiversity experiments have greater 80 variance in these compositional features than their real-world counterparts, covering almost all of the 81 variation of the real-world communities (82-96%) while also containing community types that are not 82 currently observed in the real world. We then re-analysed a subset of experimental data that included 83 only ecologically-realistic communities, i.e. those comparable to real-world communities. For ten out 84 of twelve biodiversity-ecosystem functioning relationships, biodiversity effects did not differ 85 significantly between the full dataset of biodiversity experiments and the ecologically-realistic subset of experimental communities. This demonstrates that the results of biodiversity experiments are largely 86 87 insensitive to the inclusion/exclusion of unrealistic communities. By bridging the gap between experimental and real-world studies, these results demonstrate the validity of inferences from 88 89 biodiversity experiments, a key step in translating their results into specific recommendations for real-

5

90 world biodiversity management.

6

91 Main Text

Concerns over the consequences of biodiversity loss for human well-being triggered the growth of 92 93 biodiversity-ecosystem functioning (hereafter: biodiversity-functioning) research, an important field of ecology over the past 25 years^{1,3,19-21}. Some of the most influential studies in this field are based on 94 95 biodiversity-ecosystem functioning experiments (hereafter: biodiversity experiments), in which 96 communities of varying diversity are randomly assembled and the responses of ecosystem processes are measured^{6,22}. These experiments, often conducted using grassland communities⁸, aim to isolate the 97 98 effects of species richness from other factors known to affect ecosystem processes, such as climate, 99 nutrient availability, and the presence of particular plant functional types. By doing so, they have 100 provided strong evidence that biodiversity can affect the functioning of ecosystems – most commonly with a positive log-linear relationship between diversity and plant productivity^{1,2,5,7,21,23,24}. However, the 101 102 relevance of biodiversity experiments to real-world ecosystems (i.e. those where community assembly is influenced by external drivers, such as climate or land-use) has been repeatedly questioned^{10–14,18}. 103 104 Criticisms highlight several common features of experimental designs, namely random assembly, as 105 opposed to the non-random assembly/disassembly of real-world ecosystems¹³, initial sowing of even species abundances (but see ^{25–28}), and the repeated removal of non-target species (but see ^{29,30}). These 106 107 factors may alter community assembly processes, leading to unrealistic communities that possess 108 functional properties that are rare or absent in the real world. Although numerous researchers have argued for the relevance of biodiversity experiments^{15,17,31,32} and provided evidence to counter these 109 criticisms^{26,33,34}, we do not know how closely plant communities in biodiversity experiments resemble 110 those of related real-world ecosystems (but see ³⁵ for a local-scale comparison), or if the presence of 111 unrealistic communities affects the conclusions drawn from these experiments. Here we perform a 112 comprehensive, quantitative assessment of the differences and similarities between plant communities 113 114 from biodiversity experiments and related real-world ecosystems and test the applicability of

7

115 experimental results to real-world ecosystems.

116 We quantitatively compared the plant communities of the World's largest and longest-running 117 grassland biodiversity experiments to those of nearby real-world communities where diversity gradients are created by natural environmental variation and global change drivers. These experiments 118 are the Jena Experiment, established 2002 in Germany (hereafter: Jena Experiment)^{6,30} and the BioDIV 119 experiment, established 1994 at the Cedar Creek Ecosystem Science Reserve, Minnesota, USA 120 (hereafter: BioDIV)^{5,36–38} (Fig. 1). We compared experimental communities from the Jena Experiment 121 122 with those of agricultural grasslands in three regions of Germany, spanning a broad range of site conditions and land-use intensities – the Biodiversity Exploratories^{39,40} – and semi-natural grasslands 123 124 close to the Jena Experiment (hereafter: "Jena real world"). BioDIV's experimental communities were compared to nearby, naturally-assembled prairie-grassland communities at Cedar Creek, including 125 fertilized grasslands^{33,41,42} and those undergoing successional change⁴³ (see Methods and Supporting 126 127 Information, Table S1). We combined species-specific cover data from annual vegetation surveys 128 (3,330 and 9,954 plot-year combinations in the German and the US datasets, respectively) with 129 phylogenetic information and plant functional-trait data to characterize and quantitatively compare communities based on a range of properties known to influence ecosystem functioning^{44,45}, including 130 131 measures of taxonomic diversity and evenness, phylogenetic diversity, functional diversity and 132 community abundance-weighted means (CWM) of selected functional traits of vascular plants, 133 hereafter referred to as "community properties" in a Principal Component Analysis (PCA) (see 134 Methods, Fig. 1).

The results of our comparison showed that experimental plant communities occupy a larger area of multivariate community-property space than real-world communities, despite the latter covering a wide range of climatic, edaphic and management conditions, particularly in the German dataset^{39,46} (**Fig. 1a,e**). Furthermore, 82-96% of real-world communities were nested within the space

8 139	occupied by experimental communities, and additional data collected at Jena showed that experimental
140	communities migrated towards the space occupied by real-world communities when not weeded
141	(Supporting Information Fig. S1). Across both the German and the US datasets, the properties that
142	differed most strongly between experimental and real-world plant communities were mean nearest
143	taxon distance (MNTD), Simpson's evenness (SEve), and CWM seed mass, which were typically
144	higher in experimental than in real-world communities (Supporting Information, Fig. S2 and S3 and
145	Table S2 and S3). These findings were robust to the inclusion or exclusion of particular community
146	properties (Supporting Information, Fig. S4 and S5b,d and Table S4 and S5).
147	Overall, three conclusions can be drawn from this comparative analysis: first, biodiversity
148	experiments successfully create plant communities that vary greatly in functionally-important
149	community properties. Second, real-world communities are confined to narrower regions of
150	multivariate community-property space compared with experiments. Third, while the properties of
151	many experimental communities are not observed in related real-world communities, our findings show
152	that a subset of randomly-assembled experimental communities are comparable to real-world
153	communities, (Fig. 1), even though their taxonomic community composition might differ.
154	In the second step of our analysis, we identified "unrealistic" (i.e., unobserved in the real world)
155	plant communities in biodiversity experiments and tested the sensitivity of biodiversity-ecosystem
156	functioning relationships to the exclusion of these communities. To do this, we identified plots from
157	biodiversity experiments whose communities fell outside the multidimensional community-property
158	space occupied by real-world plant communities (hereafter: "unrealistic communities"). This was
159	achieved by calculating the intersection of three-dimensional convex hull volumes defined by
160	experimental and real-world communities (Fig 1; see Methods for alternative analyses). When using
161	the full set of community properties, 28% and 77% of experimental plots were deemed realistic in Jena
162	and BioDIV, respectively. These realistic biodiversity-experiment communities had significantly higher

9 163	sown diversity (Jena: av = 21.7 realistic vs. 3.5 unrealistic, BioDIV: 7.8 vs. 1.7; Fig 2) and more sown
164	functional groups (Jena: 2.8 vs. 1.9, BioDIV: 3.5 vs. 1.5), but lower Simpson's evenness (Jena: 0.5 vs.
165	0.7, BioDIV: 0.6 vs. 0.9; Fig. 1) than the unrealistic communities. However, realistic and unrealistic
166	experimental communities did not differ in most functional trait CWMs (both Jena Experiment and
167	BioDIV; see Fig. 1, Supporting Information, Fig. S6 and S7, Table S6 and S7).
168	Finally, we fitted simple linear models to test how plant species richness affected eight selected
169	ecosystem functions from both the above- and belowground subsystems. These were: plant
170	aboveground and belowground biomass, plant aboveground C:N ratio, soil carbon (C) content,
171	invertebrate leaf herbivory, soil microbial biomass C, phosphatase activity in the soil and pollinator
172	abundance (Fig. 2). This was done for both the full datasets and the subset of realistic plots. In both
173	experiments, and across the different ecosystem functions, the slopes of experimental biodiversity-
174	functioning relationships were remarkably insensitive to the removal of unrealistic communities. A
175	paired t-test of unconstrained versus constrained slopes showed no significant change in slope
176	estimates (t=1.40, df=11, p=0.19) and confidence intervals for slope estimates overlapped each other's
177	mean for all but two model pairs. The two exceptions to this were both initially weak biodiversity-
178	functioning relationships: Jena-Experiment herbivory, where the positive slope increased when
179	constrained to realistic plots, and BioDIV plant C:N, where a non-significant, slightly negative slope
180	turned into a positive significant one (see Supporting Information Table S8). The finding that the slope
181	of the biodiversity-functioning relationship was largely unaffected by the exclusion of unrealistic
182	communities was robust to changing the set of community properties and the method used to identify
183	realistic communities (Supporting Information, Fig. S8). The goodness of fit (adjusted R ² values) was
184	also not strongly affected by constraining the dataset (mean: 0.24 versus 0.15 for unconstrained and
185	constrained models, respectively; Supporting Information, Table S8), and the average percentage
186	change in maximum functioning was ±10.3% (SE: 4%; Supporting Information, Table S9). Together,

10

187 these, results show that the form, strength, and magnitude of the relationship between biodiversity and 188 functioning that has been identified in biodiversity experiments is generally robust to the removal 189 unrealistic communities.

190 To check whether the results of the analyses of constrained versus unconstrained communities 191 might have been influenced by the smaller sample size of the former, we assessed the sensitivity of the 192 results to reduced replication. In four out of twelve cases, constraining data led to a change from a 193 significant to a non-significant relationship (Jena soil organic C content, root biomass, soil microbial 194 biomass C and phosphatase activity; Fig. 2). By performing a sensitivity analysis in which we 195 randomly reduced the unconstrained dataset to the same size as the realistically constrained dataset 196 (Supporting Information Fig. S9), we found that the slope of the biodiversity-functioning relationship 197 in the realistic subset for these four relationships was shallower than most random-selection slopes. 198 This suggests for certain ecosystem functions, particularly soil processes, that the slope of the real-199 world biodiversity-functioning relationship might differ from that observed in biodiversity 200 experiments.

201 Changes in biodiversity-functioning relationships caused by constraining were partly caused by 202 a reduction in the underlying species richness gradient in Jena. Here, minimum species richness 203 changed from 1 to 3.7 between unconstrained and constrained plots. For BioDIV, which covers a 204 relatively narrower range of species richness, the gradient was not reduced (Fig. 2 and Supporting 205 Information, Table S10). The shorter species richness gradient was associated with a reduction in the 206 range of functioning covered across the reduced biodiversity gradient. Overall, reductions were 31% in 207 Jena and 7% in BioDIV (Supporting Information, Table S10). As such, the low diversity levels in the 208 Jena Experiment, although needed for experimental design that can identify diversity effects and their 209 underlying mechanisms⁴⁷, are generally found to be unrealistic when compared to current German real-210 world communities.

11

211 Our results show that the biodiversity-functioning relationships observed in biodiversity 212 experiments are not an experimental artefact caused by the presence of unrealistic communities, and 213 that the mechanisms observed in these experiments are also likely to operate in real-world communities^{5,9,30,32,47}. The question remains, however, how important biodiversity-functioning 214 215 relationships are as drivers of ecosystem functioning in the real world relative to factors such as land use or climate^{7,14,48}. Although strong and positive biodiversity-functioning relationships have been 216 reported in real-world studies^{4,22,34,49-51}, other studies describe weak or negative relationships^{4,52,53}. This 217 218 inconsistency, and the discrepancy between experimental and real-world patterns, is commonly 219 attributed to the presence of covarying environmental or biological factors that also drive ecosystem functioning⁵⁴, and which obscure, confound or negate the effects of biodiversity (e.g., nutrient 220 221 availability, climate, and the dominant functional traits of the community;^{50,55–57}). These factors are 222 likely to be closely coupled in real-world ecosystems, but decoupled in experiments. Indeed, across our 223 datasets, the average correlation strength of the eight measures of dominant functional traits (CWM's) 224 with Simpson's evenness, functional, and phylogenetic diversity properties was higher in real-world 225 than in experimental data subsets; mean absolute correlation coefficients were 0.18 and 0.22 in German 226 and American real-world sites, compared to 0.08 and 0.16 in their respective experiments (Supporting 227 Information, Table S11 and S12).

While the biodiversity experiments used in our analysis cover a wide range of plant-community properties, only a fraction of this multidimensional space is occupied by related real-world communities. The remainder of space covered by the experimental communities is currently not observed in the real-world communities that we considered; however, this "unrealized plant community property space" may be useful in predicting ecosystem functioning in the future, when novel combinations of species and environmental conditions may emerge^{31,58}.

In conclusion, we show that although biodiversity experiments deliberately include plant

1	7
т	~

235	communities that may not currently occur under real-world conditions, excluding those communities
236	does not result in significantly-altered biodiversity-functioning relationships in most cases. Our results
237	complement previous reports of significant biodiversity-functioning relationships in the real
238	world ^{4,34,40,49,51,55} by showing that constraining experimental datasets to contain only realistic plant
239	communities does not change the core conclusions of biodiversity-functioning research. To advance
240	this field, we must acknowledge both the strengths and limitations of biodiversity experiments.
241	Specifically, our improved understanding should be used to develop a new generation of experiments,
242	e.g. that focus on realistic patterns of community change. At the same time, we must maintain and
243	further examine the valuable resource of long-term biodiversity experiments, e.g. by re-analyzing
244	existing experimental data to simulate a range of possible biodiversity-change scenarios. By moving
245	beyond critiques of experimental design and placing experimental biodiversity-functioning research in
246	the context of natural communities, we advance the current debate from verbal arguments to a
247	quantitative investigation, thus increasing the robustness and applicability of biodiversity-functioning
248	research.

13

249 Material and Methods

250 1. Overview and data origin

We chose the largest (Jena) and longest-running (BioDIV) grassland biodiversity experiments in the 251 world for our comparison. The Jena Experiment^{6,30} was chosen as a Central-European example of a 252 long-term, intensively studied biodiversity experiment^{30,59}. In the Jena "main" experiment, 253 combinations of 1, 2, 4, 8, 16 and 60 species from a pool of 60 Arrhenatherion grassland species⁶⁰ were 254 255 sown in 82 originally 20 m \times 20 m plots on a former agricultural field in 2002. This species richness 256 gradient was crossed with a gradient of functional group richness (1 to 4 functional groups; small 257 herbs, tall herbs, grasses, legumes), where species were randomly chosen from the respective functional groups⁶. Jena Experiment plots are maintained by weeding (two or three times a year). All 258 259 plots are mown twice per year and mown biomass is removed, a common management of meadows in 260 the region, and do not receive any fertilizers. The Jena Experiment includes two invasion sub-261 experiments; one set of Jena "invasion" plots was not weeded after initial sowing and studied regularly 262 until 2009, another set was weeded initially, but weeding was stopped in 2010; here, we use the former 263 for 2003–2009 and the latter for 2010–2015. Jena mown "succession" plots were not initially sown and 264 are excluded from all management except for the mowing.

265 As a real-world counterpart to the Jena Experiment, we chose the grassland plots of the Biodiversity Exploratories project (hereafter: "German real world"). This large-scale, long-term 266 267 research project was established in 2006 to assess the effects of land-use intensity on biodiversity and ecosystem functioning in three regions of Germany³⁹. The 150 grassland plots measure 50 m \times 50 m 268 and were selected to cover a wide and representative range of land-use intensities, here composed of 269 270 varying levels of mowing frequency, grazing intensity and fertilization⁶¹. Species richness in 271 Exploratories grasslands ranged from nine to 70 species, within a 4 m \times 4 m subplot, across all years 272 used in our study. Exploratories data were augmented by the inclusion of data from 14 semi-natural

14

grassland plots in the Saale river valley near the Jena Experiment (unpublished data; hereafter: "Jena
real-world"). These plots are usually mown twice per year; most are unfertilized and some are
moderately fertilized.

The Cedar Creek biodiversity experiment e120 (hereafter: "BioDIV"; 5,36,37,62) was selected as a North-American example of a long-term biodiversity experiment, along with a suite of other naturallyassembled grasslands at Cedar Creek that served as nearby real-world communities. BioDIV was established in 1994, when 1, 2, 4, 8 or 16 species were randomly drawn from an 18-species pool and sown across 168 13 m × 13 m plots at the Cedar Creek Ecosystem Science Reserve in Minnesota, USA.

282 Several datasets of local experiments and observation plots served as local real-world comparison for BioDIV. Experiments e001 (hereafter: "Fertilization 1") and e002 (hereafter: 283 284 "Fertilization 2") were set up in 1982 to study the long-term effects of fertilization with nitrogen and 285 other nutrients, ranging from low rates of nutrient inputs that are similar to atmospheric N deposition 286 rates to high rates of fertilization similar to that used in agriculture. They consist of 324 plots located 287 across three successional grassland fields (324 plots = 2 fertilization experiments \times 3 old fields \times 9 288 fertilization treatments \times 6 replicates) that differ in their age since abandonment from agriculture and 289 45 plots in one never-plowed oak savannah in Fertilization 1 (45 plots = 9 nutrient treatments \times 5 290 replicates)⁴¹. Plot sizes were 4 m \times 4 m in the younger fields and 2 m \times 4 m in the oak savannah. In 291 contrast to Fertilization 1. Fertilization 2 plots were agriculturally disked before receiving nutrient 292 addition treatments. Plot-level species richness in the two fertilization studies ranged from one to 28 293 species across all years used in our study. Established in 1983 and 1989, the Cedar Creek project e014 (hereafter "Old field succession chronosequence") offers vegetation data from four to six observational 294 295 transects in each of 23 different fields repeated seven times between 1983 and 2011 to study succession after agricultural abandonment⁴³. Cedar Creek project e093 (hereafter: "Oak savannah"), established in 296

1	
Т	-

1991, offers data from 30 2 m \times 2 m prairie opening plots of natural vegetation^{63,64}. This combination of 297 298 Cedar Creek datasets was chosen to represent a variety of real-world plant communities that were 299 comparable to the BioDIV experiment. Note that while Central European grasslands depend on 300 anthropogenic management (mowing, grazing) to prevent succession to forest, the US prairies are 301 naturally fire-disturbed, hence the selection of agricultural sites as the German real-world grassland. 302 Please note that while all above-described datasets were used in the multivariate analysis of plant 303 community property overlap (Fig. 1a,b,e,f), only a subset was used in constraining the biodiversity 304 experiment data to realistic sites (Fig. 1c.d.g.h; see below). For an overview of the datasets used in this 305 study and online resources to obtain the original data, see Table S1 in Supporting Information.

306

307 2. Plant-community properties

308 Vascular plant cover and biomass

309 In the Jena Experiment, vegetation surveys were performed annually in the second half of May on a 3 310 $m \times 3$ m subplot of each plot and species-specific cover data was collected. Note that, in the Jena 311 "main" plots, only target species (vascular plants originally sown in the respective plots) were 312 recorded. Vegetation surveys of the invasion and succession plots were performed annually in 2 m \times 313 2.25 m subplots (2003-2009) or 3 m x 3 m subplots (2010-2015), assessing all present species. We used Jena vegetation data from 2003–2015 (succession data only from 2003–2009). In the Biodiversity 314 315 Exploratories (German real-world plots), species-specific vascular plant cover was estimated annually 316 in a 4 m \times 4 m subplot of each plot between Mid-May and Mid-June. Here, we used all data from 2008-2015. Data from the 3 m \times 3 m vegetation surveys of Jena real-world plots was available for May 317 2011. To test if the different vegetation survey areas in Jena and the Biodiversity Exploratories might 318 319 bias the relative abundance of vascular plant species and thus the calculation of abundance-weighted 320 community properties, a separate survey of 27 Biodiversity Exploratories plots was performed by

16

sampling species-specific cover in series of nested 4 m \times 4 m, 3 m \times 3 m and 2 m \times 2 m subplots. As cover estimates did not show any sign of systematic variation (Supporting Information, Fig. S10), we concluded that the different survey areas were unlikely to bias our results.

For BioDIV, a combination of species-specific cover data (1996–2000) and species-specific aboveground peak biomass (2001–2015) data was used to calculate plant community relative abundance. Previous analyses have shown that this difference in methodology does not affect the conclusions of analyses investigating species-richness effects on biomass⁶⁵. Cover estimates for BioDIV were obtained by averaging the estimates from four permanently-marked subplots (each 0.5 m $\times 1$ m) within each plot. Species-specific biomass in BioDIV was obtained by annually clipping 0.1 m $\times 6$ m strips on each plot, drying and sorting the resulting biomass to species.

331 For Fertilization 1 and Fertilization 2, species-specific plant aboveground biomass data was 332 collected annually at peak biomass by clipping a $0.1 \text{ m} \times 3 \text{ m}$ strip of vegetation per plot, sorting and 333 drving it. Years 1982–2004 were used for Fertilization 1 and 1982–1991 for Fertilization 2 as these 334 vears maintained the original, balanced treatment design, which was later changed to add further 335 treatments. For the old field succession chronosequence plots, species-specific cover values were used 336 for seven years between 1983 and 2011. Each of the 23 fields had four transects (except for two fields 337 with six transects) of 25 subplots each. For comparability to the other datasets, the 25 transect subplots 338 of 0.5 m \times 1 m in each transect were treated as one plot by averaging species-specific cover values 339 across the subplots within transects resulting in four (or six) plots for each of the 23 fields (96 plots=21 340 fields \times 4 plots + 2 fields \times 6 plots). For the oak savannah dataset, only plant species cover from 1991 was used; later years were excluded because they were affected by a seed addition treatment. Species-341 specific cover was averaged across the 16 0.5 m \times 0.5 m subplots per plot. 342

For comparative analyses, different years were chosen for these different datasets due to
varying availability of measurements and in order to choose years with consistently balanced design of

17

345 the experimental treatments in cases where treatments were added after the onset of the experiments. 346 The transects in the old field succession chronosequence are likely to inflate certain community 347 properties because their subplots span out further across the respective sites than a square plot of the 348 same area would. Similarly, the averaging across subplots in the oak savannah dataset might influence 349 the direct comparability to the biodiversity experiment data. As such, the data from the old field 350 succession chronosequence and the oak savannah dataset are shown in Fig. 1e to put the BioDIV data 351 into perspective by adding different kinds of real-world data. However, when it came to constraining 352 biodiversity experiment data with the real-world data (Fig. 1g), we took a conservative approach and 353 included only those real-world datasets that were most comparable in terms of plot types (Fertilizer 1 354 and 2; hereafter: Combined US real world). Similarly, for the Jena Experiment real-world counterparts, 355 we considered only the German real world and Jena real-world sites as purely non-biodiversity 356 experiment sites in Fig. 1c (hereafter: Combined German real world).

To enable direct comparisons of plant communities, species-specific cover and biomass values for all projects were transformed to relative abundance where the single abundance values within each community sum to 100. In order to do this, all Jena Experiment cover values (originally estimated on a decimal scale, ⁶⁶) were first transformed to percent cover values⁶⁷. Bare ground was ignored, so where vegetation covered <100% of the plot, it was scaled to 100% for the calculation of community properties.

363

364 *Species synonyms and phylogeny*

As we used plant species cover, biomass, and trait data from multiple sources based on research across decades and different geographic regions, there was considerable variation in the classification and nomenclature of species. Additionally, since the TRY database⁶⁸ was queried for plant traits and we also used a phylogenetic backbone tree (see below), the various datasets contained species names that might 18

not all be currently accepted names, challenging the linkage of the different datasets. This issue was
dealt with by creating "code" data frames connecting all original spellings, outdated and synonym
names to the names for which data was available and to the accepted species names obtained using The
Plant List via function "TPL" in R package "Taxonstand"⁶⁹.

373 To calculate phylogenetic diversity metrics and to use phylogenetic relatedness to assist the imputation of missing trait data, a phylogenetic tree of all plant species was created and included in our 374 study. We adopted the nomenclatural criteria in The Plant List v. 1.1⁷⁰ for the species in our dataset, and 375 376 pruned the updated vascular plant megaphylogeny by Oian & Jin⁷¹ to include only the species in our study (n = 664). We used the software SUNPLIN⁷² to add the species lacking from the megaphylogeny 377 378 (n=132 or 19.9% of all species in our study) at random within the crown nodes of the corresponding 379 monophyletic genera. In a few cases where the genera of the missing species were polyphyletic 380 (Potentilla, Medicago, Solidago, Galium) or paraphyletic (Calamagrostis, Vicia), we inserted the 381 species at random within the nodes representing the most recent common ancestors that unequivocally 382 contain them (see ⁷³). We repeated this procedure iteratively to obtain 50 phylogenetic trees (see 383 Supporting Information, Fig. S11 for one example tree and the distribution of randomly inserted 384 species). When using the phylogenetic trees in the subsequent data analysis (calculation of phylogenetic diversity metrics and plant trait imputation), all 50 trees were used and results were 385 averaged. 386

387

388 Functional trait data

In order to calculate community weighted mean trait values for all plant communities, functional trait data from the TRY database (see Supporting Information, Table S15) were complemented with in-situ collected trait data from Cedar Creek and not published in TRY. Plant species specific functional trait values were calculated separately for the German and US species subsets. Trait data for leaf area (mm²), leaf dry mass (mg), leaf dry matter content (LDMC, g/g), leaf nitrogen concentration (leaf N, mg/g), leaf phosphorus concentration (leaf P, mg/g), plant height (m), specific leaf area (SLA, mm²/mg) and seed mass (dry mass in mg) were assembled (Cornelissen et al. 2003). These traits were selected as they are important for ecosystem functioning^{44,45} and data for them was available. For the details of processing TRY and other trait data to generate species-level values, see Supporting Methods.

To fill gaps in trait data, trait values from same-genus species with available trait information were inferred. Subsequently, the "phylopars" function in the R package "Rphylopars"⁷⁴ was employed to impute missing data based on available information on other traits and the phylogenetic tree⁷⁵. Before imputation, all trait data was natural-log transformed. To account for phylogenetic uncertainty (see above), trait data for all 50 phylogenetic trees was imputed and averaged. Subsequently, the plant species and their trait values were visualized in a PCA for each region (Supporting Information, Fig. S12) to check for strong outliers and check the outlier-species' ability to score extreme values.

406

19

407 Calculation of plant-community properties

408 Before calculating plant-community properties, tree species, occurred as seedlings, were removed from 409 all datasets, because of their strong impact on the calculated CWM's and functional metrics, and the 410 fact that biodiversity experiments are mown annually thus preventing tree invasion. Plant-community 411 properties were calculated for each plot-year combination so that the temporal development 412 (succession) of plots was accounted for in our analysis. As taxonomic diversity indices, we calculated species richness (S), Shannon's diversity (H), Simpson's diversity index (D1), and inverse Simpson's 413 diversity index (D2) (calculated as D1=1-D and D2=1/D, where D is the sum over all pi^2 and pi are 414 415 the relative abundances of all species i) with functions "specnumber" and "diversity" in R package "vegan"⁷⁶ and Simpson's evenness (SEve, by dividing D2 by S)⁷⁷⁻⁸⁰. As phylogenetic diversity indices, 416

20

417 we used Faith's phylogenetic diversity (PD), mean pairwise distance (MPD), and mean nearest taxon distance (MNTD)⁸¹ with functions "pd", "mpd" and "mntd" in R package "picante"⁸², where MPD and 418 419 MNTD were calculated with abundance-weighting. All three phylogenetic diversity properties were calculated for each of the 50 phylogenetic trees and averaged to account for phylogenetic uncertainty 420 421 (see above). For the calculation of the functional diversity indices functional richness (FRic), functional 422 evenness (FEve), functional divergence (FDiv), functional dispersion (FDis), Rao's guadratic entropy (RaoQ)⁸³⁻⁸⁵ and community weighted mean traits (CWM's) the function "dbFD" in the R package 423 424 "FD"^{84,86} was used. As function "dbFD" relies on the computation of a Gower dissimilarity matrix 425 where zero-dissimilarity values between two species (identical trait values) are not allowed, we slightly 426 altered the trait values of a small number of species by deliberately increasing all trait values by 0.001 427 to 0.002% for the function to run. For each of the respective species pairs, only the species with the 428 lower overall cover (throughout the regional dataset) received this alteration (Supporting Information, 429 Table S16). For all but FRic, the abundance-weighted versions of these indices were computed. 430 Communities comprising less than three species were assigned a value of zero for FRic, FEve, FDiv, PD, MPD and MNTD, as their computation is not possible for such communities. 431

432

433 **3. Multivariate analysis of experiment and real-world intersection**

434 Multivariate comparison

All analyses were carried out in R version 3.4.2⁸⁷. Here, a multivariate PCA approach was employed,
based on a number of plant-community properties to assess the distribution, similarities and differences
between plant communities of biodiversity experiments and real-world systems. Prior to the analysis,
we tested for multicollinearity of community properties by calculating variance inflation factors
(hereafter: vif; R function "corvif" provided by ⁸⁸). In the German and US dataset, we sequentially
removed the variables with the highest variance inflation factor until all vif values were <3. Only the

7	1
2	1

441	last of the eight variables to remove differed between the German and US datasets, so for comparability
442	between regional datasets, we removed all nine variables from both datasets (see Supporting
443	Information, Table S17 and S18). Specifically, H, FDis, S, leaf area, D1, PD, MPD, RaoQ and FDiv
444	were removed (in order of sequential removal) and only the following 12 community properties were
445	employed in the PCA's: D2, SEve, FRic, FEve, SLA, leaf dry mass, leaf N, leaf P, seed mass, height,
446	LDMC, and MNTD (Fig. 1b and f). Separate community property PCA's were computed for the
447	German and USA data subsets using the "rda" function in R package "vegan" (with variables scaled to
448	avoid bias due to different range-size of properties) and the data was visualized in biplots with 95%
449	confidence ellipses (Fig. 1a and e).
450	
451	Intersection-calculation methods
450	

452 The intersection between experimental and real-world plots was calculated using three different 453 methods of differing complexity, all based on the community-property PCA's presented in Fig. 1a and 454 e. Intersections were calculated between two groups of data per geographic region: a) all experimental 455 communities across all years and b) a subset of the most comparable and data-rich real-world datasets 456 (combined real-world datasets). For Jena, the related combined real-world communities were all 457 German real-world communities (Biodiversity Exploratories) and the Jena real-world communities. For BioDIV, only Fertilization 1 and Fertilization 2 plots were used as the combined real-world 458 counterparts when calculating the intersections as different vegetation-survey techniques in the old 459 460 field succession chronosequence and the oak savannah datasets (transects and subplots) made these 461 data incomparable. First, the first two PCA axes were used to assess the two-dimensional intersection of 95% confidence ellipses for experimental and real-world data using the functions "ellipse" and 462 "point.in.polygon" in R packages "car"⁸⁹ and "sp"^{90,91}, respectively (Supporting Information, Fig. S4). 463 464 Second, the first three PCA axes were employed to compute the intersection of three-dimensional

22

465	convex hull volumes using functions "convhulln" and "tsearchn" in R package "geometry" ⁹² (Fig. 1c
466	and g show 2-dimensional representation of 3-dimensional convex hull volume). Third, using the first
467	three PCA axes, three-dimensional hypervolumes were computed using the "hypervolume" package in
468	R ⁹³ . The intersection hypervolume of the experimental and real-world hypervolumes was then
469	calculated and function "hypervolume_inclusion_test" was used to assess which communities fall in
470	the intersection hypervolume (Supporting Information, Fig. S4). For the subsequent analysis of
471	diversity-functioning (hereafter: BEF) relationships, experimental plots were defined as realistic if their
472	plant communities fell inside the intersection in at least one of the years present in the dataset. Given
473	this threshold, each plot in the experiments was either defined as realistic (the plot's plant community
474	was within the intersection in at least one year) or unrealistic. Calculating the intersection based on
475	three different methods of different complexity demonstrated that the selection of realistic communities
476	was largely insensitive to the underlying methodology (Supporting Information, Table S4 and S5, Fig.
477	S5a, c). Therefore, we focus our analyses on using three-dimensional convex-hull volumes, a method
478	of intermediate complexity, and present results for the other methods in the Supporting Information.
479	

480 **4. Measurement of ecosystem-function variables**

A range of above- and belowground ecosystem process rates and state variables was selected as 481 482 ecosystem functions from the Jena Experiment and BioDIV in such a way that the functions of these 483 experiments were as comparable as possible. Only function data obtained between 2006 and 2015 (at least 4 years after initiation of the experiments) was used because BEF relationships shortly after the 484 initial establishment of experiments are often unrepresentative of longer-term trends^{24,94}. These 485 selection criteria resulted in the following functions: Plant aboveground biomass (biomass), 486 487 aboveground plant biomass C:N ratio (plant C:N), soil carbon (C; only organic fraction in Jena, total 488 soil C in BioDIV) and root biomass were available for both experiments. As inorganic C is a significant

23

489 proportion of total soil C at Jena, but not at Cedar Creek, soil organic C was used for Jena, but total soil 490 C for BioDIV. Herbivory rate, soil microbial biomass C, phosphatase activity, and pollinator abundance 491 were only available for Jena. For details regarding the measurement of these ecosystem functions in the 492 Jena Experiment and BioDIV; please refer to the Supporting Methods section.

493

494 5. Statistical analysis of unconstrained and constrained experimental BEF relationships

In order to assess whether – and how much – BEF relationships change when excluding unrealistic 495 496 plots from the analysis, each relationship was first analyzed in the unconstrained dataset with all experimental plots. Subsequently, biodiversity experiment datasets were constrained to only include 497 498 realistic plots and the models were re-run. For ecosystem function variables with multiple years of data, 499 values were averaged across years and simple linear models were fit that tested for the effect of realized 500 target species richness (log₂, averaged per plot between 2006 and 2015) on the individual functions. 501 Where necessary, square-root or \log_{10} -transformation was applied to response variables to meet model 502 assumptions of normality and homoscedasticity of variances. For each of the resulting relationships, 503 slope estimates and their 95% confidence intervals (function "confint" in R) were calculated. Slopes 504 and confidence intervals of each pair of constrained and unconstrained relationships were compared to 505 decide if the slope or sign of the relationship had changed. If confidence intervals of unconstrained and 506 constrained slopes included each other's mean value, we concluded that they were not significantly 507 different. Additionally, a paired t-test on differences between unconstrained and constrained slopes was performed. 508

509

510 **6. Sensitivity analyses**

511 Since our analysis involved many decisions on which variables to include and what exact analytical 512 pathway to follow, and because we are aware that these decisions might affect our results, several

- 24
- 513 sensitivity analyses were performed regarding different aspects of our analysis.

514 To test if different subsets of community properties entering the PCA affected our results, our 515 analysis was re-run for all combinations of i) different subsets of community properties, i.e. (a) all 12 516 community properties (presented in the main text), b) just the eight CWM's, or c) just the four 517 functional diversity properties) and ii) all three methods to compute the intersection between 518 experiment and real-world plots described above (Supporting Information, Fig. S4 and S8). 519 To test if shifts in significance of BEF relationships in **Fig. 2** simply resulted from the strong 520 reduction of error degrees of freedom associated with using data subsets, we performed a sensitivity analysis randomly selecting the same proportion of plots as realistic that was selected by our PCA-521 522 driven selection of realistic sites, 500 times for each relationship (Supporting Information, Fig. S9). 523 To gain further insight into our findings at Jena, data from experimental plots which were abandoned and allowed to undergo natural succession (Jena invasion plots) was more closely analyzed. 524 525 Over time, these migrated towards the multivariate community property space occupied by real-world 526 communities, thus showing that differences between real-world and biodiversity experiment 527 communities were due to experimental manipulation and maintenance rather than differences in plot 528 conditions, species pools or initially random versus natural community assembly (Supporting 529 Information, Fig. S1).

25

530 Acknowledgements

531 We thank the establishers, maintainers, coordinators, technical and research staff of all involved 532 projects, data owners of all involved research projects, the TRY initiative and data owners. Santiago 533 Soliveres, Eric Allan for discussion, Sven Thiel and Guangjuan Luo (both Jena) and Dan Bahauddin 534 (Cedar Creek) for help with data extraction and handling of project databases, Florian Schneider for 535 help with processing TRY data. Thanks to Robert Junker and Benjamin Blonder for assistance with the 536 calculation of multidimensional hypervolumes and their intersection in R. This study was funded 537 through Jena Experiment SP 7 (Swiss National Science Foundation 310030E-166017/1). Further 538 support came from the German Centre for Integrative Biodiversity Research (iDiv) Halle-Jena-Leipzig. funded by the German Research Foundation (FZT 118). The Jena Experiment was funded by the 539 540 Deutsche Forschungsgemeinschaft (FOR 456 and FOR 1451) with additional support from the 541 Friedrich Schiller University Jena, the Max Planck Institute for Biogeochemistry in Jena, and the Swiss 542 National Science Foundation. All of the studies located at Cedar Creek included herein are funded by 543 the US National Science Foundation's Long-Term Ecological Research (LTER) program (DEB-544 1234162) and FI acknowledges funding from the LTER Network Communications Office (DEB-545 1545288).

546

547 Data accessibility

We provide aggregated datasets with plant-community properties and ecosystem function data at first submission to enable editors and referees to run our main analyses. Currently, these datasets partly underlie project-specific embargo periods and need to be treated confidentially. All data will be a) uploaded to an online repository, b) submitted as supplemental files upon acceptance of the article or c) be made available within project databases after the respective project-defined embargo periods. Upon request by editors or referees, we are happy to provide all data at an earlier stage.

26 554

555 Code availability

- 556 We provide R-code for running the main analyses and creating Fig. 1 and Fig. 2 based on aggregated
- 557 datasets at first submission. All R-code for data crunching and analyses will be a) uploaded to an online
- repository, b) submitted as supplemental files upon acceptance of the article or c) be made available
- 559 within project databases after the respective project-defined embargo periods. Upon request by editors
- 560 or referees, we are happy to provide all R-code at an earlier stage.
- 561

562 Author contributions

563 MJ, PM, MF and FvdP conceived the idea and designed the study; all authors except for MJ, FvdP,

564 RM-V, CP, AR and PM contributed data; MJ developed the analytical framework and analyzed the

565 data; RM-V constructed the phylogenetic hypothesis trees; MJ and PM wrote the manuscript; all

authors contributed to the discussion of results and to the writing of the manuscript.

567

568 Competing interests

- 569 The authors declare no competing interests.
- 570

571 **References**

- 572 1. Cardinale, B. J. et al. Biodiversity loss and its impact on humanity. *Nature* **486**, 59–67 (2012).
- 573 2. Tilman, D., Isbell, F. & Cowles, J. M. Biodiversity and ecosystem functioning. *Annu. Rev. Ecol.*574 *Evol. Syst.* 45, 471–493 (2014).
- 575 3. Isbell, F. *et al.* Linking the influence and dependence of people on biodiversity across scales.
 576 *Nature* 546, 65–72 (2017).
- 4. van der Plas, F. Biodiversity and ecosystem functioning in naturally assembled communities. *Biol. Rev.* online-early, (2019).
- 579 5. Tilman, D. et al. Diversity and productivity in a long-term grassland experiment. Science 294,

27 580		843-845 (2001).
581 582 583	6.	Roscher, C., Schumacher, J. & Baade, J. The role of biodiversity for element cycling and trophic interactions: an experimental approach in a grassland community. <i>Basic Appl. Ecol.</i> 121 , 107–121 (2004).
584 585	7.	Hooper, D. U. <i>et al.</i> Effects of biodiversity on ecosystem functioning: a consensus of current knowledge. <i>Ecol. Monogr.</i> 75 , 3–35 (2005).
586 587	8.	Cardinale, B. J. <i>et al.</i> The functional role of producer diversity in ecosystems. <i>Am. J. Bot.</i> 98 , 572–592 (2011).
588 589	9.	O'Connor, M. I. <i>et al.</i> A general biodiversity–function relationship is mediated by trophic level. <i>Oikos</i> 126 , 18–31 (2017).
590 591	10.	Huston, M. A. Hidden treatments in ecological experiments: re-evaluating the ecosystem function of biodiversity. <i>Oecologia</i> 110 , 449–460 (1997).
592 593	11.	Grime, J. P. Benefits of plant diversity to ecosystems: Immediate, filter and founder effects. <i>J. Ecol.</i> 86 , 902–910 (1998).
594 595	12.	Wardle, D. A. <i>et al.</i> Biodiversity and ecosystem function: an issue in ecology. <i>Bull. Ecol. Soc. Am.</i> 81 , 235–239 (2000).
596 597	13.	Leps, J. What do the biodiversity experiments tell us about consequences of plant species loss in the real world? <i>Basic Appl. Ecol.</i> 5 , 529–534 (2004).
598 599	14.	Srivastava, D. S. & Vellend, M. Biodiversity-ecosystem function research: is it relevant to conservation? <i>Annu. Rev. Ecol. Evol. Syst.</i> 36 , 267–294 (2005).
600 601	15.	Duffy, J. E. Why biodiversity is important to the functioning of real-world ecosystems. <i>Front. Ecol. Environ.</i> 7 , 437–444 (2008).
602 603	16.	Wardle, D. A. & Jonsson, M. Biodiversity effects in real ecosystems – a response to Duffy. <i>Front. Ecol. Environ.</i> 8 , 10–11 (2010).
604 605	17.	Duffy, J. E. Biodiversity effects: trends and exceptions – a reply to Wardle and Jonsson. <i>Front. Ecol. Environ.</i> 8 , 11–12 (2010).
606 607	18.	Wardle, D. A. Do experiments exploring plant diversity-ecosystem functioning relationships inform how biodiversity loss impacts natural ecosystems? <i>J. Veg. Sci.</i> 27 , 646–653 (2016).
608	19.	Schulze, ED. & Mooney, H. Biodiversity and Ecosystem Functioning. (Springer, 1993).
609 610	20.	Naeem, S., Thompson, L. J., Lawler, S. P., Lawton, J. H. & Woodfin, R. M. Declining biodiversity can alter the performance of ecosystems. <i>Nature</i> 368 , 734–737 (1994).
611 612	21.	Balvanera, P. <i>et al.</i> Quantifying the evidence for biodiversity effects on ecosystem functioning and services. <i>Ecol. Lett.</i> 9 , 1146–56 (2006).

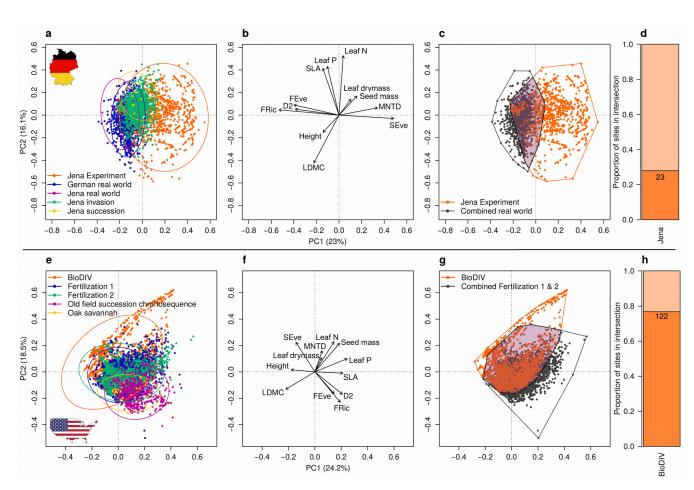
28		
613 614	22.	Tilman, D., Wedin, D. & Knops, J. Productivity and sustainability influenced by biodiversity in grassland ecosystems. <i>Nature</i> 379 , 718–720 (1996).
615 616	23.	Loreau, M. <i>et al.</i> Biodiversity and Ecosystem Functioning: Current Knowledge and Future Challenges. <i>Science</i> 294 , 804–808 (2001).
617 618	24.	Reich, P. B. <i>et al.</i> Impacts of biodiversity loss escalate through time as redundancy fades. <i>Science</i> 336 , 589–592 (2012).
619 620	25.	Wilsey, B. J. & Potvin, C. Biodiversity and ecosystem functioning: Importance of species evenness in an old field. <i>Ecology</i> 81 , 887–892 (2000).
621 622	26.	Wilsey, B. J. & Polley, H. W. Realistically Low Species Evenness Does Not Alter Grassland Species-Richness–Productivity Relationships. <i>Ecology</i> 85 , 2693–2700 (2004).
623 624	27.	Hillebrand, H., Bennett, D. & Cadotte, M. Consequences of dominance: A Review of evenness effects on local and regional ecosystem processes. <i>Ecology</i> 89 , 1510–1520 (2008).
625 626	28.	Schmitz, M. <i>et al.</i> Consistent Effects of Biodiversity on Ecosystem Functioning Under Varying Density and Evenness. <i>Folia Geobot.</i> 48 , 335–353 (2013).
627 628 629	29.	Finn, J. A. <i>et al.</i> Ecosystem function enhanced by combining four functional types of plant species in intensively managed grassland mixtures: A 3-year continental-scale field experiment. <i>J. Appl. Ecol.</i> 50 , 365–375 (2013).
630 631	30.	Weisser, W. W. <i>et al.</i> Biodiversity effects on ecosystem functioning in a 15-year grassland experiment: patterns, mechanisms, and open questions. <i>Basic Appl. Ecol.</i> 23 , 1–73 (2017).
632 633	31.	Schmid, B. & Hector, A. The value of biodiversity experiments. <i>Basic Appl. Ecol.</i> 5 , 535–542 (2004).
634 635 636	32.	Eisenhauer, N. <i>et al.</i> Biodiversity-ecosystem function experiments reveal the mechanisms underlying the consequences of biodiversity change in real world ecosystems. <i>J. Veg. Sci.</i> 27, 1061–1070 (2016).
637 638	33.	Isbell, F. <i>et al.</i> Nutrient enrichment, biodiversity loss, and consequent declines in ecosystem productivity. <i>Proc. Natl. Acad. Sci.</i> 110 , 11911–11916 (2013).
639 640	34.	Duffy, J. E., Godwin, C. M. & Cardinale, B. J. Biodiversity effects in the wild are common and as strong as key drivers of productivity. <i>Nature</i> 549 , 261–264 (2017).
641 642	35.	Buchmann, T. <i>et al.</i> Connecting experimental biodiversity research to real-world grasslands. <i>Perspect. Plant Ecol. Evol. Syst.</i> 33 , 78–88 (2018).
643 644	36.	Tilman, D. <i>et al.</i> The influence of functional diversity and composition on ecosystem processes. <i>Science</i> 277 , 1300–1302 (1997).
645	37.	Tilman, D., Reich, P. B. & Isbell, F. Biodiversity impacts ecosystem productivity as much as

29 646		resources, disturbance, or herbivory. Proc. Natl. Acad. Sci. 109, 10394–10397 (2012).
647 648	38.	Isbell, F. <i>et al.</i> Biodiversity increases the resistance of ecosystem productivity to climate extremes. <i>Nature</i> 526 , 574–577 (2015).
649 650	39.	Fischer, M. <i>et al.</i> Implementing large-scale and long-term functional biodiversity research: The Biodiversity Exploratories. <i>Basic Appl. Ecol.</i> 11 , 473–485 (2010).
651 652	40.	Soliveres, S. <i>et al.</i> Biodiversity at multiple trophic levels is needed for ecosystem multifunctionality. <i>Nature</i> 536 , 456–459 (2016).
653 654	41.	Tilman, D. Secondary succession and the pattern of plant dominance along experimental nitrogen gradients. <i>Ecol. Monogr.</i> 57 , 189–214 (1987).
655 656	42.	Clark, C. M. & Tilman, D. Loss of plant species after chronic low-level nitrogen deposition to prairie grasslands. <i>Nature</i> 451 , 712–715 (2008).
657	43.	Inouye, R. et al. Old-field succession on a Minnesota sand plain. Ecology 68, 12–26 (1987).
658	44.	Díaz, S. et al. The global spectrum of plant form and function. Nature 529, 1–17 (2015).
659 660	45.	Craven, D. <i>et al.</i> Multiple facets of biodiversity drive the diversity–stability relationship. <i>Nat. Ecol. Evol.</i> 2 , 1579–1587 (2018).
661 662	46.	Manning, P. <i>et al.</i> Grassland management intensification weakens the associations among the diversities of multiple plant and animal taxa. <i>Ecology</i> 96 , 1492–1501 (2015).
663 664	47.	Loreau, M. & Hector, A. Partitioning selection and complementarity in biodiversity experiments. <i>Nature</i> 412 , 72–76 (2001).
665 666	48.	Hillebrand, H. & Matthiessen, B. Biodiversity in a complex world: consolidation and progress in functional biodiversity research. <i>Ecol. Lett.</i> 12 , 1405–1419 (2009).
667 668	49.	Liang, J. <i>et al.</i> Positive biodiversity-productivity relationship predominant in global forests. <i>Science</i> 354 , aaf8957 (2016).
669 670	50.	Grace, J. B. <i>et al.</i> Integrative modelling reveals mechanisms linking productivity and plant species richness. <i>Nature</i> 529 , 390–393 (2016).
671 672 673	51.	Oehri, J., Schmid, B., Schaepman-Strub, G. & Niklaus, P. A. Biodiversity promotes primary productivity and growing season lengthening at the landscape scale. <i>Proc. Natl. Acad. Sci.</i> 114 , 10160–10165 (2017).
674 675	52.	Díaz, S. <i>et al.</i> Incorporating plant functional diversity effects in ecosystem service assessments. <i>Proc. Natl. Acad. Sci. U. S. A.</i> 104 , 20684–20689 (2007).
676 677	53.	Lavorel, S. <i>et al.</i> Using plant functional traits to understand the landscape distribution of multiple ecosystem services. <i>J. Ecol.</i> 99 , 135–147 (2011).
678	54.	Schmid, B. The species richness-productivity controversy. Trends Ecol. Evol. 17, 113-114

30

679		(2002).
680 681	55.	Maestre, F. T. <i>et al.</i> Plant species richness and ecosystem multifunctionality in global drylands. <i>Science</i> 335 , 214–218 (2012).
682 683	56.	Allan, E. <i>et al.</i> Land use intensification alters ecosystem multifunctionality via loss of biodiversity and changes to functional composition. <i>Ecol. Lett.</i> 18 , 834–843 (2015).
684 685	57.	van der Plas, F. <i>et al.</i> Jack-of-all-trades effects drive biodiversity-ecosystem multifunctionality relationships in European forests. <i>Nat. Commun.</i> 7 , 11109 (2016).
686 687	58.	Hobbs, R. J., Higgs, E. & Harris, J. a. Novel ecosystems: implications for conservation and restoration. <i>Trends Ecol. Evol.</i> 24 , 599–605 (2009).
688 689	59.	Roscher, C. <i>et al.</i> Convergent high diversity in naturally colonized experimental grasslands is not related to increased productivity. <i>Perspect. Plant Ecol. Evol. Syst.</i> 20 , 32–45 (2016).
690 691	60.	Ellenberg, H. & Leuschner, C. Vegetation Mitteleuropas mit den Alpen: in ökologischer, dynamischer und historischer Sicht. (UTB, 2010).
692 693	61.	Blüthgen, N. <i>et al.</i> A quantitative index of land-use intensity in grasslands: Integrating mowing, grazing and fertilization. <i>Basic Appl. Ecol.</i> 13 , 207–220 (2012).
694 695	62.	Tilman, D., Reich, P. B. & Knops, J. M. H. Biodiversity and ecosystem stability in a decade-long grassland experiment. <i>Nature</i> 441 , 629–632 (2006).
696 697	63.	Tilman, D. Community Invasibility, Recruitment Limitation, and Grassland Biodiversity. <i>Ecology</i> 78 , 81–92 (1997).
698 699 700	64.	Catford, J. A. <i>et al.</i> Traits linked with species invasiveness and community invasibility vary with time, stage and indicator of invasion in a long-term grassland experiment. <i>Ecol. Lett.</i> 22 , 593–604 (2019).
701 702 703	65.	Fargione, J. <i>et al.</i> From selection to complementarity: shifts in the causes of biodiversity-productivity relationships in a long-term biodiversity experiment. <i>Proc. R. Soc. B Biol. Sci.</i> 274 , 871–876 (2007).
704	66.	Londo, G. The decimal scale for releves of permanent quadrats. Vegetatio 33, 61-64 (1976).
705 706	67.	Roscher, C. <i>et al.</i> What happens to the sown species if a biodiversity experiment is not weeded? <i>Basic Appl. Ecol.</i> 14 , 187–198 (2013).
707 708	68.	Kattge, J. <i>et al.</i> TRY - a global database of plant traits. <i>Glob. Chang. Biol.</i> 17 , 2905–2935 (2011).
709 710	69.	Cayuela, L., Stein, A. & Oksanen, J. Taxonstand: Taxonomic Standardization of Plant Species Names. <i>R Packag. version 2.1</i> (2017).
711	70.	The Plant List, Version 1.1. (2013). Available at: http://www.theplantlist.org/.

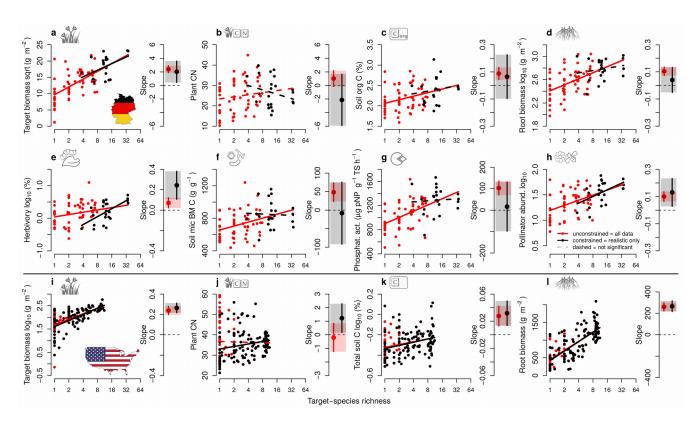
31 712 713	71.	Qian, H. & Jin, Y. An updated megaphylogeny of plants, a tool for generating plant phylogenies and an analysis of phylogenetic community structure. <i>J. Plant Ecol.</i> 9 , 233–239 (2016).
714 715	72.	Martins, W. S., Carmo, W. C., Longo, H. J., Rosa, T. C. & Rangel, T. F. SUNPLIN: Simulation with Uncertainty for Phylogenetic Investigations. <i>BMC Bioinformatics</i> 14 , (2013).
716 717	73.	Rangel, T. F. <i>et al.</i> Phylogenetic uncertainty revisited: Implications for ecological analyses. <i>Evolution (N. Y).</i> 69 , 1301–1312 (2015).
718 719	74.	Goolsby, E. W., Bruggeman, J. & Ane, C. Rphylopars: Phylogenetic Comparative Tools for Missing Data and Within-Species Variation. (2016).
720 721	75.	Penone, C. <i>et al.</i> Imputation of missing data in life-history trait datasets: Which approach performs the best? <i>Methods Ecol. Evol.</i> 5 , 1–10 (2014).
722	76.	Oksanen, J. et al. Vegan: community ecology package. R Packag. version 2.3-4 (2016).
723	77.	Magurran, A. Measuring Biological Diversity. (Blackwell, 2004).
724 725	78.	Morris, E. K. <i>et al.</i> Choosing and using diversity indices: Insights for ecological applications from the German Biodiversity Exploratories. <i>Ecol. Evol.</i> 4 , 3514–3524 (2014).
726	79.	Smith, B. & Wilson, J. B. A Consumer's Guide to Evenness Indices. Oikos 76, 70-82 (1996).
727 728	80.	Hill, M. Diversity and Evenness: A Unifying Notation and Its Consequences. <i>Ecology</i> 54 , 427–432 (1973).
729 730	81.	Tucker, C. M. <i>et al.</i> A guide to phylogenetic metrics for conservation, community ecology and macroecology. <i>Biol. Rev.</i> 92 , 698–715 (2017).
731 732	82.	Kembel, S. W. <i>et al.</i> Picante: R tools for integrating phylogenies and ecology. <i>Bioinformatics</i> 26 , 1463–1464 (2010).
733 734	83.	Villéger, S., Mason, N. W. H. & Mouillot, D. New multidimensional functional diversity indices for a multifaceted framework in functional ecology. <i>Ecology</i> 89 , 2290–2301 (2008).
735 736 737	84.	Laliberte, E. & Legendre, P. A distance-based framework for measuring functional diversity from multiple traits A distance-based framework for measuring from multiple traits functional diversity. <i>Ecology</i> 91 , 299–305 (2010).
738 739 740	85.	Mouchet, M. A., Villéger, S., Mason, N. W. H. & Mouillot, D. Functional diversity measures: an overview of their redundancy and their ability to discriminate community assembly rules. <i>Funct. Ecol.</i> 24 , 867–876 (2010).
741 742	86.	Laliberté, E., Legendre, P. & Shipley., B. FD: measuring functional diversity from multiple traits, and other tools for functional ecology. (2014).
743 744	87.	R Core Team. R: A Language and Environment for Statistical Computing. (2017). doi:10.1007/978-3-540-74686-7


32 745 746	88.	Zuur, A. F., Ieno, E. N. & Elphick, C. S. A protocol for data exploration to avoid common statistical problems. <i>Methods Ecol. Evol.</i> 1 , 3–14 (2010).
747	89.	Fox, J. & Weisberg, S. An R Companion to Applied Regression. (Thousand Oaks, 2011).
748	90.	Pebesma, E. & Bivand, R. Classes and methods for spatial data. <i>R News</i> 5, 9–13 (2005).
749 750	91.	Bivand, R. S., Pebesma, E. & Gomez-Rubio, V. <i>Applied spatial data analysis with R</i> . (Springer, 2013).
751 752	92.	Habel, K., Grasman, R., Gramacy, R. B., Stahel, A. & Sterratt, D. C. geometry: Mesh Generation and Surface Tesselation. <i>R package version 0.4.1</i> (2019).
753 754 755	93.	Blonder, B. & Harris, D. hypervolume: High Dimensional Geometry and Set Operations Using Kernel Density Estimation, Support Vector Machines, and Convex Hulls. <i>R Packag. ver. 2.0.11</i> (2018).
756 757	94.	Meyer, S. T. <i>et al.</i> Effects of biodiversity strengthen over time as ecosystem functioning declines at low and increases at high biodiversity. <i>Ecosphere</i> 7 , e01619 (2016).

33

758 Figures

759	Fig. 1 Experimental versus real-world communities. Upper row: German comparison (n=3330 plot-
760	year combinations). Lower row: US comparison (n=9954 plot-year combinations). a-c and e-g: First
761	two axes of a PCA on 12 plant-community properties (see panels b and f, variance-inflation factor-
762	selected community weighted mean traits, functional diversity metrics, phylogenetic diversity and
763	taxonomic diversity metrics), where each dot represents a single plot in a single year. a and e:
764	Distribution of the experimental (orange) and various real-world plots with 95% confidence ellipses
765	(variables scaled for PCA) for each subset. b and f: PCA factor loadings for community properties
766	(arrows proportionally increased to improve visibility; see Supporting Information, Table S13 and S14
767	for PCA factor loadings and the full dataset, respectively). c and g: Two-dimensional representation of
768	three-dimensional convex hull volumes for experimental (orange) and combined real-world
769	communities (German real world and Jena real-world plots for the German, Fertilization 1 and 2 plots
770	for the US comparison, gray) and their intersection (shaded area). d and h: Number and proportion
771	(strong versus light color) of biodiversity experiment plots in the intersection, where each plot with at
772	least one annual community in the intersection is defined as included.


bioRxiv preprint doi: https://doi.org/10.1101/725812; this version posted August 5, 2019. The copyright holder for this preprint (which was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission.

35 774	Fig. 2 Biodiversity-ecosystem functioning relationships. Relationship between realized target plant
775	species richness (averaged per plot between 2006 and 2015, axis on log ₂ -scale) and various ecosystem
776	functions in German (panels a-h, Jena Experiment) and US (panels i-l, BioDIV) biodiversity
777	experiments containing all plots (all dots and red lines) and only realistic plots (black dots and lines).
778	Constrained (realistic plots only) and unconstrained slopes are shown for each panel together with 95%
779	confidence intervals (error bars and shaded areas). For model parameters such as sample sizes, slope
780	estimates, confidence intervals, p-values and adjusted R ² values, see Supporting Information, Table S8.
781	Dashed regression lines show non-significant relationships (p>0.05). Note that panels a-d and i-l show
782	the same ecosystem functions for both experiments (organic versus total C in c and k). BM denotes
783	biomass and CN denotes C:N ratios. Where indicated in the y-axis label, data were transformed to meet
784	model assumptions. Response variables were averaged over all available years. Function symbols
785	modified from originals by Hamish, Saeful Muslim, Alice Noir, Lluis Pareras, Creative Stall, Atif
786	Arshad, Made and amantaka from the Noun Project.

787

bioRxiv preprint doi: https://doi.org/10.1101/725812; this version posted August 5, 2019. The copyright holder for this preprint (which was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission.

2	-
3	Ι

789 Supporting Information

790 The following Supporting Information is available for this article online:

791 Supporting Methods.

- 792 **Table S1.** List of German and US datasets for vegetation and ecosystem function data.
- **Figure S1.** Temporal movement of Jena invasion plots into the real-world realm.
- **Figure S2.** Violin plots of community properties of German experimental and real-world plots.
- 795 Table S2. T-test results for differences between German experimental and real-world plots.
- 796 Figure S3. Violin plots of community properties of US experimental and real-world plots.
- 797 Table S3. T-test results for differences between US experimental and real-world plots.
- **Figure S4.** Alternative versions of Fig. 1 based on the alternative intersection scenarios.
- 799 Figure S5. Venn diagrams of intersection scenarios.
- 800 Table S4. Jena plots included in the different overlap scenarios versus all experimental plots.
- **Table S5.** e120 plots included in the different overlap scenarios versus all experimental plots.
- 802 Figure S6. Boxplots of community properties of realistic and unrealistic plots for the Jena Experiment.
- 803 Table S6. T-test results for differences between realistic and unrealistic plots for the Jena Experiment.
- **Figure S7.** Boxplots of community properties of realistic and unrealistic plots for BioDIV.
- 805 Table S7. T-test results for differences between realistic and unrealistic plots for BioDIV.
- **Table S8.** Model parameters for BEF relationships presented in Fig. 2.
- 807 Figure S8. Alternative versions of Fig. 2 based on the alternative intersection scenarios.
- 808 **Table S9.** Constraining-related change in functioning at maximum species richness.
- 809 Figure S9: Random selection sensitivity analysis for Fig. 2 relationships turning insignificant.
- 810 Table S10. Differences between range in function covered by unconstrained and constrained models in
- 811 Fig. 2.
- 812 Table S11. Correlation coefficients for CWM's versus functional, phylogenetic metrics and evenness,

38

- 813 German dataset.
- 814 Table S12. Correlation coefficients for CWM's versus functional, phylogenetic metrics and evenness,

815 US dataset.

- **Table S13.** PCA scores for full 12 community properties on PCA's in Fig. 1.
- 817 Table S14. Full dataset of community properties for all plots used in the PCA's over all years
- 818 (submitted along with R-code at first submission).
- 819 Figure S10. Cover versus vegetation survey size scaling sensitivity check for German real-world data
- 820 (Biodiversity Exploratories).
- Figure S11. Phylogenetic backbone tree (one example of the 50 replicates).
- 822 Table S15. TRY references for plant species trait data from two TRY requests (might have to be
- 823 included in the main references depending on the TRY rules and journal policy).
- Figure S12. PCA of plant species and their traits for German and US comparison.
- 825 **Table S16.** Species with altered trait values to avoid Gower dissimilarity zeros.
- 826 Table S17. Correlation coefficients for 21 plant community properties for the German dataset.
- 827 Table S18. Correlation coefficients for 21 plant community properties for the US dataset.

1 1

Supporting Information for Jochum et al. submission entitled

- 2 "The results of biodiversity-ecosystem functioning experiments are realistic"
- 3

4 Supporting Methods

5 1. Details of ecosystem function measurement in the Jena Experiment and BioDIV

6 Jena and BioDIV plant aboveground biomass In Jena, aboveground plant biomass was harvested biannually (late May and late August), just prior to mowing. Here, we used only the first harvest, which 7 represents peak standing biomass in most years, from years 2006–2015. All vegetation was clipped at 3 8 9 cm above ground in up to four rectangles of $0.2 \text{ m} \times 0.5 \text{ m}$ per plot with the location of these rectangles 10 being randomly assigned each year. For BioDIV, aboveground peak plant biomass was harvested 11 annually in August by clipping $0.1 \text{ m} \times 6 \text{ m}$ strips (see above) each year from 2006–2015. For both 12 studies, harvested target-species biomass was sorted into individual species, dried to constant weight at 13 70 °C for at least 48 h and weighed. Target plant community biomass was then calculated as the sum of the biomass of the individual sown species ($g m^{-2}$). 14

15

Jena and BioDIV aboveground plant biomass C:N ratio In Jena, the combined target species
material from the spring biomass harvest (May) was shredded (Analysenmühle, Kinematica, Littau,
Switzerland). A subsample of the shredded material was milled to fine powder in a ball-mill (mixer mill
MM2000 Retsch, Haan, Germany) and 5–10 mg was used for CN analysis with an elemental analyzer.
C and N content were calculated as percentage elemental concentration of dry material and C:N ratios
as the ratio between those percentages for years 2007-2012.

In BioDIV, two strips of $0.1 \text{ m} \times 6 \text{ m}$ were clipped, typically in late July or early August with clip strip locations rotated each year. Unsorted biomass was air-dried at 40 °C. Dried biomass samples were ground (standard Thomas Wiley mill) and the resulting sample homogenized. A sub-sample was

7

25	re-ground in a Wiley Mini-Mill, stored in glass scintillation vials and re-dried prior to lab analysis.
26	Percent C and N content in dry matter were determined using an elemental analyzer (NA1500, Carlo-
27	Erba Instruments or ECS 4010, COSTECH Analytical Technologies Inc., Valencia, CA, USA) at
28	University of Minnesota or at the Ecosystems Analysis Lab, University of Nebraska, Lincoln. Ratios of
29	dry mass elemental content were then calculated from these results for year 2006.
30	
31	BioDIV total soil C Total soil C samples were taken at all BioDIV plots during summer 2006 at 0–20
32	cm depth on nine sites per plot ¹ . Samples were sieved to remove roots, combined for each plot, mixed
33	and ground. Subsequently, soil samples were dried at 40 °C for 5 days. For each plot, two soil samples

34 were analysed for total C by combustion and gas chromatography (Costech Analytical ECS 4010

35 instrument, Costech Analytical Technologies Inc., Valencia, CA). We used the average of the two

36 measurements of C in % total carbon of dry weight.

37

38 Jena soil organic C Soil organic C in the Jena "main" experiment was determined in 2008, 2011 and 39 2014. Using a split-tube sampler (4.8 cm diameter), three soil cores per plot were taken to a depth of 30 40 cm². Soil cores were segmented into 5 cm depth sections and pooled per depth sections and plot. Soil 41 was then dried, sieved and milled. Subsequently, total C was determined by combustion with an 42 elemental analyzer at 1,150 °C (Elementaranalysator vario Max CN, Elementar Analysensysteme 43 GmbH, Hanau, Germany). Inorganic C concentration was measured after oxidative removal of organic 44 C for 16 h at 450 °C in a muffle furnace. Finally, organic C concentration was calculated as the difference between total and inorganic C for each 5-cm-layer² and we averaged over the two uppermost 45 layers to get organic C content for 0–10 cm depth. Subsequently, we averaged over the three samples to 46 get soil organic C content per year and plot in g kg⁻¹ soil. 47

3

Jena and BioDIV root biomass In Jena, standing root biomass was sampled down to 40 cm depth in
all plots in June 2011 and 2014. On each plot, three cores of 3.5 cm diameter were taken and
immediately stored at 4 °C until further handling. The total sample was washed to determine root
biomass. Bulk samples were carefully washed by hand over a sieve of 0.5 mm mesh size. Remaining
soil particles and stones were removed with tweezers. Roots were dried at 60–70 °C and weighed
subsequently³. Unit: g m⁻²

In BioDIV, root biomass was sampled in 2010 after aboveground biomass clipping by collecting three 5 cm diameter \times 30 cm depth cores per clipped strip¹. Roots were washed free of soil, sorted from other organic material, dried and weighed. Unit: g m⁻²

58

59 Jena herbivory rate In Jena, invertebrate herbivory rates were assessed as proportional damage for 60 every plant species × plot-combination. Herbivory rates of individual plant species were used to 61 calculate community herbivory rates based on four different types of invertebrate herbivory: chewing, 62 rasping, sap sucking and leaf mining. Samples of the Jena biomass harvest were used after sorting to 63 species. For a maximum of 20 randomly chosen leaves per plant species, damage area was estimated in 64 mm^2 as total value of the four damage types and total leaf area of every leaf was measured with an area meter (LI-3000C Area Meter equipped with a LI3050C transparent belt conveyor accessory, LI-COR 65 Biosciences, Lincoln, USA). For details on the methods used see⁴. Here, we used percentage herbivory 66 67 of the target species community from the late harvest, as this was available for three years from 2010-68 2012. Unit: % damage

69

Jena soil microbial biomass C Soil sampling and measurement of basal and substrate-induced
 microbial respiration with an oxygen-consumption apparatus was done on each plot in September
 2010⁵. Oxygen consumption of soil microorganisms in a fresh-soil equivalent to 3.5 g dry weight was

4

73	measured at 22 °C. Substrate-induced respiration was determined by adding D-glucose to saturate
74	catabolic enzymes of microorganisms according to preliminary studies (4 mg g ⁻¹ dry soil solved in 400
75	μ l deionized water; ^{6,7}). Maximum initial respiratory response (μ l O ₂ g ⁻¹ dry soil h ⁻¹) was calculated as
76	mean of the lowest three oxygen consumption values within the first 10 h after glucose addition.
77	Microbial biomass C (μ g C g ⁻¹ dry soil) was calculated as 38 × maximum initial respiratory response as
78	suggested by preliminary studies8. Previous work has shown that the 2010 microbial biomass data are
79	representative for long-term plant diversity effects ⁷ .

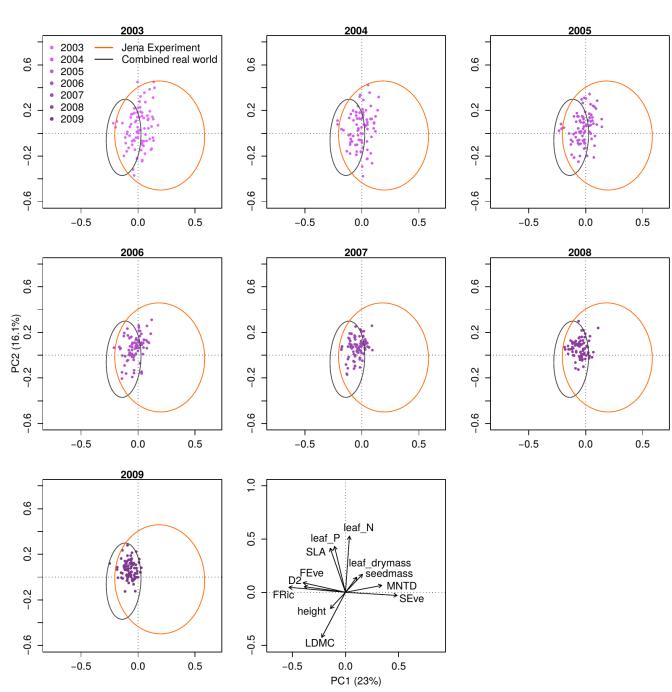
80

81 Jena phosphatase activity Nine soil cores (diam. 2 cm, 0–5 cm depth) were combined to one 82 composite sample per plot to assess phosphatase activity in 2013⁹. Because of the alkaline pH of the 83 soil, we measured alkaline phosphomonoesterase activity (phosphatase activity) according to the assay 84 by ¹⁰. For each soil sample, one replicate and one blank value were included. One gram of field moist 85 soil was mixed with toluene, modified universal buffer (MUB) and p-nitrophenylphosphate (pNP), and 86 incubated at 37 °C for 1 hour. Subsequently, we added CaCl₂ and NaOH. To blanks pNP was added after incubation. The solution was filtered through P-free filters (MN 619 G 1/4, Macherey-Nagel GmbH 87 88 & Co. KG, Düren, Germany). Directly after filtration, pNP concentrations [µg ml⁻¹] were measured at 89 400 nm with a spectrophotometer (PU 8675 VIS spectrophotometer, Philips GmbH, Hamburg, Germany). The soil moisture was determined gravimetrically, i.e. by weighing before and after drying 90 at 105 °C to convert phosphatase activities to dry matter (ug pNP g⁻¹ DM h⁻¹). 91

92

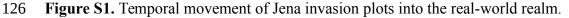
Jena pollinator abundance In 2010 and 2012, hymenopterans were sampled by suction sampling
using a modified commercial vacuum cleaner (Kärcher A2500, Kärcher GmbH, Winnenden, Germany).
In each year, within each plot, two random subplots of 0.75 m x 0.75 m were chosen, covered with a
gauze-coated cage of the same size, and arthropods within cages were sampled. The sampling was

- 5
- 97 carried out between 9 a.m. and 4 p.m. within two 4-day sampling periods. The overall abundance of
 98 hymenopterans across the two samples per plot was used as a proxy of pollinator abundance and thus
 99 potential for pollination on each plot in the respective year. Unit: number of individuals
- 100


101 2. Processing TRY and other plant-trait data to generate species-level values

102 For each of the geographical species subsets, TRY trait data were processed separately following a 103 standardized protocol: i) Removal of duplicate observations (e.g. duplicate entries of leaf mass from the 104 same individual). ii) Removal of non-open data and removal of data obtained from outside the 105 respective target continents, iii) Calculation of outliers for each trait-species combination (trait mean 106 +/- 1.96 SD as outlier definition). iv) Removal of observations with TRY ErrorRisk > 4. v) Averaging 107 over trait-species values per TRY dataset. vi) Removal of TRY datasets with more than 5% of values 108 identified as outliers, vii) Averaging over trait-species mean values of the remaining datasets. For the 109 US species, TRY data was combined with additional trait data collected in naturally occurring 110 polycultures at Cedar Creek (personal communication with J.A. Catford¹¹, P.B. Reich, J. Cavender-111 Bares). Such Cedar Creek trait averages per dataset were included into the averaging process at step v). 112 Finally, trait values of synonyms and accepted species names were averaged and assigned to the

113 accepted plant-species names where necessary.


- 114 **Table S1.** List of German and US datasets for vegetation and ecosystem function data.
- 115 Ideally, lists project name, main reference, short name used in this paper, number of sites we used,
- 116 years we have vegetation data for, functions we used including years. Most of the data is openly
- 117 available in various online repositories (except for data from recent years that are, in some cases, still
- 118 covered by project-specific embargo periods): Jena Experiment (http://www.the-jena-
- 119 experiment.de/Data.html), Biodiversity Exploratories (https://www.bexis.uni-
- 120 jena.de/Login/Account.aspx), Cedar Creek (https://www.cedarcreek.umn.edu/research/data). Data from
- 121 the Saale grasslands (Jena real world) was provided by Christiane Roscher and is currently not openly
- 122 available.

Country	Project name	Project code	Main reference	Number of sites used	Vegetation data years	Ecosystem functions & years
G	Jena Experiment	Jena Experiment	14	82	2003-2015	plant aboveground biomass (2006-15), plant CN (2007-12), soil organic C (2008, 2011, 2014), root biomass (2011, 2014), herbivory (2010-12), soil microbial biomass C (2010), phosphatase activity (2013), pollinator abundance (2010, 2012)
G	Biodiversity Exploratories	German real world	15	150	2008-2015	NA
G	Saale grasslands	Jena real world	Roscher unpubl.	14	2011	NA
G	Jena invasion sub- experiments	Jena invasion	16,17	82	2003-2015	NA
G	Jena mown succession plots	Jena succession	16	2	2003-2009	NA
U	e120	BioDIV	18	159	1996-2015 (not 2009)	plant aboveground biomass (2006-15, not 2009), plant CN (2006), total coil C (2006), root biomass (2010)
U	e001	Fertilization 1	19	207	1982-2004	NA
U	e002	Fertilization 2	19	162	1982-1991	NA
U	e014	Old field succession chronosequence	12	23	1983,1989, 1994, 1997, 2002, 2006, 2011	NA
U	e093	Oak savannah	11,13	30	1991	NA

7 124

Based on the PCA in Fig. 1a. Different shades of purple show Jena invasion plots across the years from
2003-2009. Orange and gray ellipses show 95% confidence intervals for Jena Experiment and
combined real-world plots, respectively. Note that while the points in different panels are from single
years, the ellipses are fixed to the across-year comparison in Fig. 1a. The last panel shows the PCA
factor loadings for the full 12 community properties (arrows scaled to improve visibility). Within six

132 years of succession, the plant communities of Jena invasion plots fully "moved" into the core of the

133 community property space defined by the combined real-world plots (German real world and Jena real

134 world, respectively).

bioRxiv preprint doi: https://doi.org/10.1101/725812; this version posted August 5, 2019. The copyright holder for this preprint (which was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission.

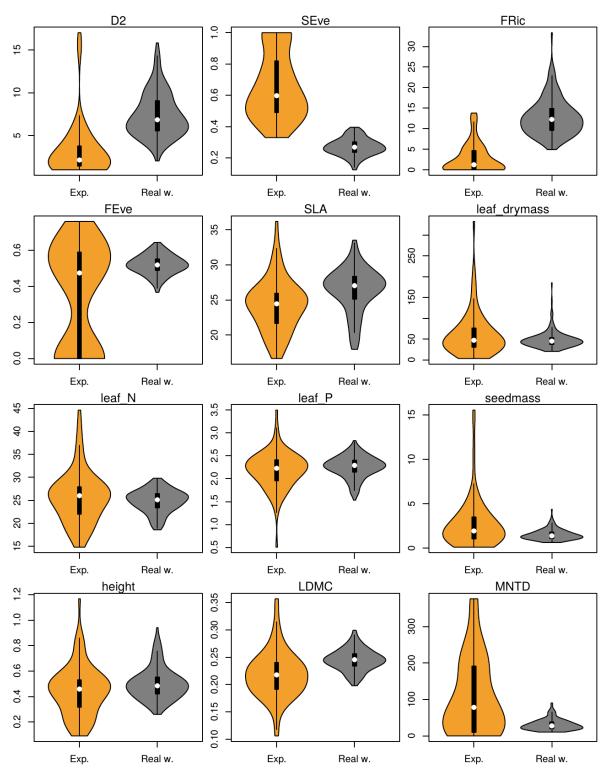


Figure S2. Violin plots of community properties of German experimental and real-world plots.
 Combination of boxplot and rotated kernel density plot (R package "vioplot"²⁰). Jena Experiment
 (orange) and combined real-world properties (German real world, Jena real world, gray) averaged
 across all years per plot.

8

9

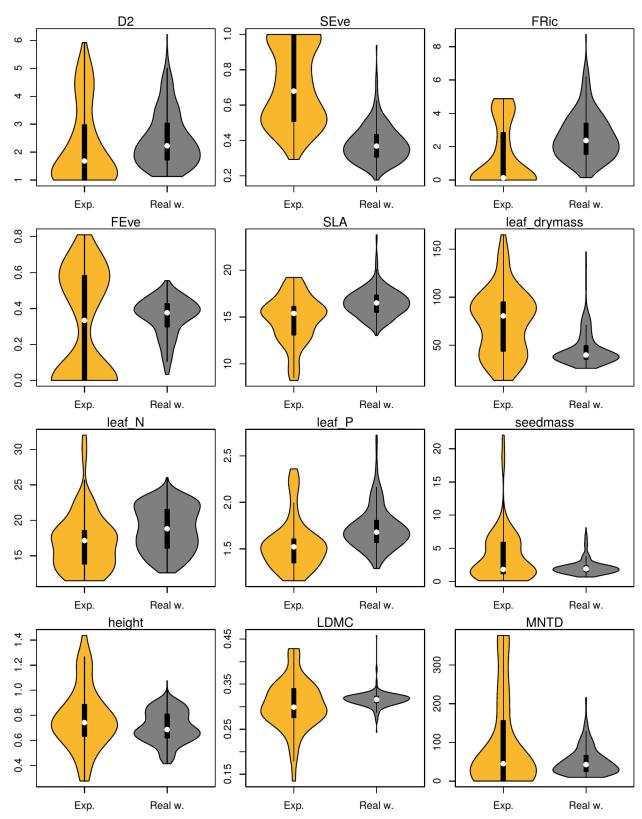
140 **Table S2.** T-test results for differences between German experimental and real-world plots.

141 Welsh t-tests with unequal variances. Full set of 12 community properties averaged across all years per

142 plot for Jena Experiment (82 plots) and combined real-world data (German real world: 150 plots, Jena

143 real world: 14 plots). T-statistic, degrees of freedom (df), experimental (Exp) data mean and real world

144 (RW) data mean are rounded to two, p-values to 5 decimal places.


145

t_statistic	df	mean_Exp	mean_RW	p_value
-10.17	133.06	3.23	7.42	0
16.35	86.69	0.65	0.27	0
-19.04	192.57	2.74	12.84	0
-5.57	83.98	0.34	0.52	0
-4.54	140.03	24.26	26.44	0.00001
2.12	93.49	61.03	48.28	0.03662
1.31	96.71	25.66	24.81	0.19315
-1.44	109.38	2.19	2.26	0.15242
3.95	84.7	2.76	1.52	0.00016
-2.36	115.5	0.45	0.5	0.01988
-5.27	98.28	0.22	0.25	0
6.62	82.65	109.29	31.2	0
	- -10.17 16.35 -19.04 -5.57 -4.54 2.12 1.31 -1.44 3.95 -2.36 -5.27	$\begin{array}{c cccc} - & & & & \\ & -10.17 & 133.06 \\ & 16.35 & 86.69 \\ & -19.04 & 192.57 \\ & -5.57 & 83.98 \\ & -4.54 & 140.03 \\ & 2.12 & 93.49 \\ & 1.31 & 96.71 \\ & -1.44 & 109.38 \\ & 3.95 & 84.7 \\ & -2.36 & 115.5 \\ & -5.27 & 98.28 \end{array}$	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$

bioRxiv preprint doi: https://doi.org/10.1101/725812; this version posted August 5, 2019. The copyright holder for this preprint (which was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission.

10

147

148 **Figure S3.** Violin plots of community properties of US experimental and real-world plots.

149 Combination of boxplot and rotated kernel density plot (R package "vioplot"²⁰). BioDIV (orange) and 150 combined real-world data (Fertilization 1 & 2, gray) averaged across all years per plot.

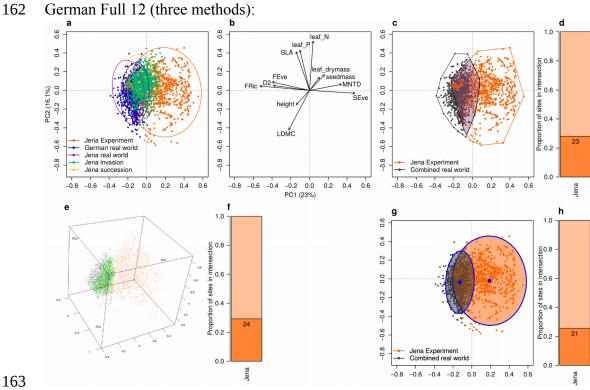
11

151 **Table S3.** T-test results for differences between US experimental and real-world plots.

152 Welsh t-tests with unequal variances. Full set of 12 community properties averaged across all years per

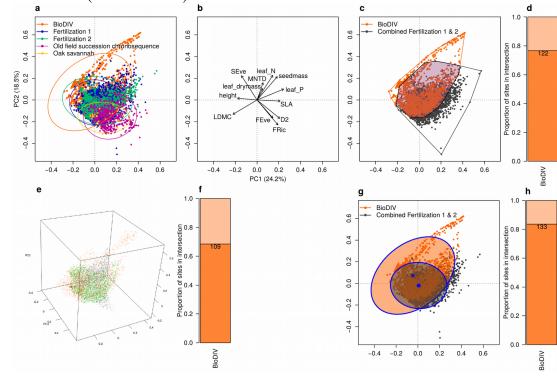
153 plot for BioDIV (159 plots) and combined real-world data (Nutrient 1 & 2; 207 and 162 plots,

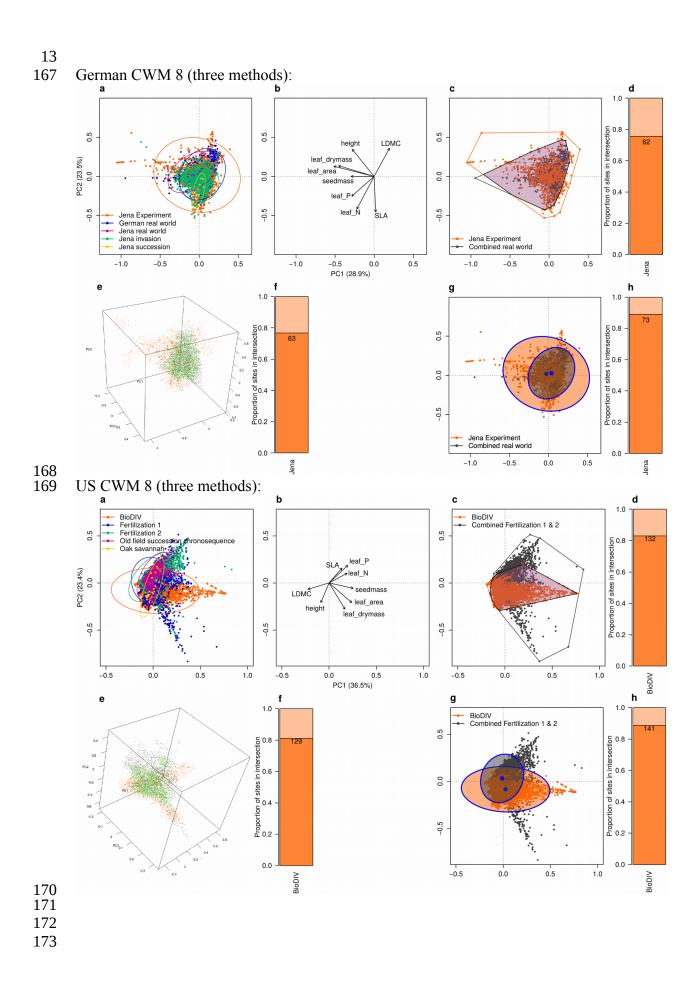
154 respectively). T-statistic, degrees of freedom (df), experimental (Exp) data mean and real world (RW)

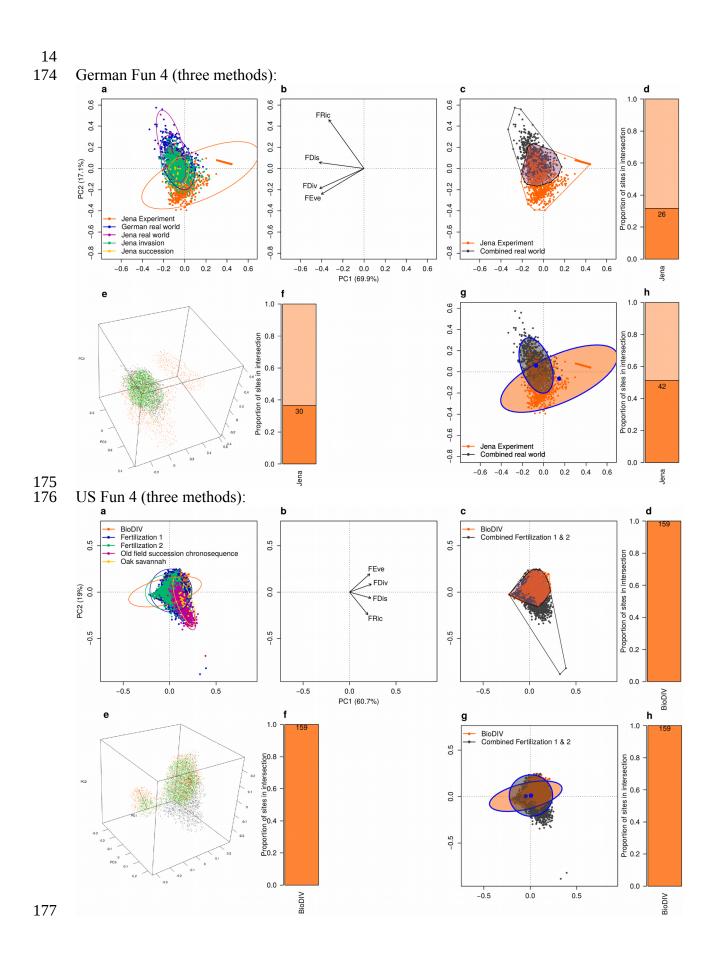

155 data mean are rounded to two, p-values to 5 decimal places.

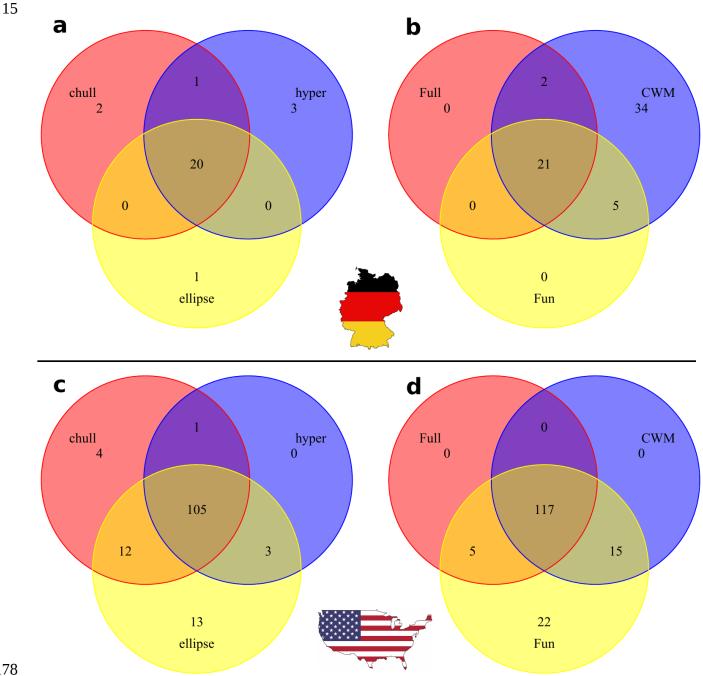
156

model	t_statistic	df		mean_Exp	mean_RW	p_value
D2	-1.	33	226.06	2.23	2.46	0.06831
SEve	18.)2	188.98	0.71	0.38	0
FRic	-7.	59	243.07	1.4	2.62	0
FEve	-2.	73	176.06	0.29	0.35	0.00693
SLA	-8.	D1	204.34	14.77	16.5	0
leaf_drymass		10	193.36	74.23	45.67	0
leaf_N	-4	.9	237.85	16.97	18.77	0
leaf_P	-6.	68	248.46	1.55	1.71	0
seedmass	5.	21	169.51	3.88	2.18	0
height	3.	37	193.75	0.77	0.7	0.0009
LDMC	-2.	57	169.1	0.3	0.32	0.01105
MNTD	4.	71	169.23	97.1	50.95	0.00001


12


- Figure S4. Alternative versions of Fig. 1 based on the alternative intersection scenarios. 158
- 6 Versions: One for each geographical dataset per community property subset, combining all three 159
- methods. Panels a & b: PCA and factor loadings; c & d: 3D convex hull volume, e & f: 3D 160
- hypervolume, g & h: 2D ellipse 161





164 US Full 12 (three methods):

178

Figure S5. Venn diagrams illustrating overlap between plots defined as realistic for the Jena 179 Experiment (upper row) and BioDIV (lower row) based on three different methods of calculating 180 181 intersections (a and c) and three different subsets of community properties entering the PCA's (b and d). a and c show three different methods for the PCA, all based on the full set of 12 properties. b and d 182 show three different subsets based on just the convex hull method. Abbreviations: chull=convex hull 183 volume approach, hyper= hypervolume approach, ellipse=confidence ellipse approach, Full=all 12 184 community properties, CWM=just the eight community weighted mean traits, Fun=just the four 185 functional diversity properties. Diagrams were created with R package "VennDiagram"²¹. 186

16

187 Table S4. Jena Experiment plots with their sown diversity (sown div), number of functional groups 188 (num fg) and their selection as realistic plots (1) based on three different methods of calculating the intersection and based on three different subsets of community properties entering the PCA's. Methods: 189 Intersection of three-dimensional convex hull volumes (chull), hypervolumes (hyper) and 95% 190 confidence ellipses (ellipse). Subsets: Full (all 12 community properties), CWM (8 community 191 192 weighted means) and Fun (4 functional diversity metrics). Additionally, the number of realistic plots (sum) and the percentage (per) of realistic plots from the overall number of plots (82) are given for 193 194 each combination of methodology and community property subset. Plots are sorted by sown diversity 195 levels.

				chull			hyper			ellipse	
plot	sown_div	num_fg	Full	CWM	Fun	Full	CWM	Fun	Full	CWM	Fun
B1A22	60	4	1	1	1	1	1	1	1	1	1
B2A03	60	4	1	1	1	1	1	1	1	1	1
B3A14	60	4	1	1	1	1	1	1	1	1	1
B4A01	60	4	1	1	1	1	1	1	1	1	1
B1A01	16	4	1	1	1	1	1	1	1	1	1
B1A06	16	2	1	1	1	1	1	1	1	1	1
B1A11	16	1	1	1	1	1	1	1	1	1	1
B1A20	16	3	1	1	1	0	1	1	0	1	1
B2A10	16	2	1	1	1	1	1	1	1	1	1
B2A18	16	4	1	1	1	1	1	1	1	1	1
B2A22	16	3	1	1	1	1	1	1	1	1	1
B3A09	16	1	1	1	1	1	1	1	1	1	1
B3A16	16	2	1	1	1	0	1	1	0	1	1
B3A22	16	4	1	1	1	1	1	1	1	1	1
B3A24	16	3	1	1	1	1	1	1	1	1	1
B4A02	16	3	1	1	1	1	1	1	1	1	1
B4A18	16	4	1	1	1	1	1	1	1	1	1
B4A20	16	2	1	1	1	1	1	1	1	1	1
B1A02	8	2	1	1	1	1	1	1	1	1	1
B1A03	8	3	0	1	0	1	1	0	0	1	1
B1A12	8	1	0	1	0	0	1	0	0	1	1
B1A14	8	4	0	1	1	1	1	1	0	1	1
B2A12	8	1	0	1	1	0	0	1	0	1	1
B2A14	8	4	0	1	0	0	1	0	0	1	1
B2A17	8	2	0	1	0	0	1	0	0	1	1
B2A21	8	3	0	1	0	0	1	0	0	1	1
B3A04	8	1	1	1	0	1	1	0	1	1	1
B3A05	8	3	1	1	1	1	1	1	1	1	1
B3A07	8	4	0	1	0	0	1	1	0	1	1
B3A20	8	2	0	1	1	0	1	1	0	1	1
B4A06	8	1	0	0	0	0	0	0	0	1	0
B4A08	8		0	1	0	1	1	0	0	1	1
B4A10	8	3	0	1	1	0	1	1	0	1	1

1	L7

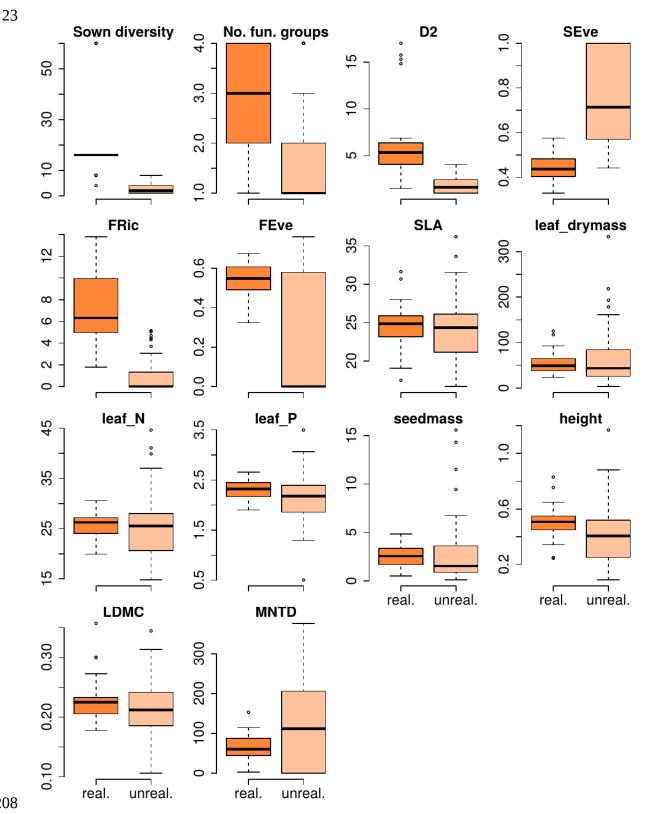
B4A16	8	4	1	1	1	1	1	1	0	1	1
B1A04	4	4	0	1	0	0	1	1	0	1	1
B1A13	4	1	0	1	0	0	1	0	0	1	1
B1A19	4	3	0	1	0	0	1	0	1	1	0
B1A21	4	2	0	1	0	0	1	1	0	1	1
B2A01	4	4	0	1	0	0	1	0	0	1	0
B2A06	4	2	0	1	0	0	1	0	0	1	1
B2A09	4	1	0	0	0	0	0	0	0	1	0
B2A16	4	3	0	0	0	0	0	0	0	1	0
B3A03	4	3	0	1	0	0	1	0	0	1	1
B3A11	4	2	0	1	0	0	1	0	0	1	1
B3A13	4	1	1	1	0	1	1	1	1	1	1
B3A23	4	4	0	1	0	0	1	0	0	1	0
B4A04	4	4	0	1	1	0	1	1	0	1	1
B4A07	4	2	0	1	0	0	1	0	0	1	0
B4A11	4	3	0	1	0	0	1	0	0	1	1
B4A22	4	1	0	0	0	0	0	0	0	0	0
B1A05	2	1	0	1	0	0	0	0	0	1	0
B1A07	2	1	0	1	0	0	1	0	0	1	0
B1A16	2	2	0	1	0	0	1	0	0	1	0
B1A17	2	2	0	1	0	0	1	0	0	1	0
B2A02	2	1	0	0	0	0	1	0	0	1	0
B2A08	2	2	0	1	0	0	1	0	0	1	0
B2A19	2	1	0	0	0	0	0	0	0	1	0
B2A20	2	2	0	0	0	0	0	0	0	1	0
B3A02	2	2	0	1	0	0	1	0	0	1	0
B3A08	2	1	0	1	0	0	1	0	0	1	0
B3A19	2	2	0	0	0	0	1	0	0	1	0
B3A21	2	1	0	0	0	0	1	0	0	1	0
B4A14	2	1	0	0	0	0	0	0	0	1	0
B4A15	2	2	0	1	0	0	1	0	0	1	0
B4A17	2	1	0	0	0	0	0	0	0	0	0
B4A21	2	2	0	1	0	0	1	0	0	1	0
B1A08	1	1	0	1	0	0	1	0	0	1	0
B1A09	1	1	0	0	0	0	0	0	0	0	0
B1A15	1	1	0	1	0	0	1	0	0	1	0
B1A18	1	1	0	0	0	0	0	0	0	1	0
B2A04	1	1	0	1	0	0	1	0	0	1	0
B2A05	1	1	0	1	0	0	1	0	0	1	0
B2A13	1	1	0	0	0	0	0	0	0	1	0
B2A15	1	1	0	1	0	0	0	0	0	0	0
B3A01	1	1	0	1	0	0	1	0	0	1	0
B3A06	1	1	0	0	0	0	1	0	0	0	0
B3A12	1	1	0	1	0	0	0	0	0	1	0

18												
	B3A17	1	1	0	0	0	0	1	0	0	1	0
	B4A03	1	1	0	0	0	0	0	0	0	0	0
	B4A09	1	1	0	0	0	0	0	0	0	0	0
	B4A12	1	1	0	0	0	0	0	0	0	0	0
	B4A13	1	1	0	0	0	0	0	0	0	0	0
	sum			23	62	26	24	63	30	21	73	42
	per			0.28	0.76	0.32	0.29	0.77	0.37	0.26	0.89	0.51
107												

19

198 **Table S5.** BioDIV plots with their sown diversity (sown div), number of functional groups (num fg) 199 and their selection as realistic plots (1) based on three different methods of calculating the intersection 200 and based on three different subsets of community properties entering the PCA's. Methods: Intersection of three-dimensional convex hull volumes (chull), hypervolumes (hyper) and 95% confidence ellipses 201 (ellipse). Subsets: Full (all 16 community properties), CWM (9 community weighted means) and Fun 202 203 (4 functional diversity metrics). Additionally, the number of realistic plots (sum) and the percentage (per) of realistic plots from the overall number of plots (159) are given for each combination of 204 205 methodology and community property subset.

				chull			hyper			ellipse		
plot	sown_div	num_fg	Full	CWM	Fun	Full	CWM	Fun	Full	CWM	Fun	
9	16		5	1	1	1	1	1	1	1	1	1
27	16		5	1	1	1	1	1	1	1	1	1
30	16		5	1	1	1	1	1	1	1	1	1
34	16		5	1	1	1	1	1	1	1	1	1
35	16		5	1	1	1	1	1	1	1	1	1
46	16		5	1	1	1	1	1	1	1	1	1
68	16		5	1	1	1	1	1	1	1	1	1
82	16		5	1	1	1	1	1	1	1	1	1
89	16		5	1	1	1	1	1	1	1	1	1
107	16		5	1	1	1	1	1	1	1	1	1
108	16		5	1	1	1	1	1	1	1	1	1
136	16		5	1	1	1	1	1	1	1	1	1
156	16		5	1	1	1	1	1	1	1	1	1
160	16		5	1	1	1	1	1	1	1	1	1
164	16		5	1	1	1	1	1	1	1	1	1
169	16		5	1	1	1	1	1	1	1	1	1
174	16		5	1	1	1	1	1	1	1	1	1
186	16		5	1	1	1	1	1	1	1	1	1
202	16		4	1	1	1	1	1	1	1	1	1
220	16		5	1	1	1	1	1	1	1	1	1
227	16		5	1	1	1	1	1	1	1	1	1
235	16		5	1	1	1	1	1	1	1	1	1
239	16		5	1	1	1	1	1	1	1	1	1
242	16		5	1	1	1	1	1	1	1	1	1
253	16		5	1	1	1	1	1	1	1	1	1
257	16		5	1	1	1	1	1	1	1	1	1
273	16		5	1	1	1	1	1	1	1	1	1
299	16		5	1	1	1	1	1	1	1	1	1
301	16		5	1	1	1	1	1	1	1	1	1
318	16		5	1	1	1	1	1	1	1	1	1
328	16		5	1	1	1	1	1	1	1	1	1
329	16		5	1	1	1	1	1	1	1	1	1
331	16		5	1	1	1	1	1	1	1	1	1
336	16		5	1	1	1	1	1	1	1	1	1


2	0
	_

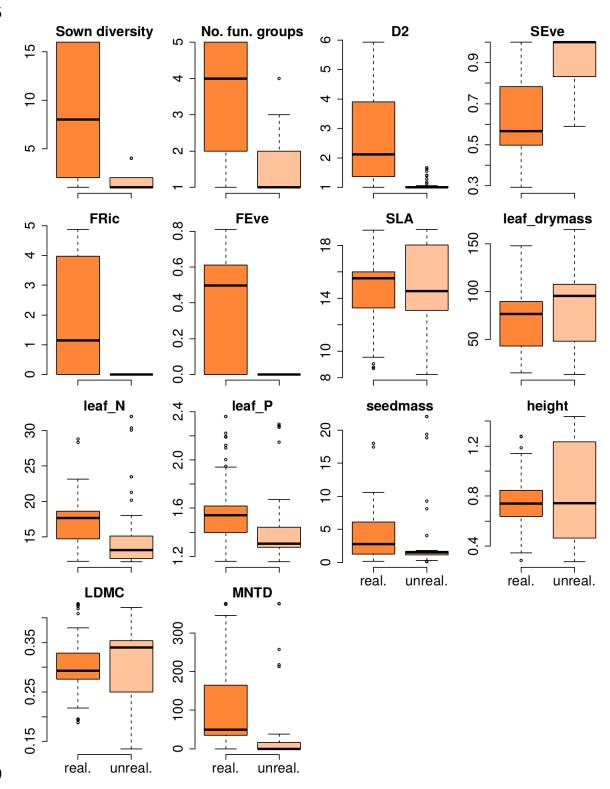
339	16	5	1	1	1	1	1	1	1	1	1
12	8	4	1	1	1	1	1	1	1	1	1
15	8	4	1	1	1	1	1	1	1	1	1
22	8	4	1	1	1	1	1	1	1	1	1
50	8	4	1	1	1	1	1	1	1	1	1
57	8	4	1	1	1	1	1	1	1	1	1
67	8	5	1	1	1	1	1	1	1	1	1
74	8	5	1	1	1	1	1	1	1	1	1
81	8	4	1	1	1	1	1	1	1	1	1
98	8	5	1	1	1	1	1	1	1	1	1
104	8	5	1	1	1	1	1	1	1	1	1
111	8	4	1	1	1	1	1	1	1	1	1
115	8	4	1	1	1	1	1	1	1	1	1
118	8	5	1	1	1	1	1	1	1	1	1
130	8	5	1	1	1	1	1	1	1	1	1
146	8	5	1	1	1	1	1	1	1	1	1
170	8	4	1	1	1	1	1	1	1	1	1
177	8	5	1	1	1	1	1	1	1	1	1
178	8	3	1	1	1	1	1	1	1	1	1
206	8	4	1	1	1	1	1	1	1	1	1
208	8	4	1	1	1	1	1	1	1	1	1
210	8	4	1	1	1	1	1	1	1	1	1
213	8	5	1	1	1	1	1	1	1	1	1
232	8	5	1	1	1	1	1	1	1	1	1
266	8	5	1	1	1	1	1	1	1	1	1
283	8	3	1	1	1	1	1	1	1	1	1
292	8	3	1	1	1	1	1	1	1	1	1
293	8	4	1	1	1	1	1	1	1	1	1
303	8	3	1	1	1	1	1	1	1	1	1
307	8	4	1	1	1	1	1	1	1	1	1
313	8	4	1	1	1	1	1	1	1	1	1
3	4	2	1	1	1	1	1	1	1	1	1
24	4	3	1	1	1	1	1	1	1	1	1
26	4	3	0	0	1	0	1	1	1	0	1
28	4	2	1	1	1	1	1	1	1	1	1
33	4	4	1	1	1	0	1	1	1	1	1
44	4	3	1	1	1	0	0	1	1	1	1
45	4	4	1	1	1	0	1	1	1	1	1
53	4	4	1	1	1	0	1	1	1	1	1
58	4	3	1	1	1	0	1	1	1	1	1
62	4	3	1	1	1	1	1	1	1	1	1
70	4	3	1	1	1	1	1	1	1	1	1
93	4	2	1	1	1	0	0	1	0	1	1
110	4	3	1	1	1	0	1	1	1	1	1

133	4	3	1	1	1	1	1	1	1	1	1
138	4	2	1	1	1	1	1	1	1	1	1
139	4	2	1	1	1	1	1	1	1	1	1
149	4	4	0	1	1	0	1	1	0	1	1
176	4	3	1	1	1	1	1	1	1	1	1
190	4	3	1	1	1	1	1	1	1	1	1
199	4	3	1	1	1	1	1	1	1	1	1
201	4	3	0	1	1	0	1	1	0	1	1
223	4	3	1	1	1	1	1	1	1	1	1
225	4	4	1	1	1	1	1	1	1	1	1
229	4	3	1	1	1	1	1	1	1	1	1
233	4	4	1	1	1	1	1	1	1	1	1
286	4	3	1	1	1	1	1	1	1	1	1
287	4	3	1	1	1	1	1	1	1	1	1
302	4	3	1	1	1	1	1	1	1	1	1
325	4	4	1	0	1	1	0	1	1	1	1
6	2	1	1	1	1	1	1	1	1	1	1
14	2	1	1	1	1	1	1	1	1	1	1
32	2	2	0	0	1	0	0	1	0	0	1
48	2	2	1	1	1	1	1	1	0	1	1
56	2	2	1	1	1	1	1	1	1	1	1
73	2	2	1	1	1	1	1	1	1	1	1
75	2	2	1	0	1	0	0	1	1	1	1
117	2	2	0	1	1	0	0	1	0	0	1
125	2	2	0	0	1	0	1	1	1	1	1
127	2	2	1	1	1	1	1	1	1	1	1
157	2	1	0	0	1	0	0	1	1	1	1
165	2	2	0	1	1	0	1	1	1	1	1
168	2	2	0	1	1	0	1	1	1	1	1
171	2	2	1	1	1	1	0	1	1	1	1
175	2	2	0	1	1	0	0	1	0	0	1
189	2	2	0	0	1	0	1	1	1	1	1
193	2	2	0	1	1	0	0	1	0	0	1
197	2	2	1	0	1	0	0	1	1	1	1
211	2	2	1	1	1	1	1	1	1	1	1
224	2	2	0	1	1	0	1	1	0	1	1
234	2	2	0	1	1	0	0	1	0	0	1
236	2	2	1	1	1	0	1	1	1	1	1
259	2	2	1	1	1	1	1	1	1	1	1
278	2	2	0	0	1	0	1	1	1	0	1
300	2	2	1	1	1	0	0	1	1	1	1
304	2	1	0	0	1	0	0	1	1	1	1
311	2	2	1	0	1	0	0	1	1	1	1
322	2	2	0	0	1	0	1	1	1	1	1

_	7
2	2

324	2	1	1	1	1	1	1	1	1	1	1
330	2	2	1	1	1	1	1	1	1	1	1
334	2	2	0	0	1	0	1	1	1	0	1
335	2	2	1	1	1	0	1	1	0	1	1
342	2	2	1	1	1	1	1	1	1	1	1
2	1	1	1	1	1	1	1	1	1	1	1
5	1	1	0	0	1	0	0	1	0	0	1
11	1	1	0	1	1	0	0	1	0	1	1
16	1	1	1	1	1	0	1	1	0	0	1
20	1	1	1	1	1	1	0	1	1	1	1
29	1	1	1	1	1	1	1	1	1	1	1
31	1	1	0	0	1	0	1	1	1	1	1
69	1	1	0	1	1	0	0	1	0	1	1
83	1	1	0	0	1	0	0	1	0	0	1
87	1	1	0	0	1	0	0	1	0	0	1
92	1	1	0	0	1	0	0	1	0	0	1
94	1	1	1	1	1	1	1	1	1	1	1
109	1	1	0	0	1	0	0	1	0	0	1
129	1	1	0	1	1	1	1	1	1	1	1
135	1	1	0	0	1	0	1	1	1	1	1
137	1	1	1	1	1	1	0	1	1	1	1
142	1	1	0	0	1	0	0	1	0	1	1
153	1	1	1	1	1	1	1	1	1	1	1
163	1	1	0	0	1	0	0	1	0	0	1
167	1	1	0	1	1	1	1	1	1	1	1
230	1	1	1	0	1	0	0	1	1	1	1
237	1	1	1	1	1	1	1	1	1	1	1
256	1	1	1	1	1	1	1	1	1	1	1
265	1	1	0	0	1	0	0	1	0	0	1
267	1	1	0	1	1	1	1	1	1	1	1
268	1	1	0	0	1	0	0	1	0	1	1
280	1	1	0	0	1	0	1	1	1	1	1
282	1	1	0	0	1	0	0	1	0	0	1
290	1	1	1	1	1	1	1	1	1	1	1
308	1	1	1	1	1	0	1	1	0	0	1
333	1	1	0	1	1	0	1	1	0	1	1
338	1	1	1	1	1	1	1	1	1	1	1
sum			122	132	159	109	129	159	133	141	159
per			0.77	0.83	1	0.69	0.81	1	0.84	0.89	1

208


209 Figure S6. Boxplots of community properties of realistic (strong color) and unrealistic (weak color) plots for the Jena Experiment. Realistic plots were calculated based on the full set of community 210 properties and the convex hull volume method. All properties were averaged across all available years 211 212 per plot (23 realistic and 59 unrealistic plots).

24

Table S6. T-test results for differences between realistic and unrealistic plots for the Jena Experiment.
Welsh t-tests with unequal variances. Realistic plots were calculated based on the full set of community
properties and the convex hull volume method. All properties were averaged across all available years
per plot (23 realistic and 59 unrealistic plots). T-statistic, degrees of freedom (df), means of realistic
(real) and unrealistic communities (unreal) are rounded to two, p-values to four decimal places.

218

n	nodel	t_statistic	df	mean_real	mean_unreal	p_value
s	owndiv	4.7	7 22.34	21.74	3.46	0.0001
n	umfg	3.5	54 36.95	2.83	1.85	0.0011
Ľ)2	5.0	6 22.72	6.65	1.9	0
S	Eve	-10.3	33 78.5	0.45	0.74	0
F	Ric	8.2	25 24.88	7.32	0.96	0
F	Eve	6.4	6 74.97	0.54	0.27	0
S	SLA	0.6	63 49.5	24.64	24.11	0.5334
le	eaf_drymass	-0.5	55 78.6	57.26	62.5	0.5845
le	eaf_N	0	.3 78.09	25.88	25.58	0.7679
le	eaf_P	2.2	24 77.01	2.31	2.14	0.0281
s	eedmass	-0.3	35 79.48	2.64	2.81	0.7303
h	eight	1.8	61.58	0.5	0.42	0.0663
L	DMC	1.7	42.61	0.23	0.21	0.0865
Ν	INTD	-3.5	56 77.95	64.82	126.63	0.0006

25

220

Figure S7. Boxplots of community properties of realistic (strong color) and unrealistic (weak color) plots for BioDIV. Realistic plots were calculated based on the full set of community properties and the convex hull volume method. All properties were averaged across all available years per plot (122

realistic and 37 unrealistic plots).

26

225 **Table S7.** T-test results for differences between realistic and unrealistic plots for BioDIV.

Welsh t-tests with unequal variances. Realistic plots were calculated based on the full set of community properties and the convex hull volume method. All properties were averaged across all available years per plot (122 realistic and 37 unrealistic plots). T-statistic, degrees of freedom (df), means of realistic

(real) and unrealistic communities (unreal) are rounded to two, p-values to four decimal places.

230

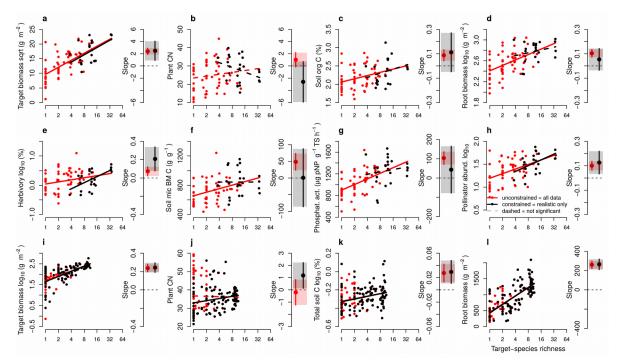
t_statistic	df	mean_real	mean_unreal	p_value
11.51	137.13	7.81	1.65	0
10.95	122.28	3.49	1.54	0
11.23	133.74	2.58	1.09	0
-10.43	102.79	0.64	0.92	0
10.7	121	1.82	0	0
14.65	121	0.38	0	0
1.04	46.22	14.91	14.3	0.3043
-1.27	46.88	71.95	81.76	0.2119
1.2	42.28	17.27	15.99	0.2366
1.42	46.02	1.57	1.48	0.1633
0.15	41.7	3.92	3.76	0.8815
-1.81	40.78	0.75	0.87	0.0773
-0.66	44.55	0.3	0.31	0.5149
1.95	55.87	107.8	61.82	0.056
	- 11.51 10.95 11.23 -10.43 10.7 14.65 1.04 -1.27 1.2 1.42 0.15 -1.81 -0.66	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$

27

Table S8. Model parameters for BEF relationships presented in Fig. 2.

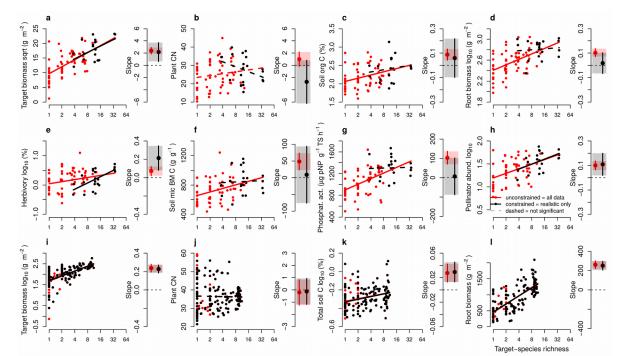
Values are presented for unconstrained (u) and constrained (c) models of Jena (J) and BioDIV BEF

relationships. Constraining was done using all 12 community properties and the convex hull method.
Sample size (n), slope estimates (slop), lower (low) and upper (upp) 95% confidence intervals, p-values
(n) and adjusted P² values (R2). All values are normed at a two desired places.

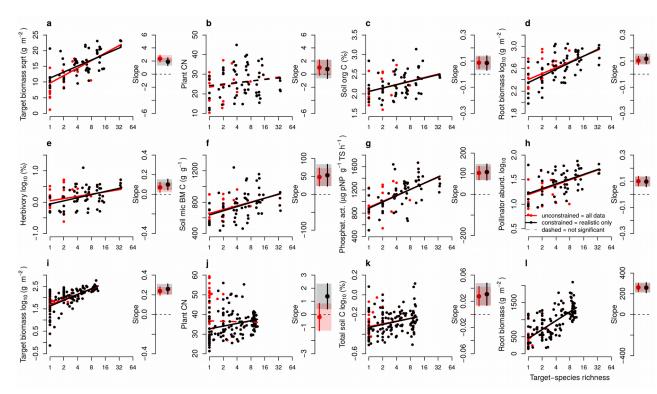

236 (p) and adjusted R^2 values (R2). All values are rounded to two decimal places.

23	/
23	88

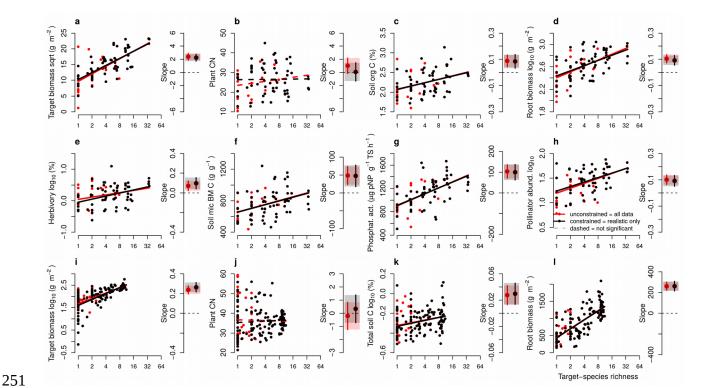
mod	u_n	c_n	u_slop	c_slop	u_low	c_low	u_upp	c_upp	u_p	c_p	u_R2	c_R2
J_biomass	82.00	23.00	2.39	2.03	1.87	0.45	2.91	3.61	0.00	0.01	0.51	0.22
J_plantCN	82.00	23.00	1.02	-2.12	-0.15	-5.92	2.20	1.67	0.09	0.26	0.02	0.02
J_soilorgC	82.00	23.00	0.09	0.06	0.04	-0.10	0.13	0.23	0.00	0.42	0.14	-0.01
J_rootbiomass	80.00	23.00	0.10	0.04	0.07	-0.05	0.14	0.13	0.00	0.37	0.34	-0.01
J_herbivory	80.00	23.00	0.07	0.24	0.02	0.11	0.12	0.38	0.01	0.00	0.08	0.36
J_micBMC	80.00	23.00	48.40	-8.18	23.35	-92.06	73.46	75.71	0.00	0.84	0.15	-0.05
J_Jphosphatase	80.00	23.00	103.17	16.33	70.38	-98.35	135.97	131.01	0.00	0.77	0.33	-0.04
J_pollinators	79.00	23.00	0.10	0.13	0.06	0.03	0.14	0.23	0.00	0.02	0.27	0.21
BioDIV_biomass	159.00	122.00	0.24	0.26	0.20	0.22	0.28	0.31	0.00	0.00	0.44	0.49
BioDIV_plantCN	158.00	122.00	-0.20	1.22	-1.24	0.16	0.84	2.28	0.71	0.02	-0.01	0.03
BioDIV_soilC	158.00	122.00	0.03	0.03	0.01	0.01	0.04	0.05	0.00	0.00	0.08	0.08
BioDIV_rootbiomass	150.00	117.00	261.03	266.43	221.71	216.44	300.35	316.41	0.00	0.00	0.53	0.49


28

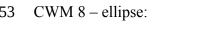
- 240 Figure S8. Alternative versions of Fig. 2 based on the alternative intersection scenarios.
- Panels a-h Jena, panels i-l BioDIV (see main text Fig. 2). 8 different versions: 3 methods and 3
 community property subsets (but convex hull method with full 16 properties shown in main text
- 243 already).
- 244 Full 12 hyper:

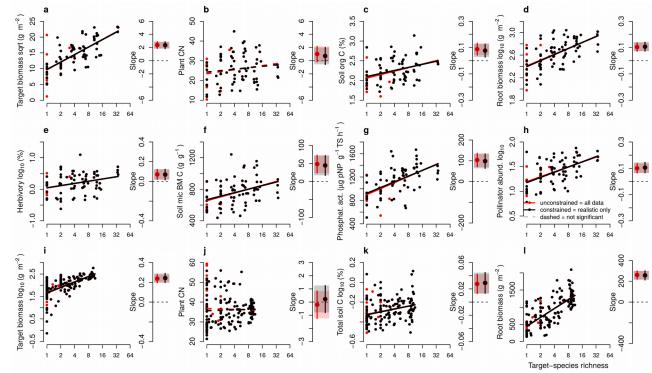


246 Full 12 – ellipse:

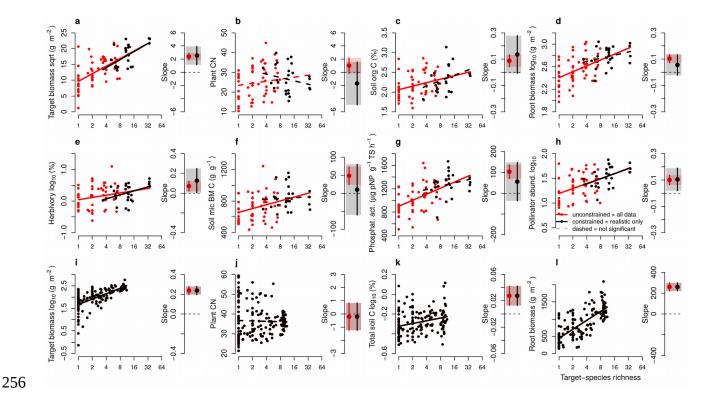


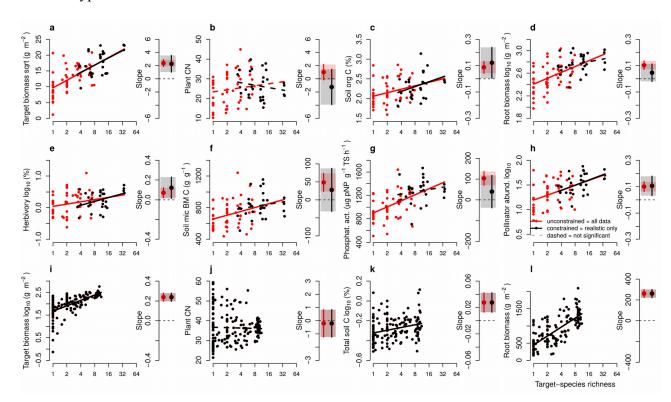
29 248 CWM 8 – chull:




249

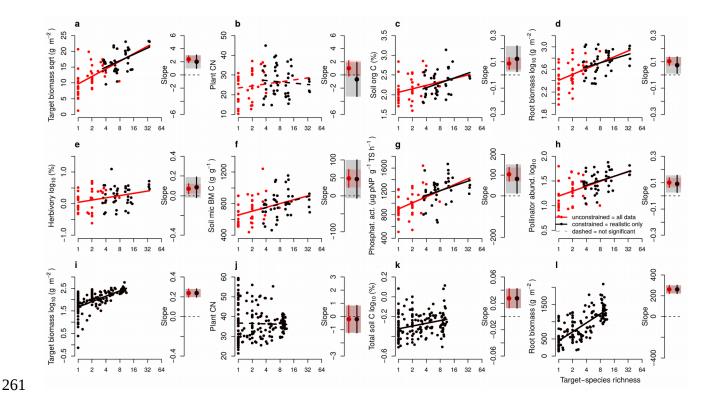
250 CWM 8 – hyper:


30 253 C



254

255 Fun 4 – chull:



31 258 Fun 4 – hyper:

259

260 Fun 4 – ellipse:

32

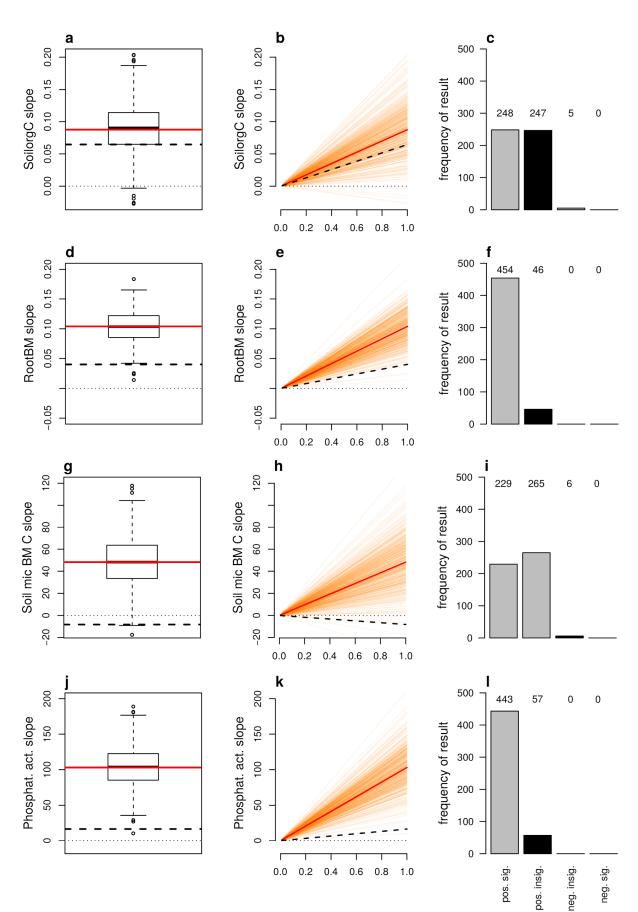
263 **Table S9.** Constraining-related change in functioning at maximum species richness.

For each of the 12 BEF relationships from the Jena Experiment (J) and BioDIV presented in Fig. 2, the

table shows the constraining-related percentage change in the model-predicted function variable at

266 maximum species richness (the proportional difference in the un-transformed function value at the 267 right-hand tip of the black and red lines in Fig. 2). The average absolute percentage function change is

268 10.3% (SE: 4%). 269


function	% change in predicted functioning
J_biomass	-3.9
J_plantCN	-18.75
J_soilorgC	-0.46
J_rootbiomass	-20.24
J_herbivory	46.24
J_micBMC	-7.8
J_Jphosphatase	-8.17
J_pollinators	9.74
BioDIV_biomass	3.78
BioDIV_plantCN	3.59
BioDIV_soilC	0.39
BioDIV_rootbiomass	-0.05

33

271 Figure S9: Random selection sensitivity analysis for Fig. 2 relationships turning insignificant.

- 272 We performed a sensitivity analysis testing if changes in BEF relationships from being significant (all
- 273 communities) to non-significant (realistic sites only) were likely caused by the related reduction in
- sample size or if a randomly-selected reduced number of plots was still likely to result in a significant
- relationship. Therefore, for each of the four BEF relationships found to switch significance (Jena soil organic C (a-c), root biomass (d-f), soil microbial biomass C (g-i) and phosphatase activity (j-l)), we
- repeatedly (500 times), randomly selected 23 Jena plots and re-ran the model testing for the BEF
- 278 relationship and saving the slope estimates and p-values. This figure shows the distribution of these 500
- random-selection slopes (boxplots in first column and orange lines in middle column) in comparison to
- the unconstrained (all sites, red lines) and constrained (PCA-selection based realistic sites only, black
- dashed lines) slopes from Fig. 2. Dotted black lines indicate zero slopes. The right column shows the
 frequency of positive significant, positive insignificant, negative insignificant and negative significant
 relationships obtained by the 500 random subsets of 23 plots with the black bar highlighting the PCA-
- 284 based realistic result from Fig. 2.
- The sensitivity analysis shows that black dashed lines and the results of the PCA-based realistic subset divert relatively strongly from the 500 random-selection results. Specifically, the PCA-based realistic
- subset resulted in strikingly shallower slopes than the random choices and non-significantly positive or
- even negative relationships while a big part of the random subsets resulted in significant positive or at
- 289 least non-significantly positive relationships. As such, our PCA-based selection of realistic sites is
- 290 highly non-random in comparison to the random-selection of plots, thus indicating that our
- 291 methodology is successful in finding a subset of plots based on prior knowledge (realistic plots based
- on the multidimensional, multivariate comparison of communities) and does not simply create a
- random subset of plots. Furthermore, these results show that, for these four Jena soil processes,
- experiment-derived BEF relationships might not be as important or strong in real-world systems, at least as long as plant communities in experiments deviate from those in real-world systems. Future
- 296 developments of real-world plant communities due to global change drivers and increasing
- anthropogenic pressure might change this conclusion by rendering less diverse communities realistic.
- thus aligning the species richness gradients of biodiversity experiments and related real-world systems
- and increasing the slope of the BEF relationships.

bioRxiv preprint doi: https://doi.org/10.1101/725812; this version posted August 5, 2019. The copyright holder for this preprint (which was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission.

35

301 Table S10. Differences between range in function unconstrained and constrained data underlying the BEF relationships in Fig. 2. Values are presented for unconstrained and constrained datasets of Jena (J) 302 303 and BioDIV BEF relationships. Constraining was done using all 12 community properties and the 304 convex hull method. Ranges were calculated based maximum and minimum function performance in 305 unconstrained and constrained datasets. Range changes were calculated as the proportion of 306 unconstrained functioning still covered by constrained functioning. Changes are caused by the removal of unrealistic plots which changes the distribution of function values for a given species richness level, 307 but also by the reduction of the species richness gradient that is caused by the removal of plots. The 308 309 across-year species richness gradient in Jena changed from 1-35.2 species (unconstrained) to 3.7-35.2 species (constrained). The BioDIV species richness gradient was 1-11.1 species and did not change 310 311 from unconstrained to constrained datasets.

312

model_name	uncon_range	con_range	range_change
J_biomass	22	9.7	0.44
J_plantCN	34.59	24.33	0.7
J_soilorgC	1.54	1.26	0.82
J_rootbiomass	1.06	0.66	0.63
J_herbivory	1.72	1.05	0.61
J_micBMC	800.54	624.56	0.78
J_Jphosphatase	1159.23	956.63	0.83
J_pollinators	1.1	0.82	0.74
BioDIV_biomass	2.91	2.38	0.82
BioDIV_plantCN	38.04	34.59	0.91
BioDIV_soilC	0.62	0.62	1
BioDIV_rootbiomass	1952.87	1952.87	1
Jena_avg			0.69
BioDIV_avg			0.93
Overall_avg			0.77

36

Table S11. Correlation coefficients for CWM's versus functional, phylogenetic metrics and evenness,

315 German dataset. Pearson correlation coefficients for Jena Experiment (upper part) and combined

316 German real world community properties (lower part). Bold values are mean absolute correlation

317 coefficients for the columns, the overall mean is the absolute mean across all column averages.

318

Rao Jena FEve FDiv FDis Q SEve MPD MNTD leaf area -0.02 -0.03 0.02 0.07 -0.01 0 0.12 SLA 0-0.09 0.05 0.06 0.09 0.09 -0.02 leaf_drymass 0.05 0.11 0.1 0.08 -0.12 0.08 0.23 LDMC 0 0.03 0.02 0.06 -0.07 -0.08 -0.15 leaf N 0.09 0.07 0.14 0.13 -0.09 0.05 -0.03 leaf P 0.12 0.16 0.22 0.21 -0.16 0.18 0.02 height 0.04 0.05 0.04 0.1 -0.08 -0.08 -0.12 -0.01 0.02 -0.02 seedmass 0.03 0.01 -0.1 -0.13 avg abs 0.04 0.07 0.08 0.09 0.08 0.08 0.1 overall mean 0.08

				Rao			
German RW	FEve	FDiv	FDis	Q	SEve	MPD	MNTD
leaf_area	-0.08	-0.09	0.34	0.47	0.19	0.04	0.12
SLA	-0.21	-0.21	0.07	0.07	0.14	-0.13	0.02
leaf_drymass	-0.03	0.12	0.52	0.57	0.25	0.36	0.18
LDMC	0.1	-0.09	-0.23	-0.2	-0.25	-0.5	-0.06
leaf_N	-0.15	-0.05	0.29	0.26	0.12	0.25	0.05
leaf_P	-0.18	-0.24	0.06	0.11	0.06	-0.16	0.03
height	-0.03	-0.22	-0.04	0.05	-0.07	-0.5	-0.07
seedmass	0.14	0.14	0.35	0.42	0.04	0.16	0.08
avg_abs	0.11	0.15	0.24	0.27	0.14	0.26	0.08
overall mean	0.18						

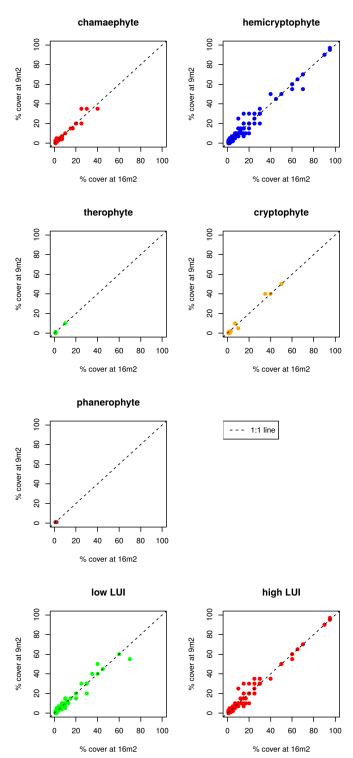
37

Table S12. Correlation coefficients for CWM's versus functional, phylogenetic metrics and evenness,
 US dataset. Pearson correlation coefficients for BioDIV (upper part) and combined US real world
 community properties (lower part). Bold values are mean absolute correlation coefficients for the
 columns, the overall mean is the absolute mean across all column averages.

				Rao			
BioDIV	FEve	FDiv	FDis	Q	SEve	MPD	MNTD
leaf_area	0.13	0.2	0.4	0.47	-0.17	0.24	0.1
SLA	0.15	0.18	0.22	0.26	-0.19	0.15	-0.08
leaf_drymass	0.04	0.1	0.26	0.32	-0.1	0.12	0.07
LDMC	-0.11	-0.14	-0.3	-0.35	0.1	-0.25	-0.12
leaf_N	0.05	0.03	0.22	0.26	0.04	0.23	0.13
leaf_P	-0.02	-0.02	0.13	0.17	0.08	0.09	0.13
height	0.01	0.08	0.01	0.02	-0.15	-0.06	-0.07
seedmass	0.11	0.15	0.37	0.44	-0.13	0.27	0.14
avg_abs	0.08	0.11	0.24	0.29	0.12	0.18	0.1
overall mean	0.16						

				Rao			
USA RW	FEve	FDiv	FDis	Q	SEve	MPD	MNTD
leaf_area	0.09	0.13	0.5	0.6	-0.07	0.38	0.12
SLA	0.06	0.08	0.15	0.14	-0.21	0.33	0.23
leaf_drymass	0.07	0.11	0.51	0.65	-0.04	0.32	0.1
LDMC	-0.11	-0.06	-0.27	-0.23	0.06	-0.33	-0.13
leaf_N	-0.18	-0.36	-0.29	-0.2	0.18	-0.2	0.13
leaf_P	0.13	-0.03	0.33	0.29	-0.01	0.48	0.38
height	-0.23	-0.18	-0.41	-0.28	0.08	-0.55	-0.24
seedmass	0.04	-0.03	0.29	0.36	0.01	0.29	0.29
avg_abs	0.11	0.12	0.34	0.34	0.08	0.36	0.2
overall mean	0.22						

38

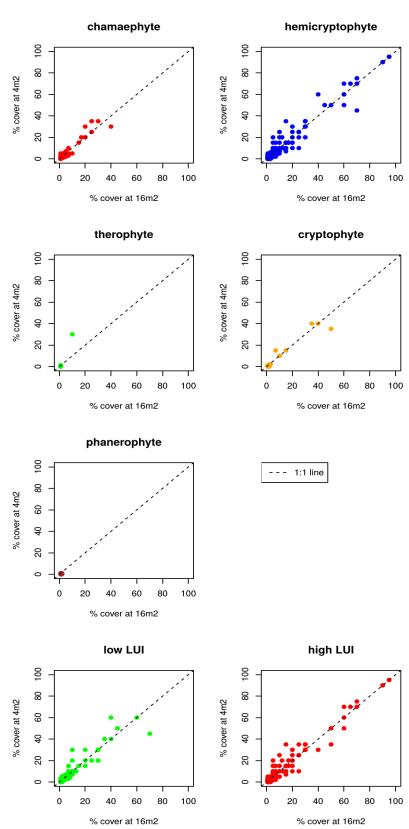

Table S13. PCA scores for full 12 community properties on PCA's in Fig. 1.

326 Scores have been produced using the scores() command of the "vegan" package²² in R and have been 327 rounded to 2 decimal places.

328

	G	ermany	U	SA
	PC1	PC2	PC1	PC2
FRic	-3.	47 0.28	3 2.90	-3.24
FEve	-2.	60 0.54	4 2.19	-2.33
SLA	-0.	93 2.47	7 3.19	-0.14
leaf_drymass	0.	69 0.84	4 0.76	1.50
LDMC	-1.4	45 -2.53	-3.32	-1.86
leaf_N	0.	24 3.15	5 2.18	3.21
leaf_P	-0.	67 2.58	3.69	1.41
height	-0.	93 -0.91	1 -2.71	0.22
seedmass	1.	04 1.01	1 2.80	3.04
D2	-2.	53 0.32	2 3.13	-2.39
SEve	3.	16 -0.18	3 -2.16	3.15
MNTD	2.	22 0.39	0.83	2.24

- 330 Table S14. Full dataset of community properties for all plots used in the PCA's over all years
- 331 (submitted along with R-code at first submission).


Figure S10.1 Cover versus vegetation survey size scaling sensitivity check for Biodiversity

334 Exploratories (German real world). Here, 16 to 9 m², which is the vegetation survey area of the Jena

main and Jena real world plots. For this figure, species were sorted into lifeforms using the R package $\frac{1}{24}$

336 "TR8"²³ and information from The Ecological Flora Database²⁴.

41

Figure S10.2 Cover versus vegetation survey size scaling sensitivity check for Biodiversity

Exploratories (German real world). Here, 16 to 4 m², which resembles the vegetation survey area of the Jena invasion plots. For this figure, species were sorted into lifeforms using the R package "TR8"²³ and information from The Ecological Flora Database²⁴.

- 341 Figure S11. Phylogenetic backbone tree (one example of the 50 replicates).
- 342 Overall 664 species. 132 species (19.9%, pink dots) that were not present in the backbone phylogeny
- 343 used to build this tree were randomly inserted into their genera (see methods for details)

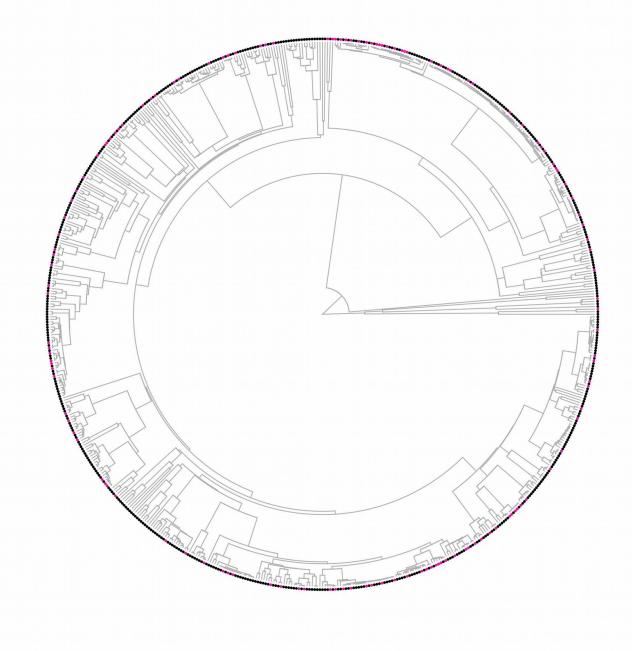


Table S15. TRY references for plant species trait data from TRY²⁵ requests 2968 and 4106. Data
sources are sorted by the region their trait data have been used for (Germany=GER or USA). Note that,
as mentioned in the main text, trait data for the USA dataset have been complemented by data from
Cedar Creek plant trait assessments by Jane Catford, Peter Reich and Jeannine Cavender-Bares.

Region	TRY_Dataset	Reference
GER	Altitudinal Vicariants Spain	Milla & Reich 2011 Annals of Botany 107: 455–465, 2011.
GER	ArtDeco Database	Cornwell, W. K., J. H. C. Cornelissen, K. Amatangelo, E. Dorrepaal, V. T. Eviner, O. Godoy, S. E. Hobbie, B. Hoorens, H. Kurokawa, N. Pérez-Harguindeguy, H. M. Quested, L. S. Santiago, D. A. Wardle, I. J. Wright, R. Aerts, S. D. Allison, P. van Bodegom, V. Brovkin, A. Chatain, T. V. Callaghan, S. Díaz, E. Garnier, D. E. Gurvich, E. Kazakou, J. A. Klein, J. Read, P. B. Reich, N. A. Soudzilovskaia, M. V. Vaieretti, and M. Westoby. 2008. Plant species traits are the predominant control on litter decomposition rates within biomes worldwide. Ecology Letters 11:1065-1071.
GER	BASECO: a floristic and ecological database of Mediterranean French flora	Sophie Gachet, Errol Véla, Thierry Tatoni, 2005, BASECO: a floristic and ecological database of Mediterranean French flora. Biodiversity and Conservation 14(4):1023-1034
GER	BiolFlor Database	Briemle, G., Nitsche, S. & Nitsche, L. (2002): Nutzungswertzahlen für Gefäßpflanzen des Grünlandes. In: Klotz, S., Kühn, I. & Durka, W. [eds.]: BIOLFLOR - Eine Datenbank zu biologisch-ökologischen Merkmalen der Gefäßpflanzen in DeutschlandSchriftenreihe für Vegetationskunde 38. Bundesamt für Naturschutz, Bonn.
GER	BiolFlor Database	Durka, W. (2002): Blüten- und Reproduktionsbiologie. In: Klotz, S., Kühn, I. & Durka, W. [eds.]: BIOLFLOR - Eine Datenbank zu biologisch-ökologischen Merkmalen der Gefäßpflanzen in Deutschland Schriftenreihe für Vegetationskunde 38: 133-175. Bundesamt für Naturschutz, Bonn.
GER	BiolFlor Database	Durka, W. (2002): Chromosomenzahlen, Ploidiestufen und DNA-Gehalte. In: Klotz, S., Kühn, I. & Durka, W. [eds.]: BIOLFLOR - Eine Datenbank zu biologisch-ökologischen Merkmalen der Gefäßpflanzen in Deutschland Schriftenreihe für Vegetationskunde 38. Bundesamt für Naturschutz, Bonn.
GER	BiolFlor Database	Durka, W. (2002) Phylogenie der Farn- und Blütenpflanzen Deutschlands In: Klotz, S., Kühn, I. & Durka, W. [Hrsg.]: BIOLFLOR - Eine Datenbank zu biologisch-ökologischen Merkmalen der Gefäßpflanzen in Deutschland Schriftenreihe für Vegetationskunde 38: 75- 91. Bundesamt für Naturschutz, Bonn.
GER	BiolFlor Database	Klotz, S. & Kühn, I. (2002): Blattmerkmale In: Klotz, S., Kühn, I. & Durka, W. [Hrsg.]: BIOLFLOR - Eine Datenbank zu biologisch-ökologischen Merkmalen der Gefäßpflanzen in Deutschland Schriftenreihe für Vegetationskunde 38: 119-126. Bundesamt für Naturschutz, Bonn.
GER	BiolFlor Database	Klotz, S. & Kühn, I. (2002): Indikatoren zum anthropogenen Einfluss auf die Vegetation. In: Klotz, S., Kühn, I. & Durka, W. [eds.]: BIOLFLOR - Eine Datenbank zu biologisch- ökologischen Merkmalen der Gefäßpflanzen in Deutschland Schriftenreihe für Vegetationskunde 38: 241-246. Bundesamt für Naturschutz, Bonn.
GER	BiolFlor Database	Klotz, S. & Kühn, I. (2002): Ökologische Strategietypen In: Klotz, S., Kühn, I. & Durka, W. [Hrsg.]: BIOLFLOR - Eine Datenbank zu biologisch-ökologischen Merkmalen der Gefäßpflanzen in Deutschland Schriftenreihe für Vegetationskunde 38: 197-201. Bundesamt für Naturschutz, Bonn.
GER	BiolFlor Database	Klotz, S. & Kühn, I. (2002): Soziologische Bindung der Arten. In: Klotz, S., Kühn, I. & Durka, W. [eds.]: BIOLFLOR - Eine Datenbank zu biologisch-ökologischen Merkmalen der Gefäßpflanzen in Deutschland Schriftenreihe für Vegetationskunde 38: 273-281. Bundesamt für Naturschutz, Bonn.
GER	BiolFlor Database	Krumbiegel, A. (2002): Morphologie der vegetativen Organe (außer Blätter). In: Klotz, S., Kühn, I. & Durka, W. [eds.]: BIOLFLOR - Eine Datenbank zu biologisch-ökologischen Merkmalen der Gefäßpflanzen in Deutschland Schriftenreihe für Vegetationskunde 38: 93-

		118. Bundesamt für Naturschutz, Bonn.
GER	BiolFlor Database	Kühn, I. Klotz, S. (2002): Angaben zu den Arealen. In: Klotz, S., Kühn, I. & Durka, W. [eds.]: BIOLFLOR - Eine Datenbank zu biologisch-ökologischen Merkmalen der Gefäßpflanzen in Deutschland Schriftenreihe für Vegetationskunde 38: 227-239. Bundesamt für Naturschutz, Bonn.
GER	BiolFlor Database	Kühn, I., Klotz, S. (2002): Floristischer Status und gebietsfremde Arten. In: Klotz, S., Kühn, I. & Durka, W. [eds.]: BIOLFLOR - Eine Datenbank zu biologisch-ökologischen Merkmalen der Gefäßpflanzen in Deutschland Schriftenreihe für Vegetationskunde 38: 47-56. Bundesamt für Naturschutz, Bonn.
GER	BiolFlor Database	Kühn, I., W. Durka, and S. Klotz. 2004. BiolFlor - a new plant-trait database as a tool for plant invasion ecology. Diversity and Distribution 10 363-365.
GER	BiolFlor Database	Otto, B. (2002): Merkmale von Samen, Früchten, generativen Germinulen und generativen Diasporen. In: Klotz, S., Kühn, I. & Durka, W. [eds.]: BIOLFLOR - Eine Datenbank zu biologisch-ökologischen Merkmalen der Gefäßpflanzen in Deutschland Schriftenreihe für Vegetationskunde 38. Bundesamt für Naturschutz, Bonn.
GER	BiolFlor Database	Trefflich, A., Klotz, S. & Kühn, I. (2002): Blühphänologie. In: Klotz, S., Kühn, I. & Durka, W. [eds.]: BIOLFLOR - Eine Datenbank zu biologisch-ökologischen Merkmalen der Gefäßpflanzen in Deutschland Schriftenreihe für Vegetationskunde 38: 127-131. Bundesamt für Naturschutz, Bonn.
GER	BROT Plant Trait Database	Paula, S. and J. G. Pausas. 2008. Burning seeds: germinative response to heat treatments in relation to resprouting ability. Journal of Ecology 96:543-552.
GER	BROT Plant Trait Database	Paula, S., M. Arianoutsou, D. Kazanis, Ç. Tavsanoglu, F. Lloret, C. Buhk, F. Ojeda, B. Luna, J. M. Moreno, A. Rodrigo, J. M. Espelta, S. Palacio, B. Fernández-Santos, P. M. Fernandes, and J. G. Pausas. 2009. Fire-related traits for plant species of the Mediterranean Basin. Ecology 90:1420.
GER	Cedar Creek prairie plants (leaf, seed, dispersule, height, plant, root)	unpub.
GER	Climbing plants trait dataset	Gallagher RV, MR Leishman (2012) A global analysis of trait variation and evolution in climbing plants. Journal of Biogeography 39, 1757-1771. DOI: 10.1111/j.1365- 2699.2012.02773.x
GER		Fitter, A. H. and H. J. Peat 1994. The Ecological Flora Database. Journal of Ecology 82:415- 425.
GER		Adler PB, R Salguero-Gómez, A Compagnoni, JS Hsu, J Ray-Mukherjee, C Mbeau-Ache, M Franco (2014) Functional traits explain variation in plant life history strategies. PNAS 111 (2) 740-745. doi: 10.1073/pnas.1315179111
GER		Wright, I. J., P. B. Reich, M. Westoby, D. D. Ackerly, Z. Baruch, F. Bongers, J. Cavender- Bares, T. Chapin, J. H. C. Cornelissen, M. Diemer, J. Flexas, E. Garnier, P. K. Groom, J. Gulias, K. Hikosaka, B. B. Lamont, T. Lee, W. Lee, C. Lusk, J. J. Midgley, M. L. Navas, U. Niinemets, J. Oleksyn, N. Osada, H. Poorter, P. Poot, L. Prior, V. I. Pyankov, C. Roumet, S. C. Thomas, M. G. Tjoelker, E. J. Veneklaas, and R. Villar. 2004. The worldwide leaf economics spectrum. Nature 428:821-827.
GER	GLOPNET - Global Plant Trait Network Database	Wright, I. J., P. B. Reich, O. K. Atkin, C. H. Lusk, M. G. Tjoelker, and M. Westoby. 2006. Irradiance, temperature and rainfall influence leaf dark respiration in woody plants: evidence from comparisons across 20 sites. New Phytologist 169:309-319.
GER	Grassland Plant Trait Database	Takkis, K. 2014. Changes in plant species richness and population performance in response to habitat loss and fragmentation. DISSERTATIONES BIOLOGICAE UNIVERSITATIS TARTUENSIS 255, 2014-04-07. Available from: http://hdl.handle.net/10062/39546

Λ	5
-	J

GER	Grassland Plant Trait Database	Takkis, K., Saar, L., Pärtel, M., Helm, A. Effect of environment and landscape on the traits of six plant species in fragmented grasslands. (in preparation)
GER	Harze Trait Intravar: SLA, LDMC and Plant Height for Calcareous Grassland Species in South Belgium	unpub.
GER	Herbs Water Relations on Soil Moisture Gradients	Sheremetev S.N. (2005) Herbs on the soil moisture gradient (water relations and the structural-functional organization). KMK, Moscow, 271 pp. (In Russian)
GER	Hydrophytes Traits Database	Pierce S., Brusa G., Sartori M. & Cerabolini B.E.L. 2012. Combined use of leaf size and economics traits allows direct comparison of hydrophyte and terrestrial herbaceous adaptive strategies. Annals of Botany 109(5): 1047-1053
GER	Traits Database	Bragazza L (2009) Conservation priority of Italian alpine habitats: a floristic approach based on potential distribution of vascular plant species. Biodiversity and Conservation 18: 2823–2835.
GER	Italian Alps Plant Traits Database	Dainese M, Bragazza L (2012) Plant traits across different habitats of the Italian Alps: a comparative analysis between native and alien species. Alpine Botany 122: 11-21.
GER	KEW Seed Information Database (SID)	Royal Botanical Gardens KEW. 2008. Seed Information Database (SID). Version 7.1. Available from: http://data.kew.org/sid/ (May 2008).
GER	KEW Seed Information Database (SID)	Royal Botanical Gardens KEW. 2008. Seed Information Database (SID). Version 7.1. Available from: http://data.kew.org/sid/ (May 2011).
GER	Leaf Allometry Dataset	Price, C.A. and B.J. Enquist. Scaling of mass and morphology in Dicotyledonous leaves: an extension of the WBE model. (2007) Ecology 88(5): 1132–1141.
GER	Leaf Allometry Dataset	Price, C.A., B.J. Enquist and V.M. Savage. A general model for allometric covariation in botanical form and function. (2007) Proceedings of the National Academy of Sciences 104 (32): 13204-13209.
GER	Leaf and Whole Plant Traits Database	Kazakou, E., D. Vile, B. Shipley, C. Gallet, and E. Garnier. 2006. Co-variations in litter decomposition, leaf traits and plant growth in species from a Mediterranean old-field succession. Functional Ecology 20:21-30.
GER	Leaf and Whole Plant Traits Database	McKenna, M. F. and B. Shipley. 1999. Interacting determinants of interspecific relative growth: Empirical patterns and a theoretical explanation. Ecoscience 6:286-296.
GER	Leaf and Whole Plant Traits Database	Meziane, D. and B. Shipley. 1999. Interacting components of interspecific relative growth rate: constancy and change under differing conditions of light and nutrient supply. Functional Ecology 13:611-622.
GER	Leaf and Whole Plant Traits Database	Meziane, D. and B. Shipley. 1999. Interacting determinants of specific leaf area in 22 herbaceous species: effects of irradiance and nutrient availability. Plant Cell and Environment 22:447-459.
GER		Pyankov, V. I., A. V. Kondratchuk, and B. Shipley. 1999. Leaf structure and specific leaf mass: the alpine desert plants of the Eastern Pamirs, Tadjikistan. New Phytologist 143:131-142.
GER	Leaf and Whole Plant Traits Database	Shipley, B. 1989. The Use of above-Ground Maximum Relative Growth-Rate as an Accurate Predictor of Whole-Plant Maximum Relative Growth-Rate. Functional Ecology 3:771-775.
GER	Leaf and Whole Plant Traits Database	Shipley, B. 1995. Structured Interspecific Determinants of Specific Leaf-Area in 34 Species of Herbaceous Angiosperms. Functional Ecology 9:312-319.

GER	Leaf and Whole Plant Traits Database	Shipley B., 2002. Trade-offs between net assimilation rate and specific leaf area in determining relative growth rate: relationship with daily irradiance, Functional Ecology(16) 682-689
GER	Leaf and Whole Plant Traits Database	Shipley, B. and M. J. Lechowicz. 2000. The functional co-ordination of leaf morphology, nitrogen concentration, and gas exchange in 40 wetland species. Ecoscience 7:183-194.
GER	Leaf and Whole Plant Traits Database	Shipley, B. and M. Parent. 1991. Germination Responses of 64 Wetland Species in Relation to Seed Size, Minimum Time to Reproduction and Seedling Relative Growth-Rate. Functional Ecology 5:111-118.
GER	Leaf and Whole Plant Traits Database	Shipley, B. and T. T. Vu. 2002. Dry matter content as a measure of dry matter concentration in plants and their parts. New Phytologist 153:359-364.
GER	Leaf and Whole Plant Traits Database	unpub.
GER	Leaf and Whole Plant Traits Database	Vile, D. 2005. Significations fonctionnelle et ecologique des traits des especes vegetales: exemple dans une succession post-cultural mediterraneenne et generalisations, PHD Thesis.
GER	Leaf Area, Dry Mass and SLA Dataset	unpub.
GER	Traits Across	Wright JP, Sutton-Grier A (2012) Does the leaf economic spectrum hold within local species pools across varying environmental conditions? Functional Ecology 2012 doi: 10.1111/1365-2435.12001
GER	Leaf N-Retention Database	De Vries F., Bardgett R.D. (2016) Plant community controls on short-term ecosystem nitrogen retention. New Phytologist. doi: 10.1111/nph.13832
GER	Leaf Physiology Database	Kattge, J., W. Knorr, T. Raddatz, and C. Wirth. 2009. Quantifying photosynthetic capacity and its relationship to leaf nitrogen content for global-scale terrestrial biosphere models. Global Change Biology 15:976-991.
GER	Leaf Physiology Database	unpub.
GER	Economic	Pierce S., Brusa G., Vagge I., Cerabolini B.E.L. (2013) Allocating CSR plant functional types: the use of leaf economics and size traits to classify woody and herbaceous vascular plants. Functional Ecology, 27(4): 1002-1010
GER	Leaf Structure and Economic Spectrum	Pierce S., Ceriani R.M., De Andreis R., Luzzaro A. & Cerabolini B. 2007. The leaf economics spectrum of Poaceae reflects variation in survival strategies. Plant Biosystems 141(3): 337-343.
GER	Economic	Pierce S., Luzzaro A., Caccianiga M., Ceriani R.M. & Cerabolini B. 2007. Disturbance is the principal ?-scale filter determining niche differentiation, coexistence and biodiversity in an alpine community. Journal of Ecology 95: 698-706.
GER	Economics	Pierce S., Brusa G., Vagge I., Cerabolini B.E.L. (2013) Allocating CSR plant functional types: the use of leaf economics and size traits to classify woody and herbaceous vascular plants. Functional Ecology, 27(4): 1002-1010
GER	Leaf Structure and Economics Spectrum	Pierce S., Ceriani R.M., De Andreis R., Luzzaro A. & Cerabolini B. 2007. The leaf economics spectrum of Poaceae reflects variation in survival strategies. Plant Biosystems 141(3): 337-343.
GER	Economics	Pierce S., Luzzaro A., Caccianiga M., Ceriani R.M. & Cerabolini B. 2007. Disturbance is the principal ?-scale filter determining niche differentiation, coexistence and biodiversity in an alpine community. Journal of Ecology 95: 698-706.
GER		Blonder, B., Buzzard, B., Sloat, L., Simova, I., Lipson, R., Boyle, B., Enquist, B. (2012) The shrinkage effect biases estimates of paleoclimate. American Journal of Botany. 99.11 1756-1763

GER	Leaf Structure, Venation and Economic Spectrum	Blonder, B., Vasseur, F., Violle, C., Shipley, B., Enquist, B., Vile, D. Arabidopsis thaliana rejects theories for the origin of the leaf economics spectrum. (in review, New Phytologist).
GER	Leaf Structure, Venation and Economic Spectrum	Blonder, B., Violle, C. and Enquist, B. J. (2013) Assessing the causes and scales of the leaf economics spectrum using venation networks in Populus tremuloides. Journal of Ecology 101: 981–989. doi:10.1111/1365-2745.12102
GER	Leaf Structure, Venation and Economic Spectrum	Blonder, B., Violle, C., Patrick, L., Enquist, B. Leaf venation networks and the origin of the leaf economics spectrum. Ecology Letters, 2011.
GER	Leaf traits from Baltic Island species	Hattermann D, Elstner C, Markus Bernhardt-Römermann, Lutz Eckstein: Measurements from the project "Relative effects of local and regional factors as drivers for plant community diversity, functional trait diversity and genetic structure of species on Baltic uplift islands" funded by the German Research Foundation - DFG: BE 4143/5-1 and EC 209/12-1
GER	Leaf Traits in Central Apennines Beech Forests	Campetella, G; Botta-Dukát, Z; Wellstein, C; Canullo, R; Gatto, S; Chelli, S; Mucina, L; Bartha, S (2011): Patterns of plant trait-environment relationships along a forest succession chronosequence. Agriculture, Ecosystems & Environment, 145(1), 38-48. doi:10.1016/j.agee.2011.06.025
GER	Leaf Traits in Central Apennines Beech Forests	Campetella, G; Botta-DukÃit, Z; Wellstein, C; Canullo, R; Gatto, S; Chelli, S; Mucina, L; Bartha, S (2011): Patterns of plant trait-environment relationships along a forest succession chronosequence. Agriculture, Ecosystems & Environment, 145(1), 38-48. doi:10.1016/j.agee.2011.06.025
GER	Leaf Traits in Italian Central Apennines Beech Forests	Campetella, G; Botta-Dukát, Z; Wellstein, C; Canullo, R; Gatto, S; Chelli, S; Mucina, L; Bartha, S (2011): Patterns of plant trait-environment relationships along a forest succession chronosequence. Agriculture, Ecosystems & Environment, 145(1), 38-48. doi:10.1016/j.agee.2011.06.025
GER	Leaf Traits in Italian Central Apennines Beech Forests	Campetella, G; Botta-DukÃit, Z; Wellstein, C; Canullo, R; Gatto, S; Chelli, S; Mucina, L; Bartha, S (2011): Patterns of plant trait-environment relationships along a forest succession chronosequence. Agriculture, Ecosystems & Environment, 145(1), 38-48. doi:10.1016/j.agee.2011.06.025
GER	Northern mixed- grass prairie species traits - Wyoming, USA	unpub.
GER	Nutrient Resorption Efficiency Database	Vergutz, L., Manzoni, S., Porporato, A., Novais, R. F., and Jackson, R. B. 2012. Global resorption efficiencies and concentrations of carbon and nutrients in leaves of terrestrial plants, Ecological Monographs 82:2, 205-220. doi: 10.1890/11-0416.1
GER	Nutrient Resorption Efficiency Database	Vergutz, L., S. Manzoni, A. Porporato, R.F. Novais, and R.B. Jackson. 2012. A Global Database of Carbon and Nutrient Concentrations of Green and Senesced Leaves. Data set. Available on-line [http://daac.ornl.gov] from Oak Ridge National Laboratory Distributed Active Archive Center, Oak Ridge, Tennessee, U.S.A. http://dx.doi.org/10.3334/ORNLDAAC/1106
GER	Photosynthesis Traits Worldwide	Maire V, Ian J. Wright, I. Colin Prentice, Niels H. Batjes, Radika Bhaskar, Peter M. van Bodegom, Will K. Cornwell, David Ellsworth, Ülo Niinemets, Alejandro Ordoñez, Peter B. Reich, Louis S. Santiago (2015). Global soil and climate effects on leaf photosynthetic traits and rates. Global Ecology and Biogeography 24(6): 706-717. Maire V, Wright IJ, Prentice IC, Batjes NH, Bhaskar R, van Bodegom PM, Cornwell WK, Ellsworth D, Niinemets Ü, Ordoñez A, Reich PB, Santiago LS (2015) Data from: Global effects of soil and climate on leaf photosynthetic traits and rates. Dryad Digital Repository. http://dx.doi.org/10.5061/dryad.j42m7
GER	PLANTATT - Attributes of British and Irish Plants	HILL, M.O., PRESTON, C.D. & ROY, D.B. (2004) PLANTATT - attributes of British and Irish Plants: status, size, life history, geography and habitats. Huntingdon: Centre for Ecology and Hydrology.

GER	Plant Coastal Dune Traits (France,	unpub.	
	Aquitaine)		
GER	Plant Traits of Acidic Grasslands in Central Spain	Peco B., de Pablos I., Traba J. , & Levassor C. (2005) The effect of grazing abandonment on species composition and functional traits: the case of dehesa Basic and Applied Ecology, 6(2): 175-183	
GER	Plant traits of grassland species	La Pierre, KJ and Smith, MD. (2015) Functional trait expression of grassland species shift with short- and long-term nutrient additions. Plant Ecology 216: 307 doi:10.1007/s11258-014-0438-4	
GER	Reich-Oleksyn Global Leaf N, P Database	Reich, P. B., J. Oleksyn, and I. J. Wright. 2009. Leaf phosphorus influences the photosynthesis-nitrogen relation: a cross-biome analysis of 314 species. Oecologia 160:207-212.	
GER	Reproductive Allocation	Manning, Houston and Evans 2009 Basic and Applied Ecology 10, 300-308	
GER	Seed Information Database (SID) Seed Mass 2010	Royal Botanical Gardens KEW. Seed Information Database (SID), http://data.kew.org/sid/ accessed May 2014	
GER	Sheffield & Spain Woody Database	Castro-Diez, P., J. P. Puyravaud, and J. H. C. Cornelissen. 2000. Leaf structure and anatomy as related to leaf mass per area variation in seedlings of a wide range of woody plant species and types. Oecologia 124:476-486.	
GER	Sheffield & Spain Woody Database	Castro-Diez, P., J. P. Puyravaud, J. H. C. Cornelissen, and P. Villar-Salvador. 1998. Stem anatomy and relative growth rate in seedlings of a wide range of woody plant species and types. Oecologia 116:57-66.	
GER	Sheffield & Spain Woody Database	Cornelissen, J.H.C. 1999. A triangular relationship between leaf size and seed size among woody species: allometry, ontogeny, ecology and taxonomy. Oecologia 118: 248-255.	
GER	Sheffield & Spain Woody Database	Cornelissen, J. H. C., B. Cerabolini, P. Castro-Diez, P. Villar-Salvador, G. Montserrat-Marti, J. P. Puyravaud, M. Maestro, M. J. A. Werger, and R. Aerts. 2003. Functional traits of woody plants: correspondence of species rankings between field adults and laboratory-grown seedlings? Journal of Vegetation Science 14:311-322.	
GER	Specific leaf area responses to environmental gradients through space and time	Dwyer, J. M., R. J. Hobbs, and M. M. Mayfield. 2014. Specific leaf area responses to environmental gradients through space and time. Ecology 95:399-410	
GER	The LEDA Traitbase	Kleyer, M., R. M. Bekker, I. C. Knevel, J. P. Bakker, K. Thompson, M. Sonnenschein, P. Poschlod, J. M. van Groenendael, L. Klimes, J. Klimesova, S. Klotz, G. M. Rusch, Hermy, M., D. Adriaens, G. Boedeltje, B. Bossuyt, A. Dannemann, P. Endels, L. Götzenberger, J. G. Hodgson, AK. Jackel, I. Kühn, D. Kunzmann, W. A. Ozinga, C. Römermann, M. Stadler, J. Schlegelmilch, H. J. Steendam, O. Tackenberg, B. Wilmann, J. H. C. Cornelissen, O. Eriksson, E. Garnier, and B. Peco. 2008. The LEDA Traitbase: a database of life-history traits of the Northwest European flora. Journal of Ecology 96:1266-1274.	
GER	The Netherlands Plant Traits Database	Ordonez, J. C., P. M. van Bodegom, J. P. M. Witte, R. P. Bartholomeus, H. F. van Dobben, and R. Aerts. 2010. Leaf habit and woodiness regulate different leaf economy traits at a given nutrient supply. Ecology 91:3218-3228.	
GER	The Netherlands Plant Traits Database	Ordonez, J. C., P. M. van Bodegom, J. P. M. Witte, R. P. Bartholomeus, J. R. van Hal, and R. Aerts. 2010. Plant Strategies in Relation to Resource Supply in Mesic to Wet Environments: Does Theory Mirror Nature? American Naturalist 175:225-239.	
GER	The VISTA Plant Trait Database	Fortunel, C., E. Garnier, R. Joffre, E. Kazakou, H. Quested, K. Grigulis, S. Lavorel, P. Ansquer, H. Castro, P. Cruz, J. Dolezal, O. Eriksson, H. Freitas, C. Golodets, C. Jouany, J. Kigel, M. Kleyer, V. Lehsten, J. Leps, T. Meier, R. Pakeman, M. Papadimitriou, V. P. Papanastasis, F. Quetier, M. Robson, M. Sternberg, J. P. Theau, A. Thebault, and M. Zarovali. 2009. Leaf traits capture the effects of land use changes and climate on litter decomposability of grasslands across Europe. Ecology 90:598-611.	

GER	The VISTA Plant Trait Database	Garnier, E., S. Lavorel, P. Ansquer, H. Castro, P. Cruz, J. Dolezal, O. Eriksson, C. Fortunel, H. Freitas, C. Golodets, K. Grigulis, C. Jouany, E. Kazakou, J. Kigel, M. Kleyer, V. Lehsten, J. Leps, T. Meier, R. Pakeman, M. Papadimitriou, V. P. Papanastasis, H. Quested, F. Quetier, M. Robson, C. Roumet, G. Rusch, C. Skarpe, M. Sternberg, JP. Theau, A. Thebault, D. Vile, and M. P. Zarovali. 2007. Assessing the effects of land-use change on plant traits, communities and ecosystem functioning in grasslands: A standardized methodology and lessons from an application to 11 European sites. Annals of Botany 99:967-985.	
GER	The VISTA Plant Trait Database	Pakeman, R. J., E. Garnier, S. Lavorel, P. Ansquer, H. Castro, P. Cruz, J. Dolezal, O. Eriksson, H. Freitas, C. Golodets, J. Kigel, M. Kleyer, J. Leps, T. Meier, M. Papadimitriou, V. P. Papanastasis, H. Quested, F. Quetier, G. Rusch, M. Sternberg, J. P. Theau, A. Thebault, and D. Vile. 2008. Impact of abundance weighting on the response of seed traits to climate and land use. Journal of Ecology 96:355-366.	
GER	The VISTA Plant Trait Database	Pakeman, R. J., J. Leps, M. Kleyer, S. Lavorel, E. Garnier, and V. Consortium. 2009. Relative climatic, edaphic and management controls of plant functional trait signatures. Journal of Vegetation Science 20:148-159.	
GER	The Xylem/Phloem Database	Schweingruber, F.H., Landolt, W.: The Xylem Database. Swiss Federal Research Institute WSL Updated (2005)	
GER	The Xylem/Phloem Database	Schweingruber, F.H., Poschlod, P. 2005: Growth rings in herbs and shrubs: Life span, age determination and stem anatomy. Forest, Snow and Landscape Res. 79, 195-415	
GER	Traits of the Hungarian flora	Lhotsky B., Anikó Csecserits, Bence Kovács, Zoltán Botta-Dukát: New plant trait records of the Hungarian flora	
GER	UV-B Radiation Sensitivity of Hieracium Pilosella	Michael Beckmann, Maria Hock, Helge Bruelheide, Alexandra Erfmeier (2012) The role of UV-B radiation in the invasion of Hieracium pilosella—A comparison of German and New Zealand plants. Environmental and Experimental Botany 75 173– 180	
GER	Wetland Dunes Database	Bakker, C., J. Rodenburg, and P. Bodegom. 2005. Effects of Ca- and Fe-rich seepage on P availability and plant performance in calcareous dune soils. Plant and Soil 275:111-122.	
GER	Wetland Dunes Database	Bakker, C., P. M. Van Bodegom, H. J. M. Nelissen, W. H. O. Ernst, and R. Aerts. 2006. Plant responses to rising water tables and nutrient management in calcareous dune slacks. Plant Ecology 185:19-28.	
GER	Wetland Dunes Database	unpub.	
GER	Wetland Dunes Database	van Bodegom, P. M., B. K. Sorrell, A. Oosthoek, C. Bakke, and R. Aerts. 2008. Separating the effects of partial submergence and soil oxygen demand on plant physiology. Ecology 89:193-204.	
GER	Wetland Dunes Database	van Bodegom, P. M., M. de Kanter, C. Bakker, and R. Aerts. 2005. Radial oxygen loss, a plastic property of dune slack plant species. Plant and Soil 271:351-364.	
GER	Whole Plant Hydraulic Conductance	MENCUCCINI M., 2003. The ecological significance of long distance water transport: short- term regulation and long-term acclimation across plant growth forms. Plant, Cell and Environment, 26:163-182.	
USA	ArtDeco Database	Cornwell, W. K., J. H. C. Cornelissen, K. Amatangelo, E. Dorrepaal, V. T. Eviner, O. Godoy, S. E. Hobbie, B. Hoorens, H. Kurokawa, N. Pérez-Harguindeguy, H. M. Quested, L. S. Santiago, D. A. Wardle, I. J. Wright, R. Aerts, S. D. Allison, P. van Bodegom, V. Brovkin, A. Chatain, T. V. Callaghan, S. Díaz, E. Garnier, D. E. Gurvich, E. Kazakou, J. A. Klein, J. Read, P. B. Reich, N. A. Soudzilovskaia, M. V. Vaieretti, and M. Westoby. 2008. Plant species traits are the predominant control on litter decomposition rates within biomes worldwide. Ecology Letters 11:1065-1071.	
USA	BiolFlor Database	Briemle, G., Nitsche, S. & Nitsche, L. (2002): Nutzungswertzahlen für Gefäßpflanzen des Grünlandes. In: Klotz, S., Kühn, I. & Durka, W. [eds.]: BIOLFLOR - Eine Datenbank zu biologisch-ökologischen Merkmalen der Gefäßpflanzen in DeutschlandSchriftenreihe für Vegetationskunde 38. Bundesamt für Naturschutz, Bonn.	
USA	BiolFlor Database	Durka, W. (2002): Blüten- und Reproduktionsbiologie. In: Klotz, S., Kühn, I. & Durka, W. [eds.]: BIOLFLOR - Eine Datenbank zu biologisch-ökologischen Merkmalen der Gefäßpflanzen in Deutschland Schriftenreihe für Vegetationskunde 38: 133-175.	

50

		Bundesamt für Naturschutz, Bonn.	
USA	BiolFlor Database	Durka, W. (2002): Chromosomenzahlen, Ploidiestufen und DNA-Gehalte. In: Klotz, S., Kühn, I. & Durka, W. [eds.]: BIOLFLOR - Eine Datenbank zu biologisch-ökologischen Merkmalen der Gefäßpflanzen in Deutschland Schriftenreihe für Vegetationskunde 38. Bundesamt für Naturschutz, Bonn.	
USA	BiolFlor Database	Durka, W. (2002) Phylogenie der Farn- und Blütenpflanzen Deutschlands In: Klotz, S., Kühn, I. & Durka, W. [Hrsg.]: BIOLFLOR - Eine Datenbank zu biologisch-ökologischen Merkmalen der Gefäßpflanzen in Deutschland Schriftenreihe für Vegetationskunde 38: 75- 91. Bundesamt für Naturschutz, Bonn.	
USA	BiolFlor Database	Klotz, S. & Kühn, I. (2002): Blattmerkmale In: Klotz, S., Kühn, I. & Durka, W. [Hrsg.]: BIOLFLOR - Eine Datenbank zu biologisch-ökologischen Merkmalen der Gefäßpflanzen in Deutschland Schriftenreihe für Vegetationskunde 38: 119-126. Bundesamt für Naturschutz, Bonn.	
USA	BiolFlor Database	Klotz, S. & Kühn, I. (2002): Indikatoren zum anthropogenen Einfluss auf die Vegetation. In: Klotz, S., Kühn, I. & Durka, W. [eds.]: BIOLFLOR - Eine Datenbank zu biologisch- ökologischen Merkmalen der Gefäßpflanzen in Deutschland Schriftenreihe für Vegetationskunde 38: 241-246. Bundesamt für Naturschutz, Bonn.	
USA	BiolFlor Database	Klotz, S. & Kühn, I. (2002): Ökologische Strategietypen In: Klotz, S., Kühn, I. & Durka, W. [Hrsg.]: BIOLFLOR - Eine Datenbank zu biologisch-ökologischen Merkmalen der Gefäßpflanzen in Deutschland Schriftenreihe für Vegetationskunde 38: 197-201. Bundesamt für Naturschutz, Bonn.	
USA	BiolFlor Database	Klotz, S. & Kühn, I. (2002): Soziologische Bindung der Arten. In: Klotz, S., Kühn, I. & Durka, W. [eds.]: BIOLFLOR - Eine Datenbank zu biologisch-ökologischen Merkmalen der Gefäßpflanzen in Deutschland Schriftenreihe für Vegetationskunde 38: 273-281. Bundesamt für Naturschutz, Bonn.	
USA	BiolFlor Database	Krumbiegel, A. (2002): Morphologie der vegetativen Organe (außer Blätter). In: Klotz, S., Kühn, I. & Durka, W. [eds.]: BIOLFLOR - Eine Datenbank zu biologisch-ökologischen Merkmalen der Gefäßpflanzen in Deutschland Schriftenreihe für Vegetationskunde 38: 93- 118. Bundesamt für Naturschutz, Bonn.	
USA	BiolFlor Database	Kühn, I. Klotz, S. (2002): Angaben zu den Arealen. In: Klotz, S., Kühn, I. & Durka, W. [eds.]: BIOLFLOR - Eine Datenbank zu biologisch-ökologischen Merkmalen der Gefäßpflanzen in Deutschland Schriftenreihe für Vegetationskunde 38: 227-239. Bundesamt für Naturschutz, Bonn.	
USA	BiolFlor Database	Kühn, I., Klotz, S. (2002): Floristischer Status und gebietsfremde Arten. In: Klotz, S., Kühn, I. & Durka, W. [eds.]: BIOLFLOR - Eine Datenbank zu biologisch-ökologischen Merkmalen der Gefäßpflanzen in Deutschland Schriftenreihe für Vegetationskunde 38: 47-56. Bundesamt für Naturschutz, Bonn.	
USA	BiolFlor Database		
USA	BiolFlor Database	Otto, B. (2002): Merkmale von Samen, Früchten, generativen Germinulen und generativen Diasporen. In: Klotz, S., Kühn, I. & Durka, W. [eds.]: BIOLFLOR - Eine Datenbank zu biologisch-ökologischen Merkmalen der Gefäßpflanzen in Deutschland Schriftenreihe für Vegetationskunde 38. Bundesamt für Naturschutz, Bonn.	
USA	BiolFlor Database	-	
USA	BROT Plant Trait Database	Paula, S. and J. G. Pausas. 2008. Burning seeds: germinative response to heat treatments ir relation to resprouting ability. Journal of Ecology 96:543-552.	
USA	BROT Plant Trait Database	Paula, S., M. Arianoutsou, D. Kazanis, Ç. Tavsanoglu, F. Lloret, C. Buhk, F. Ojeda, B. Luna, J. M. Moreno, A. Rodrigo, J. M. Espelta, S. Palacio, B. Fernández-Santos, P. M. Fernandes, and J. G. Pausas. 2009. Fire-related traits for plant species of the Mediterranean Basin. Ecology 90:1420.	

E	1
С	Т

USA	California Coastal Grassland Database	Sandel B., J. D. Corbin, and M. Krupa 2011. Using plant functional traits to guide restoration: A case study in California coastal grassland. Ecosphere 2:art23. http://d	
USA	Cedar Creek Savanna SLA, C, N Database	Willis, C. G., M. Halina, C. Lehman, P. B. Reich, A. Keen, S. McCarthy, and J. Cavender- Bares. 2010. Phylogenetic community structure in Minnesota oak savanna is influenced by spatial extent and environmental variation. Ecography 33:565-577.	
USA	Cold Tolerance, Seed Size and Height of North American Forest Tree Species	unpub.	
USA	ECOCRAFT	Medlyn, B. E. and P. G. Jarvis. 1999. Design and use of a database of model parameters from elevated [CO2] experiments. Ecological Modelling 124:69-83.	
USA	ECOCRAFT	Medlyn, B. E., C. V. M. Barton, M. S. J. Broadmeadow, R. Ceulemans, P. DeAngelis, M. Forstreuter, M. Freeman, S. B. Jackson, S. Kellomaeki, E. Laitat, A. Rey, P. Roberntz, B. D. Sigurdsson, J. Strassemeyer, K. Wang, P. S. Curtis, and P. G. Jarvis. 2001. Stomatal Conductance of forest species after long-term exposure to elevated CO2 concentration: a synthesis. New Phytologist 149:247264.	
USA	ECOCRAFT	Medlyn, B. E., FW. Badeck, D. G. G. De Pury, C. V. M. Barton, M. Broadmeadow, R. Ceulemans, P. De Angelis, M. Forstreuter, M. E. Jach, S. Kellomäki, E. Laitat, M. Marek, S. Philippot, A. Rey, J. Strassemeyer, K. Laitinen, R. Liozon, B. Portier, P. Roberntz, K. Wang, and P. G. Jarvis. 1999. Effects of elevated CO2 on photosynthesis in European forest species: a meta-analysis of model parameters. Plant, Cell and Environment 22:1475-1495.	
USA	Floridian Leaf Traits Database	Cavender-Bares, J., A. Keen, and B. Miles. 2006. Phylogenetic structure of floridian plant communities depends on taxonomic and spatial scale. Ecology 87:S109-S122.	
USA	Functional traits explaining variation in plant life history strategies	Adler PB, R Salguero-Gómez, A Compagnoni, JS Hsu, J Ray-Mukherjee, C Mbeau-Ache, M Franco (2014) Functional traits explain variation in plant life history strategies. PNAS 111 (2) 740-745. doi: 10.1073/pnas.1315179111	
USA	Functional Traits of Graminoids in Semi-Arid Steppes Database	Peter B. Adler (2003) A comparison of livestock grazing effects on sagebrush steppe, USA, and Patagonian steppe, Argentina. PhD Thesis, Colorado State University	
USA	Functional Traits of Graminoids in Semi-Arid Steppes Database	PETER B. ADLER, DANIEL G. MILCHUNAS, WILLIAM K. LAUENROTH, OSVALDO E. SALA and INGRID C. BURKE (2004) Functional traits of graminoids in semi-arid steppes: a test of grazing histories. Journal of Applied Ecology 2004 41, 653–663	
USA	Global 15N Database	Craine, J. M., A. J. Elmore, M. P. M. Aidar, M. Bustamante, T. E. Dawson, E. A. Hobbie, A. Kahmen, M. C. Mack, K. K. McLauchlan, A. Michelsen, G. B. Nardoto, L. H. Pardo, J. Penuelas, P. B. Reich, E. A. G. Schuur, W. D. Stock, P. H. Templer, R. A. Virginia, J. M. Welker, and I. J. Wright. 2009. Global patterns of foliar nitrogen isotopes and their relationships with climate, mycorrhizal fungi, foliar nutrient concentrations, and nitrogen availability. New Phytologist 183:980-992.	
USA	Global A, N, P, SLA Database	Reich, P. B., J. Oleksyn, and I. J. Wright. 2009. Leaf phosphorus influences the photosynthesis-nitrogen relation: a cross-biome analysis of 314 species. Oecologia 160:207-212.	
USA	GLOPNET - Global Plant Trait Network Database	Wright, I. J., P. B. Reich, M. Westoby, D. D. Ackerly, Z. Baruch, F. Bongers, J. Cavender- Bares, T. Chapin, J. H. C. Cornelissen, M. Diemer, J. Flexas, E. Garnier, P. K. Groom, J. Gulias, K. Hikosaka, B. B. Lamont, T. Lee, W. Lee, C. Lusk, J. J. Midgley, M. L. Navas, U. Niinemets, J. Oleksyn, N. Osada, H. Poorter, P. Poot, L. Prior, V. I. Pyankov, C. Roumet, S. C. Thomas, M. G. Tjoelker, E. J. Veneklaas, and R. Villar. 2004. The worldwide leaf economics spectrum. Nature 428:821-827.	

	n
Э	2

USA	GLOPNET - Global Plant Trait Network Database	Wright, I. J., P. B. Reich, O. K. Atkin, C. H. Lusk, M. G. Tjoelker, and M. Westoby. 2006. Irradiance, temperature and rainfall influence leaf dark respiration in woody plants: evidence from comparisons across 20 sites. New Phytologist 169:309-319.	
USA	Grassland Plant Trait Database	Takkis, K. 2014. Changes in plant species richness and population performance in response to habitat loss and fragmentation. DISSERTATIONES BIOLOGICAE UNIVERSITATIS TARTUENSIS 255, 2014-04-07. Available from: http://hdl.handle.net/10062/39546	
USA	Grassland Plant Trait Database	Takkis, K., Saar, L., Pärtel, M., Helm, A. Effect of environment and landscape on the traits of six plant species in fragmented grasslands. (in preparation)	
USA	Herbs Water Relations on Soil Moisture Gradients	Sheremetev S.N. (2005) Herbs on the soil moisture gradient (water relations and the structural-functional organization). KMK, Moscow, 271 pp. (In Russian)	
USA	Jasper Ridge leaf chemistry data	Dahlin KM, Asner GP & CB Field (2013) Environmental and community controls on plant canopy chemistry in a Mediterranean-type ecosystem. Proceedings of the National Academy of Sciences USA. 110(17): 6895-6900	
USA	KEW Seed Information Database (SID)	Royal Botanical Gardens KEW. 2008. Seed Information Database (SID). Version 7.1. Available from: http://data.kew.org/sid/ (May 2008).	
USA	KEW Seed Information Database (SID)	Royal Botanical Gardens KEW. 2008. Seed Information Database (SID). Version 7.1. Available from: http://data.kew.org/sid/ (May 2011).	
USA	Leaf Area, Dry Mass and SLA Dataset	unpub.	
USA	Leaf economics spectrum and venation networks in Populus tremuloides	Blonder, B., Violle, C. and Enquist, B. J. (2013) Assessing the causes and scales of the leaf economics spectrum using venation networks in Populus tremuloides. Journal of Ecology 101: 981–989. doi:10.1111/1365-2745.12102	
USA	Leaf Economic Traits Across Varying Environmental Conditions	Wright JP, Sutton-Grier A (2012) Does the leaf economic spectrum hold within local species pools across varying environmental conditions? Functional Ecology 2012 doi: 10.1111/1365-2435.12001	
USA	Leaf N-Retention Database	De Vries F., Bardgett R.D. (2016) Plant community controls on short-term ecosystem nitroger retention. New Phytologist. doi: 10.1111/nph.13832	
USA	Leaf Photosynthesis and Nitrogen at Oak Ridge Dataset	WILSON K, D BALDOCCHI, P HANSON (2000) Spatial and seasonal variability of photosynthetic parameters and their relationship to leaf nitrogen in a deciduous forest. Tree Physiology 20, 565–578	
USA	Leaf Structure and Chemistry	Auger, S. 2012. MSc thesis, Université de Sherbrooke, Sherbrooke (Quebec) L'importance de la variabilité interspécifique des traits fonctionnels par rapport à la variabilité intraspécifique chez les jeunes arbres en forêt mature.	
USA	Leaf Structure and Chemistry	Auger, S., Shipley, B. (2012). : Interspecific and intraspecific trait variation along short environmental gradients in an old-growth temperate forest. Journal of Vegetation Science. DOI: 1111/j.1654-1103.2012.01473.x	
USA	Leaf Structure and Economics Spectrum	Pierce S., Brusa G., Vagge I., Cerabolini B.E.L. (2013) Allocating CSR plant functional types: the use of leaf economics and size traits to classify woody and herbaceous vascular plants. Functional Ecology, 27(4): 1002-1010	
USA	Leaf Structure and Economics Spectrum	Pierce S., Ceriani R.M., De Andreis R., Luzzaro A. & Cerabolini B. 2007. The leaf economics spectrum of Poaceae reflects variation in survival strategies. Plant Biosystems 141(3): 337-343.	

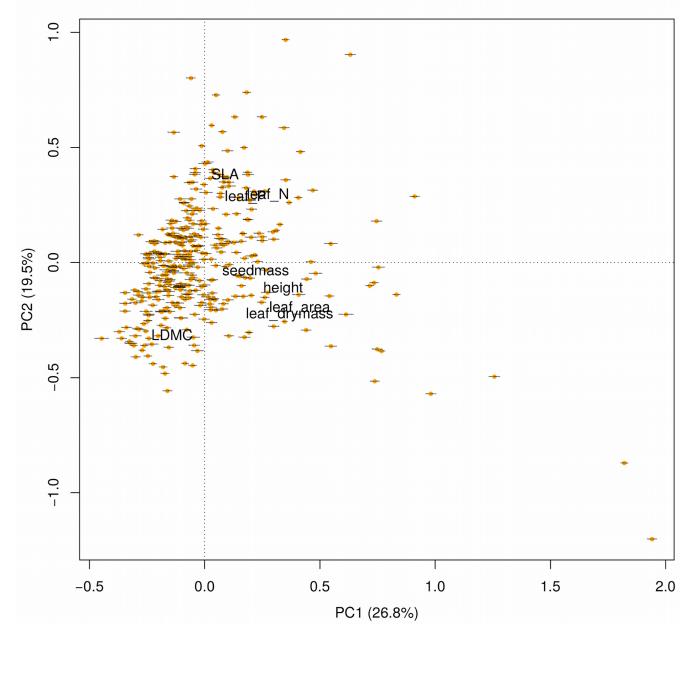
	n
5	-≺
0	0

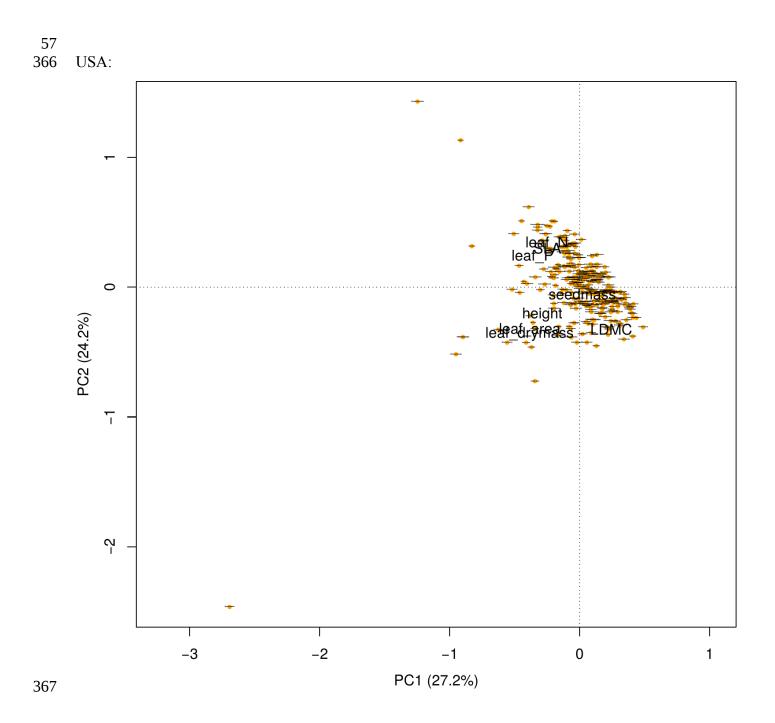
USA	Leaf Structure and Economics Spectrum	Pierce S., Luzzaro A., Caccianiga M., Ceriani R.M. & Cerabolini B. 2007. Disturbance is the principal ?-scale filter determining niche differentiation, coexistence and biodiversity in an alpine community. Journal of Ecology 95: 698-706.	
USA	Leaf Structure, Venation and Economic Spectrum	Blonder, B., Buzzard, B., Sloat, L., Simova, I., Lipson, R., Boyle, B., Enquist, B. (2012) The shrinkage effect biases estimates of paleoclimate. American Journal of Botany. 99.11 1756-1763	
USA	Leaf Structure, Venation and Economic Spectrum	Blonder, B., Vasseur, F., Violle, C., Shipley, B., Enquist, B., Vile, D. Arabidopsis thaliana rejects theories for the origin of the leaf economics spectrum. (in review, New Phytologist)	
USA	Leaf Structure, Venation and Economic Spectrum	Blonder, B., Violle, C. and Enquist, B. J. (2013) Assessing the causes and scales of the leaf economics spectrum using venation networks in Populus tremuloides. Journal of Ecology 101: 981–989. doi:10.1111/1365-2745.12102	
USA	Leaf Structure, Venation and Economic Spectrum	Blonder, B., Violle, C., Patrick, L., Enquist, B. Leaf venation networks and the origin of the leaf economics spectrum. Ecology Letters, 2011	
USA	Midwestern and Southern US Herbaceous Species Trait Database	unpub.	
USA	New York Old Field Plant Traits Database	Siefert, A. 2012. Spatial patterns of functional divergence in old-field plant communities. Oikos 121: 907-914	
USA	Northern mixed- grass prairie species traits - Wyoming, USA	unpub.	
USA	Old fields of Eastern US (Siefert Data)	Siefert, A., Fridley, J.D., and Ritchie, M.E. 2014. Community functional responses to soil and climate at multiple spatial scales: when does intraspecific variation matter? PLOS ONE 9: e111189	
USA	Photosynthesis and Leaf Characteristics Database	unpub.	
USA	Photosynthesis Traits Worldwide	Maire V, Ian J. Wright, I. Colin Prentice, Niels H. Batjes, Radika Bhaskar, Peter M. van Bodegom, Will K. Cornwell, David Ellsworth, Ülo Niinemets, Alejandro Ordoñez, Peter B. Reich, Louis S. Santiago (2015). Global soil and climate effects on leaf photosynthetic traits and rates. Global Ecology and Biogeography 24(6): 706-717. Maire V, Wright IJ, Prentice IC, Batjes NH, Bhaskar R, van Bodegom PM, Cornwell WK, Ellsworth D, Niinemets Ü, Ordoñez A, Reich PB, Santiago LS (2015) Data from: Global effects of soil and climate on leaf photosynthetic traits and rates. Dryad Digital Repository. http://dx.doi.org/10.5061/dryad.j42m7	
USA	Plant Traits for Pinus and Juniperus Forests in Arizona	Laughlin, D. C., J. J. Leppert, M. M. Moore, and C. H. Sieg. 2010. A multi-trait test of the leaf- height-seed plant strategy scheme with 133 species from a pine forest flora. Functional Ecology 24:493-501.	
USA	Plant Traits for Pinus and Juniperus Forests in Arizona	Laughlin, D.C., P.Z. Fulé, D.W. Huffman, J. Crouse, and E. Laliberte. 2011. Climatic constraints on trait-based forest assembly. Journal of Ecology 99:1489-1499.	

USA	Plant Traits of Canadian Forests	Bond-Lamberty, B., C. Wang, and S. T. Gower (2002), Above- and belowground biomass and sapwood area allometric equations for six boreal tree species of northern Manitoba, Can. J. For. Res., 32(8), 1441-1450.
USA	Plant Traits of Canadian Forests	Bond-Lamberty, B., C. Wang, and S. T. Gower (2002), Leaf area dynamics of a boreal black spruce fire chronosequence, Tree Physiol., 22(14), 993-1001.
USA	Plant Traits of Canadian Forests	Bond-Lamberty, B., C. Wang, and S. T. Gower (2003), The use of multiple measurement techniques to refine estimates of conifer needle geometry, Can. J. For. Res., 33(1), 101-105.
USA	Plant Traits of Canadian Forests	Bond-Lamberty, B., C. Wang, and S.T. Gower (2004), Net primary production and net ecosystem production of a boreal black spruce fire chronosequence, Global Change Biol., 10(4), 473-487.
USA	Plant traits of grassland species	La Pierre, KJ and Smith, MD. (2015) Functional trait expression of grassland species shift with short- and long-term nutrient additions. Plant Ecology 216: 307 doi:10.1007/s11258-014-0438-4
USA	Reich-Oleksyn Global Leaf N, P Database	Reich, P. B., J. Oleksyn, and I. J. Wright. 2009. Leaf phosphorus influences the photosynthesis-nitrogen relation: a cross-biome analysis of 314 species. Oecologia 160:207-212.
USA	Reproductive Allocation	Manning, Houston and Evans 2009 Basic and Applied Ecology 10, 300-308
USA	Rocky Mountain Biological Laboratory WSR/gradient plant traits	unpub.
USA	Seed Information Database (SID) Seed Mass 2010	Royal Botanical Gardens KEW. Seed Information Database (SID), http://data.kew.org/sid/ accessed May 2014
USA	The LEDA Traitbase	Kleyer, M., R. M. Bekker, I. C. Knevel, J. P. Bakker, K. Thompson, M. Sonnenschein, P. Poschlod, J. M. van Groenendael, L. Klimes, J. Klimesova, S. Klotz, G. M. Rusch, Hermy, M., D. Adriaens, G. Boedeltje, B. Bossuyt, A. Dannemann, P. Endels, L. Götzenberger, J. G. Hodgson, AK. Jackel, I. Kühn, D. Kunzmann, W. A. Ozinga, C. Römermann, M. Stadler, J. Schlegelmilch, H. J. Steendam, O. Tackenberg, B. Wilmann, J. H. C. Cornelissen, O. Eriksson, E. Garnier, and B. Peco. 2008. The LEDA Traitbase: a database of life-history traits of the Northwest European flora. Journal of Ecology 96:1266-1274.
USA	The VISTA Plant Trait Database	Fortunel, C., E. Garnier, R. Joffre, E. Kazakou, H. Quested, K. Grigulis, S. Lavorel, P. Ansquer, H. Castro, P. Cruz, J. Dolezal, O. Eriksson, H. Freitas, C. Golodets, C. Jouany, J. Kigel, M. Kleyer, V. Lehsten, J. Leps, T. Meier, R. Pakeman, M. Papadimitriou, V. P. Papanastasis, F. Quetier, M. Robson, M. Sternberg, J. P. Theau, A. Thebault, and M. Zarovali. 2009. Leaf traits capture the effects of land use changes and climate on litter decomposability of grasslands across Europe. Ecology 90:598-611.
USA	The VISTA Plant Trait Database	Garnier, E., S. Lavorel, P. Ansquer, H. Castro, P. Cruz, J. Dolezal, O. Eriksson, C. Fortunel, H. Freitas, C. Golodets, K. Grigulis, C. Jouany, E. Kazakou, J. Kigel, M. Kleyer, V. Lehsten, J. Leps, T. Meier, R. Pakeman, M. Papadimitriou, V. P. Papanastasis, H. Quested, F. Quetier, M Robson, C. Roumet, G. Rusch, C. Skarpe, M. Sternberg, JP. Theau, A. Thebault, D. Vile, and M. P. Zarovali. 2007. Assessing the effects of land-use change on plant traits, communities and ecosystem functioning in grasslands: A standardized methodology and lessons from an application to 11 European sites. Annals of Botany 99:967-985.
USA	The VISTA Plant Trait Database	Pakeman, R. J., E. Garnier, S. Lavorel, P. Ansquer, H. Castro, P. Cruz, J. Dolezal, O. Eriksson, H. Freitas, C. Golodets, J. Kigel, M. Kleyer, J. Leps, T. Meier, M. Papadimitriou, V. P. Papanastasis, H. Quested, F. Quetier, G. Rusch, M. Sternberg, J. P. Theau, A. Thebault, and D. Vile. 2008. Impact of abundance weighting on the response of seed traits to climate and land use. Journal of Ecology 96:355-366.
USA	The VISTA Plant Trait Database	Pakeman, R. J., J. Leps, M. Kleyer, S. Lavorel, E. Garnier, and V. Consortium. 2009. Relative climatic, edaphic and management controls of plant functional trait signatures. Journal of Vegetation Science 20:148-159.

USA

Figure S12. PCA of plant species and their traits for German and US comparison.


Each point represents the traits of a single species in the German or US dataset. For obvious outliers,


the ability of each species to score such extreme values was individually confirmed e.g. by checking

that certain species have unusually large leaf area or leaf nitrogen content. Note that since most of the calculated community properties are relative-abundance weighted, these single outliers do not

necessarily have significant impact on the community properties of a given plant community.

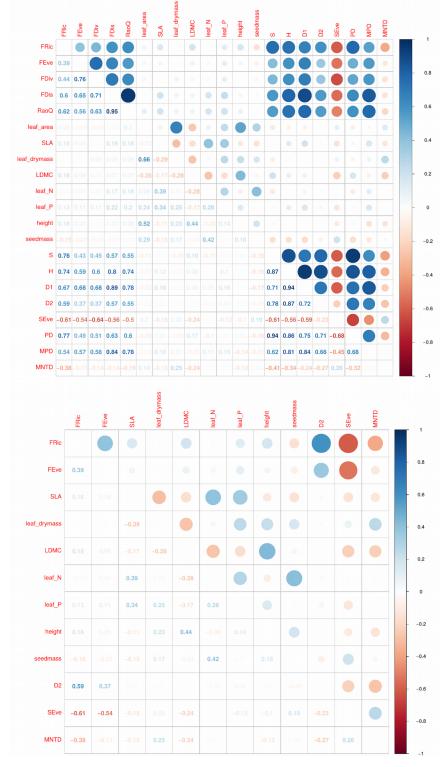
Germany:

58

368 **Table S16.** Species with altered trait values to avoid Gower dissimilarity zeros.

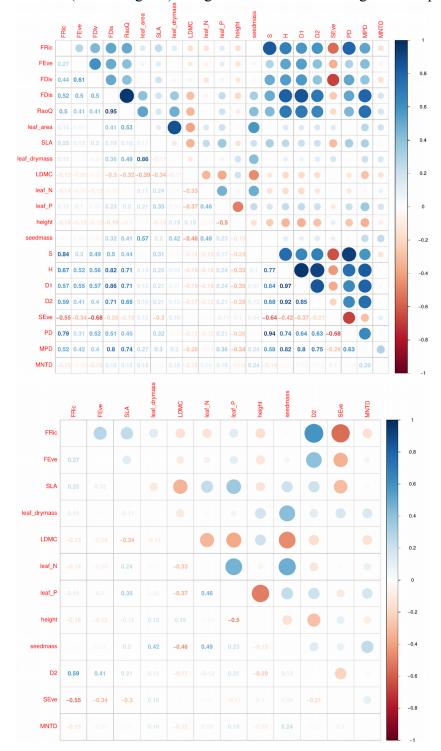
369 Species are sorted by region (GER=Germany, US=USA) and by the percentage shift that their trait 370 values were subject to. In two cases in the US dataset, there were three same-genus species with

370 values were subject to. In two cases in the OS dataset, there were three same-genus species with
 371 identical trait values and here two of them needed different shifts in order to obtain non-zero Gower


372 dissimilarity values.

GER, 0.001% shift up	US 0.001% shift up	US 0.002% shift up	
Acinos arvensis	Achillea sp	Antennaria sp	
Arabidopsis thaliana	Agrostis sp	Tradescantia sp	
Chenopodium sp	Allium stellatum		
Clinopodium acinos	Antennaria plantaginifolia		
Echinochloa crus-galli	Calamagrostis sp		
Epilobium sp	Echinacea serotina		
Listera ovata	Euphorbia geyeri		
Mentha aquatica	Galium sp		
Sesleria albicans	Gnaphalium sp		
Orobanche caryophyllacea	Melilotus sp		
Rubus sp	Parthenocissus inserta		
Rumex thyrsiflorus	Polygala sp		
Poa angustifolia	Polygonatum sp		
Potentilla neumanniana	Rhus sp		
Veronica spicata	Rumex sp		
	Salix humilis		
	Solidago altissima		
	Stachys sp		
	Taraxacum sp		
	Tradescantia bracteata		

375 Table S17. Correlation coefficients for 21 plant community properties for the German dataset.


376 Pearson correlation coefficients and color code (see legend) for all 21 properties (upper diagram) and 377 the subset of 12 community properties retained after stepwise removal due to variance inflation factors

378 above 3 (lower diagram). Diagrams were created using the "corrplot" package²⁶ in R.

382 Table S18. Correlation coefficients for 21 plant community properties for the US dataset.

Pearson correlation coefficients and color code (see legend) for all 21 properties (upper diagram) and
the subset of 12 community properties retained after stepwise removal due to variance inflation factors
above 3 (lower diagram). Diagrams were created using the "corrplot" package²⁶ in R.

61 388	Supp	oorting Information References
389 390 391	1.	Fornara, D. A. & Tilman, D. Plant functional composition influences rates of soil carbon and nitrogen accumulation. <i>J. Ecol.</i> 96 , 314–322 (2008).
392 393	2.	Lange, M. <i>et al.</i> Plant diversity increases soil microbial activity and soil carbon storage. <i>Nat. Commun.</i> 6 , 6707 (2015).
394 395	3.	Ravenek, J. M. <i>et al.</i> Long-term study of root biomass in a biodiversity experiment reveals shifts in diversity effects over time. <i>Oikos</i> 123 , 1528–1536 (2014).
396 397	4.	Meyer, S. T. <i>et al.</i> Consistent increase in herbivory along two experimental plant diversity gradients over multiple years. <i>Ecosphere</i> 8 , e01876 (2017).
398 399	5.	Scheu, S. Automated measurement of the respiratory response of soil microcompartments: Active microbial biomass in earthworm faeces. <i>Soil Biol. Biochem.</i> 24 , 1113–1118 (1992).
400 401	6.	Eisenhauer, N. <i>et al.</i> Plant diversity effects on soil microorganisms support the singular hypothesis. <i>Ecology</i> 91 , 485–496 (2010).
402 403 404	7.	Strecker, T., Mace, O. G., Scheu, S. & Eisenhauer, N. Functional composition of plant communities determines the spatial and temporal stability of soil microbial properties in a long-term plant diversity experiment. <i>Oikos</i> 125 , 1743–1754 (2016).
405 406	8.	Beck, T. <i>et al.</i> An inter-laboratory comparison of ten different ways of measuring soil microbial biomass C. <i>Soil Biol. Biochem.</i> 29 , 1023–1032 (1997).
407 408	9.	Hacker, N. <i>et al.</i> Plant diversity shapes microbe-rhizosphere effects on P mobilisation from organic matter in soil. <i>Ecol. Lett.</i> 18 , 1356–1365 (2015).
409	10.	Eivazi, F. & Tabatabai, M. A. Phosphatases in soils. Soil Biol. Biochem. 9, 167–172 (1977).
410 411 412	11.	Catford, J. A. <i>et al.</i> Traits linked with species invasiveness and community invasibility vary with time, stage and indicator of invasion in a long-term grassland experiment. <i>Ecol. Lett.</i> 22 , 593–604 (2019).
413	12.	Inouye, R. et al. Old-field succession on a Minnesota sand plain. Ecology 68, 12–26 (1987).
414 415	13.	Tilman, D. Community Invasibility, Recruitment Limitation, and Grassland Biodiversity. <i>Ecology</i> 78 , 81–92 (1997).
416 417 418	14.	Roscher, C., Schumacher, J. & Baade, J. The role of biodiversity for element cycling and trophic interactions: an experimental approach in a grassland community. <i>Basic Appl. Ecol.</i> 121 , 107–121 (2004).
419 420	15.	Fischer, M. <i>et al.</i> Implementing large-scale and long-term functional biodiversity research: The Biodiversity Exploratories. <i>Basic Appl. Ecol.</i> 11 , 473–485 (2010).
421	16.	Roscher, C. et al. Convergent high diversity in naturally colonized experimental grasslands is not

62 422		related to increased productivity. Perspect. Plant Ecol. Evol. Syst. 20, 32-45 (2016).	
423 424	17.	Weisser, W. W. <i>et al.</i> Biodiversity effects on ecosystem functioning in a 15-year grassland experiment: patterns, mechanisms, and open questions. <i>Basic Appl. Ecol.</i> 23 , 1–73 (2017).	
425 426	18.	Tilman, D. <i>et al.</i> The influence of functional diversity and composition on ecosystem processe <i>Science (80).</i> 277 , 1300–1302 (1997).	
427 428	19.	Tilman, D. Secondary succession and the pattern of plant dominance along experimental nitrogen gradients. <i>Ecol. Monogr.</i> 57 , 189–214 (1987).	
429	20.	Adler, D. & Kelly, T. vioplot: violin plot. R. R Packag. version 0.3.0 (2018).	
430 431	21.	Chen, H. VennDiagram: Generate High-Resolution Venn and Euler Plots. <i>R Packag. version</i> 1.6.20 (2018).	
432	22.	Oksanen, J. et al. Vegan: community ecology package. R Packag. version 2.3-4 (2016).	
433 434	23.	Bocci, G. TR8: An R package for easily retrieving plant species traits. <i>Methods Ecol. Evol.</i> 6 , 347–350 (2015).	
435	24.	Fitter, A. & Peat, H. The Ecological Flora Database. J. Ecol. 82, 415-425 (1994).	
436 437	25.	Kattge, J. <i>et al.</i> TRY - a global database of plant traits. <i>Glob. Chang. Biol.</i> 17 , 2905–2935 (2011).	
438 439 440	26.	Wei, T. & Simko, V. R package 'corrplot': Visualization of a Correlation Matrix. <i>R Packag. version 0.84</i> (2017).	