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Abstract

Differential coexpression has recently emerged as a new way to establish a fundamental
difference in expression pattern among a group of genes between two populations.
Earlier methods used some scoring techniques to detect changes in correlation patterns
of a gene pair in two conditions. However, modeling differential coexpression by mean of
finding differences in the dependence structure of the gene pair has hitherto not been
carried out.

We exploit a copula-based framework to model differential coexpression between
gene pair in two different conditions. The Copula is used to model the dependency
between expression profiles of a gene pair. For a gene pair, the distance between two
joint distributions produced by copula is served as differential coexpression. We used
five pan-cancer TCGA RNA-Seq data to evaluate the model which outperforms the
existing state-of-the-art. Moreover, the proposed model can detect a mild change in the
coexpression pattern across two conditions. For noisy expression data, the proposed
method performs well because of the popular scale-invariant property of copula.
Additionally, we have identified differentially coexpressed modules by applying
hierarchical clustering on the distance matrix. The identified modules are analyzed
through Gene Ontology terms and KEGG pathway enrichment analysis.

Introduction 1

Microarray based gene coexpression analysis has been demonstrated as an emerging 2

field which offers opportunities to the researcher to discover coregulation pattern among 3

gene expression profiles. Genes with similar transcriptomal expression are more likely to 4

be regulated by the same process. Coexpression analysis seeks to identify genes with 5

similar expression patterns which can be believed to associate with the common 6

biological process [1–3]. Recent approaches are interested to find the differences 7

between coexpression pattern of genes in two different conditions [4, 5]. This is essential 8

to get a more informative picture of the differential regulation pattern of genes under 9

two phenotype conditions. Identifying the difference in coexpression patterns, which is 10

commonly known as differential coexpression is no doubt a challenging task in 11

computational biology. Several computational studies exist for identifying change in 12

gene coexpression patterns across normal and disease states [6, 6–9]. Finding 13

differentially coexpressed (DC) gene pairs, gene clusters, and dysregulated pathways 14
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between normal and disease states are most common. [6, 10–13]. Another way for 15

identifying DC gene modules is to find gene cluster in one condition and test whether 16

these clusters show a change in coexpression patterns in another condition 17

significantly. [8, 14]. 18

For example, CoXpress [10] utilizes hierarchical clustering to model the relationship 19

between genes. The modules are identified by cutting the dendrogram at some specified 20

level. It used a resampling technique to validate the modules coexpressed in one 21

condition but not in other. Another approach called DiffCoex [11] utilized a statistical 22

framework to identify DC modules. DiffCoex proposed a score to quantify differential 23

coexpression between gene pairs and transform this into dissimilarity measures to use in 24

clustering. A popularly used tool WGCNA (Weighted Gene Coexpression Network 25

Analysis) is exploited to group genes into DC clusters [15]. Another method called 26

DICER(Differential Correlation in Expression for meta-module Recovery) [16] also 27

identifies gene sets whose correlation patterns differ between disease and control 28

samples. Dicer not only identifies the differentially coexpressed module but it goes step 29

beyond and identifies meta-modules or class of modules where a significant change in 30

coexpression patterns is observed between modules, while the same patterns exist 31

within each module. 32

In another approach, Ray et al [17] proposed a multiobjective framework called 33

DiffCoMO to detect differential coexpression between two stages of HIV-1 disease 34

progression. Here, the algorithm operates on two objective functions which 35

simultaneously optimize the distances between two correlation matrices obtained from 36

two microarray data of HIV infected individuals. 37

Most of the methods proposed some scoring technique to capture the differential 38

coexpression pattern and utilized some searching algorithm to optimize it. Here, we 39

have proposed CODC Copula based model to identify Differential Coexpression of 40

genes under two different conditions. First, a pairwise dependency between gene 41

expression profile is modeled using an empirical copula. As the marginals are unknown, 42

so we used empirical copula to model the joint distribution between each pair of gene 43

expression profiles. To investigate the difference in coexpression pattern of a gene pair 44

across two conditions, we compute a statistical distance between the joint distributions. 45

We hypothesized that the distance between two joint distributions can model the 46

differential coexpression of a gene pair between two conditions. To investigate this fact 47

we have performed a simulation study that provides the correctness of our method. We 48

have also validated the proposed method by applying it in real life datasets. For this, 49

we have used five pan cancer RNA-Seq data from TCGA: Breast invasive carcinoma 50

[BRCA], Head and Neck squamous carcinoma [HNSC], Liver hepatocellular carcinoma 51

[LIHC], Thyroid carcinoma [THCA] and Lung adenocarcinoma [LUAD] which are 52

publicly available in TCGA data portal 53

(https://tcga-data.nci.nih.gov/docs/publications/tcga/?). 54

Materials and methods 55

In this section, we have briefly introduced the proposed method which is based on 56

copula function. 57

Modeling differential coexpression using Copula 58

Differential coexpression is simply defined as the change of coexpression patterns of a 59

gene pair across two conditions. A straightforward method to measure this is to take 60

the absolute difference of correlations between two gene expression profiles in two 61

conditions. For a gene pair genei and genej , this can be formally stated as: 62

August 5, 2019 2/19

.CC-BY 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under 

The copyright holder for this preprint (which was notthis version posted August 5, 2019. ; https://doi.org/10.1101/725887doi: bioRxiv preprint 

https://doi.org/10.1101/725887
http://creativecommons.org/licenses/by/4.0/


DC Scorep1,p2i,j = |Sim(xi, xj)
p1 − Sim(xi, xj)

p2|, where p1, p2 are two different 63

phenotype conditions, and xi, xj represent expression profile of genei and genej 64

respectively. Here Sim(xi, xj)
p signifies Pearson correlation between xi and xj for 65

phenotype p. 66

In the statistical analysis, the simple way to measure the dependence between the 67

correlated random variable is to use copulas [18]. Copula is extensively used in high 68

dimensional data applications to obtain joint distributions from a random vector, easily 69

by estimating their marginal functions. 70

Copulas can be described as a multivariate probability distribution function for
which the marginal distribution of each variable is uniform. For a bivariate case copula
is a function: C : [0, 1]2 → [0, 1], and can be defined as: C(x, y) = P (X ≤ x, Y ≤ y), for
0 ≤ x, y ≤ 1, where X and Y are uniform random variable. Let, X1 and X2 be the
random vectors whose marginals are uniformly distributed in [0, 1] and having marginal
distribution FX1 and FX2 respectively. By Sklar’s Theorem [19] we have the following:
there exists a copula C such that F (x1, x2) = C(FX1(x1), FX2(x2)), for all x1 and x2
in the domain of FX1 and FX2. In other words, there exists a bivariate copula which
represents the joint distribution as a function of its marginals. For the multivariate case
the copula (C) function can be represented as:

FX(X1, X2, · · · , Xn) = C(F1(x1), F2(x2), · · · , Fn(xn))

, where X1, X2, · · · , Xn, be the random vectors whose marginals are 71

F1(x1), F2(x2), · · · , Fn(xn). The converse of the theorem is also true. Any copula 72

function with individual marginals Fi(xi) as the arguments, represents valid joint 73

distribution function with marginals Fi(xi). So, Copula is also known as joint 74

distribution generating function with a separate choice of marginals. Hence, different 75

families (parametric and non-parametric) of copulas exist which model different types of 76

dependence structure. The example includes Farlie-Gumbel-Morgenstern family 77

(parametric), Archimedean Copula (parametric), Empirical Copula (non-parametric), 78

Gaussian (parametric), t (parametric) etc. Empirical copulas are governed by the 79

empirical distribution functions, which tries to estimate the underlying probability 80

distribution from given observations. 81

Here, we model the dependence between each pair of gene expression profile using 82

empirical copulas. As we were unaware of the distributions of expression profiles, so 83

empirical copulas are the only choice here. Particularly, we have used joint empirical 84

distributions to estimate the marginals of each gene expression profile. For two different 85

phenotype conditions, the dependency between gene expression profiles is measured by 86

empirical copulas. To model the differential coexpression of a gene pair, we have 87

measured a statistical distance between two joint distribution provided by the copulas. 88

We have utilized the Kolmogorov-Smirnov (K-S) test to quantify the distance between 89

two empirical distributions. Value of d-statistic represents the distance here. Thus, the 90

distance obtained for a gene pair is treated as a differential coexpression score. 91

To check whether the distance between the joint distribution perfectly models the 92

differential coexpression, we have performed an analysis. To show the concordance 93

between the DC Score with the proposed distance we have performed the following 94

analysis. We create a 20× 20 matrix M , whose rows (i) and columns (j) corresponds to 95

correlation values from -1 to +1 with 0.1 spacing. We create two pairs of marginals 96

(Fx1, Fx2) and (Fy1, Fy2) having correlations i and j respectively. Next, we compute 97

joint distributions using copula function FX1X2 = C(Fx1, Fx2), FY 1Y 2 = C(Fy1, Fy2) 98

and finally compute KS distance between FX1X2 and FY 1Y 2. Each entry of (i,j) in M is 99

filled with this distance value. We generate M 100 times following the same method. 100

Now to visualize the matrices each row is represented as a series of boxplot in the figure 101

1. For a fixed row the DC Score will increase from left to right along the column as it 102
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ranges from correlation value -1 to +1. Each facet in the figure corresponds a 103

row/column in the matrix which represents 20 sets of 100 distances corresponding to 104

the correlations ranging from -1 to +1 with a spacing of 0.1. Considering each facet of 105

the plot it can be noticed that distances are gradually increasing with the increase in 106

the DC Score. For example, considering the second facet (corr value=-0.9), the 107

distances increased from left to right gradually. So,it is evident from the figure that 108

there exists a strong correlation between the distance and DC Score which signifies the 109

proposed method can able to model the difference in coexpression patterns. 110

Stability of CODC 111

CODC is stable under noisy expression data. This is because of the popular 112

“nonparametric”, “distribution-free” or “scale-invariant” nature of the copula [20]. The 113

properties can be written as follows: Let, CXY be a copula function of two random 114

variables X and Y. Now, suppose α and β are two functions of X and Y respectively. 115

The relation of C(α(X),β(Y )) and CXY can be written as follows. 116

� Property 1: If α and β are strictly increasing functions , then the following is 117

true: 118

Cα(X)β(Y )(u, v) = CXY (u, v) (1)

� Property 2: If α is strictly increasing and β is strictly decreasing, then the 119

following holds: 120

Cα(X)β(Y )(u, v) = u− CXY (u, 1− v) (2)

� Property 3: If α is strictly decreasing and β is strictly increasing function, then 121

we have 122

Cα(X)β(Y )(u, v) = v − CXY (v, 1− u) (3)

� Property 4: If α and β both are strictly decreasing function then the following 123

holds: 124

Cα(X)β(Y )(u, v) = u+ v − 1− CXY (1− u, 1− u) (4)

These properties of copula are used to prove that the distance measure used in
CODC is approximately scaled invariant. Theoretical proves are described below and
simulation result is given later in section . The proof is as follows: we know the
Kolmogorov-Smirnov statistic for a cumulative distribution function F(x) can be
expressed as:

D = supx|Hn(x)− F (x)|

, where Hn is an empirical distribution function for n i.i.d observation Xi ≤ x, and sup 125

corresponds to supremum function. The two sample K-S test is used in CODC can be 126

described similarly: 127

D = supx,y|(H1
n(x, y)− F (x, y))− (H2

n(x, y)− F (x, y))|
= supx,y|(H1

n(x, y)−H2
n(x, y))|

(5)

where H1
n, H2

n are denoted as the joint empirical distribution for two samples taken 128

from normal and cancer respectively. Now the D-statistic can be written as: 129

D = supx,y|(H1
n(x, y)−H2

n(x, y))|
= supx,y|C(F1(x), F1(y))− C(F2(x), F2(y))|
= supx,y|CXY (u, v)− CXY (ũ, ṽ)|

(6)
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, where C(.) is copula function and u = F1(x), v = F1(y), ũ = F2(x), ṽ = F2(y) are 130

uniform marginals of joint distribution H1
n and H2

n. 131

Let us assume that both α and β functions are strictly increasing. Then from 132

equations 1 and 6 the distance D between H1
n(α(x), β(y)) and H2

n(α(x), β(y)) have the 133

form 134

D = supx,y|H1
n(α(x), β(y))−H2

n(α(x), β(y))|
= supx,y|C(F1(α), F1(β))− C(F2(α), F2(β))|
= supx,y|Cα(x),β(y)(u, v)− Cα(x),β(y)(ũ, ṽ)|
= supx,y|CXY (u, v)− CXY (ũ, ṽ)|
[By using the property in equation 1]

= supx,y|C(F1(x), F1(y))− C(F2(x), F2(y))|
= supx,y|(H1

n(x, y)−H2
n(x, y))|

(7)

Now if α is strictly increasing and β is strictly decreasing then D can be written as: 135

D′ = supx,y|H1
n(α(x), β(y))−H2

n(α(x), β(y))|
= supx,y|C(F1(α), F1(β))− C(F2(α), F2(β))|
= supx,y|Cα(x),β(y)(u, v)− Cα(x),β(y)(ũ, ṽ)|
= supx,y|u− CXY (u, 1− v)− ũ− CXY (ũ, 1− ṽ)|
[By using the property in equation 2]

= supx,y|(u− ũ) + CXY (ũ, 1− ṽ)− CXY (u, 1− v))|
= supx,y|(u− ũ) + CXY (ũ, m̃)− CXY (u,m)|
≥ supx,y|[CXY (ũ, m̃)− CXY (u,m)]|
≥ supx,y|[CXY (u,m)− CXY (ũ, m̃)]|
= supx,y|H1

n(x, y)−H2
n(x, y)|

= D

(8)

similarly, for strictly increasing β and strictly decreasing α the distance D′ between 136

H1
n(α(x), β(y)) and H2

n(α(x), β(y)) can be shown to satisfy the relation: 137

D′ = supx,y|H1
n(α(x), β(y))−H2

n(α(x), β(y))|
≥ supx,y|H1

n(x, y)−H2
n(x, y)|

= D

(9)

Finally let us consider α and β both are strictly decreasing function. The distance 138
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D′ can be described as: 139

D′ = supx,y|H1
n(α(x), β(y))−H2

n(α(x), β(y))|
= supx,y|C(F1(α), F1(β))− C(F2(α), F2(β))|
= supx,y|Cα(x),β(y)(u, v)− Cα(x),β(y)(ũ, ṽ)|
= supx,y|u+ v − 1 + CXY (1− u, 1− v)

− ũ+ ṽ − 1 + CXY (1− ũ, 1− ṽ)|
[By using the property in equation 3]

= Supx,y|(u− ũ) + (v − ṽ) + CXY (1− u, 1− v)

− CXY (1− ũ, 1− ṽ)|
≥ supx,y|CXY (1− u, 1− v)− CXY (1− ũ, 1− ṽ|)|
= supx,y|CXY (m,n)− cXY (m̃, ñ)|
= supx,y|H1

n(x, y)−H2
n(x, y)|

(10)

Thus the value of D′ between two joint distribution H1
n(α(x), β(y)) and H2

n(α(x), β(y)) 140

is the same as that of D which represents the distance H1
n(x, y) and H2

n(x, y) when 141

both α and β are increasing function. For other cases of α and β, D′ attains at least 142

the value of D. So, the distance for two random variable α(X) and β(Y ) is equal or at 143

least that of the random variables X and Y. CODC treats the distance D as differential 144

coexpression score, thus it remains the same (or at least equal) under any 145

transformation of X and Y. 146

Results 147

Dataset preparation 148

We have evaluated the performance of the proposed method in five RNAseq expression 149

data. We have downloaded matched pair of tumor and normal samples from five pan 150

cancer data sets: Breast invasive carcinoma (BRCA, #samples=112), head and neck 151

squamous cell carcinoma (HNSC, #samples = 41), liver hepatocellular carcinoma 152

(LIHC, #samples = 50),thyroid carcinoma (THCA, #samples = 59) and Lung 153

Adenocarcinoma (LUAD, #samples = 58). For preprocessing the dataset we first take 154

those genes that have raw read count greater than two in at least four cells. The filtered 155

data matrix is then normalized by dividing each UMI counts by the total UMI counts in 156

each cell and subsequently, these scaled counts are multiplied by the median of the total 157

UMI counts across cells [21]. Top 2000 most variable genes were selected based on their 158

relative dispersion (variance/mean) with respect to the expected dispersion across genes 159

with similar average expression. Transcriptional responses of the resulting genes were 160

represented by the log2(fold-change) of gene expression levels from paired tumor and 161

normal samples. A brief description of the datasets used in this article is summarized in 162

table 1. Figure 2-panel(A) and Panel-B represent box and violin plot of average 163

expression value of samples for each dataset. 164

Detection of DC gene pair 165

Differential coexpression between a gene pair is modeled as a statistical distance 166

between the joint distributions of their expression profiles in a paired sample. Joint 167

distribution is computed by using empirical copula which takes expression profile of a 168

gene as marginals in normal and tumor sample. The K-S distance, computed between 169

the joint distribution is served as differential coexpression score between a gene pair. 170
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Table 1. Tumor types and number of TCGA RNA-seq samples used in the analysis

Sl
No.

Cancer type #matched
pair
samples

1 Breast invasive carcinoma
(BRCA)

112

2 Head and neck squamous cell
carcinoma (HNSC)

51

3 Liver hepatocellular carcinoma
(LIHC)

50

4 Thyroid carcinoma (THCA) 59
5 Lung Adenocarcinoma (LUAD) 58

The score for a gene pair (gi, gj) can be formulated as: 171

DC Copula(gi, gj) = KS dist(e.c(gtumori , gtumorj ), e.c(gnormali , gnormalj )), where KS-dist 172

represents Kolmogorov-Smirnov distance between two joint probability distribution, e.c 173

represents empirical copula, gPi represents the expression profile of gene gi at phenotype 174

P. For each RNA-seq data, we have computed the DC Copula matrix, from which we 175

identify differentially coexpressed gene pairs. 176

To know how the magnitude of differential coexpression is changing with the score 177

we plot the distribution of correlation values of gene pairs with their scores in figure 3. 178

The figure also shows the number of gene pairs having positive and negative correlations 179

in each stage (normal/tumor). It can be noticed from the figure that high scores 180

produce differentially coexpressed gene pairs having a higher positive and negative 181

correlation. We collected the gene pairs having the score greater than 0.56 and plot the 182

correlations values in figure 4. This figure shows plots of all gene pairs having a positive 183

correlation in normal and the negative correlation in tumor (shown in the panel-A) and 184

vice-versa (shown in the panel-(B)). The density of the correlation values is shown in 185

panel-C and panel-D for each case. In figure 5 we create a visualization of top 186

differentially coexpressed gene pairs in BRCA data which shows a strong positive 187

correlation in tumor stage and negative correlation in normal stage. The figure shows a 188

heatmap of binary matrix constructed from the expression data of those gene pairs in 189

tumor and normal stages. When the expression values showing the same pattern for a 190

gene pair it is assumed 1, while 0 representing a non-matching pattern. From the figure, 191

it is quite understandable that most of the entry in the normal stage is 0 (non-match) 192

while in tumor stage is 1 (match). For other datasets, the plots are shown in 193

supplementary figure. 194

Stability performance of CODC 195

To prove the stability of CODC we have performed the following analysis: first, we add 196

Gaussian noise to the original expression data of normal and cancer sample to transform 197

these into noisy datasets. We have utilized BRCA data in this analysis. 198

compute the K-S distance and obtain DC copula matrix for original and noisy 199

datasets. Let us denote these two matrices as D and D′
200

The usual way is to Pick a threshold t for D (or D′) and extract the gene pair (i,j) 201

for which D(i, j)(orD′(i, j)) ≥ t. Now, we first we set t as the maximum of D and D′, 202

and then decreases it continuously to extract the gene pairs. For each t we observe the 203

common gene pairs obtained from D and D′. The rationale behind this is to observe 204

the performance of CODC in noisy data. Figure 6 shows the proportion of common 205

genes selected from D and D′ for different threshold selection. Theoretically, CODC 206

produces D with scores no more than D′ (from sec ). So, it is quite natural that 207

August 5, 2019 7/19

.CC-BY 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under 

The copyright holder for this preprint (which was notthis version posted August 5, 2019. ; https://doi.org/10.1101/725887doi: bioRxiv preprint 

https://doi.org/10.1101/725887
http://creativecommons.org/licenses/by/4.0/


common genes get increased with the lower threshold. From the property of section it 208

can be noticed that the scores in D get preserved in D′. So, it is expected that obtained 209

gene pairs from original data are also preserved in noisy data. Figure 6 shows the 210

evidence for this case. As can be seen from the figure for threshold value above 0.25 211

more than 60% of the gene-pairs are common between noisy and original datasets. 212

Detection of differentially coexpressed modules 213

Detection of DC gene modules is performed by using hierarchical clustering on the DC 214

matrix. Here, the differential coexpression score obtained from each gene pair is treated 215

as the similarity measure between genes. The distance between a gene pair is 216

formulated as: dist copula(gi, gj) = 1−DC copula(gi, gj). For each dataset, modules 217

are extracted using average linkage hierarchical clustering by using the dist copula as a 218

dissimilarity measure between a pair of a gene. For BRCA and HNSC data we have 219

identified 15 modules, for LIHC data 14 modules, for LUAD 21 modules, and for THCA 220

22 modules are identified. For studying the relationship among the modules we have 221

identified module eigengene networks for each dataset. According to [15] module, 222

eigengene represents a summary of the module expression profiles. Here, module 223

eigengene network signifies coexpression relationship among the identified modules in 224

two stages. We create visualizations of the module eigengene network for normal and 225

tumor stages in figure 7. The upper triangular portion of the correlation matrix 226

represents the correlation between module eigengenes for normal samples whereas the 227

lower triangular portion represents the same for tumor samples. This figure shows the 228

heatmap for BRCA, HNSC, and LUAD dataset. It is clear from figure 7 most of the 229

modules show differential coexpression pattern in normal and tumor stage. From 230

panel-A it can be noticed that for BRCA data the modules have a negative correlation 231

in normal stage while showing a strong positive correlation in tumor stage. For HNSC 232

dataset the opposite case is observed. Modules have a strong positive correlation in 233

normal stages while having a negative correlation in tumor stage. In supplementary 234

figures, the visualization of all datasets is given. 235

Comparisons with state-of-the-art 236

For comparison purpose, we have taken three state-of-the-art techniques such as 237

Diffcoex, coXpress, and DiffCoMO and compared them with our proposed method. All 238

these methods are extant DC based, which look for gene modules with altered 239

coexpression between two classes. DiffCoEx performed hierarchical clustering on the 240

distance matrix complied from correlation matrices of two phenotype stages. CoXpress 241

detect correlation module in one stage and find the alternation of the correlation 242

pattern within the module in other class. DiffCoMO uses the multiobjective technique 243

to detect differential coexpression modules between two phenotype stages. We have 244

made two approaches for comparing our proposed method with state-of-the art. We first 245

compare the efficacy of these methods for detecting differential coexpressed gene pairs 246

and next compare the modules identified in each case. For the first case, we take top 247

1000 gene pairs having high DC copula scores from the DC matrix, and perform 248

classification using normal and tumor samples. We take expression ratio of each DC 249

gene pairs from the expression matrix and compiled an n× 1000, where n represents 250

number of samples in each data. Classification is performed by treating normal and 251

tumor samples as class label. A toy example of the comparison is shown in figure 8. 252

Please note that all these methods are meant for differentially coexpressed module 253

detection. So, for comparison, we collected the DC gene pairs before partitioning them 254

in modules. We train four classifiers Boosted GLM, Naive Bayes, Random Forest and 255

SVM with the data and take the classification accuracy. The classification results are 256

August 5, 2019 8/19

.CC-BY 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under 

The copyright holder for this preprint (which was notthis version posted August 5, 2019. ; https://doi.org/10.1101/725887doi: bioRxiv preprint 

https://doi.org/10.1101/725887
http://creativecommons.org/licenses/by/4.0/


shown in the figure 9. It can be noticed from the figure that for most of the dataset 257

proposed method achieved high accuracy compare to the other methods. 258

To assess the performance of all the methods for detecting differential coexpression 259

modules, we check the distribution of correlation score of gene pairs within top modules 260

in normal and tumor samples. Extant methods do a comparison by computing the 261

absolute change in correlation value between a pair of a gene within a module. The 262

problem for this type of comparison is that the score ignores a small change in 263

differentially coexpression. It also fails to consider the gene pair having a low score but 264

and correlation of opposite sign in two conditions. For example, it emphasized the gene 265

pair with correlation value 0.2 in normal and 0.7 in the tumor (here the score is 0.5) 266

rather than the gene pair whose correlation value is -0.2 in normal and 0.2 in the tumor 267

(here the score is 0.4). So, for comparison, it is required to investigate the number of 268

gene pairs having correlation values of an opposite sign over -1 to +1. So, for all 269

identified modules we calculate the correlation score of each gene pairs in two different 270

samples (normal and cancer) and plot frequency polygon in figure 10. To investigate 271

whether the gene pairs within the modules show a good balance in positive and negative 272

correlations, we have computed the correlation score for all the identified modules of 273

DiffCoMO, DiffCoEx, and CoXpress. Figure 10 shows the comparisons of the 274

correlation scores. It is noticed from the figure that gene pairs within the identified 275

modules of the proposed method show good balance in positive and negative correlation 276

values. DiffCoMO and DiffCoEX have also achieved the same, whereas most of the gene 277

pairs within the coXpress modules shifted towards positive correlation in both tumor 278

and normal samples. In figure 10-(b) we have also shown the boxplot of the correlation 279

values obtained from different methods. As can be seen from the figure, the median line 280

of correlation values for the proposed method is nearer to 0, which signifies good 281

distribution of correlation scores in normal and tumor samples over -1 to +1. Thus the 282

proposed method can able to detect differentially coexpressed gene pairs having 283

correlation values well distributed between -1 to +1. 284

Pathway analysis 285

To compare functional enrichment of identified modules we have utilized KEGG 286

pathway analysis. We defined the pathway score of a module as a proportion of gene 287

within the module enriched with a certain pathway. We compare the pathway score for 288

the modules identified for DiffCoEx, DiffCoMO, CoXpress and the proposed method. 289

Figure 11 shows the result. It is clear from the figure that more modules for the 290

proposed method achieved high pathway score compare to other state-of-the-arts. In 291

figure 7 we have shown heatmaps of differentially coexpressed modules for BRCA, 292

HNSC and for LUAD data. The heatmap also provides pathways and G-terms 293

significantly enriched with the modules. The p-value for KEGG pathway enrichment 294

and GO enrichment is computed by using the hypergeometric test with 0.05 FDR 295

corrections. We have utilized GOstats, kegg.db and GO.db R package for that. It can 296

be seen from figure 7, panel-A that some pathways such as ‘Complement and 297

coagulation cascades’,‘Proximal tubule bicarbonate reclamation’,‘Caffeine metabolism’, 298

‘Protein digestion and absorption’, ’Tryptophan metabolism’ and ’ABC transporters’, 299

are strongly associated with the identified modules of BRCA. ’Tryptophan metabolism’ 300

have eminent evidence to linked with malignant progression in breast cancer [22]. In [23] 301

the association between ABC transporters with breast carcinoma has been established. 302

From panel-B it can be seen that Drug metabolism-cytochrome P450 [24] ECM-receptor 303

interaction [25], ’Nitrogen metabolism’, ’Protein digestion and absorption’, are 304

significantly associated with the modules of HNSC data. Some pathways such as ‘Drug 305

metabolism-cytochrome P450’ and ‘ECM-receptor interaction’ have strong evidence 306

associated with the Head and Neck Squamous Cell Carcinomas [24] [25]. Similarly from 307
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panel-C it can notice that pathways such as ’Metabolism of xenobiotics by cytochrome 308

P450’, ’Pancreatic secretion’, ’Linoleic acid metabolism’ is significantly associated with 309

modules of LUAD data. Among them there exist strong evidence for pathways: 310

’Metabolism of xenobiotics by cytochrome P450’, [26], ’Pancreatic secretion’ [27], and 311

’Linoleic acid metabolism’ [28] to be associated with lung carcinoma. 312

Conclusion 313

In this article, we have proposed CODC, a copula based model to detect differential 314

coexpression of genes in two different samples. CODC seeks to identify the dependency 315

between expression patterns of a gene pair in two conditions separately. The Copula is 316

used to model the dependency in the form of two joint distributions. 317

Kolmogorov-Smirnov distance between two joint distributions is treated as differential 318

coexpression score of a gene pair. We have compared CODC with three state-of-the-arts 319

DiffCoex, CoXpress and DiffCoMO in five pan-cancer RNA-Seq data of TCGA. 320

CODC’s ability for delineating minor change of coexpression in two different samples 321

makes it unique and suitable for differential coexpression analysis. The scale-invariant 322

property of copula inherited into CODC to make it robust against noisy expression data. 323

It is advantageous for detecting the minor change in correlation across two different 324

conditions which is the most desirable feature of any differential coexpression analysis. 325

Under the premise that the differential coexpressed genes are likely to be important 326

bio-markers, we demonstrate that CODC identifies those which achieve better accuracy 327

for classifying samples. Moreover, CODC goes a step further from the pairwise analysis 328

of genes and seeks modules wherein differential coexpression are prevalent among each 329

pair of genes. We have also analyzed the identified modules enriched with different 330

biological pathways and highlighted some of these such as: ‘Complement and 331

coagulation cascades’, ’Tryptophan metabolism’, ‘Drug metabolism-cytochrome P450’, 332

‘ECM-receptor interaction’. 333

We have evaluated the efficacy of CODC on 5 different pan-cancer dataset to 334

effectively extract differential coexpression gene pairs. Besides that, we have also 335

compared different methods for detecting differentially coexpressed modules in those 336

data. It is worth mentioning that CODC improves upon the state-of-the-arts. We have 337

also proved that the scale-invariant property of copula makes CODC more robust for 338

detecting differential coexpression in noisy data. 339
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Fig 1. Boxplot showing the dependency between DC Score and K-S distance between
two joint distributions. Panel-A shows the distances for the facets from correlation -1 to
-0.4 and Panel-B shows the same for correlation -0.3 to +1.
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Fig 2. The figure the describes box (panel-A) and violin plots (panel-B) of mean
expression values of the data used.
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Fig 4. The figure shows visualizations of gene pairs having DC copula score greater
than 0.56. Panel-A and Panel-B show the visualization of correlation values of gene pair
having a positive correlation in normal and negative correlation in tumor and vice-versa,
respectively. Panel-C and Panel-D represent the distribution of correlation values
according to panel-A and panel-B respectively.
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Fig 5. The figure shows a heatmap representation of binary matrix constructed from
the expression matrix of top differentially coexpressed gene pairs in normal and tumor
stages. Expression values of a gene pair showing the same pattern are indicated as ’1’
and showing a different pattern is indicated as ’0’ in the matrix. The columns
representing differentially coexpressed gene pairs while rows are the samples of BRCA
data.
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A. Heatmap of differentially coexpressed module ( BRCA data )

B. Heatmap of differentially coexpressed module ( HNSC data )

C. Heatmap of differentially coexpressed module ( LUAD data )

Fig 7. Heatmap of differentially coexpressed modules. Here the heatmap is shown for
module eigengenes.The upper triangular portion of the matrix represents correlations of
module eigengenes in normal samples whereas lower triangular portion signifies the
same for tumor samples. Left and right sidebar of the heatmap represents -log(p-value)
of significantly enriched GO-terms and pathway, respectively. Upper annotation bar of
the heatmap shows the DC copula score of the module. Panel-A shows the heatmap for
BRCA data, whereas panel-B and Panel-C show heatmap HNSC and LUAD data.
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Fig 8. A toy example of performing classification on differentially coexpressed gene
pairs. From the DC matrix top gene pairs are selected based on the DC score.
Expression ratio is computed for each gene pairs for normal and tumor samples. The
final matrix is then transposed and subsequently, classification is performed using
normal and tumor sample ass class label.
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Fig 9. Comparison of classification accuracy for five datasets with four classifiers BGM,
Naive-Bayes, Random Forest and SVM.
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Fig 10. Distribution of correlation scores of the gene pairs in normal and tumor stage.
Each facet shows the distribution for the different method.
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Fig 11. Distribution of pathway score for each of the comparing method. The figure
shows the fraction of identified modules having a pathway score above a certain value.
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