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Abstract

Visual search involves a dual task of localizing and categorizing an object in the visual field
of view. We develop a visuo-motor model that implements visual search as a focal accuracy-
seeking policy, and we assume that the target position and category are random variables
which are independently drawn from a common generative process. This independence allows
to divide the visual processing in two pathways that respectively infer what to see and
where to look, consistently with the anatomical What versus Where separation. We use this
dual principle to train a deep neural network architecture with the foveal accuracy used as
a monitoring signal for action selection. This allows in particular to interpret the Where
network as a retinotopic action selection pathway, that drives the fovea toward the target
position in order to increase the recognition accuracy by the What network. After training,
the comparison of both networks accuracies amounts either to select a saccade or to keep the
eye focused at the center, so as to identify the target. We test this on a simple task of finding
digits in a large, cluttered image. A biomimetic log-polar treatment of the visual information
implements the strong compression rate performed at the sensor level by retinotopic encoding,
and is preserved up to the action selection level. Simulation results demonstrate that it is
possible to learn this dual network. After training, this dual approach provides ways to
implement visual search in a sub-linear fashion, in contrast with mainstream computer vision.

Author summary

The visual search task consists in extracting a scarce and specific visual information (the 1

“target”) from a large and cluttered visual display. In computer vision, this task is usually 2

implemented by scanning all different possible target identities in parallel at all possible 3

spatial positions, hence with strong computational load. The human visual system employs a 4

different strategy, combining a foveated sensor with the capacity to rapidly move the center 5

of fixation using saccades. Then, visual processing is separated in two specialized pathways, 6

the “where” pathway mainly conveying information about target position in peripheral space 7

(independently of its category), and the “what” pathway mainly conveying information about 8

the category of the target (independently of its position). This object recognition pathway is 9

shown here to have an essential role, providing an “accuracy drive” that serves to force the 10

eye to foveate peripheral objects in order to increase the peripheral accuracy, much like in 11

the “actor/critic” framework. Put together, all those principles are shown to provide ways 12

toward both adaptive and resource-efficient visual processing systems. 13

1 Introduction 14

1.1 Problem statement 15

The field of computer vision was recently recast by the outstanding capability of convolution- 16

based deep neural networks to capture the semantic content of images and photographs. 17

There are now many image categorization tasks for which human performance is outreached 18

by computer algorithms [HZRS15]. One of the reasons explaining this breakthrough is a 19

strong reduction in the number of parameters used to train the network, through a massive 20
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sharing of weights in the convolutional layers. Reducing the number of parameters and/or the 21

size of the visual data that needs to be processed is a decisive factor for further improvements. 22

Despite lots of efforts both in hardware and software optimization, the processing of pixel- 23

based images is still done at a cost that scales linearly with the image size, for all the pixels 24

present in the image, even the ones that are useless for the task at hand, are systematically 25

processed by the computer algorithm. Current computer vision algorithms consequently 26

manipulate millions of pixels and variables with a subsequent energy consumption, even in 27

the case of downsampled images, and with a still prohibitive cost for large images and videos. 28

The need to detect visual objects at a glance while running on resource-constrained embedded 29

hardware, for instance in autonomous driving, introduces a necessary trade-off between 30

efficiency and accuracy, that is in urgent need to be addressed under renewed mathematical 31

and computational frameworks. 32

Interestingly, things work differently when human vision is considered. First, human 33

vision is still unsurpassable in the case of ecological real-time sensory flows. Indeed, ob- 34

ject recognition can be achieved by the human visual system both rapidly, – in less than 35

100 ms [KT06] – and at a low energy cost (< 5 W ). On top of that, it is mostly self-organized, 36

robust to visual transforms or lighting conditions and can learn with few examples. If many 37

different anatomical features may explain this efficiency, a main difference lies in the fact that 38

its sensor (the retina) combines a non homogeneous sampling of the world with the capacity 39

to rapidly change its center of fixation: On the one hand, the retina is composed of two 40

separate systems: a central, high definition fovea (a disk of about 6 degrees of diameter in 41

visual angle around the center of gaze) and a large, lower definition peripheral area [SRJ11]. 42

On the other hand, the human vision is dynamic. The retina is attached on the back of the 43

eye which is capable of low latency, high speed eye movements. In particular, saccades are 44

stereotyped eye movements that allow for efficient changes of the position of the center of 45

gaze: they take about 200 ms to initiate, last about 200 ms and usually reach a maximum 46

velocity of approx 600 degrees per second [BCS75]. The scanning of a full visual scene is thus 47

not done in parallel but sequentially, and only scene-relevant regions of interest are scanned 48

through saccades. This implies a decision process between each saccade that decides where 49

to look next. This behavior is prevalent in biological vision (on average a saccade every 2 50

seconds, that is, almost a billion saccade in a lifetime). The interplay of peripheral search 51

and focal inspection allows human observers to engage in an integrated action/perception 52

loop which sequentially scans and analyses the different parts of the visual scene. 53

Take for instance the case of an encounter with a friend in a crowded café. To catch 54

the moment of his/her arrival, a face-seeking visual search is needed under heavy sensory 55

clutter conditions. To do so, relevant parts of the visual scene need to be scanned sequentially 56

with the gaze. Each saccade may potentially allow to recognize your friend, provided it is 57

accurately focused on each target faces. The main feature of this task is thus the monitoring 58

of a particular class of objects (e.g. human faces) in the periphery of the visual field before 59

the actual eye displacement, and the processing of the foveal visual data. Searching for any 60

face in a peripheral and crowded display needs thus to precede the recognition of a specific 61

face identity. 62

For biological vision is the result of a continual optimization under strong material and 63

energy constraints via natural selection, it is important to understand both its ground 64

principles and its specific computational and material constraints in order to implement 65

effective biomimetic vision systems. The problem we address is thus how to ground an 66

artificial visual processing system on top of the material constraints found in human vision, 67

that is conforming to the structure of the visual input and to the capability of the visual 68

apparatus to rapidly scan a visual scene through saccades, in order to find and identify 69

objects of interest. We thus start from an elementary visual search problem, that is how to 70

locate an object in a large, cluttered image, and take human vision as a guide for efficient 71

design. 72

1.2 State of the art 73

The visual search problem, that is, finding and identifying objects in a visual scene, is a 74

classical task in computer vision, appealing to both machine learning, signal processing and 75
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robotics. Crucially, it also speaks to neuroscience, for it refers to the mechanisms underlying 76

foveation and more generally to low-level attention mechanisms. When restricted to a mere 77

“feature search” [TG80], many computational solutions are proposed in the computer vision 78

literature. Notably, recent advances in deep-learning have been proven efficient to solve 79

the task with models such as faster-RCNN [RHGS17] or YOLO [RDGF16]. Typical object 80

search implementations predict in the image the probability of proposed bounding boxes 81

around visual objects. While rapid, the number of boxes may significantly increase with 82

image size and the approach more generally necessitates dedicated hardware to run in real 83

time [FJY+19]. Under fine-tailored algorithmic and material optimization, the visual search 84

problem can be considered in the best case as linear in the number of pixels [SKE06], which 85

still represents a heavy load for real-time image processing. This poses the problem of the 86

scaling of current computer vision algorithms to large/high definition visual displays. The 87

scaling problem becomes even more crucial when considering a dynamical stream of sensory 88

images. 89

Analogously to human visual search strategies, low-level attentional mechanisms may 90

help guide the localization of targets. A sequence of saccades over a natural scene defines a 91

scan-path which provides ways to define saliency maps. These quantify the attractiveness of 92

the different parts of an image that are consistent with the detection of objects of interest. 93

Essential to understand and predict saccades, they also serve as phenomenological models 94

of attention. Estimating the saliency map from a luminous image is a classical problem in 95

neuroscience, that was shown to be consistent with a distance from baseline image statistics 96

known as the “Bayesian surprise” [IK01]. The saliency approach was recently updated using 97

deep learning to estimate saliency maps over large databases of natural images [KWGB17]. 98

While efficient at predicting the probability of fixation, these methods miss an essential 99

component in the action perception loop: they operate on the full image while the retina 100

operates on the non-uniform, foveated sampling of visual space (see Figure 1-B). Herein, we 101

believe that this constitutes an essential factor to reproduce and understand the active vision 102

process. 103

Foveated models of vision have been considered for a long time in robotics and computer 104

vision as a way to leverage the visual scene scaling problem. Focal computer vision relies on a 105

non-homogeneous compression of an image, that maintains the pixel information at the center 106

of fixation and strongly compresses it at the periphery, including pyramidal encoding [KG96, 107

BM10], local wavelet decomposition [Dau18] and log-polar encoding [FŠPC07a, JTB10]. A 108

recent deep-learning based implementation of such compression shows that in a video flow, 109

a log-polar sampling of the image is sufficient to provide a reconstruction of the whole 110

image [KSL+19]. However, this particular algorithm lacks a system predicting the best 111

saccadic action to perform. In summary, though focal and multiscale encoding is now 112

largely considered in static computer vision, sequential implementations have not been shown 113

effective enough to overtake static object search methods. Several implementations of a focal 114

sequential search in visual processing can be found in the literature, with various degrees of 115

biological realism [MHG+14, FZM17], that often rely on a simplified focal encoding, long 116

training procedures and bounded sequential processing. More realistic attempts to combine 117

foveal encoding and sequential visual search can be found in [BM10, DBLdF12, Dau18], to 118

which our approach is compared later on. 119

In contrast to phenomenological (or “bottom-up”) approaches, active models of vi- 120

sion [NG05, BM10, FAPB12] provide the ground principles of saccadic exploration. In 121

general, they assume the existence of a generative model from which both the target position 122

and category can be inferred through active sampling. This comes from the constraint that 123

the visual sensor is foveated but can generate a saccade. Several studies are relevant to our 124

endeavor. First, one can consider optimal strategies to solve the problem of the visual search 125

of a target [NG05]. In a setting similar to that presented in Figure 1-A, where the target is an 126

oriented edge and the background is defined as pink noise, authors show first that a Bayesian 127

ideal observer comes out with an optimal strategy, and second that human observers are close 128

to that optimal performance. Though well predicting sequences of saccades in a perception 129

action loop, this model is limited by the simplicity of the display (elementary edges added on 130

stationary noise, a finite number of locations on a discrete grid) and by the abstract level 131

of modeling. Despite these (inevitable) simplifications, this study could successfully predict 132
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some key characteristics of visual scanning such as the trade-off between memory content and 133

speed. Looking more closely at neurophysiology, the study of [SGP18] allows to go further in 134

understanding the interplay between saccadic behavior and the statistics of the input. In 135

this study, authors were able to manipulate the size of saccades by monitoring key properties 136

of the presented (natural) images. For instance, smaller images generate smaller saccades. 137

A further modeling perspective is provided by [FAPB12]. In this setup, a full description 138

of the visual world is used as a generative process. An agent is completely described by 139

the generative model governing the dynamics of its internal beliefs and is interacting with 140

this image by scanning it through a foveated sensor, just as described in Figure 1. Thus, 141

equipping the agent with the ability to actively sample the visual world allows to interpret 142

saccades as optimal experiments, by which the agent seeks to confirm predictive models of 143

the (hidden) world. One key ingredient to this process is the (internal) representation of 144

counterfactual predictions, that is, the probable consequences of possible hypothesis as they 145

would be realized into actions (here, saccades). Following such an active inference scheme 146

numerical simulations reproduce a sequence of eye movements that fit well with empirical 147

data [MAMF18]. As such, saccades are not the output of a value-based cost function such as 148

a saliency map, but are the consequence of an active strategy by the agent to minimize the 149

uncertainty about his beliefs, knowing his priors on the generative model of the visual world. 150

1.3 Outline 151

Despite refined generative models, the processing of the visual data found in active/biomimetic 152

models generally resort to a combination of local/linear features to build-up posterior beliefs. 153

Few models in active vision come with an integrated processing of the visual scene, from early 154

visual treatment toward saccade selection. The difficulty lies in combining object hypothesis 155

space with their spatial mapping. As pointed out earlier, the brain needs to guess where 156

the interesting objects lie in space before actually knowing what they are. Establishing the 157

position of the objects in space is thus crucial, for it resorts to the capability of the eye 158

to reach them with a saccade, so as to finally identify them. Inferring target’s position in 159

the peripheral visual field is thus an essential component of focal visual processing, and the 160

acuity of such target selection ultimately conditions the capability to rapidly and efficiently 161

process the scene. 162

Stemming from the active vision principles, we thus address the question of the interplay 163

of the location and identity processing in vision, and provide an artificial vision setup that 164

efficiently implements those principles. Our framework is made as general as possible, with 165

minimal mathematical treatment, to speak largely to fragmented domains, such as machine 166

learning, neuroscience and robotics. 167

The paper is organized as follows. After this introduction, the principles underlying 168

accuracy-based saccadic control are defined in the second section. We first define notations, 169

variables and equations for the generative process governing the experiment and the generative 170

model for the active vision agent. Complex combinatorial inferences are here replaced by 171

separate pathways, i.e. the spatial (“Where”) and categorical (“What”) pathways, whose 172

output is combined to infer optimal eye displacements and subsequent identification of 173

the target. Our agent, equipped with a foveated sensor, should learn an optimal behavior 174

strategy to actively scan the visual scene. Numerical simulations are presented in the results 175

section, demonstrating the applicability of this framework to tasks with different complexity 176

levels. The discussion section finally summarizes the results, showing its relative advantages 177

in comparison with other frameworks, and providing ways toward possible improvements. 178

Implementation details are provided in the methods section, giving ways to reproduce our 179

results, showing in particular how to simplify the learning using accuracy-driven action maps. 180

2 Setup 181

2.1 Experimental design 182

In order to implement our visual processing setup, we provide a simplified visual environment 183

toward which a visual agent can act on. This visual search task is formalized and simplified 184
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Fig 1. Problem setting: In generic, ecological settings, when searching for one target
(from a class of targets) in a cluttered environment the visual system is bound with an action
selection problem. It is synthesized in the following virtual experiment: (A) After a fixation
period FIX of 200 ms, an observer is presented with a luminous display DIS showing a single
target from a known class (here digits) put at a random position within the field of view.
The display is presented for a short period of 500 ms (light shaded area in B), that is enough
to perform at most one saccade on the potential target (SAC, here successful). Finally, the
observer has to identify the digit by a keypress ANS. NB : the target contrast is here enhanced
to 100% for a better readability. (B) Prototypical trace of a saccadic eye movement to the
target position. In particular, we show the fixation window FIX and the temporal window
during which a saccade is possible (green shaded area). (C) Simulated reconstruction of the
visual information from the internal retinotopic map at the onset of the display DIS and after
a saccade SAC, the dashed red box indicating the foveal region. The task does not consist in
inferring the location of the target, but rather to infer an action that may provide relevant
pixels at the center of fixation, allowing to identify the target’s category. By comparison with
the external display (see A), the action is processed from log-polar coefficients, representing
a focal sample of the total visual field. Controlling the clutter and reducing the contrast of
the digit allows to monitor the task difficulty.

in a way reminiscent to classical psychophysic experiments: an observer is asked to classify 185

digits (for instance as taken from the MNIST dataset, as introduced by [LBBH98]) as they 186

are shown with a given size on a computer display. However, these digits can be placed at 187

random positions on the display, and visual clutter is added as a background to the image 188

(see Figure 1-A). In order to vary the difficulty of the task, different parameters are controlled, 189

such as the target eccentricity, the background noise period and and the signal/noise ratio 190

(SNR). The agent initially fixates the center of the screen. Due to the peripheral clutter, 191

he needs to explore the visual scene through saccades to provide the answer. He controls a 192

foveal visual sensor that can move over the visual scene through saccades (see Figure 1-B). 193

When a saccade is actuated, the center of fixation moves toward a new location, which 194

updates the visual input (see Figure 1-C). The lower the SNR and the larger the initial target 195

eccentricity, the more difficult the identification. There is a range of eccentricities for which 196

it is impossible to identify the target from a single glance, so that a saccade is necessary 197

to issue a proper response. This implies in general that the position of the object may be 198

detected in the first place in the peripheral clutter before being properly identified. 199

This setup provides the conditions for a separate processing of the visual information. On 200

the one side, the detailed information present at the center of fixation needs to be analyzed 201

to provide specific environmental cues. On the other side, the full visual field, i.e. mainly the 202

low resolution part surrounding the fovea, needs to be processed in order to identify regions 203

of interest that deserve fixation. This basically means making a choice of “what’s interesting 204
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Fig 2. Computational graph. From the anatomy of the primary visual pathways, we
define two streams of information, one stream for processing the central pixels only (“What”?),
the other for localizing a target in the image ( “Where”?) by processing the periphery with
a log-polar encoding. The two streams converge toward a decision layer that compares the
central and the peripheral accuracy, in order to decide whether to issue a saccadic or a
categorical response. If a saccade is realized, then the center of vision is displaced toward
the region that shows the highest accuracy on the accuracy map. (A) The visual display is
constructed the following way: first a 128× 128 natural-like background noise is generated,
characterized by noise contrast, mean spatial frequency and bandwidth [SLVMP12]. Then
a circular mask is put on. Last, a sample digit is selected from the MNIST dataset (of
size 28 × 28), rectified, multiplied by a contrast factor and overlaid on the background at
a random position (see another example in Figure 1-A, DIS). (B) The visual display is
then transformed in 2 sensory inputs: (i) a 28 × 28 central foveal-like snippet is fed to a
classification network (“What” pathway) and (ii) a log-polar set of oriented visual features is
fed to the “Where” pathway. This log-polar input is generated by a bank of filters whose
centers are positioned on a log-polar grid and whose radius increases proportionally with
the eccentricity. (C) The “What” network is implemented using the three-layered LeNet
neural network [LBBH98], while the “Where” network is implemented by a three-layered
neural network consisting of the retinal log-polar input, two hidden layers (fully-connected
linear layers combined with a ReLU non-linearity) with 1000 units each and a collicular-like
accuracy map at the output. This map has a similar retinotopic organization and predicts
for the accuracy of the hypothetical position of a saccade. To learn to associate the output of
the network with the ground truth, supervised training is performed using back-propagation
with a binary cross entropy loss. (D) For a given display to the dual network generates
two sensory inputs and two accuracy outputs. If the predicted accuracy in the output of
the “Where” network is higher than that predicted in the “What” network, the position
of maximal activity in the “Where” pathway serves to generate a saccade which shifts the
center of gaze. Else, we interrupt the visual search and classify the foveal image using the
“What” pathway such as to give the answer (ANS).

next”. The actual content of putative peripheral locations does not need to be known in 205

advance, but it needs to look interesting enough, and of course to be reachable by a saccade. 206

This is reminiscent of the What/Where visual processing separation observed in monkeys 207

and humans ventral and dorsal visual pathways [MUM83]. 208

2.2 Accuracy map training 209

Modern parametric classifiers are composed of many layers (hence the term “Deep Learning”) 210

that can be trained through gradient descent over arbitrary input and output feature spaces. 211
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The ease of use of those tightly optimized training algorithms is sufficient to allow for the 212

quantification of the difficulty of a task through the failure or success of the training. For our 213

specific problem, the simplified anatomy of the agent is composed of two separate pathways 214

for which each processing is realized by such a neural network (see Figure 2). The proposed 215

computational architecture is connected in a closed-loop fashion with a visual environment, 216

with the capacity to produce saccades whose effect is to shift the visual field from one place to 217

another. Crucially, the processing of the visual field is done through distinct pathways, each 218

pathway being assumed to rely on different sensor morphologies. By analogy with biological 219

vision, the target identification is assumed to rely on the very central part of the retina (the 220

fovea), that comes with higher density of cones, and thus higher spatial precision. In contrast, 221

the saccade planning should rely on the full visual field, with peripheral regions having a 222

lower sensor density and a lesser sensitivity to high spatial frequencies. A first classifier is 223

thus assigned to process only the pixels found at the center of fixation, while a second one 224

processes the full visual field with a retina-mimetic central log-polar magnification. The first 225

one is called the “What” network, and the second one is the “Where” network (see Figure 7 226

for details). They are both implemented in pytorch [PGM+19], and trained with gradient 227

descent over multiple layers. 228

In a stationary condition, where the target’s position and identity do not change over 229

time, each saccade thus provides a new viewpoint over the scene, allowing to form a new 230

estimation of the target identity. Following the active inference setup [NG05, FAPB12], we 231

assume that, instead of trying to detect the actual position of the target, the agent tries 232

to maximize the scene understanding benefit of doing a saccade. The focus is thus put on 233

action selection metric rather than spatial representation. This means in short estimating 234

how accurate a categorical target classifier will be after moving the eye. In a full setup, 235

predictive action selection means first predicting the future visual field x′ obtained at the 236

center of fixation, and then predicting how good the estimate of the target identity y, i.e. 237

p(y|x′), will be at this location. In practice, predicting a future visual field over all possible 238

saccades is too computationally expensive. Better off instead is to record, for every context x, 239

the improvement obtained in recognizing the target after a sequence of saccades a, a′, a′′, . . .. 240

If a is a possible saccade and x′ the corresponding future visual field, the result of the central 241

categorical classifier over x′ can either be correct (1) or incorrect (0). If this experiment 242

is repeated many times over many visual scenes, the probability of correctly classifying 243

the future visual field x′ from a is a number between 0 and 1, that reflects the proportion 244

of correct and incorrect classifications. The putative effect of every saccade can thus be 245

condensed in a single number, the accuracy, that quantifies the final benefit of issuing saccade 246

a from the current observation x. Extended to the full action space A, this forms an accuracy 247

map that should monitor the selection of saccades. This accuracy map can be trained by 248

trials and errors, with the final classification success or failure used as a teaching signal. Our 249

main assumption here is that such a predictive accuracy map is at the core of a realistic 250

saccade-based vision systems, with the “What” network playing the role of a “critic” over 251

the output of the “Where” network (see [SB98]). 252

Each task is assumed to be realized in parallel through the “What” and the “Where” 253

pathways by analogy with the ventral and dorsal pathways in the brain (see figure 2). From 254

the active inference standpoint, the separation of the scene analysis in those two independent 255

tasks relies on a simple “Näıve Bayes” assumption (see Methods). The operations that 256

transform the initial primary visual data should preserve the initial retinotopic organization, 257

so as to form a final retinotopic accuracy map. Accordingly with the visual data, the 258

retinotopic accuracy map may thus provide more detailed accuracy predictions in the center, 259

and coarser accuracy predictions in the periphery. Finally, each different initial visual 260

field may bring out a different accuracy map, indirectly conveying information about the 261

target retinotopic position. A final action selection (motor map) should then overlay the 262

accuracy map through a winner-takes-all mechanism (see figure 2-D), implementing the 263

saccade selection in biologically plausible way, as it is thought to be done in the superior 264

colliculus, a brain region responsible for oculomotor control [SN87]. The saccadic motor 265

output showing a similar log-polar compression than the visual input, the saccades should 266

be more precise at short than at long distance (and several saccades may be necessary to 267

precisely reach distant targets). Each network is trained and tested separately. Because the 268
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a. b. c. d. e.

(A)

(B)

(C)

(D)

(E)
Fig 3. (A) – (E) Representative active vision samples after training: (A) – (B) classification
success samples, (C) – (E) classification failure samples. Digit contrast set to 70%. From
left to right: a. The initial 128×128 visual display, with blue cross giving the center of
gaze. The visual input is retinotopically transformed and sent to the multi-layer neural
network implementing the “Where” pathway. b. Magnified reconstruction of the visual
input, as it shows off from the primary visual features through an inverse log-polar transform.
c.-d. Color-coded radial representation of the output accuracy maps, with dark violet for the
lower accuracies, and yellow for the higher accuracies. The network output (’Predicted’) is
visually compared with the ground truth (’True’). e. The foveal image as the 28× 28 central
snippet extracted from the visual display after doing a saccade, with label prediction and
success flag in the title.

training of the “Where” pathway depends on the accuracy given by the “What” pathway 269

(and not the reverse), we trained the latter first, though a joint learning also yielded similar 270

results. Finally, these are evaluated in a coupled, dynamic vision setup. 271
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Fig 4. Effect of contrast and target eccentricity. The active vision agent is tested for
different target eccentricities (in pixels) and different contrasts to estimate a final classification
rate. Orange bars: pre-saccadic accuracy from the central classifier (’No saccade’) with
respect to the target’s eccentricity, averaged over 1000 trials per eccentricity. Blue bars:
post-saccadic classification rate.

3 Results 272

3.1 Open loop setup 273

After training, the “Where” pathway is now capable to predict an accuracy map (fig. 3), 274

whose maximal argument drives the eye toward a new viewpoint. There, a central snippet 275

is extracted, that is processed through the “What” pathway, allowing to predict the digit’s 276

label. Examples of this simple open loop sequence are presented in figure 3, when the digits 277

contrast parameter is set to 70% and the digits eccentricity varies between 0 and 40 pixels. 278

The presented examples correspond to strong eccentricity cases, when the target is hardly 279

visible on the display (fig. 3a), and almost invisible on the reconstructed input (fig. 3b). The 280

radial maps (fig. 3c-d) respectively represent the actual and the predicted accuracy maps. 281

The final focus is represented in fig. 3e, with cases of classification success (fig. 3A-B) and 282

cases of classification failures (fig. 3C-E). In the case of successful detection (fig. 3A-B), the 283

accuracy prediction is not perfect and the digit is not perfectly centered on the fovea. This 284

“close match” still allows for a correct classification, as the digit’s pixels are fully present 285

on the fovea. The case of fig. 3B and 3C is interesting for it shows two cases of a bimodal 286

prediction, indicating that the network is capable of doing multiple detections at a single 287

glance. The case of fig. 3C corresponds to a false detection, with the true target detected still, 288

though with a lower intensity. The case of fig. 3D is a “close match” detection that is not 289

precise enough to correctly center the visual target. Some pixels of the digit being invisible 290

on the fovea, the label prediction is mistaken. The last failure case (fig. 3E) corresponds 291

to a correct detection that is harmed by a wrong label prediction, only due to the “What” 292

classifier inherent error rate. 293

To test the robustness of our framework, the same experiment was repeated at different 294

signal-to-noise ratios (SNR) of the input images. Both pathways being interdependent, it is 295

crucial to disentangle the relative effect of both sources of errors in the final accuracy. By 296

manipulating the SNR and the target eccentricity, one can precisely monitor the network 297

detection and recognition capabilities, with a detection task ranging from “easy” (small 298

shift, strong contrast) to “highly difficult” (large shift, low contrast). The digit recognition 299

capability is systematically evaluated in Figure 4 for different eccentricities and different 300

SNRs. For 3 target contrasts conditions ranging from 30% to 70% of the maximal contrast, 301

and 10 different eccentricities ranging from 4 to 40 pixels, the final accuracy is tested on 1, 000 302

trials both on the initial central snippet and the final central snippet (that is, at the landing 303

of the saccade). The orange bars provide the initial classification rate (without saccade) and 304

the blue bars provide the final classification rate (after saccade) – see figure 4. As expected, 305

the accuracy decreases in both cases with the eccentricity, for the targets become less and less 306

visible in the periphery. The decrease is rapid in the pre-saccadic case: the accuracy drops to 307

the baseline level for a target distance of approximately 20 pixels from the center of gaze. 308

The post-saccadic accuracy has a much wider range, with a slow decrease up to the border 309

of the visual display (40 pixels away from the center). When varying the target contrast, 310

January 27, 2020 9/22

.CC-BY 4.0 International licenseavailable under a
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (whichthis version posted January 27, 2020. ; https://doi.org/10.1101/725879doi: bioRxiv preprint 

https://doi.org/10.1101/725879
http://creativecommons.org/licenses/by/4.0/


the pre-saccadic accuracy profile is scaled by the reference accuracy (obtained with a central 311

target), whose values are approximately 92%, 82% and 53% for contrasts of 70, 50 and 30%. 312

The post-saccadic accuracy profile undergoes a similar scaling at the different contrast values, 313

indicating the critical dependence of the global setup to the central processing reliability. 314

The high contrast case (see fig. 4) provides the greatest difference between the two profiles, 315

with an accuracy approaching 90% at the center and 60% at the periphery. This allows to 316

recognize digits after one saccade in a majority of cases, up to the border of the image, from 317

a very scarce peripheral information. This full covering of the 128×128 image range is done 318

at a much lesser cost than would be done by a systematic image scan, as in classic computer 319

vision1. With decreasing target contrast, a general decrease of the accuracy is observed, 320

both at the center and at the periphery, with about 10% decrease with a contrast of 0.5, 321

and 40% decrease with a contrast of 0.3. In addition, the proportion of false detections also 322

increases with contrast decrease. At 40 pixels away from the center, the false detection rate 323

is approximately 40% for a contrast of 0.7, 60% for a contrast of 0.5 and 80% for a contrast 324

of 0.3 (with a recognition close to the baseline at the periphery in that case). The difference 325

between the initial and the final accuracies is maximal for eccentricities ranging from 15 to 326

30 pixels. This optimal range reflects a proportion of the visual field around the fovea where 327

the target detection is possible, but not its identification. The visual agent knows where the 328

target is, without exactly knowing what it is. 329

3.2 Closed-loop setup 330

In our simulation results, the post-saccadic accuracy is found to overtake the pre-saccadic 331

accuracy except when the target is initially close to the center of gaze. When closely inspecting 332

the 1-10 pixels eccentricity range in our first experiment (not shown), a decision frontier 333

between a positive and a negative information gain is found at 2-3 pixels away from the 334

center. Inside that range, no additional saccade is expected to be produced, and a categorical 335

response should be given instead. It is crucial here to understand that this empirical accuracy 336

difference can be predicted, by construction, as the difference of the maximal outputs of 337

the Where and the What pathways. This difference-of-accuracies prediction can serve as 338

a decision criterion before actuating the saccade, like a GO/NOGO signal. It is moreover 339

interpretable as an approximation of the information gain provided by the “Where” pathway, 340

with the true label log-posterior seen as a sample of the posterior entropy – see eq.(1 in 341

section 5.5). 342

After a first saccade, while the decision criterion is not attained, additional saccades may 343

be pursued in order to search for a better centering. In the false detection case for instance, 344

the central accuracy estimate should be close to the baseline, and may allow to “explain away” 345

the current center of gaze and its neighborhood, encouraging to actuate long-range saccades 346

toward less salient peripheral positions, making it possible to escape from initial prediction 347

errors. This incitement to select a saccade “away” from the central position is reminiscent of 348

a well-known phenomenon in vision known as the “inhibition of return” [IK01]. Combining 349

accuracy predictions from each pathway may thus allow to refine saccades selection in a way 350

that complies with the sequential processing observed in biological vision2. In particular, we 351

predict that such a mechanism is dependent on the class of inputs, and would be different for 352

searching for faces as compared to digits 353

Some of the most peripheral targets are thus difficult to detect in just one saccade, 354

resulting in degraded performances at the periphery (see Figure 4). Even when correctly 355

detected, our log-polar action maps also precludes precise centering. As a consequence, 356

peripheral targets are generally poorly centered after the first saccade, as shown for instance 357

1Consider the processing cost (lower bound) as linear in the size of the visual data processed, as it is
established in classic computer vision. Taking n the number of pixels in the original image, our log-Polar
encoding provides O(logn) log-polar visual features by construction. The size of the visual data processed is
the addition of the C pixels processed at the fovea and the O(logn) log-polar visual features processsed at
the periphery. The total processing cost is thus O(C + logn). This cost is to be contrasted with the O(n)
processing cost found when processing all the pixels of the original image.

2Extended to a multi-target case, the Information Gain maximization principle still holds as a general
measure of scene understanding improvement through multiple saccades. It is uncertain however wether
biologically realistic implementations would be possible in that case.
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Fig 5. Closed-loop setup. (A) Example of a trial with a sequence of 3 saccades. The
subjective visual field is reconstructed from the log-polar visual features, with red square
delineating the 28× 28 foveal snippet, after 0, 1, 2 and 3 saccades (from left to right). After
the first saccade, the accuracy predicted by the “Where” network is higher than that predicted
by the “What” network and a corrective saccade is realized to center the target. After this
saccade, the foveal accuracy is higher than that predicted in the periphery and the answer
ANS is given. (B) Average classification accuracies measured for different target eccentricities
(in pixels) and a different number of saccades. Target contrast set to 70%. Orange bars:
pre-saccadic central accuracy (“0 saccade”) with respect to eccentricity, averaged over 1000
trials per eccentricity. Blue bars: Final classification rate after one, two and three saccades
(from left to right, respectively).

in figure 3-D, resulting in classification errors. The possibility to perform a sequential search 358

using more saccades is thus crucial to allow for a better recognition. Results on multi-saccades 359

visual search results are presented in figure 5. 360

An example of a trial with a sequence of 3 saccades is shown on figure 5-A. A hardly 361

visible peripheral digit target is first approximately shifted to the foveal zone thanks to the 362

first saccade. Then, a new retinal input centered at the new point of fixation is computed, 363

such that it generates a novel predicted accuracy map. The second saccade allows to improve 364

the target centering. As the predicted foveal accuracy given by the “What” network is higher 365

than the peripheral one given by the “Where” network, a third saccade would not improve 366

the centering: The stopping criteria is met. In practice, 1 or 2 saccades were sufficient in 367

most trials to reach the actual target. Another behavior was also observed for some “bad 368

start” false detection cases (as in figure 3-C for instance), when the target is shifted away in 369

the opposite direction and the agent can not recover from its initial error. From figure 5-B, 370

this case can be estimated at about 15% of the cases for the most peripheral targets. 371

Overall, as shown in figure 5-B, the corrective saccades implemented in this closed- 372

loop setup provide a significant improvement in the classification accuracy. Except at the 373

center, the accuracy increases by about 10% both for the mid-range and the most peripheral 374

eccentricities. Most of the improvement however is provided by the first corrective saccade. 375

The second corrective saccade only shows a barely significant improvement of about 2% 376

which is only visible at the periphery. The following saccades would mostly implement target 377

tracking, without providing additional accuracy gain. A 3-saccades setup finally allows a wide 378

covering of the visual field, providing a close to central recognition rate at all eccentricities, 379

with the residual peripheral error putatively corresponding to the “bad start” target misses 380

cases. 381
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4 Discussion 382

4.1 Summary 383

In summary, we have proposed a visuomotor action-selection model that implements a 384

focal accuracy-seeking policy across the image. Our main modeling assumption here is an 385

accuracy-driven monitoring of action, stating in short that the ventral classification accuracy 386

drives the dorsal selection on an accuracy map. The comparison of both accuracies amounts 387

either to select a saccade or to keep the eye focused at the center, so as to identify the target. 388

The predicted accuracy map has, in our case, the role of a value-based action selection map, 389

as it is the case in model-free reinforcement learning. 390

However, it also owns a probabilistic interpretation, making it possible to combine 391

concurrent accuracy predictions (such as the ones done through the “What” and the “Where” 392

pathways), to explain more elaborate aspect of the decision making processes, such as the 393

inhibition of return [IK01], without specific design. This combination of a scalar drive with 394

action selection is reminiscent of the actor/critic principle proposed for long time in the 395

reinforcement learning community [SB98]. In biology, the ventral and the dorsolateral division 396

of the striatum have been suggested to implement such an actor-critic separation [JNR02, 397

TSN08]. Consistently with those findings, our central accuracy drive and peripheral action 398

selection map can respectively be considered as the “critic” and the “actor” of an accuracy- 399

driven action selection scheme, with foveal identification/disambiguation taken as a “visual 400

reward”. 401

Moreover, one crucial aspect highlighted by our model is the importance of centering 402

objects in recognition. Despite the robust translation invariance observed on the “What” 403

pathway, a small tolerance radius of about 4 pixels around the target’s center needs to be 404

respected to maximize the classification accuracy. The translation invariance is in our case 405

an effect of the max-pooling operations in the convolutional layers, build-in at the core of 406

the “What” layer. This relates to the idea of finding an absolute referential for an object, for 407

which the recognition is easier. If the center of fixation is fixed, the log-polar encoding of an 408

object has the notable properties to map object rotations and scalings toward translations 409

in the radial and angular directions of the visual domain [JTB10]. Extensions to scale and 410

rotation invariance would in principle be feasible through central log polar encoding, with 411

little additional computational cost. This prospect is left for future work. 412

4.2 Comparison with other models 413

A lot of computer models found in the literature reflect to some degree the foveal/sequential 414

visual processing principles developed here. Since the question of a normative and quantitative 415

comparison with them is important, no specific or unified dataset is proposed at present 416

to address this specific case. Every model found uses a different retinal encoding, different 417

computing methodologies and different training datasets. We thus provide here a qualitative 418

comparison with the more prominent computer-based focal vision models proposed in the 419

literature 420

First, active vision is of course an important topic in mainstream computer vision. In 421

the case of image classification, it is considered as a way to improve object recognition by 422

progressively increasing the definition over identified regions of interest, referred as “recurrent 423

attention” [MHG+14, FZM17]. Standing on a similar mathematical background, recurrent 424

attention is however at odd with the functioning of biological systems, with a mere distant 425

analogy with the retinal principles of foveal-surround visual definition. 426

Phenomenological models, such as the one proposed in Najemnik and Geisler’s seminal 427

paper [NG05], rely on a rough simplification, with foveal center-surround acuity modeled as 428

a response curve. Despite providing a bio-realistic account of sequential visual search, the 429

model owns no foveal image processing implementation. Stemming on Najemnik and Geisler’s 430

principles, a trainable center-surround processing system was proposed in [BM10], with a 431

sequential scan of an image in a face-detection task, however the visual search task here 432

relies on a systematic scan over a dynamically-blurred image, with all the visual processing 433

delegated to standard feature detectors. 434
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In contrast, the Akbas and Eckstein model (“foveated object detector” [AE17]) uses an 435

explicit bio-inspired log-polar encoding for the peripheral processing, with trainable local 436

features. With a focus put on the processing gain provided by this specific compression, the 437

model approaches the performance of state-of-the-art linear feature detectors, with multi-scale 438

template matching (bounding box approach). However the use of a local/linear template 439

matching processing makes here again the analogy with the brain quite shallow. 440

Denil et al’s paper [DBLdF12] is probably the one that shows the closest correspondence 441

with our setup. It owns an identity pathway and a control pathway, in a What/Where 442

fashion, just as ours. Interestingly, only the “What” pathway is neurally implemented using 443

a random foveal/multi-fixation scan within the fixation zone. The “Where” pathway, in 444

contrast, mainly implements object tracking, using particle filtering with a separately learned 445

generative process. The direction of gaze is here chosen so as to minimize the target position, 446

speed and scale uncertainty, using the variance of the future beliefs as an uncertainty metric. 447

The control part is thus much similar to a dynamic ROI tracking algorithm, with no direct 448

correspondence with foveal visual search, or with the capability to recognize the target 449

4.3 Perspectives 450

We have thus provided a proof of concept that a log-polar retinotopy can efficiently serve 451

object detection and identification over wide visual displays. Despite its simplicity, the 452

generative model used to generate our visual display allowed to assess the effectiveness and 453

robustness of our learning scheme, that should be extended to more complex displays and 454

more realistic closed-loop setups. In particular, the restricted 28 × 28 input used for the 455

foveal processing is a mere placeholder, that should be replaced by more elaborate computer 456

vision frameworks, such as Inception [SLJ+15] or VGG-19 [SZ14], that can handle a more 457

ecological natural image classification. 458

The main advantage of our peripheral image processing is its cost-efficacy. Our full 459

log-polar processing pathway consistently conserves the high compression rate performed 460

by retina and V1 encoding up to the action selection level. The organization of both the 461

visual filters and the action maps in concentric log-polar elements, with radially exponentially 462

growing spatial covering, can thus serve as a baseline for a future sub-linear (logarithmic) 463

visual search in computer vision. Our work thus illustrates one of the main advantages of 464

using a focal/sequential visual processing framework, that is providing a way to process large 465

images with a sub-linear processing cost. This may allow to detect an object in large visual 466

environments, which should be particularly beneficial when the computing resources are 467

under constraint, such as for drones or mobile robots. 468

If the methodology and principles developed here are clearly intended to deal with real 469

images, the focus of the paper remains however on providing principles that justify the 470

separation between a ventral and a dorsal stream in the early visual pathways. If some forms 471

of ”dual pathway models” have been proposed in the past (through separating the central 472

and the peripheral processing, like in [DBLdF12], and also in one instance of [AE17] model), 473

their guiding principles remain those of computer efficacy rather than a bio-realistic vision 474

model. Our principled ventral/dorsal concurrent processing, rooted on dorsal accuracy map 475

predictions, is thus we think important and novel. 476

Finally, our model relies on a strong idealization, assuming the presence of a unique target. 477

This is well adapted to a fast changing visual scene as is demonstrated by our ability to 478

perform as fast as 5 saccades per second to detect faces in a cluttered environment [MDRT18]. 479

However, some visual scenes —such as when looking at a painting in a museum— allow 480

for a longer inspection of its details. The presence of many targets in a scene should be 481

addressed, which amounts to sequentially select targets, in combination with implementing 482

a more elaborate inhibition of return mechanism to account for the trace of the performed 483

saccades. This would generate more realistic visual scan-paths over images. Actual visual 484

scan-paths over images could also be used to provide priors over action selection maps 485

that should improve realism. Identified regions of interest may then be compared with the 486

baseline bottom-up approaches, such as the low-level feature-based saliency maps [IK01]. 487

Maximizing the Information Gain over multiple targets needs to be envisioned with a more 488

refined probabilistic framework extending previous models [FAPB12], which would include 489
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phenomena such as mutual exclusion over overt and covert targets. How the brain may 490

combine and integrate these various probabilities is still an open question, that amounts to 491

the fundamental binding problem. 492

5 Methods 493

5.1 Image generation 494

We first define here the generative model for input display images as shown first in Figure 1-A 495

(DIS) and as implemented in Figure 2-A. Following a common hypothesis regarding active 496

vision, visual scenes consist of a single target embedded in a large image with a cluttered 497

background. 498

Targets. We use the MNIST dataset of handwritten digits introduced by [LBBH98]: 499

Samples are drawn from the dataset of 60000 grayscale 28× 28 pixels images and separated 500

between a training and a validation set (see below the description of the “Where” network). 501

Full-scale images. Input images are full-scale images of size 128× 128 in which we embed 502

the target. Each target location is drawn at random in this large image. To enforce isotropic 503

generation (at any direction from the fixation point), a centered circular mask covering the 504

image (of radius 64 pixels) is defined, and the target’s location is such that the embedded 505

sample fits entirely into that circular mask. 506

Background noise setting. To implement a realistic background noise, we generate 507

synthetic textures [SLVMP12] using a bi-dimensional random process. The texture is designed 508

to fit well with the statistics of natural images. We chose an isotropic setting where textures 509

are characterized by solely two parameters, one controlling the median spatial frequency of 510

the noise, the other controlling the bandwidth around the central frequency. Equivalently, 511

this can be considered as the band-pass filtering of a random white noise image. The spatial 512

frequency is set at 0.1 pixel−1 to fit that of the original digits. This specific spatial frequency 513

occasionally allows to generate some “phantom” digit shapes in the background. Finally, 514

these images are rectified to have a normalized contrast. 515

Mixing the signal and the noise. Finally, both the noise and the target image are 516

merged into a single image. Two different strategies are used. A first strategy emulates a 517

transparent association, with an average luminance computed at each pixel, while a second 518

strategy emulates an opaque association, choosing for each pixel the maximal value. The 519

quantitative difference was tested in simulations, but proved to have a marginal importance. 520

5.2 Active inference and the Näıve Bayes assumption 521

Saccade selection in visual processing can be captured by a statistical framework called a 522

partially observed Markov Decision Process (POMDP) [NG05, BM10, FAPB12], where the 523

cause of a visual scene is made up from the couple of independent random variables of the 524

viewpoint and of the scene elements (here a digit). For instance, changing the viewpoint will 525

conduct to a different scene rendering. A generative model tells how the visual field should 526

look knowing the scene elements and a certain viewpoint. In general, active inference assumes 527

a hidden external state e, which is known indirectly through its effects on the sensor. The 528

external state corresponds to the physical environment. Here the external state is assumed 529

to split in two (independent) components, namely e = (u, y) with u the interoceptive body 530

posture (in our case the gaze orientation, or “viewpoint”) and y the object shape (or object 531

identity). The visual field x is the state of the sensors, that is, a partial view of the visual 532

scene, measured through the generative process : x ∼ p(X|e). 533

Using Bayes rule, one may then infer the scene elements from the current viewpoint
(model inversion). The real physical state e being hidden, a parametric model θ is assumed to
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allow for an estimate of the cause of the current visual field through model inversion thanks
to Bayes formula, in short:

p(E|x) ∝ p(x|E; θ)

It is also assumed that a set of motor commands A = {..., a, ...} (here saccades) may 534

control the body posture, but not the object’s identity, so that y is invariant to a. Actuating 535

a command a changes the viewpoint to u′, which feeds the system with a new visual sample 536

x′ ∼ p(X|u′, y). The more viewpoints you have, the more certain you are about the object 537

identity through a chain rule sequential evidence accumulation. 538

In an optimal search setup however [NG05], you need to choose the next viewpoint that 539

will help you the most to disambiguate the scene. In a predictive setup, the consequence 540

of every saccade should be analyzed through model inversion over the future observations, 541

that is, predicting the effect of every action to choose the one that may optimize future 542

inferences. The benefit of each action should be quantified through a certain metric (future 543

accuracy, future posterior entropy, future variational free energy, ...), that depend on the 544

current inference p(U, Y |x). The saccade a that is selected thus provides a new visual sample 545

from the scene statistics. If well chosen, it should improve the understanding of the scene 546

(here the target position and category). However, estimating in advance the effect of every 547

action over the range of every possible object shapes and body postures is combinatorially 548

hard, even in simplified setups, and thus infeasible in practice. 549

The predictive approach necessitates in practice to restrain the generative model in order 550

to reduce the range of possible combinations. One such restriction, known as the “Näıve 551

Bayes” assumption, considers the independence of the factors that are the cause of the sensory 552

view. The independence hypothesis allows considering the viewpoint u and the category y 553

being independently inferred from the current visual field, i.e p(U, Y |x) = p(U |x)p(Y |x). This 554

property is strictly true in our setting and is very generic in vision for simple classes (such as 555

digits) and simple displays (but see [VoW12] for more complex visual scene grammars). 556

5.3 Foveal vision and the “What” pathway 557

At the core of the vision system is the identification module, i.e. the “What” pathway (see 558

fig. 2). It consists of a classic convolutional classifier for which we will show some translation 559

invariance in the form of a shift-dependent accuracy map. Importantly, it can quantify its 560

own classification uncertainty, that may allow comparisons with the output of the “Where” 561

pathway. 562

The foveal input is defined as the 28× 28 grayscale image cropped at the center of gaze 563

(see dashed red box in Figure 1-C). This image is passed unmodified to the agent’s visual 564

categorical pathway (the “What” pathway), that is realized by a convolutional neural network, 565

here the well-known “LeNet” classifier [LBBH98]. The network structure that processes 566

the input to identify the target category is made of 3 convolution layers interleaved with 567

max-pooling layers, followed by two fully-connected layers as provided (and unmodified) by 568

the Pytorch library [PGM+19]. Each intermediate layer’s output is rectified and the network 569

output uses a sigmoid operator to represent the probability of detecting each of the 10 digits. 570

The index of one of the 10 output neuron with maximum probability provides the image 571

category. It is first trained over the (centered) MNIST dataset after approx 20 training epochs. 572

This strategy achieves an average 98.7% accuracy on the validation dataset [LBBH98]. 573

To achieve a more generic “What” pathway, a specific dataset is constructed to train the 574

network. It is made of randomly shifted digits overlayed over a randomly generated noisy 575

background, as defined above. Both the shift, the contrast and the background noise make 576

the task more difficult than the original MNIST categorization. The relative contrast of the 577

digit is randomly set between 30 % and 70 % of the maximal contrast. The network is trained 578

incrementally by progressively increasing the shift variability (of a bivariate central gaussian) 579

and by increasing the standard deviation from 0 to 15 (with a maximal shift set at 27 pixels). 580

The network is trained on a total of 75 epochs, with 60000 examples generated at each epoch 581

from the original MNIST training set. The shifts and backgrounds are re-generated at each 582

epoch. The shifts’ standard deviation increases of one unit every 5 epochs such that at the 583

end of the training, many digits fall outside the center of the fovea, so that many examples are 584
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Fig 6. (A) Input samples from the “What” training set, with randomly shifted targets
using a Gaussian bivariate spatial shift with a standard deviation of 15 pixels. The target
contrast is randomly set between 30 % and 70 %. (B) 55× 55 shift-dependent accuracy map,
measured for different target eccentricities on the test set after training.

close to impossible to categorize, either because of a low contrast or a too large eccentricity. 585

At the end of the training process, the average accuracy is thus of 34% and a maximum 586

accuracy 91% at the center. 587

After training, this shift-dependent accuracy map is validated by systematically testing 588

the network accuracy on every horizontal and vertical shift, each on a set of 1000 cluttered 589

target samples generated from the MNIST test set and within the range of ±27 pixels (see 590

figure 6). This forms a 55×55 accuracy map showing higher accuracy at the center, and a slow 591

decreasing accuracy with target eccentricity (with an accuracy plateau over 70% showing 592

a relative shift invariance on around 7 pixels eccentricity radius). This shift invariance is a 593

known effect of convolutional computation. Note that the categorization task is here harder 594

by construction and the accuracy that is obtained here is lower (with a central recognition 595

rate of around 80%). The accuracy sharply drops for eccentricities greater than 10 pixels, 596

reaching the baseline 10% chance level at shift amplitudes at around 20 pixels. 597

5.4 “Where” pathway: Transforming log-polar feature vectors to 598

log-polar action maps 599

Here, we assume the “Where” implements the following action selection: where to look next 600

in order to reduce the uncertainty about the target identity? The “Where” pathway is thus 601

devoted to choosing the next saccade by predicting the location of the target in the (log-polar) 602

visual field. This implies moving the eye such as to increase the “What” categorization 603

accuracy. For a given visual field, each possible future saccade has an expected accuracy, 604

that can be trained from the “What” pathway output. To accelerate the training, we use a 605

shortcut that is training the network on a translated accuracy map. The output is thus an 606

accuracy map, that tells for each possible visuomotor displacement the value of the future 607

accuracy. 608

Primary visual representation: log-polar orientation filters In order to reduce the 609

processing cost, and in accordance with observations [CVE84, SN87], a similar log-polar 610

compression pattern is assumed to be conserved from the retina up to the primary motor 611

layers. The non-uniform sampling of the visual space is adequately modeled as a log-polar 612

conformal mapping, as it provides a good fit with observations in mammals [JTB10] which 613

has a long history in computer vision and robotics. Both the visual features and the output 614
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Fig 7. Implementing the “Where” pathway: (A) A visual display is transformed by a
feature vector which elements compute the similarity of the full image with a bank of oriented
filters placed at positions defined by a log-polar grid. This defines a linear transform of
the 128 × 128 = 16384 input pixels into 2880 coefficients. It is possible to represent this
information in visual space by using the pseudo-inverse of the linear transform (see for
instance Figure 1-C). (B) The “Where” network consists of two hidden layer composed with
a RELU operator transforming the retinal feature vector. A sigmoid operator ensures that
this output vector is a distribution of predicted probabilities in log-polar space. (C) Similarly
to (A), any full accuracy map computed by shifting the know shift-dependent accuracy map
of the “What” pathway (see figure 6) can be transformed into a distribution in log-polar
space, similarly to a collicular representation. As the full accuracy map is itself a distribution,
This can be implemented by a linear (matrix) transform. In practice, one can use the inverse
of this linear transform to project any collicular representation into the visual space, for
instance to predict for the position with maximal accuracy (red cross).

accuracy map are to be expressed in retinal coordinates. On the visual side, local visual 615

features are extracted as oriented edges as a combination of the retinotopic transform with 616

primary visual cortex filters [FSPC07b], see Figure 7-A. The centers of these first and second 617

order orientation filters are radially organized around the center of fixation, with small and 618

tightened receptive fields at the center and more large and scarce receptive fields at the 619

periphery. The size of the filters increases proportionally to the eccentricity. The filters are 620

organized in 10 spatial eccentricity scales (respectively placed at around 2, 3, 4.5, 6.5, 9, 621

13, 18, 26, 36.5 , and 51.3 pixels from the center) and 24 different azimuth angles allowing 622

them to cover most of the original 128× 128 image. At each of these positions, 6 different 623

edge orientations and 2 different phases (symmetric and anti-symmetric) are computed. This 624

finally implements a (fixed) bank of linear filters which models the receptive fields of the 625

primary visual cortex. 626

To ensure the balance of the coefficients across scales, the images are first whitened and 627

then linearly transformed into a retinal input as a feature vector x. The length of this vector 628

is 2880, such that the retinal filter compresses the original image by about 83%, with high 629

spatial frequencies preserved at the center and only low spatial frequencies conserved at the 630

periphery. In practice, the bank of filters is pre-computed and placed into a matrix for a 631

rapid transformation of input batches into feature vectors. This matrix transformation allows 632

also the evaluation of a reconstructed visual image given a retinal activity vector thanks to 633

a pseudo-inverse of the forward transform matrix. In summary, the full-sized images are 634

transformed into a primary visual feature vector which is fed to the “Where” pathway. 635
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Visuo-motor representation: “Collicular” accuracy maps The output of the “Where” 636

pathway is defined as an accuracy map representing the recognition probability after moving 637

the eye, independently of its identity. Like the primary visual map, this target accuracy map 638

is also organized radially in a log-polar fashion, making the target position estimate more 639

precise at the center and fuzzier at the periphery. This modeling choice is reminiscent of the 640

approximate log-polar organization of the superior colliculus (SC) motor map [SN87]. To 641

ensure that this output is a distribution function, we use a sigmoid operator at the ouput 642

of the “Where” network. In ecological conditions, this accuracy map should be trained by 643

sampling, i.e. by “trial and error”, using the actual recognition accuracy (after the saccade) 644

to grade the action selection. For instance, we could use corrective saccades to compute (a 645

posteriori) the probability of a correct localization. In a computer simulation however, this 646

induces a combinatorial explosion which does render the calculation not amenable. 647

In practice, as we designed the generative model for the visual display, the position of 648

the target (which is hidden to the agent) is known. Combining this translational shift and 649

the shift-dependent accuracy map of the “What” classifier (Figure 6-B), the full accuracy 650

map at each pixel can be thus predicted for each visual sample under an ergodic assumption, 651

by shifting the central accuracy map on the true position of the target (see Figure 7-C). 652

Such a computational shortcut is allowed by the independence of the categorical performance 653

with position. This full accuracy map is a probability distribution function defined on the 654

rectangular grid of the visual display. We project this distribution on a log-polar grid to 655

provide the expected accuracy of each hypothetical saccade in a retinotopic space similar 656

to a collicular map. In practice, we used Gaussian kernels defined in the log-polar space 657

as a proxy to quantify the projection from the metric space to the retinotopic space. This 658

generates a filter bank at 10 spatial eccentricies and 24 different azimuth angles, i.e. 240 659

output filters. To ensure keeping a distribution function, each filter is normalized such that 660

the value at each log-polar position is the average of the values which are integrated in visual 661

space. Applied to the full sized ground truth accuracy map computed in metric space, this 662

gives an accuracy map at different location of a retinotopic motor space. 663

Classifier training The “Where” pathway is a function transforming an input retinal 664

feature vector x into an output log-polar retinotopic vector a representing for each area 665

of the log-polar visual field a prediction of the accuracy probability. Following the active 666

inference framework, the network is trained to predict the likelihood ai at position i knowing 667

the retinal input x by comparing it to the known ground truth distribution computed over 668

the motor map. The loss function that comes naturally is the Binary Cross-Entropy. At 669

each individual position i, this loss corresponds to the negative term of Kullback-Leibler 670

divergence for a binomial random variable ai given by the predicted map and the ground 671

truth (see Figure 7-B). The total loss is the average over all positions i. This scalar measures 672

the distance between both distributions, it is always positive and null if and only if they are 673

equal. 674

The parametric neural network consists of a primary visual input layer, followed by 675

two fully connected hidden layers of size 1000 with rectified linear activation, and a final 676

output layer with a sigmoid nonlinearity to ensure that the output is compatible with a 677

likelihood function (see Figure 7-B). An improvement in convergence speed was obtained 678

by using batch normalization. The network is trained on 60 epochs of 60000 samples, with 679

a learning rate equal to 10−4 and the Adam optimizer [KB14] with standard momentum 680

parameters. The full training takes about 1 hour on a laptop. The code is written in 681

Python (version 3.7.6) with pyTorch library [PGM+19] (version 1.1.0). The full scripts for 682

reproducing the figures and explore the results to the full range of parameters is available at 683

https://github.com/laurentperrinet/WhereIsMyMNIST. 684

Quantitative role of parameters In addition, we controlled that the training results 685

are robust to changes in an individual experimental or network parameters from the default 686

parameters (see Figure 8). From the scan of each of these parameters, the following observa- 687

tions were remarkable. First we verified that accuracy decreased when noise increased and 688

while the bandwidth of the noise imported weakly, the spatial frequency of the noise was an 689
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Fig 8. Quantitative role of parameters: We tested all parameters of the presented
model, from that controlling the architecture of image generation, to the parameters of
the neural network implementing the “Where” pathway (including meta-parameters of the
learning paradigm). We show here the results which show the most significative impact
on average accuracy. The accuracy is given by a blue line, the red line giving the rate of
errors. The black dashed line gives the chance level (10%), while the blue box gives the 99%
confidence interval as estimated over 8 repetitions of the learning. (A) First, we tested some
properties of the input, respectively from left to right: noise level (Noise), standard deviation
of the distance of the target with respect to the fixation (Offset std), mean spatial frequency
of clutter Sf 0 and bandwidth B sf of the clutter noise. This shows that average accuracy
evolves with noise (see also Figure 4 for an evolution as a function of eccentricity), but also
to the characteristics of the noise clutter. In particular, there is a drop in accuracy whenever
noise is of similar wavelength as digits, but which becomes less pronounced as the bandwidth
increases. (B) Finally, we scanned parameters of the Deep Learning neural network. We
observed that accuracy quickly converged after approximately 25 epochs (Epochs adam). We
then tested different values for the dimension of respectively the first (Dim1) and second
(Dim2) hidden layers, showing weak changes in accuracy. (C) The accuracy also changes
with the architecture of the foveated input as shown here by changing the number N azimuth

of azimuth directions which are sampled in visual space. This shows a compromise between
a rough azimuth representation and a large precision, which necessitates a longer training
phase, such that the optimal number is around 24 azimuth directions.

important factor. In particular, final accuracy was worst for a clutter spatial frequency of 690

≈ 0.07, that is when the characteristic textures elements were close to the characteristic size 691

of the objects. Second, we saw that the dimension of the “Where” network was optimal for a 692

dimensionality similar to that of the input but that this mattered weakly. The dimensionality 693

of the log-polar map is more important. The analysis proved that an optimal accuracy was 694

achieved when using a number of 24 azimuthal directions. Indeed, a finer log-polar grid 695

requires more epochs to converge and may result in an over-fitting phenomenon hindering 696

the final accuracy. Such fine tuning of parameters may prove to be important in practical 697

applications and to optimize the compromise between accuracy and compression. 698

5.5 Concurrent action selection 699

Finally, when both pathways are assumed to work in parallel, each one may be used concur- 700

rently to choose the most appropriate action. Two concurrent accuracies are indeed predicted 701

through separate processing pathways, namely the central pixels recognition accuracy through 702

the “What” pathway, and the log-polar accuracy map through the “Where” pathway. The 703
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central accuracy may thus be compared with the maximal accuracy as predicted by the 704

“Where” pathway. 705

From the information theory standpoint, each saccade comes with fresh visual information
about the visual scene that can be quantified by a conditional information gain, namely:

IGmax = max
x′

log p(y|x, x′)− log p(y|x)

with the left term representing the future accuracy (after the saccade is realized) and the
right term representing the current accuracy as it is obtained from the “What” pathway.
Estimating the joint conditional dependence in the first term being once again out of reach
for computational reasons, the following approximative estimate is used instead:

˜IGmax ' IGmax

= max
x′

log p(y|x′)− log p(y|x) (1)

that is a simple difference between the log accuracy after the saccade minus the log accuracy 706

before the saccade. To provide a reliable estimate, the information gain may be averaged 707

over many saccades and many target eccentricities (so that the information gain may be 708

close to zero when the target eccentricity is close to zero). For the saccade is subject to 709

predictions errors and execution noise, the saccade landing position may be different from 710

the initial prediction. The final accuracy, as instantiated in the accuracy map, contains this 711

intrinsic imprecision, and is thus necessary lower than the optimal one. The consequence is 712

that in some cases, the approximate information gain may become negative, when the future 713

accuracy is actually lower than the current one. This is for instance the case when the target 714

is exactly positioned at the center of the fovea. 715
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