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SUMMARY 14 

Metastasis is the main cause of death in cancer patients but remains a poorly understood 15 

process. Small cell lung cancer (SCLC) is one of the most lethal and most metastatic types of 16 

human cancer. SCLC cells normally express neuroendocrine and neuronal gene programs but 17 

accumulating evidence indicates that these cancer cells become relatively more neuronal and less 18 

neuroendocrine as they gain the ability to metastasize. Here we show that mouse and human 19 

SCLC cells in culture and in vivo can grow cellular protrusions that resemble axons. The 20 

formation of these protrusions is controlled by multiple neuronal factors implicated in 21 

axonogenesis, axon guidance, and neuroblast migration. Disruption of these axon-like 22 

protrusions impairs cell migration in culture and inhibits metastatic ability in vivo. The co-option 23 

of developmental neuronal programs is a novel molecular and cellular mechanism that 24 

contributes to the high metastatic ability of SCLC.   25 
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INTRODUCTION 26 

Metastases are a major cause of cancer-related morbidity and mortality. By the time cancer 27 

cells leave their primary site and spread to distant sites, they have acquired the ability to migrate 28 

and invade, as well as characteristics that enable them to survive and proliferate within new 29 

microenvironments. These phenotypes are likely driven by changes in gene expression and 30 

epigenetic programs that allow cancer cells to overcome the many hurdles that normally 31 

constrain the metastatic process. Despite recent advances, our understanding of the principles 32 

and mechanisms underlying metastasis remains incomplete, including how changes in molecular 33 

programs can translate into selective advantages that enable cancer cells to spread to other organs 34 

(Fidler, 2003, Lambert et al., 2017, Obenauf and Massague, 2015). 35 

Small cell lung carcinoma (SCLC) is a high-grade neuroendocrine cancer that accounts for 36 

~15% of all lung cancers and causes over 200,000 deaths worldwide each year (Sabari et al., 37 

2017). The ability of SCLC cells to leave the primary tumor and establish inoperable metastases 38 

is a major cause of death and a serious impediment to successful therapy (Farago and Keane, 39 

2018, van Meerbeeck et al., 2011). SCLC is one of the most metastatic human cancers, with over 40 

60% of SCLC patients presenting with disseminated disease at the time of diagnosis, often 41 

including liver, bone, brain, and secondary lung metastases (Nakazawa et al., 2012, Riihimaki et 42 

al., 2014). Molecular analyses to understand metastatic progression of human cancer are often 43 

limited by difficulties in accessing tumor samples at defined stages. This problem is especially 44 

true for SCLC, since patients with metastatic disease rarely undergo surgery (Barnes et al., 45 

2017). Genetically engineered mouse models of human SCLC recapitulate the genetics, 46 

histology, therapeutic response, and highly metastatic nature of the human disease (Gazdar et al., 47 

2015, Kwon and Berns, 2013, Rudin et al., 2019). These genetically engineered mouse models 48 
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recapitulate cancer progression in a controlled manner and allow for the isolation of primary 49 

tumors and metastases directly from their native microenvironment. Recently, we and others 50 

have used mouse models to uncover gene expression programs that are enriched in SCLC 51 

metastases (Denny et al., 2016, Semenova et al., 2016, Wu et al., 2016, Yang et al., 2018). 52 

While SCLC cells display features of neuroendocrine cells, the gene expression programs in 53 

metastatic SCLC include not only genes normally expressed in pulmonary neuroendocrine cells 54 

but also those expressed in neurons (Carney et al., 1982, Cutz, 1982, Broers et al., 1987, 55 

Anderson et al., 1988). Higher levels of the neuronal markers such as NSE (neuron-specific 56 

enolase) correlate with shorter survival and more metastatic disease in SCLC patients (Carney et 57 

al., 1982, Dong et al., 2019, van Zandwijk et al., 1992). Broad neuronal gene expression 58 

programs are enriched in metastases from mouse models of SCLC, however, whether SCLC 59 

cells actually gain neuronal characteristics and whether neuronal features are key regulators of 60 

metastatic ability has not been previously characterized (Denny et al., 2016, Wu et al., 2016, 61 

Yang et al., 2018, Böttger et al., 2019). 62 

Here we find that the metastatic state of SCLC is linked to the growth of protrusions that 63 

resemble axons. These axon-like growths increase the ability of SCLC cells to migrate and 64 

metastasize, thus representing a cellular mechanism that enhances the metastatic ability of SCLC 65 

cells that have transitioned to a more neuronal cell state.  66 
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RESULTS 67 

SCLC cells can form long cellular protrusions in culture and in vivo 68 

To investigate SCLC migration, we developed an assay in which SCLC cells, which 69 

classically grow in culture as floating spheres or aggregates, are grown as a monolayer under 70 

Matrigel ((Denny et al., 2016) and Methods). Unexpectedly, we noticed that cells from some 71 

SCLC cell lines (N2N1G, 16T, 6PF) derived from the Rb f/f;p53f/f (DKO) and Rb f/f;p53 f/f;p130 f/f 72 

(TKO) genetically engineered mouse models form long cellular protrusions into cell-free spaces 73 

(Figure 1A-B). To determine whether these structures specifically project into cell-free areas or 74 

they also exist within monolayers, we cultured a minor fraction of fluorescently-labeled, 75 

GFPpositive SCLC cells with control SCLC cells. We found that SCLC cells also form protrusions 76 

when they are in close contact with surrounding cancer cells (Figure S1A). Similar mixing 77 

experiments performed in subcutaneous allografts also documented the growth of protrusions by 78 

SCLC cells in vivo (Figure 1C-D). Finally, similar structures also extend from SCLC micro-79 

metastases in the liver in the autochthonous TKO mouse model and after intravenous 80 

transplantations of SCLC cells (Figure S1B-C).  81 

Human SCLC patient-derived xenografts (PDXs) recapitulate many important features of the 82 

human disease (e.g. (Gardner et al., 2017, Saunders et al., 2015)). To label rare cancer cells 83 

within human SCLC PDXs and identify whether they had protrusions in unperturbed tumors, we 84 

used DiI tracing. DiI is a lipophilic dye that diffuses within cell membranes and has been widely 85 

employed to label projections from individual neurons (Heilingoetter and Jensen, 2016, Mufson 86 

et al., 1990). Protrusions from SCLC cells were easily identifiable in two out of three PDX 87 

models (Figure 1E-F). In the 2D monolayer culture system, not all human SCLC cell lines 88 

formed protrusions, but NCI-H446 cells formed long protrusions into cell-free areas analogous to 89 
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those that formed in human SCLC PDX (Figure S1D-E). NCI-H446 cells also formed 90 

protrusions when grown as xenografts (Figure S1F). 91 

These observations indicated that at least a subset of SCLC cells, which are often described 92 

as being “small round blue” cells, can develop long cellular protrusions. We next sought to 93 

investigate the nature of these protrusions and uncover their possible role in metastatic SCLC. 94 

SCLC protrusions resemble axons and SCLC cells with protrusions migrate similar to 95 

neuroblasts 96 

SCLC cells express typical neuroendocrine genes but also neural and neuronal genes (Carney 97 

et al., 1982, Cutz, 1982). This observation led us to investigate whether the protrusions were 98 

similar to neuronal axons or dendrites. We identified a list of 70 genes classically associated in 99 

the scientific literature with axonogenesis and axon guidance, and found that many of these 100 

genes are expressed in at least subsets of primary human SCLCs (George et al., 2015) 101 

(Table S1). Thus, the gene expression programs controlling axonal growth in neuronal cells are 102 

also present in SCLC cells. We previously performed gene expression analyses on purified 103 

cancer cell from primary tumors and metastases from two mouse models of SCLC (Denny et al., 104 

2016, Yang et al., 2018). In these studies, we found a general increase in the expression of 105 

neuronal gene expression programs during tumor progression. Indeed, almost all (69/70) of the 106 

selected candidate genes were expressed in metastatic SCLCs, indicating that murine SCLC 107 

tumors and cell lines derived from these tumors represent a tractable system with which to 108 

investigate neuronal programs in SCLC (Table S2). Pathway and process enrichment analysis on 109 

these 69 genes confirmed their connection with axon guidance, neuron migration, and nervous 110 

system development (Table S3). 111 

.CC-BY 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under 

The copyright holder for this preprint (which was notthis version posted August 6, 2019. ; https://doi.org/10.1101/726026doi: bioRxiv preprint 

https://doi.org/10.1101/726026
http://creativecommons.org/licenses/by/4.0/


7 

To further investigate the nature of these SCLC protrusions, we assessed their expression of 112 

canonical axonal and dendritic proteins. The protrusions that form from murine and human 113 

SCLC cell lines were uniformly positive for the expression of neuron-specific class III beta-114 

tubulin (Tuj1). More importantly, these protrusions were positive for the axonal marker TAU 115 

while expression of the dendritic marker MAP2 was undetectable (Figure 2A-B and Figure S2A-116 

C). Tuj1positive, TAUpositive protrusions were also observed in vivo emanating from SCLC cells in 117 

the liver of TKO mice (Figure S3A). Furthermore, ~37% (29/79) of human primary SCLC 118 

tumors stained moderately or strongly positive for TAU (Figure S3B). Together, these 119 

observations showed that SCLC tumors express axonal markers in different contexts and 120 

suggested that the protrusions observed on SCLC cells are axon-like. 121 

We quantified the length of protrusions and found that they were often 5 to 10 times longer 122 

than the diameter of the cell body (~8 µm) (Figure 2C). The length and the frequency of these 123 

axon-like protrusions suggested that they might influence the behavior of SCLC cells. We 124 

investigated and quantified the features of SCLC cells with and without protrusions using time-125 

lapse microscopy. Initial observations of mouse SCLC cells showed that the protrusions were 126 

very dynamic (Figure 2C and Movie S1). In these movies, we noticed that the protrusions 127 

resembled cellular processes that have been described in neuroblasts and with the movement of 128 

SCLC cells along these protrusions reminiscent of neuroblast chain migration (Oudin et al., 129 

2011, Lois et al., 1996, Zhou et al., 2015). Indeed, when we quantified the movement of SCLC 130 

cell along protrusions, SCLC cell lines that form protrusions (16T and N2N1G cell lines) 131 

displayed increased saltatory activity compared to SCLC cells that do not form protrusions 132 

(KP22 cell line) (Figure 2D-H and Movies S2-4). The velocity of SCLC cells that form 133 
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protrusions was also greatly increased compared to cells that do not form protrusions 134 

(Figure S2D). 135 

Together, these results indicate that SCLC cells can generate axon-like protrusions and that 136 

these projections facilitate migration in a manner that is qualitatively similar to neuroblast 137 

migration during brain development. 138 

Loss of Axon-like protrusions inhibits the migration of SCLC cells 139 

To investigate the functional importance of these axon-like protrusions, we focused on 13 140 

genes (out of the 69 genes selected above) that encode for proteins involved in diverse aspects of 141 

axon formation, axon guidance, and neuronal migration (Table S4). These 13 genes are all 142 

expressed in at least a subset of human SCLC tumors (Figure S4A) (data from (George et al., 143 

2015)). We excluded gene families for which functional overlap and compensatory mechanism 144 

were likely. STRING analysis and literature searches confirmed that these 13 candidates had a 145 

significant connection with biological processes related to neurogenesis and the regulation of 146 

neuron projection development but that the proteins were not all directly connected and thus 147 

likely contribute to distinct aspects of these biological processes (Figure S4B and Table S5). In 148 

the 25 human SCLC cell lines analyzed in the Cancer Dependency Map project, knock-down of 149 

these 13 genes rarely affected the expansion of SCLC cells in culture, consistent with these genes 150 

influencing aspects of cell physiology not related to the cell cycle (Table S6 and Figure S4C-D). 151 

We first knocked-down each of these genes with two shRNAs in a murine SCLC cell line 152 

derived from a lymph node metastasis (N2N1G). We confirmed stable knockdown by RT-qPCR 153 

(Table S7) and quantified the development of protrusions in the monolayer culture assay. Knock-154 

down of 11 of the 13 genes significantly reduced the number of protrusions with at least one 155 
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shRNA (Figure 3A-B and Figure S5A). The observation that the knock-down of multiple factors 156 

normally implicated at distinct steps of axonal growth reduces the development of the 157 

protrusions from SCLC cells further bolsters the notion that these protrusions are similar to 158 

neuronal axons. Knock-down of the many genes involved in axon formation, axonal guidance, 159 

and neuronal migration also reduced cell migration in the same assay (Figure 3B). Quantification 160 

of cell migration showed that inhibition of migration correlated with loss of the axon-like 161 

protrusions (Figure 3C-D). We validated the knock-down for two of the top candidates, Gap43 162 

and Fez1 genes, by immunoblot for the corresponding proteins in N2N1G cells (Figure S5B-C). 163 

We further validated the effects of knocking down these two factors on the growth of protrusions 164 

and cell migration in a second SCLC cell line (16T; Figure 3E-J and Figure S5D-E). 165 

Together, these data show that SCLC cells with axon-like protrusions migrate in culture 166 

similar to what has been described for neuroblasts and that disruption of these protrusions by 167 

knocking-down a variety of genes involved in axonogenesis and neuronal migration also affects 168 

SCLC migration. 169 

Knock-down of genes associated with the formation of protrusions results in decreased 170 

metastatic potential 171 

The link between axon-like protrusions and migration in vitro led us to investigate whether 172 

these axon-like protrusions promote the metastatic ability of SCLC cells in vivo. In support of 173 

this idea, we found that the expression of neuron-specific class III beta-tubulin and TAU was 174 

barely detectable in non-metastatic tumors in the lungs of TKO mice 3 months after cancer 175 

initiation while a majority of later stage tumors stained strongly positive for both proteins 176 

(Figure S6A-B). 177 

To test the role of these protrusions in the metastatic process in vivo, we investigated whether 178 
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SCLC cells with Gap43 or Fez1 knocked-down had reduced metastatic ability. The products of 179 

these genes are thought to regulate axonal development in entirely distinct manners but knock-180 

down of each reduced the formation of protrusions and cell migration in culture. We first 181 

assessed whether Gap43 and Fez1 knock-down reduced the metastatic ability of mouse N2N1G 182 

SCLC cells after transplanting control and knock-down cells into recipient mice and assessing 183 

metastasis formation 4-5 weeks after intravenous injection. Knock-down of each of these pro-184 

protrusion factors significantly reduced the number of metastases as assessed by tumor counts at 185 

the surface of the liver (Figure S7A-B). To determine whether GAP43 and FEZ1 are simply 186 

required for tumor growth in vivo, we transplanted Gap43 and Fez1 knock-down cells 187 

subcutaneously and quantified tumor growth. Knock-down of these genes had no effect on 188 

subcutaneous tumor growth suggesting that the effects on metastatic ability likely represent the 189 

disruption of phenotypes uniquely associated with the metastatic process (Figure S7C). We 190 

repeated these experiments with two independent shRNAs for each gene in both N2N1G and 191 

16T SCLC cells, which confirmed that Gap43 and Fez1 knock-down inhibits the formation of 192 

liver metastases after intravenous injection of SCLC cells (Figure 4A-H and Figure S7D-E). 193 

The absence of growth defects in subcutaneous tumors following Gap43 and Fez1 knock-194 

down suggested that these genes may affect earlier steps of the metastatic cascade. To test this, 195 

we performed similar intravenous transplant experiments but quantified the presence of SCLC 196 

cells in the liver 2 days after injection (Figure 4I). Quantification of GFPpositive cancer cells in the 197 

liver by flow cytometry documented a significant reduction in metastatic seeding by SCLC cells 198 

with Gap43 and Fez1 knocked-down (Figure 4J-M and Figure S7F-I). Thus, loss of genes 199 

associated with the formation of axon-like protrusions affects early metastatic seeding of SCLC 200 

cells in the liver, which ultimately translates to reduced metastatic burden.  201 
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DISCUSSION  202 

While metastasis remains a major cause of morbidity and mortality in SCLC patients, its 203 

underlying mechanisms remain poorly understood and no therapeutic strategies exist to prevent 204 

or target it. Here we investigated the function of neuronal gene expression programs in 205 

metastatic SCLC. We found that SCLC cells can grow axon-like protrusions and that these 206 

protrusions contribute to the migratory and metastatic phenotypes of these cells. This study 207 

identifies a cellular mechanism by which a neuroendocrine-to-neuronal transition promotes 208 

metastasis of SCLC cells. 209 

The expression of neuronal factors in SCLC has been known for more than three decades 210 

and has been used as a marker for disease progression (Carney et al., 1982, Cutz, 1982, Broers et 211 

al., 1987, Anderson et al., 1988). However, whether neuronal programs in SCLC cells play a 212 

direct role in SCLC progression had not been rigorously investigated. We uncovered the growth 213 

of axon-like protrusions as one functional aspect of neuronal differentiation in SCLC and 214 

provide data to support a role for these protrusions in migration and metastasis. It is likely that 215 

other phenotypes usually associated with neurons beyond these axon-like protrusions also 216 

contribute to the expansion and the spread of SCLC cells. Beyond facilitating metastatic seeding 217 

to the liver, these axon-like protrusions may have other functions, including helping SCLC cells 218 

migrate within the primary tumor, intravasate into the bloodstream, and move within the 219 

parenchyma during metastatic expansion (Shibue et al., 2012). Future investigation of the roles 220 

of axon-like protrusions in SCLC will likely benefit from additional genetic analyses as well as 221 

high-resolution in vivo imaging methods. Recent evidence suggests that several other human 222 

tumor types also increase the expression of neuronal programs as they become more metastatic, 223 

especially to the brain (Wingrove et al., 2019). It will be important for future studies to 224 
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determine if aspects of the neuronal program also contribute to the striking ability of SCLC cells 225 

to seed and expand in the brain (Lukas et al., 2017). 226 

Our data indicate that SCLC metastasis is facilitated by the development of axon-like 227 

protrusions, but other molecular mechanisms certainly also increase the probability that a cancer 228 

cell will successfully overcome all the hurdles that limit the development of tissue destructive 229 

metastases. For instance, we found that knock-down of Dcx (coding for Doublecortin) has little 230 

to no effect on the number of protrusions but strongly inhibits migration in our 2D Matrigel 231 

assay (Figure 3A-B), thus suggesting that Doublecortin promotes SCLC migration independent 232 

from any impact of protrusion formation.  233 

The formation of protrusions in SCLC cells is controlled by pathways previously implicated 234 

in the formation of axons and the migration of neuronal cells but it is unclear how the expression 235 

of these pro-protrusion genes is coordinated. We and others have identified a role for the NFIB 236 

transcription factor in SCLC metastasis and the induction of gene programs linked with 237 

axonogenesis and neuronal migration (Denny et al., 2016, Semenova et al., 2016, Wu et al., 238 

2016). However, overexpression of NFIB in naturally NFIBlow cell lines is not sufficient to 239 

induce the growth of protrusions in SCLC cells (unpublished observations). Thus, the upstream 240 

factors that control these neuronal programs in SCLC remain to be characterized. Accumulating 241 

evidence indicates the existence of several subtypes of SCLC, which are defined by the 242 

expression of key transcription factors (Rudin et al., 2019). The murine cell lines used in this 243 

study are of the “SCLC-A” subtype (driven by the transcription factor ASCL1) but the human 244 

cell line NCI-H446 and the PDX model LU86 (Saunders et al., 2015) belong to the “variant” 245 

subtype (SCLC-N, driven by the transcription factor NEUROD1). This suggests that the ability 246 

to grow protrusions may exist across subtypes. Possibly a combination of genetic and epigenetic 247 
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factors contributes to the ability of SCLC to grow protrusions. Adhesion molecules and other 248 

factors in the tumor microenvironment are also likely to contribute to the formation of 249 

protrusions in vivo (Guo et al., 2000). 250 

Could an understanding of the molecular and cellular processes related to axon-like 251 

protrusions in SCLC cells ultimately be translated into clinical benefit for SCLC patients? 252 

Previous studies on SCLC have targeted the CXCR4 chemokine receptor due to its role in cell 253 

adhesion and migration and its expression in SCLC cells (Burger et al., 2003, Teicher, 2014, 254 

Taromi et al., 2016). CXCR4 also contributes to the formation of axon-like protrusions (Figure 255 

3). In a recent clinical trial in SCLC patients, CXCR4 inhibition was well tolerated but this 256 

inhibition did not significantly reduce disease progression (Salgia et al., 2017). Mechanisms that 257 

drive the ability of cancer cells to overcome early barriers of metastatic seeding will likely need 258 

to be employed in specific settings where inhibition of the metastatic process would logically 259 

provide clinical benefit. For example, in patients with resectable SCLC, inhibition of pro-260 

metastatic pathways in the neo-adjuvant and/or adjuvant setting could reduce the frequency or 261 

multiplicity of metastatic relapse.  262 

More generally, the transition from a neuroendocrine state to a state where neuroendocrine 263 

differentiation is decreased but neuronal differentiation is increased may be related to the 264 

exceptional plasticity of SCLC cells (reviewed in (Yuan et al., 2019)). Epithelial-to-265 

mesenchymal transition (EMT) is thought to contribute to migration, metastasis, and resistance 266 

to treatment in many cancer contexts and may play a role in SCLC (Allison Stewart et al., 2017, 267 

Krohn et al., 2014, Canadas et al., 2014, O'Brien-Ball and Biddle, 2017, Singh and Settleman, 268 

2010). Vascular mimicry (or epithelial-to-endothelial transition (EET) (Yuan et al., 2019)) may 269 

also contribute to tumor growth and response to treatment in SCLC (Williamson et al., 2016). 270 
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Similarly, Notch-induced dedifferentiation to a non-neuroendocrine state can generate an intra-271 

tumoral niche that protects neuroendocrine SCLC cells (Lim et al., 2017). Based on our results 272 

and recent observations in other cancers (Wingrove et al., 2019), we propose that an epithelial-273 

to-neuronal transition contributes to key aspects of cancer metastasis. Further characterization of 274 

this neuronal state in both neuroendocrine and non-neuroendocrine cancers is likely to uncover 275 

novel mechanisms of cancer progression and may ultimately offer new insight into metastasis-276 

blocking strategies in the clinic.   277 
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MATERIAL AND METHODS 278 

Mouse model 279 

All experiments were performed in accordance with Stanford University Institutional Animal 280 

Care and Use Committee guidelines. Trp53flox, Rb1flox, p130flox, and R26mTmG mice have been 281 

described (Denny et al., 2016, Muzumdar et al., 2007). Tumors were initiated by inhalation of 282 

Adeno-CMV-Cre (University of Iowa Vector Core, Iowa city, Iowa) as described in (Denny et 283 

al., 2016), following a published protocol (DuPage et al., 2009). 284 

Cell culture 285 

All murine and human SCLC cell lines used in this study grow as floating aggregates and were 286 

cultured in RPMI with 10% FBS, 1×GlutaMax, and 100 U/mL penicillin-streptomycin (Gibco, 287 

Thermo Fisher Scientific, Waltham, MA). Human cell lines were originally purchased from 288 

ATCC and cell identities were validated by Genetica DNA Laboratories using STR analysis. 289 

NJH29 SCLC cells were derived from a patient-derived xenograft (PDX), which has been 290 

described (Jahchan et al., 2013). The LU86 and LU102 models were obtained from Stemcentrx 291 

(Saunders et al., 2015). The JHU-LX102 (LX102) model was a kind gift from Dr. Watkins 292 

(Leong et al., 2014). The murine cell lines were described (Denny et al., 2016, Yang et al., 293 

2018). Briefly, 16T and KP22 cells are from individual primary tumors from the lungs of Rb/p53 294 

DKO mice. N2N1G cells were derived from a lymph node metastasis in an Rb/p53/p130 TKO; 295 

Rosa26mTmG mouse. 6PF cells were derived from metastatic cells in the plural fluid in an 296 

Rb/p53/p130 TKO; Rosa26mTmG mouse. All cell lines were confirmed to be mycoplasma-297 

negative (MycoAlert Detection Kit, Lonza, Basel, Switzerland). 298 

In vitro 2D Matrigel migration and protrusion assay 299 
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Silicone inserts (ibidi 80209, Grafelfing, Germany) were attached to wells in 12-well (up to two 300 

inserts) or 24-well (one insert) plates pre-coated with poly-D-lysine for 15 minutes (Sigma-301 

Aldrich, St. Louis, MO). ~8x105 cells were seeded to each chamber of the insert in 100 µL 302 

resulting in cells at ~80-90% confluency. After at least 6 hours, the inserts were carefully 303 

removed and 0.75-1 mL of a 1:1 Matrigel (Corning, Corning, NY)-cell culture media mix was 304 

slowly added to cover each well. 1 mL of cell culture media was added on top of the solidified 305 

Matrigel to prevent drying. For quantification of cell migration and protrusions, the number of 306 

cells and the number of protrusions were counted in the gap at 10x under the microscope. The 307 

time points (between 36 hours and 96 hours) were dependent on the growth rate of the cell 308 

populations. 309 

Live imaging of cell migration and quantification 310 

SCLC cells were plated as described in the 2D Matrigel migration assay and cultured for 24 311 

hours before imaging. Then 10x DIC images were collected every 15 minutes for 25 hours using 312 

a Zeiss LSM 710 confocal microscope (Zeiss, Oberkochen, Germany) with a live imaging 313 

chamber set to 37°C, 5% CO2. To quantify the time-lapse movies, we examined nuclear 314 

movement and process length (as described in (Oudin et al., 2011)) using the FIJI software (NIH, 315 

Bethesda, USA). The position of the cell nucleus was tracked in each frame using the Manual 316 

Tracking plugin to obtain the distance migrated by the nucleus per frame and the average cell 317 

velocity over the entire movie. Neuronal cell migration occurs via three steps: the cell extends a 318 

leading process, the nucleus translocates into the leading process via nucleokinesis, and the cell 319 

loses its trailing process. To quantify translocation events, we quantified the fractions of steps 320 

taken by each that were over 8um, which represents the length of one cell body and a nuclear 321 

translocation event. The process length was calculated by tracing a line from the cell body to the 322 
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tip of the leading process about 6hrs into the movie. Over 30 cells were tracked and analyzed per 323 

condition.  324 

Immunostaining of cells in cultures 325 

Cells were fixed with 4% PFA for 15 minutes, permeabilized with 0.1% Triton and stained for 326 

Tuj1 (1:500, BioLegend 801213, San Diego, CA), TAU (1:1000, Dako A0024, Santa Clara, 327 

CA), and MAP2 (1:500, EMD Millipore AB5622, Burlington, MA), and with a goat anti-rabbit 328 

secondary antibody (Invitrogen). Membrane GFP was stained (Abcam ab13970, Cambridge, 329 

UK) to mark SCLC cells and the expression of the other neuronal markers were checked using a 330 

fluorescence scope (Zeiss LSM 880). Staining was quantified by counting directly under the 331 

microscope (at 40x magnification). 332 

Whole mount immunofluorescence staining and imaging of tumors 333 

Detailed methods for whole mount immunofluorescence staining have been described (Yang et 334 

al., 2018). Subcutaneous tumors with 5-10% GFPpositive labeled cells mixed with non-GFP 335 

labeled SCLC tumor cells were dissected and were fixed in 4% paraformaldehyde and sectioned 336 

with a vibrating blade microtome at 500 µm thickness. Tumor slices were optically cleared using 337 

the CUBIC method, comprised of a three-hour incubation at room temperature in CUBIC 1 338 

reagent and long-term storage in CUBIC 2 at 4ºC (Susaki et al., 2015). Sections were imaged 339 

using a Zeiss LSM 780 laser scanning confocal microscope. 340 

For DiI staining and imaging, subcutaneously transplanted human SCLC xenograft were 341 

harvested after 3 weeks of growth and cut into 500mm ~1 cm thick slices. Tumor pieces were 342 

stained with the red fluorescent tracer DiI (D282, Thermo Fisher Scientific) in a spot-wise 343 

manner, incubated in 37°C, 5% CO2 chamber for 20min and washed 3 times with PBS+10%FBS 344 
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to remove excess DiI before imaging. Images were collected using a Leica SP5 scope (Leica, 345 

Buffalo Grove, IL) with a water immersion lens.  346 

Histology and immunohistochemistry 347 

Mouse tumor samples were fixed in 4% formalin and paraffin embedded. Hematoxylin and 348 

Eosin (H&E) staining was performed using standard methods. For immunohistochemistry, we 349 

used antibodies to GFP (Abcam ab6673), UCHL1 (Sigma-Aldrich HPA005993), Tuj1 350 

(BioLegend 801213), and TAU (Dako A0024). 351 

Tissue microarrays (LC818a, US Biomax, Rockville, MD) were stained for TAU and scored by a 352 

board-certified pathologist on a three point scale as follows: 0 = negative or weak staining of less 353 

than 10% cells, 1 = moderate intensity staining, 2 = strong intensity staining. 354 

Candidate gene knockdown 355 

Stable knockdown of candidate genes was performed using lentiviral pLKO vectors and 356 

puromycin-resistance selection (Sigma-Aldrich). For lentivirus production, 7.5×106 HEK293T 357 

cells were seeded into 10 cm dishes and transfected with the vector of interest using PEI 358 

(Polysciences 23966-2, Warrington, PA) along with pCMV-VSV-G (Addgene #8454) envelope 359 

plasmid and pCMV-dR8.2 dvpr (Addgene #8455) packaging plasmid. The medium was changed 360 

24 hours later. Supernatants were collected at 36 hours and 48 hours, passed through a 40 µm 361 

filter and applied at full concentration to target cells. Two days after transduction cells were 362 

selected with Puromycin (2 µg/mL, Thermo Fisher Scientific, Waltham, MA) for at least 1 week. 363 

Knockdown was confirmed by RT-qPCR as in (Denny et al., 2016) and immunoblot analysis. 364 

Table S7 shows the sequences of the oligonucleotides used to knock down the candidate genes. 365 

Note that the expression of the shRNAs targeting GFP partially decreased GFP expression, but 366 
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cancer cells were still GFPpositive and could be well-detected by flow cytometry. 367 

Immunoblot analysis 368 

GAP43 (Abcam), FEZ1 (Cell Signaling, Danvers, MA), and HSP90 (BD Transduction 369 

Laboratories, San Jose, CA) antibodies were used to confirm the knockdown of each gene at the 370 

protein level. Briefly, denatured protein samples were run on 4-12% Bis-Tris gels (NuPage, 371 

Thermo Fisher Scientific, Waltham, MA) and transferred onto PVDF membrane. Primary 372 

antibody incubations were followed by secondary HRP-conjugated anti-mouse (Santa Cruz 373 

Biotechnology, Santa Cruz, CA) and anti-rabbit (Santa Cruz Biotechnology) antibodies and 374 

membranes were developed with the ECL2 Western Blotting Substrate (Pierce Protein Biology, 375 

Thermo Fisher Scientific). 376 

Transplantation assays 377 

For long-term metastasis assays, 3x104 of N2N1G cells or 1x105 of 16T cells were injected 378 

intravenously injected into the lateral tail vein of NOD.Cg-PrkdcscidIl2rgtm1Wjl/SzJ (NSG) mice 379 

(The Jackson Laboratories, Bar Harbor, ME - Stock number 005557). Mouse livers were 380 

harvested at 4-6 weeks after injection. Tumor number was quantified by directly counting on 381 

liver surface and also quantified by counting tumor number or areas on the H&E sections. For 382 

subcutaneous injection, 5x104 cells were resuspended in 100 µL PBS and mixed with 100 µL 383 

Matrigel (Corning, 356231, Corning, NY) with 4 injection sites per mouse. For both 384 

subcutaneous and intravenous injections, SCLC cells were transplanted into age-matched 385 

gender-matched NSG mice. For short-term tumor seeding assays, 2x107 of N2N1G cells or 386 

5x107 of 16T cells were transplanted intravenously into the lateral tail vein of NSG mice. 387 

N2N1G, derived from Rb/p53/p130 TKO; Rosa26mTmG mouse, has endogenous GFP expression 388 

and 16T, derived from Rb/p53 TKO mouse, was stained by live cell stain CFSE (Thermo Fisher 389 
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Scientific, C34554) and washed before intravenous injection. 2 days after transplantation, mouse 390 

livers were harvested, digested into single cell suspension and analyzed by FACS for the 391 

percentage of GFPpositive cancer cells. FACS data were analyzed by FlowJo.  392 

Pathway and process enrichment analysis 393 

Metascape (metascape.org) was used to analyze the lists of genes involved in axonogenesis and 394 

neuronal migration. Metascape integrates data from KEGG Pathway, GO Biological Processes, 395 

Reactome Gene Sets, Canonical Pathways and CORUM (Zhou et al., 2019). The analysis of 396 

interactions between the top 13 candidate genes was performed using STRING (string-db.org) 397 

(Szklarczyk et al., 2018). The analysis of dependency upon knock-down was performed using 398 

the in the Cancer Dependency Map project (depmap.org/portal/) in February 2019 with the 399 

Combined RNAi  (Broad, Novartis, Marcotte) data (Tsherniak et al., 2017). 400 

Statistics 401 

Statistical significance was assayed with GraphPad Prism software. The statistical tests used, the 402 

numerical p-values, and the number of independent replicates is indicated in the figure legends.  403 
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A B

F

Figure 1:  SCLC cells grow protrusions in culture and in vivo
A. Representative bright field images of three mouse SCLC (mSCLC) cell lines (KP22, N2N1G, and 16T). Cells extend 
protrusions into a cell-free scratch generated in monolayer cultures. Protrusions are shown with white arrowheads. Scale 
bars, 100 μm. N=3 replicates. 
B. Quantification of the number of protrusions that form from each mSCLC cell line as cultured in (A). Each symbol 
corresponds to the average of two technical replicates of an independent experiment. Mean +/- s.d. is shown, unpaired 
t-test.
C. Representative images of mSCLC cells (6PF and 16T) growing as subcutaneous tumors. At the time of injection, 10% 
SCLC cells stably expressing membrane-GFP (mGFP) were mixed with 90% GFP-negative SCLC cells. Immunostaining 
for GFP generates a brown signal. Examples of protrusions are shown with white arrowheads. Hematoxylin (blue) stains 
the nuclei of the cells. (N=5/allograft, from one biological replicate). Scale bar, 20 μm.
D. Quantification of (C). Each symbol represents an allograft tumor (N=4/allograft, from one biological replicate). Mean +/- 
s.d. is shown.
E. Representative images of human SCLC (hSCLC) patient derived xenografts growing subcutaneously (LX102, LU86, 
and LU102 models). Tumors were injected with the red fluorescent tracer DiI. Protrusions are shown with white 
arrowheads. Scale bar, 20 μm.
F. Quantification of (E). Each symbol represents a xenograft tumor (N=6/xenograft, from one biological replicate). Mean 
+/- s.d. is shown, unpaired t-test.
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A

Figure S1 (related to Figure 1):  SCLC cells grow protrusions in culture and in vivo
A. Representative images of mSCLC N2N1G and 6PFG cells growing in dense culture from N=3 independent 
experiments. At the time of plating, 3-5% cells expressing membrane-GFP (mGFP, green fluorescence) were mixed and 
co-cultured with 95-97% SCLC cells that do not expressing GFP. Examples of protrusions are shown with white 
arrowheads. Scale bars, 100 μm.
B. Representative images of mSCLC cells in the liver from the autochthonous TKO;mTmG model from N= 2 mice . Images 
were taken from micro-metastases. Immunostaining for GFP generates a brown signal. Protrusions are shown with white 
arrowheads. Hematoxylin (blue) stains the nucleus of cells. Scale bar, 20 μm.
C. Representative images of liver sections from mice after intravenous injection of mSCLC N2N1G cells from N=3 mice. 
Immunostaining for the neuroendocrine marker UCHL1 (brown) outlines the shape of cells. Protrusions are shown with 
white arrowheads. Scale bars, 50 μm.
D. Representative bright field images of human SCLC (hSCLC) NCI-H446 cells when cells are allowed to grow into a 
cell-free scratch generated in monolayer cultures under Matrigel. Protrusions are shown with white arrowheads. Scale 
bars, 40 μm. 
E. Quantification of (D). N=3 independent experiments. Mean +/- s.d. is shown.
F. Representative whole mount images of hSCLC NCI-H446 cells growing as a subcutaneous tumor from N=4 
independent xenografts from one experiment. At the time of injection, 10% of the SCLC H446 cells expressing 
membrane-GFP (mGFP) were mixed with 90% SCLC H446 cells not expressing GFP. Scale bars, 100 μm.
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A B

Figure 2:  SCLC cells with protrusions migrate in a saltatory fashion similar to neuroblasts
A. Representative immunofluorescence images of N2N1G mSCLC cells expressing membrane-GFP (GFP, green) and 
stained (red) for expression of the neuronal marker Tuj1, the axonal marker TAU, or the dentritic marker MAP2. DAPI 
marks the nucleus of cells in blue. Scale bars, 50 μm.
B. Quantification of (A) for two mouse SCLC cell lines (16T, N2N1G) and one human SCLC cell line (H446). Images for 
16T and H446 are shown in Figure S2B-C. N=5/cell line. The bar is the mean.
C. Quantification of the length of protrusions in three mSCLC cell lines (KP22, no visible protrusions, 16T and N2N1G with  
protrusions). The average cell size in these experiments was ~8 μm. Each dot represents a cell. N>10 fields were 
quantified in one biological replicate. Mean +/- s.d. is shown, Mann-Whitney test.
D. Representative still images from time-lapse videomicroscopy analysis of 16T SCLC cells showing the dynamic nature 
of the protrusions (from Movie S1).
E. Quantification of the saltatory movements of three mSCLC cell lines as indicated. Note the correlation between the 
presence of protrusions and the ability of making longer steps (longer than the average cell size). Each dot represents a 
cell. N>10 fields were quantified in one biological replicate. Mean +/- s.d. is shown, Mann-Whitney test.
F-H. Example of single cell movement over time for each of the three mSCLC cell lines.
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Figure S2 (related to Figure 2): SCLC protrusions resemble axons and enable rapid cell movement
A. Representative fluorescence images of a mouse brain section stained with Tuj1, TAU, and MAP2 antibodies (positive 
controls, red). DAPI marks the nuclei of cells in blue. Scale bars, 50 μm.
B-C. Representative fluorescence images of 16T mSCLC cells (B) and NCI-H446 hSCLC cells (C) expressing 
membrane-GFP (mGFP) and stained (red) for expression of the neuronal marker Tuj1, the axonal marker TAU, or the 
dentritic marker MAP2. DAPI marks the nucleus of cells in blue. Quantification is shown in Figure 2B. Scale bars, 50 μm. 
D. Quantification of velocity of mSCLC cancer cells from the three mouse SCLC cell lines indicated. Each dot represents 
a cell. Mean +/- s.d. is shown, Mann-Whitney test.
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Figure S3 (related to Figure 2): Mouse and human SCLC cells express axonal markers in vivo
A. Representative immunofluorescence staining of SCLC cells in the liver of a TKO;mTmG mouse (in which SCLC cancer 
cells express membrane GFP (GFP)). These cancer cells have protrusions positive for TAU and Tuj1. Images represent 
a merge of the GFP signal (green) and the signal for the TAU or Tuj1 antibodies (red). The nucleus of cells is labeled in 
blue by DAPI. Scale bar, 20 μm.
B. Representative images of immunohistochemistry (IHC) for TAU (brown) on human SCLC tissue microarrays (N=79 
human samples analyzed). The signal was evaluated by a certified pathologist (K.C.). Scale bars, 100 μm.
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A B

C

Figure 3:  The axonal-like protrusions contribute to the migratory ability of SCLC cells in culture
A. Quantification of the number of cells with protrusions when mGFP-labeled N2N1G mSCLC cells were allowed to grow 
into a cell-free scratch generated in monolayer cultures under Matrigel. N=3 independent experiments (shControl, N=3 
per experiment, total N=9 plotted together). An unpaired t-test was used for statistical analysis and p-values are shown. 
Only significant p-values are shown. The dotted line represents a 60% reduction compared to the mean value of the 
controls.
B. Representative images of the data quantified in (A) and (C) with knock-down of Gap43. Scale bars, 100 μm. 
C. Quantification of the migration of cells with protrusions when mGFP-labeled N2N1G mSCLC cells were allowed to grow 
into a cell-free scratch generated in monolayer cultures under Matrigel. N=3 independent experiments. An unpaired t-test 
was used for statistical analysis and p-values are shown. Only significant p-values are shown. The dotted line represents 
a 60% reduction compared to the mean value of the controls.
D. Correlation of the data in (A) and (C) using the mean value for each knock-down. Pearson correlation R2 value is 
shown. 
E and H. Immunoblot analysis of GAP43 or FEZ1 levels, respectively, in control and knock-down 16T mSCLC cells. 
HSP90 is a loading control.
F and I. Quantification of the number of cells with protrusions as in (A) with 16T mSCLC cells and Gap43 or Fez1 
knock-down, respectively (N=3). An unpaired t-test was used for statistical analysis and p-values are shown.
G and J. Quantification of the migration of cells with protrusions as in (B) with 16T mSCLC cells and Gap43 or Fez1 
knock-down, respectively (N=3). An unpaired t-test was used for statistical analysis and p-values are shown.
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Figure S5 (related to Figure 3): Knock-down of GAP43 and FEZ1 disrupts the formation of protrusions and cell 
migration in mouse SCLC cell lines in culture 
A. Representative images of the data quantified in Figure 3A and 3C with knock-down of Fez1. Scale bars, 100 μm.
B-C. Immunoblot analysis of GAP43 (B) or FEZ1 (C) levels in control and knock-down N2N1G mSCLC cells. HSP90 is 
a loading control.
D-E. Representative images of the data with knock-down of Gap43 (D) or Fez1 (E) in 16T cells. These data are quanti-
fied in Figure 3F-G (for GAP43) and Figure 3I-J (for FEZ1). The shControl targets GFP. Scale bars, 100 μm.
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Figure S4 (related to Figure 3): The 13 genes selected for their possible role in the formation of protrusions are 
expressed in human SCLC but do not play a key role in the expansion of SCLC cell populations  
A. mRNA levels of candidate genes in human primary SCLC tumors (RNA-seq from George, Lim et al., Nature, 2015). 
B. Network representation of the 13 candidates. Edges in the STRING analysis represent protein-protein associations but 
do not necessarily mean that they physically bind to each other. Blue edges represent known interactions from curated 
databases. Pink edges represent known experimentally-validated interactions. Others are predicted interactions, 
including text mining and co-expression (see string-db.org).
C. DepMap analysis (depmap.org) of the requirement for the 13 candidate genes in 25 human SCLC cell lines (RNAi 
combined analysis). Note that in a number of cell lines, the knock-down of candidate genes results in a positive score, 
indicative of a better expansion upon knock-down. Even in cases where the scores are negative, the negative values are 
small (the data for the genes coding for the CHK1 and WEE1 kinases, which are considered therapeutic targets in SCLC, 
are shown on the right hand side).
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A

Figure 4:  Genes involved in the generation of protrusions also control the formation of metastases
A. Diagram of the approach to investigate the formation of liver metastases (met.) after intravenous injection of SCLC 
cells.
B-C. Quantification of the number of metastases 4 and 5 weeks after intravenous injection of N2N1G and 16T mSCLC 
cells, respectively, with control knock-down or knock-down of Gap43 with two independent shRNAs. For N2N1G, tumors 
at the surface of the liver were quantified on the liver surface, as shown in Supplementary Figure S7D. Too many tumors 
were present with the 16T cell line and the control shRNA and quantification was thus performed by measuring liver 
weight. N=4-5 mice per condition in one biological replicate. Mean +/- s.d. unpaired t-test.
D. Representative hematoxylin and eosin (H&E) images of liver sections of mice in (B-C). Scale bars, 5 mm.
E-H. As shown in (A-D) for Fez1 knock-down. See Supplementary Figure S7E for representative images with N2N1G 
cells for the quantification in (F-G) of tumors at the surface of the liver. N=4-5 mice per condition in one biological replicate. 
Mean +/- s.d. is shown, unpaired t-test.
I. Diagram of the approach to investigate early steps in liver metastasis, 2 days after intravenous injection.
J-M. Quantification of the number of GFPpositive (GFP+) N2N1G and 16T mSCLC cells 2 days after intravenous injection. 
See Supplementary Figure S7F-I for representative flow cytometry. N=5 mice per condition in one biological replicate. 
Mean +/- s.d., unpaired t-test.
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A

Figure S6 (related to Figure 4): Increased expression of the axonal marker TAU in metastatic SCLC in the TKO 
mouse model
A. Representative images of immunohistochemistry experiments on lung sections from TKO mice 3 months and 6 months 
after SCLC initiation with Ad-CMV-Cre. None of the mice had metastases at the 3-month time point while all the mice 
analyzed had evidence of metastasis at the 6-month time point. The Tuj1 antibody marks neuronal tubulin and TAU is a 
marker of axons. Hematoxylin was used as a counterstain (purple). Scale bar, 100 μm.
B. Quantification of (A), with N=30-32 tumors analyzed from N=3 mice at the 3-month time point and N=30 tumors 
analyzed from N=3 mice at the 6-month time point. Percentages are indicated.
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Yang et al., 

Figure S7 (related to Figure 4): Reduced formation of metastasis upon knock-down of GAP43 and FEZ1 in SCLC 
cells
A. Representative live and epifluorescence images (GFP, green) of liver section of mice 4 weeks after intravenous 
injection of GFP-positive N2N1G mSCLC cells, with control knock-down or knock-down of Gap43 or Fez1. Scale bars, 5 
mm.
B. Quantification of (A). The bar is the mean, unpaired t-test. 
C. Quantification of tumor weight after subcutaneous injection of control and knock-down N2N1G cells. Values are not 
statistically significant by t-test.
D-E. Representative bright light and epifluorescence images (GFP, green) of liver section of mice 4 weeks after 
intravenous  injection of GFP-positive N2N1G mSCLC cells, with control knock-down or knock-down of Gap43 or Fez1. 
Scale bars, 5 mm.
F-G. Representative flow cytometry quantification of GFP-positive N2N1G cells in the liver 2 days after intravenous 
injection.
H-I. Representative flow cytometry quantification of CFSE-labeled 16T cells in the liver 2 days after intravenous injection.
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