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Abstract

The past decade has seen a multitude of new in vivo functional imaging methodologies. However,
the lack of ground-truth comparisons or evaluation metrics makes large-scale, systematic validation
impossible. Here we provide a new framework for evaluating TPM methods via in silico Neural
Anatomy and Optical Microscopy (NAOMi) simulation. Our computationally efficient model gen-
erates large anatomical volumes of mouse cortex, simulates neural activity, and incorporates optical
propagation and scanning to create realistic calcium imaging datasets. We verify NAOMi simu-
lations against in vivo two-photon recordings from mouse cortex. We leverage this access to in
silico ground truth to perform direct comparisons between different segmentation algorithms and
optical designs. We find modern segmentation algorithms extract strong neural time-courses com-
parable to estimation using oracle spatial information, but with an increase in the false positive
rate. Comparison between optical setups demonstrate improved resilience to motion artifacts in
sparsely labeled samples using Bessel beams, increased signal-to-noise ratio and cell-count using
low numerical aperture Gaussian beams and nuclear GCaMP, and more uniform spatial sampling
with temporal focusing versus multi-plane imaging. Overall, by leveraging the rich accumulated
knowledge of neural anatomy and optical physics, we provide a powerful new tool to assess and
develop important methods in neural imaging.

1 Introduction

The endeavor to understand neural systems has spurred rapid development of technology that can
record brain activity at ever larger scales [1–3] and higher precision [4–6]. One such class of tech-
nology, functional optical microscopy, has empowered researchers to explore neural dynamics from
synapse [7, 8] to large brain regions [9, 10]. Specifically, two-photon microscopy (TPM) combined
with in vivo calcium imaging [11–16], has enabled the simultaneous recording of unprecedented
numbers of neurons (over 9000) at cellular resolution [17, 18].
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Although TPM has found widespread use [19–21], many available experimental techniques and
data processing algorithms lack appropriate, systematic assessment [22, 23]. This deficit can result
in inaccurate interpretation of neural data [24]. A systematic comparison of techniques would allow
researchers to make better informed decisions about equipment and data-processing.

For instance, while imaging deeper into scattering tissue with TPM can benefit from decreasing
the excitation numerical aperture (NA) [15], it is unknown how this benefit interacts with other
optical or experimental design choices, such as adaptive optics [25, 26] or dendritic imaging [27,
28]. Additionally, while many algorithms have been designed to extract the neural activity traces
and spatial profiles from TPM data [29–43], few options exist to assess the fidelity of the inferred
segmentation beyond comparisons to manually annotated data [24, 44, 45].

In both cases assessment suffers from a lack of ground truth data, the gold standard of which
requires simultaneous intracellular electrophysiological and TPM recordings [46, 47]. Such experi-
ments are both difficult to perform and limited to only a few neurons and imaging conditions. The
small number of neurons from such experiments limits the assessment scope by biasing towards cells
that are in focus, fire often, and fluoresce brightly. This problem is further exacerbated as assessing
multiple imaging parameters requires recordings under each imaging condition, greatly increasing
the cost of collecting such data.

Alternatively, subjective ground truth can be obtained from TPM recordings via manual an-
notation [48]. Human labels, however, do not provide access to the underlying neural spiking, are
limited by the same signal-to-noise ratio (SNR) that limit demixing algorithms, and may also bias
analysis against dim or sparsely firing neurons. These same issues also affect comparisons using
simultaneous conventional TPM recordings to test novel imaging conditions [49, 50].

In place of collecting ground truth data, simulations can provide rich, controlled testing data.
Such approaches have benefited other imaging modalities, such as fMRI [51]. Simulation-based
approaches, however, often suffer from being either too simple or too complex. While simple simu-
lations are computationally efficient, they often only create realizations of the model being tested
rather than the actual underlying phenomenon [52, 53]. Complex simulations instead capture too
much detail and are severely limited computationally, requiring high-performance computing to
simulate more than small volumes with a handful of neurons [54, 55]. For these reasons, existing
methods do not provide plausible and computationally efficient simulations useful for large-scale
functional imaging.

To assess TPM methods with realistic and computationally efficient simulations, we present the
Neural Anatomy and Optical Microscopy (NAOMi) simulator. Our framework leverages simple,
but flexible, models of neural tissue to efficiently create large volumes with thousands of neurons
on standard workstations (Fig. 1). Arbitrary patterns of spiking activity can be generated for this
population, which our framework then transforms into realistic fluorescence traces separately for
somas as well as processes. A light model approximates laser propagation and scattering throughout
different locations of the simulated tissue. These components are combined in a simulated scanning
procedure that incorporates important imaging effects, such as sample motion. We describe the
simulation model, which has a publicly available software implementation1, and provide parameters
for simulating two-photon GCaMP [46] recordings in layer 2/3 of mouse visual cortex. We use these
simulated datasets to evaluate several automated calcium imaging demixing algorithms. Finally,
we generate several more datasets to compare the performance of standard and specialized TPM
experimental setups under a variety of sample conditions.

1Code will be made available post-review. Please contact A. Charles and A. Song for beta testing requests.
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Figure 1: Block diagram of NAOMi simulator. A: Neural volume generation process. Vasculature
is generated throughout the volume, followed by cell bodies and finally dendrites and axons are
grown. B: Network activity generation. The spiking activity for each neuron is simulated and
converted into calcium ([C]), bound calcium ([CB]), and fluorescence (F) for a chosen indicator.
C: Light propagation model. An optical wavefront corresponding to particular microscope optics
is propagated through a simulated scattering volume, generating a scattered point-spread function
and relative intensity masks. D: Scanning and image formation. The volume, modulated by the
simulated activity, is scanned using the output of the light model with motion and noise sources
from a model of the light collection, amplification, and digitization process.

2 Results

2.1 Simulation design

Generating realistic imaging data useful for honest assessment of a spectrum of techniques hinges on
accurate, efficient simulations of anatomical volumes at the scale of optical imaging (Fig. 1A). Our
anatomical simulation starts by constructing a scaffolding of vasculature with three parts: surface
vessels, diving vessels, and capillaries [56] (Tab. 1, Sup. Fig. 1, 2, 3, See Methods). Next neurons
are placed throughout the volume, first placing somas, and then growing dendrites and axons [57]
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from the cell bodies (Sup. Fig. 4, 5, See Methods). Statistical models of neurons and process paths
ensure variation in cell shapes and were tuned using morphological data from electron microscopy
(EM) data [58] and optical microscopy [59–61] (Tab. 1, See Methods).

The next step in simulating TPM data is to augment each generated neuron with realistic flu-
orescence activity (Fig. 1B). Spiking activity for each neuron is either pre-defined or is generated
using models that output correlated, bursting population activity based on models of neural con-
nectivity [62–66] (see Methods). Next, the known non-linear calcium decay process simulates the
dynamic concentration of calcium ions [67, 68]. This two compartment model describes separate
dynamics for the cell bodies and the neurites, both driven by the same spike trains. As in related
work, a protein-specific double exponential model modulates the calcium concentrations to create
bound calcium concentrations with appropriate onset and offset time-constants [68, 69]. Finally,
the bound calcium concentrations are converted to fluorescence values using the Hill-equation fit to
fluorescence measurements [70, 71] (Tab. 1, Sup. Fig. 8, see Methods).

The next step in the simulation is to estimate the optical properties of the specified microscope
configuration within the generated tissue (Fig. 1C). The scattering nature of brain tissue substan-
tially affects light propagation through it, resulting in an abberated point-spread function (PSF) and
decreased optical performance. We approximate these effects by performing wavefront propagation
of a specified beam shape (i.e. Gaussian or Bessel beams [72, 73]) through a generated volume of
refractive index shifts (Sup. Fig. 10, See Methods), generating simulated PSFs across the volume.
The weight of the simulated PSF across different locations of the simulated volume forms an oc-
clusion mask, representing inhomogeneity of optical performance across the sample. This occlusion
mask is also modulated by an estimate of the absorption of emitted light through blood vessels and
the neural volume as a function of position.

The final scanning module combines the outputs of the anatomical, light, and activity modules
to produce images on a frame-by-frame basis (Fig. 1D). The fluorescence activity and occlusion
mask modulate the anatomical volume, which is convolved with the simulated PSF to produce
raw, noiseless, illumination images. Sub-pixel line-by-line offsets, representing brain motion, are
applied prior to spatially resampling to the desired image resolution and applying the measurement
noise model. Measurement noise is simulated by per-pixel Poisson sampling of photons counts
at the photo-multiplier tube (PMT) and converting these counts into electrical measurements via
PMT photon and electronics amplification distributions (Sup. Fig. 10, see Methods). This process
includes bleed-through across pixels from the amplifier’s temporal response kernel (Sup. Fig. 12, see
Methods). This procedure is performed independently for each frame, and captures the complex,
non-Gaussian noise profile inherent in TPM data.

2.2 Comparison of simulated data to real data

We next evaluate the overall simulation output against recordings from mouse V1 (Fig. 2). We
generated a 500 µm x 500 µm x 100 µm volume and scanned it with a 0.6-NA Gaussian point-spread
function over 20,000 frames at 30Hz sampling and 40mW laser power, comparable to parameters in
a recorded dataset obtained from mice expressing GCaMP6f being exposed to a set of visual stimuli
(see Methods).

The simulated videos and recorded videos visually share many of the same features (Sup. Video
1), including bright, sparse transients of fluorescence across the whole image. The overall mean
images (average of frames across time; Fig. 2A) both show distinct cell bodies along with muted
processes that have their intensity modulated by scattering from blood vessels and other tissue
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Parameter Lit. Val. Fit type NAOMi
Val. Unit Refs

Anatomical parameters:
Neural density 9.20E+04 Direct – mm´3 [58]
Fraction vasculature 0.01-0.04 Indirect 0.032 – [58, 74, 75]
Fraction cell bodies 0.12 Indirect 0.135 – [58]
Fraction neuropil 0.84 Indirect 0.833 – [58]
Fraction dendrites* 0.294 Indirect 0.223 – [58]
Fraction other (fluorescing)* 0.401 Indirect 0.33 – [58]
Fraction other (not fluorescing)* 0.293 Indirect 0.28 – [58, 76]
Vessel radius (capillary) 2.00E+00 Direct – µm [56]
Vessel radius (penetrating) 10 (9,11) Direct – µm [56]
Vascular density 1-3 Indirect 2 % [56, 58, 74, 75]
Penetrating vessel density 30: Direct – mm´2 [56]
Somatic volume* 1.80E+03: Indirect 1.80E+03 µm3 [77]
Nuclear volume* 800: Indirect 800 µm3 [77]
Cytoplasm volume* 1000: Indirect 1000 µm3 [77]
Basal dendrite diameter 0.7 Direct – µm [78]
Basal dendrite length 100-160: Indirect 105 µm [59–61]
Apical dendrite diameter 1-2 Direct – µm [79]
Axonal diameter 0.3 Direct – µm [58]
Fluorescence parameters:
GCaMP6f binding affinity Kd 290 Direct – nMol [70]
Baseline Ca2` concentration 50.00 Direct – nMol [68]
Ca2` binding ratio ks 100,110 Direct 110 AU [67, 80–82]
Ca2` diffusion constant γ 1800 Data fit 292.3 s´1 [67, 80, 83]
Ca2` axon diffusion constant γ 2800 Direct – s´1 [67, 80, 81]
GCaMP6f Hill eqn. exponent nh 2.7 Direct – AU [70]
GCaMP6f Hill eqn. amplitude 25.2 Direct – F [70]
Indicator concentration 10-200 Direct 10 µM [68, 84, 85]

*Adjusted for shrinkage: 31% [86], :Value estimated from data in the literature

Table 1: Parameters used for in-silico simulation of neural activity in layer II/III of mouse primary
visual area V1. Values for each parameter were either directly found in the literature or estimated
from published data (entries with a :). The third column indicates whether these parameters were
set directly in NAOMi, or were fit indirectly by setting other simulation parameters. In the latter
cases, the measured values from a simulated NAOMi volume are shown for comparison, indicating
that the simulated anatomy matches measured anatomical statistics.

elements. Histograms of video pixel values (Fig. 2A,B) feature heavy right tails corresponding to
neural activity and also peaks at zero corresponding to zero-photon pixels.

The neural activity distribution for individual pixels is explored by comparing the relative
strength of firing activity across the field of view (FOV). The distribution of maximum activity
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(maximum ∆F/F over 20,000 frames) for all pixels (Fig. 2C) for each of the two videos is peaked at
2 with a slight heavy right tail, which corresponds with neurons that fired large transients within the
videos. Other statistics, such as the distribution of values in the mean image, the standard devia-
tions over all pixels, and measures of activity such as the ratios of maximum to median fluorescence
values also match well (Sup. Fig. 14A-C).

The global frequency content of the two videos is estimated with the 2D discrete Fourier trans-
forms of the mean images (Fig. 2D). The Fourier transforms of both videos depict very similar fea-
tures, such as increased frequency content along the fast- and slow-scanning axes resulting from the
sequential pixel bleed-through and residual line-by-line motion artifacts. Additionally, the frequency
fall-off (Fig. 2E) for both the real and simulated data display the same decay. Finally, observing the
effective dimensionality of both videos via Principal Component Analysis (PCA; Fig. 2F) finds both
qualitative similarities between the spatial principal components (PCs) and quantitative similarities
between the distribution of variance explained for the leading PCs on small patches of videos.
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Figure 2: Comparison of simulated data to recordings of mouse V1 L2/3 using GCaMP6f. A: The
mean image for mouse V1 recordings and simulated data. B: Pixel value distributions across the
full videos display bimodal peaks and a right log-linear tail. C: Distribution of the maximum ∆F/F
values across all pixels in the FOV match between the simulated and real V1 data. D: The spatial
frequency content in the mean simulated image captures the qualities of the real data. Both the
spread of frequencies and the tendency for high-frequency components in the fast- and slow- scan
directions that result from line-by-line motion and pixel bleed-through are captured. E: The overall
contributions at different spatial frequencies to the mean activity matches between the recording
and simulation. F: Principal component decompositions for both the real and simulated data exhibit
similar decays in the variance explained per component. The resulting spatial principal components
are qualitatively similar.
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2.3 Evaluation of automated segmentation

We start evaluating TPM techniques using NAOMi by analyzing the performance of automated
demixing algorithms, leveraging the ground truth information available. We applied three common
algorithms — PCA/ICA [29], constrained non-negative matrix factorization (CNMF) [38], and
Suite2p [18] — to 20,000 frames simulated from a 500 µm x 500 µm x 100 µm volume with 1 µm
sampling at 30Hz scanning using a 0.6-NA Gaussian excitation numerical aperture (NA) at 40 mW
average power. The ground truth consisted of the spatial profiles of each individual neuron and
component within the volume and their individual fluorescence traces.

Each algorithm returned a set of demixed time traces and corresponding spatial profiles (Tab. 6-
8, Sup. Fig. 16- 19). Overall CNMF, Suite2p and PCA/ICA isolated 1091, 661, and 265 components,
respectively, out of a total of 8,117 possible fluorescing components. Comparisons to the ground
truth traces, based on a combined Pearson’s correlation cut-off of 0.1 on the time-traces and a
50% pixel overlap, revealed which components represented actual cells in the volume (Tab. 6). We
considered a pairing to be a “strong pairing” if the correlation exceeded 0.5 (Fig. 3A,B). These
correlation values account for all aspects of how well the estimated traces match the true time-
courses, including missed transients and false transients from other components (e.g., neuropil;
Fig. 3C).

Of the paired profiles, some were doubled, i.e. multiple algorithmically discovered profiles
matched to different portions of the same simulated cell (Sup. Fig. 23, Tab. 6). Accounting for
doubling, CNMF, Suite2p, and PCA/ICA found 303, 292, and 137 unique cells at the ą 0.5 corre-
lation level. Interestingly, while CNMF finds the most distinct components (i.e., before accounting
for cells found with multiplicity), it only finds approximately the same number of unique cells as
Suite2p, and both have a lower rate of found true cells than PCA/ICA (Fig. 3D). Furthermore,
comparisons of individual cells found (Tab. 7, 8) show that different methods find non-overlapping
sets of cells (Sup. Fig. 21). For example, CNMF and Suite2p only agree on 273 of the « 300 cells
(Fig. 3A, Tab. 7).

While these figures may seem small compared to the 8,117 total sources, not all fluorescence
sources are visible above the noise level. To explore this effect with NAOMi, we computed auxiliary
time-traces from the raw, noisy video using the “ideal” ground-truth spatial profiles to obtain the
profile-aware least-squares (PALS) time trace estimates (see Methods). Due to the video signal-to-
noise ratio (SNR), these estimates yielded only 415 timecourses accurately matched at the ą 0.5
correlation level (Fig. 3D, Tab. 8) indicating that the gap induced by simultaneous estimation of
spatial profiles is not overly large. In fact, the inherent denoising in some algorithms allows some
cells’ time courses to be estimated with even higher fidelity than the traces derived from the ideal
spatial profiles (e.g. CNMF identified 8 cells at the r ą 0.5 level that the ideal profiles produced
lower correlation values for; Tab. 8).

One challenge in interpreting the results of automated demixing is that, sans ground-truth, it is
difficult to determine if a source is a true cell or an artifact. Instead, sorting components based on
metrics such as overall fluorescence levels can be used. Varying one such criterion — a threshold
on the maximum fluorescence — to classify true and artifact sources results in receiver-operator
characteristic (ROC) curves that compare the number of strongly paired components kept (true
positives), to the number of weakly paired or unpaired components kept (false positives). These
curves show that while PCA/ICA obtained the fewest components overall, CNMF and Suite2p
found bright artifacts at much higher rates (Fig. 3E, Sup. Fig. 24).

One benefit of the NAOMi simulator is that we can easily explore how optical parameters
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effect algorithmic performance. We replicated the above analysis with a 2x increase in laser power
(80 mW), keeping the volume and neural activity constant. Ideally this power boost would illuminate
additional cells, as weaker and more sparsely firing cells would be more distinguishable. We found
that all algorithms returned more unique components at the r ą 0.5 level, with 424 for CNMF,
358 with Suite2p and 264 for PCA/ICA: a 39.93%, 22.6%, and 92.7% improvement (Sup. Tab. 9),
respectively. Interestingly, a similar increase in components that did not pair well to real cells
meant that there was negligible improvement in rate of found cells, and some ROC curves reduced
in area, indicating that fluorescence magnitudes became less sufficient to differentiate true cells from
artifacts (Sup. Fig. 24.

We note that in addition to laser power, other factors such as the sampling resolution, numerical
aperture and neuropil strength also influence the ability to detect neural activity. NAOMi enables
exploration of all these aspects. For example we find 1) a sharp cut-off in the ability to accurately
detect components when sampling at intervals larger than 3µ m (Sup. Fig. 25) 2) an improvement in
the ability to detect smaller burst sizes in the ∆F/F values with neuropil correction as in Suite2P [18]
(Sup. Fig. 26), and 3) a steady decay in signal strength per component as a function of NA, reaching
a critical reduction of signal at NA « 4 (Sup. Fig. 27).

2.4 Evaluation of TPM optical configurations

The ability to modify optical parameters and sample expression patterns allowed for direct assess-
ment of the trade-offs between microscope configurations across sample conditions. We applied this
new mode of assessment to perform three head-to-head comparisons: 1) imaging of sparsely labeled
tissue using Bessel [8] vs. high-NA Gaussian beams (Fig. 4A-C), 2) imaging of nuclear labeled tis-
sue using high-NA vs. low-NA (axially extended) Gaussian beams (Fig. 4D-F), and 3) volumetric
imaging of densely labeled tissue using multiplane Gaussian [87] vs. temporally-focused beams [88]
(Fig. 4G-I).

In our first comparison we simulated TPM recordings of a sparsely labeled (10% neurons ex-
pressing GCaMP6f) 500 µm x 500 µm FOV of mouse cortex using both conventional high-resolution
TPM with a Gaussian PSF (0.6 NA) and extended depth-of-field TPM using a Bessel beam (0.4 NA,
60 µm long) [8]. As shown previously, Bessel beam imaging resulted in excitation throughout the
whole volume, resulting in more uniform excitation of neurons (Fig. 4C) and more neurons recorded
with high signal fidelity. Another consequence of the uniform excitation observed using Bessel beams
is an increased robustness to axial motion. To test this, we clustered the extracted time-traces from
Bessel and Gaussian imaging into three groups (Fig. 4B). The sorted correlation matrices showed a
strong motion-induced artifact only for Gaussian imaging, suggesting a reduced influence of motion
artifacts on time-trace estimation using Bessel beams.

Our second comparison tested the performance of nuclear labeled TPM, which has been exten-
sively used for larval zebrafish and C. elegans TPM [89, 90] but not in mouse brain imaging, in a
500 µm x 500 µm FOV of mouse cortex. We imaged this simulated tissue using Gaussian beams
of two excitation NAs: 0.2 and 0.6 (Fig. 4D). Surprisingly, simulations of signal levels across a
variety imaging NA values showed constant overall integrated value (i.e., signal level; Sup. Fig. 27),
suggesting little loss of power efficiency by reducing the excitation NA. Similar to the extended
depth-of-field Bessel beam, the 0.2 NA excitation resulted in sampling more neurons from the
volume and improved overall imaging performance (Fig. 4E,F). As the imaging volume is mostly
non-fluorescing with nuclear-labeling, distinguishing individual cells is straightforward even with a
extended depth-of-field. Because nuclei are several times larger than the lateral resolution of the
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Figure 3: Comparison of popular calcium imaging segmentation algorithms using synthetic data
generated using NAOMI. A: Spatial profiles from CNMF (red), Suite2p (blue), and PCA/ICA
(green) overlaid with ideal profiles (yellow) calculated from the simulation volume. B: Strongly
paired (r >= 0.5) spatial profiles from each algorithm displayed separately. C: Example timecourses
estimated by each of the segmentation algorithms as compared to the ideal profile assisted least-
squares (PALS) estimated timecourse and the ground truth timecourse. D: Histogram of correlation
values of estimated timecourses to the ground truth timecourses for each match spatial profile.
E: Spatial profiles from CNMF separated into strongly paired (r>=0.5), weakly paired (r<=0.5)
or unpaired. F: ROC curves for strongly paired (r>=0.5) spatial profiles sorted by their peak
fluorescence and profile weight.

0.2 NA excitation beam, there are fewer advantages to switching to a Bessel beam setup and low
NA imaging is more power efficient.

Last, we compared multiplane TPM [87] to scanned temporal focused (s-TeFo) TPM [88] in
a 500µm x 500 µm x 200 µm volume of the mouse cortex layers 2-4 (Fig. 4G). For multiplane
Gaussian TPM, we scanned four planes, separated by 50µm at 1µm lateral sampling, at 10Hz and
for s-TeFo TPM, we scanned 16 planes, separated by 10µm at 4µm lateral sampling, at 10Hz.
Given a similar amount of excitation within the volume, both techniques performed comparably in
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extracting fluorescence traces with high fidelity. The axial distribution of highly correlated (r >
0.5) cells in the multiplane TPM is multimodal, set at the focal positions the four planes, while the
s-TeFo distribution is much more uniform (Fig. 4H), as is reflected in the profile weight histograms
(Fig. 4I). These simulations suggest that while s-TeFo as a technique may not drastically increase
the number of recorded neurons, the more consistent spatio-temporal sampling of neurons may
decrease sampling bias and provide robustness to motion-induced artifacts and signal crosstalk.
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Figure 4: Comparison of specialized imaging modalities to standard high NA Gaussian TPM for
a sparsely labeled volume (A-D), nuclear labeled volume (E-H), and volumetric imaging (I-L). A:
Mean image (left) and example time traces (right) of a sparsely labeled volume with Bessel beam
(top) and high NA Gaussian (bottom) illumination. B: Correlation matrices of extracted time
traces for each method sorted by clustering into 3 groups using k-means. C: Histograms of spatial
profile weights of cells in the volume using Gaussian and Bessel PSFs. D: Mean image (left) and
example time traces (right) of a nuclear labeled volume with low NA Gaussian (top) and high
NA Gaussian (bottom) illumination. E: Scatterplot of correlation values for low and high NA
extracted timecourses against the true timecourse. F: Estimated ∆F {F resolution of cells based on
their spatial profile and the mean image. G: Mean image (left) and example time traces (right) of
volumetric TPM with 4 high NA Gaussian planes (top) and 16 temporally focused planes (bottom)
illumination. H: Histogram of axial positions of highly correlated (r > 0.5) cells using a scanned
high NA Gaussian or temporally focused illumination. I: Histograms of profile weights using high
NA Gaussian or temporally focused illumination.
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3 Discussion

We present here the NAOMi simulation framework that generates detailed TPM data. This frame-
work yields new insights into TPM technology and enables the testing and validation of existing
and novel TPM methods, allowing for assessment and methodological optimization not currently
possible. Toward this end, we have developed the ability to generate realistic synthetic neural
volumes, transient calcium activity, and two-photon calcium imaging videos. We further increase
the simulation efficiency by simplifying statistical models of the processes involved, reducing the
computational burden and making this tool more broadly applicable.

We have demonstrated two important use cases of NAOMi: assessment of calcium imaging
demixing methods and comparing optical configurations across imaging conditions. In both cases,
useful large-scale ground truth is difficult to obtain experimentally. NAOMi leverages the accu-
mulated knowledge of neuroanatomy, optical physics, and neuroscience to bypass these difficulties
through simulation.

To assess demixing algorithms, we generated a calcium imaging dataset typical of TPM in mouse
neocortex and analyzed the performance of several popular methods: CNMF [52], Suite2p [34], and
PCA/ICA [29]. The available input cell shapes and timecourses enabled direct comparisons of the
algorithm decompositions to ground truth, which revealed that methods with the highest number
of found neurons also had much higher instances of artifactual components. This indicates the
potential for many false positives in automated demixing (Sup. Fig. 20, Tab. 6). Using NAOMi
data as a testing ground, more advanced detection metrics can be developed, to find better ways to
filter out true cells from the full set of returned components.

Using NAOMi, we explored particular combinations of optics and samples in silico and il-
lustrated the advantages three specialized techniques could have while imaging particular sample
conditions. We rapidly assessed whether or not a particular technique is appropriate for the sample
and optimized imaging parameters to maximize the quantity and quality of the data we collect.
Additionally, we explored the interaction of different components of in vivo calcium imaging and
their effects on performance. For instance, we quantified the effects that axial brain motion can
have on estimated cell-cell correlation as a function of both sample type and optical configuration.

Despite these results, there are several aspects of the simulation that were simplified for speed or
simplicity. While we provide a rudimentary spike-train simulation to drive the fluorescence models,
we note that more realistic firing patterns for neurons will help improve overall realism. A number
of complex packages simulate such activity for neural populations (e.g. [91]). In these cases, rather
than replicate these methods, we encourage their use and integration into the NAOMi framework.

In the development of NAOMi we aimed to create a tool accessible to the community at large
that is easily expandable in its scope and abilities. To this end, our software was designed to be
modular so that as better anatomical models, optical descriptions of tissue, and TPM statistics
become available, they can be easily incorporated into the existing framework. Additionally, single
modules can be modified in order to simulate different setups. For example, changing the anatomical
structure (e.g., blood-vessel size and cell body statistics) can allow for bench-marking imaging
techniques in rats, rather than mice. These changes and extensions will allow NAOMi to be a useful
tool for a wide variety of applications for experimentalists and methods developers.

Work in other fields has shown the great utility of developing strong simulation-based models of
experimental data (see [92] and references therein). NAOMi is a tool that fills part of this gap for
neuroscience data. As neuroscience continues maturing, better models of data must be developed,
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especially for data that is as diverse and complex as two-photon calcium imaging. This and other
work will allow researchers to not only more quantitatively judge the quality of their data, but also
make better predictions on the data they will need for their experiments.

4 Materials and Methods

Our TPM simulator is designed to permit testing of many different aspects of the calcium imaging
process. To achieve this flexibility, our simulator is divided into five distinct modules, each focused
on a portion of either the tissue or scanning simulation (Fig. 1). The five modules are: 1) the neuron
module responsible for generating single neurons, 2) the volume module responsible for assembling
the neurons into a tissue volume that includes neuropil and vasculature, 3) the activity module
that generates the temporal calcium traces for each neuron and the neuropil, 4) the optics module
that simulates the point-spread function and occlusion due to the optical mask, and 5) the imaging
module that simulates the TPM noise model and object motion.

4.1 Neuron model

The first module creates simple, yet plausible models of neurons that can be placed throughout a
volume and scanned in simulation. We model the neural shape via a probability distribution over
smooth deformation of a sphere, followed by a nonlinearity. This model allows for fast sampling of
unique neurons, meaning that each simulated volume will contain a completely new set of neurons.
Additionally, we provide for each neuron a nucleus modeled as a shrunken and smoothed version of
the soma shape. This model captures the relationship observed in detailed field emission scanning
electron microscopes (FESEM) [93]. Finally, we simulate for each neuron a number of dendrites,
one of which is created thicker and at a downward orientation, as to model the apical dendrites.

The model of the smoothly deformed cell body is an isotropic Gaussian process [94] defined
over a sphere. To sample from this distribution and create the cell body, we sample uniformly
over a sphere [95], sample i.i.d. a Gaussian random variable for each point, and smooth the points
according to the process covariance. Denoting the sample points pi P R3, the height (distance from
center of the sphere) can be sampled from

ri „ N p0,Kq, Ki,j “ e´dppi,pjq{l,

where l is the length-scale that controls the smoothness of the cell body, and dp¨, ¨q is the geodesic
distance between any two points. For the unit sphere (radius one), this distance is the arc length
along the great circle connecting the two points

dppi,pjq “ 2 sin´1

ˆ

}pi ´ pj}2
2

˙

.

When unconstrained, the radial height of this function can, at times, exceed the maximum and
minimum realistic deformations rmax “ maxi |ri| and rmin “ mini |ri|. We thus rescale the radii
values as

ri “ prmax ´ rminq
|ri| ´mini ri

maxi ri ´mini ri
` rmin
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The resulting points ripi form the points for a mesh that define the interior of the cell body. To
account for the non-spherical shape found in pyramidal neurons, we can modify the radii values
by making the base radius at each point dependent on a function of its location on the sphere.
Specifically, we use the equation for a tear-drop that is defined parametrically by the azimuth and
elevation angles φ, and θ as

„

cospφq sinpθq sinm
ˆ

θ

2

˙

, sinpφq sinpθq sinm
ˆ

θ

2

˙

, cospθq



. (1)

The final step in creating the cell body is to create the nucleus, which is accomplished by
shrinking and smoothing the cell wall shape as defined by ripi as

r˚i “ pr50%q
|ri| ´mini ri
r5% ` ri

` rmin ´ p∆rqmin

Dendrites are added to each neuron via a stochastic growing process [57]. The process generates
start and end points for each dendrite, and iteratively grows the dendrite through the volume
while avoiding any obstacles (i.e. other cell’s somas, dendrites, or blood vessels). Apical and basal
dendrite endpoints are separately set within the volume and the grown dendrites are dilated to
widths consistent with measured anatomy (Tab. 1, Sup. Fig. 7).

4.2 Volume generation

To create the tissue volume, we initialize an empty volume and begin by placing blood vessels
throughout the volume. For computational feasibility, the volume is modeled as a 3-D grid of points
with sub-micron sampling (we typically use 0.5µ m distances). The blood vessels are grown in
three parts: surface vasculature, diving arterioles, and capillaries. Surface vasculature is grown
by connecting nodes randomly placed upon the surface of the volume. The connected paths are
smoothly varied and dilated. Diving arterioles are set at endpoints of surface vasculature and con-
nected to the bottom of the simulated volume. Capillaries are connected to the diving arterioles
and pseudo-randomly placed within the volume in a space-filling fashion. Vessel diameters, concen-
tration, branching frequency, and orientation were compared and fit to two-photon microscopy data
of mouse vasculature (Schaffer-Nishimura lab, unpublished data).

Once initialized, the volume is then filled with the neuron somas. We sequentially place the
neurons randomly throughout the empty space in the volume, with a minimum distance that allows
cell bodies, but not nuclei, to overlap. The random placement can be modified to encourage neurons
to be more spread out, or more cluttered. When an overlap occurs, the overlapping region is given
to the latest cell to be placed. This allows our volume to contain touching cell bodies. Once
all the cell somas are placed, dendrites are grown for each neuron sequentially, such as to avoid
location conflicts with other cells. Apical dendrites are grown in the same fashion, only thicker,
axially oriented, and having fewer transversal deviations. Separate apical dendrites corresponding
to neurons in deeper cell layers are grown in a similar fashion from the bottom of the volume to the
top.

As a final step, axons fill up the remaining empty space, up to the typical 0.7 fill fraction of layer
2/3 in mouse V1. The same dendrite growing algorithm [57] is used to create millions of short axon
segments throughout the entire volume. To obtain the global correlated background components,
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we overlay 3D Gaussian processes that indicate the strength of each component throughout the
volume with the set of axon locations. Specifically the value of the kth background component

Bk “ |Gk| dH (2)

where d represents element-wise multiplication between the 3-tensors H, which contains a one
where a neuropil process is present and zero otherwise, and the absolute value of Gk, a GP with
mean zero and Gaussian radial-basis function covariance kernel where the covariance between any
two points at locations pi and pj is

Ki,j “ ρe´}pi´pj}
2
2{l

2
bg . (3)

4.3 Time-trace generation

To simulate temporal activity, we provide a number of options to generate time-traces for each
neuron. We provide both statistical models that generate stereotypical activity as well as more
detailed rCa2`s dynamics model. The statistical model provides a simple way to input basic
behaviors of various fluorescent proteins (i.e. rise-time and decay). The rCa2`s dynamics model
simulates the molecular kinetics over time, and provides a way to test the time-trace assumptions
made in calcium imaging analysis algorithms.

4.3.1 Spike-time generation

We provide two methods to generate spike trains to drive the fluorescence activity simulation. The
first method creates independent activity for each neuron, including bursting behavior. The second
model simulates a Hawkes process which accounts both for self-excitation, driving busting behavior,
as well as inter-neuron spiking correlations [96].

To generate independent spike trains, we model each neuron as a bursting neuron, where bursts
occur at independent, exponential intervals

P p∆tburstq “ λburste
´p∆tburstq{λburst (4)

for ∆tburst ą 0. The rate of bursting λburst is chosen differently for each neuron. The rates can
be given to the simulator, or the simulator can automatically draw burst rates from a Gamma
distribution with a provided mean rate and parameter α “ 1. For each burst, the number of spikes
are chosen as

Nburst “ 1` PoissonpλN q (5)

where the parameter λN controls the length of the bursting. The inter-spike times between spikes
in a burst were modeled as uniformly random between 5 ms and 7 ms. Alternative distributions
of spiking activities can easily be implemented by passing different λburst, α, or λN values to the
simulator, or by direct modification to the code to implement different distributions that better
reflect activity in other cortical areas.

For the Hawkes model simulation, we first generate a connectivity matrix that encodes how
each neuron’s firing excites other neurons. We model this connectivity with a Watts-Strogatz small-
world network model [62]. To correlate the processes to the network activity, we allow for all neurons
to influence the background processes, while not allowing many return connections. To stabilize
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the point-process, we normalize the resulting connectivity matrix to have maximum eigenvalue
magnitude of 0.98. We then run the Hawkes process using Lewis’ method [97], with an exponential
distribution over the neuron’s base firing rates and a higher base firing rate for the background
components. Finally, we bin the resulting continuous-time spike events into 1 ms bins to create the
discretized spikes that are then fed into the calcium dynamics simulation.

4.3.2 AR-p dynamics

For each cell, we generate a baseline fluorescence, βi “ |1 ` z| where z „ N p0, σ2q is a Gaussian
random variable. The variance σ2 controls the distribution of baselines, and we set a default value to
σ2 “ 0.04. The next step is to simulate the spike or “event” times for each neuron. As most neurons
are sparsely active, we draw the firing rate of each neuron as λi „ Gammapa, θq. The parameter θ
gives the average inter-spike distance in time and should be set according to the temporal sampling
rate set in the simulation. The parameter a is the shape parameter and modulates the distribution
of the firing rates. We find that a “ 1 (where the Gamma distribution collapses to an exponential
distribution) yields realistic distributions of neuron activity levels. The actual event times are
then sampled for each neuron according to a Poisson process with rate λi. To model the different
calcium levels at each event (e.g. due to multiple spikes or to adaptation [98]), we sample the
overall concentration as coming from a unit log-normal distribution (i.e. an exponentiated Normal
distribution N p0, 1q).

Once the spike times are obtained, an auto-regressive model with p degrees of freedom (AR-p)
is used to simulate the calcium and fluorescence impulse response. As a difference equation, AR-p
models can be written as

yrns “

p
ÿ

i“1

aiyrn´ is ` bxrns,

where the ai’s are the AR coefficients and b is a scalar multiple of the input. The impulse response
can be obtained by solving the inverse Laplace transform

yrns “ hrns ˚ xrns, hrns “ L´1

"

bzp

zp ´
řp
i“1 aiz

p´i

*

.

Standard linear systems theory shows that hrns will be composed of the exponentiated roots of the
characteristic polynomial zp´

řp
i“1 aiz

p´i, and therefore will be an exponentially decaying function.
Higher order polynomials can result in a rise time as well. For this work we find that an AR-2 model
(p “ 2) sufficiently models the rise and fall of observed GCAMP responses. The filter h is convolved
with the spike-time vector to create the temporal activity per neuron.

4.3.3 rCa2`s dynamics

The fluorescence of a cell is dependent on the number of calcium ions bound to the indicator. if we
denote rCa2`s as the amount of free calcium in the cell and [B] as the number of proteins in the cell,
we can use the binding/unbinding dynamics, coupled with the entry/exit dynamics of rCa2`s in
the cell to determine the fluorescence level at any given time. Specifically, we use the nonlinear
diffusion of rCa2`s

drCa2`s

dt
“ ´γ

ˆ

1` κs `
rBsKd

prCa2`s `Kdq
2

˙´1

prCa2`s ´ rCa2`srestq,
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where rCa2`srest represents the baseline free rCa2`s , γ is the rCa2`s diffusion constant, κs is the
endogenous rCa2`s binding ratio, and Kd is the protein binding affinity constant [67, 68]. As γ is
a function of the volume-to-surface area, we use a different γ value for dendrite dynamics as for
dynamics in the soma [99]. While this model permits simulation of the rCa2`sconcentration over
time, the model does not include the on/off time constants τon and τoff that describe how long it
takes for the bound proteins to become active. We can model this effect, as in [68], by convolving
with a double-exponential function

hptq “ A
´

1´ e´t{τon
¯

e´t{τoff (6)

where the amplitude A and the time constants τon and τoff can be fit to the particular protein kinet-
ics. The final step in simulating the fluorescence time-traces is to convert the calcium concentrations
to fluorescence levels. For this task, we use the Hill equation

∆F {F “
1

1`
`

KD{rCa2`s
˘nH

(7)

where the parameters KD and nH have been measured in the literature (specifically [70], Table 1),
and the absolute florescence is

F “ F0p∆F {F q ` F0 (8)

where the baseline fluorescence F0 can be tuned to the protein statistics.

4.4 Optics simulation

The optics module consists of modeling the shape and intensity of the point-spread function (PSF)
within the scanned tissue. For computational purposes, we assume the shape of the PSF is constant
across the scanned volume and only the amplitude is modulated. We estimate the PSF within the
scanned tissue by propagating a specified field through the simulated tissue across the field of view.

We describe the scalar field at the front aperture of the objective lens as a Gaussian with a
circular aperture and spherical phase:

U0pρq “

#

expp´ρ2

ρ2e
´

ikρ2

2f q ρ ď ρ0

0 ρ ą ρ0

(9)

where U0 is the scalar field, ρ “
a

x2 ` y2 is the polar position, k is the wavenumber, ρ0 is the
radius of the objective lens, ρe is the radius of the excitation beam, and f is the focal length of
the objective lens. The wavefront is multiplied by any additional specified aberrations due to the
microscope or the sample:

Upρ, θq “ U0pρq exppik
8
ÿ

i“1

aiZipρ, θqq (10)

where θ is the polar angle, ai are the Zernike coefficients, and Zi are the Zernike polynomials. By
default, only spherical aberration approximating the contribution of the refractive index mismatch
of the sample and astigmatism approximating the contribution of offset scanning galvanometers are
included.

16

certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprint (which was notthis version posted August 6, 2019. ; https://doi.org/10.1101/726174doi: bioRxiv preprint 

https://doi.org/10.1101/726174


The field Upρ, θq is propagated through the sample to the focal plane along a 2D grid of positions
within a simulated refractive index volume δn. The volume δn is generated from the simulated
vasculature and a 3D Gaussian process with a weight distribution approximating the refractive
index distribution of mouse cortical tissue (see Supp Fig. 10) [100]:

δnpx, y, zq “ ndiff pV px, y, zq `GP px, y, zqq (11)

where V is the vasculature and GP is the smooth Gaussian Process representing the optical prop-
erties in the non-vasculature areas. The vasculature provides the bulk of the long range refractive
index shifts in the simulation, while the Gaussian process approximates the local shifts.

The Fresnel diffraction integral is used to estimate the field throughout the volume, and the
split-step beam propagation method [101] is used to apply the effects of inhomogeneity within the
volume. The simulated phase-difference volume is summed into optical phase masks corresponding
to each propagation step:

φpxi, yi, ziq “ k

ż zi`1

zi

δnpx, y, zqdz. (12)

This quantity is multiplied after each optical propgation step as

Ui`1 “
eikz

iλpzi`1 ´ ziq

ż 8

8

ż 8

´8

e´iφiUie
ik

2pzi`1´ziq
rpxi`1´xiq

2`pyi`1´yiq
2s
dxidyi, (13)

where φi “ φpxi, yi, ziq is the optical phase mask and Ui “ Upxi, yi, ziq is the scalar field at each
position. The resultant 3D field generated by the propagation is then used to calculate the two-
photon PSF:

PSF px, y, zq “ Upx, y, zq4. (14)

The aberrations caused by the phase differences approximate the effects of wavefront distortions
caused by refractive index inhomogeneity within the imaged sample [102, 103]. The two-photon
PSFs at each location across the field of view are averaged to obtain the PSF to be scanned through
the simulation, and the summed intensity of the PSFs across the field are used to generate an
intensity scaling mask for scanning. For runtime considerations, the PSF near the focal plane is
sampled at the resolution of the volume while the out of focus PSF and scaling mask is sampled at
a reduced resolution.

For alternative optical setups, we adjust the input field U0 accordingly. For a low numerical
aperture excitation beam, ρe is reduced, and for a Bessel beam excitation U0 is replaced with an
excitation ring. See supplementary information for more details.

An additional optical mask is also calculated by estimating the reduction in signal from absorp-
tion of the collected light by the vasculature. The collected light at each scanned position is reduced
by a collection cone corresponding to the simulated collection objective numerical aperture:

rpzq “ tanpsin´1pNA{nqqz (15)

where rpzq is the collected cone radius as a function of depth, and:

Cpx, yq “ 10A
şd
0prpzq˚V px,y,zqqdz (16)

where C is fraction of light collected, d is the tissue depth, and A is the adjusted light absorbance
of light emitted from GFP normalized by the arterial blood absorbance factor. This absorbance
mask is multiplied to the optical excitation mask to give the combined spatial signal scaling mask.
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4.5 Scanning in silico

The final module takes the generated volume, the generated PSF and time-traces, and generates
the TPM output frames. The first step here is to use the time-traces and fluorescence distribution
for each neuron to “color in” the corresponding volume with the current fluorescence level for that
neuron. Similarly, the background level is set by repeating this process with the neuropil. The PSF
is then convolved with the current volume, and the result is masked with the optical path mask to
create an initial image.

To simulate motion in the movie, we select a portion of this initial frame to treat as the entire
image. The starting position (upper left corner) for the with-motion frame is moved according to
a small +/-0.5µ-m jitter with occasional larger jumps (up to 2-3µ m). Options to include per-line
motion and shearing are also implemented by choosing different sub-sections of each row as the with-
motion frame is extracted from the larger motionless frame. This frame represents the fluorescence
level at each point in the sampled image. To obtain the actual electrical signals sampled by the
TPM device, we apply a noise model that simulates the number of photons incident on the array
(modeled as Poisson) followed by an electrical noise model that is Gaussian, with increasing mean
and variance with larger numbers of incident photons. If λ is the true florescence for a pixel, x is
the number of incident photons, and y is the measured electrical signal, the noise model can be
expressed as

x „ Poissonpλq
y „ logN pµ0 ` µx, σ

2
0 ` σ

2xq

where µ0 and σ3
0 are the baseline noise mean and variance (with no photons), and µ and σ2 are

the parameters controlling how the measurement mean and variance grow with increased incident
photons.

As a final step, we simulate the analog-to-digital accumulators’ property where photons arriving
in one pixel’s accumulation time can cause an analog shape that bleeds through to the accumulation
for the next pixel (Fig. 12). We simulate this effect by noting that if a photon arrives early in the
sample period, then the analog PMT response gptq is completely inside of the sample period and
no bleed-through occurs. On the other hand, if the photon arrives within ∆ of the end of the
sampling period, where ∆ is the temporal extent of gptq (Fig. 12), then the tail end of gptq that
continues beyond the end of the period is integrated into the next sample. The probability of a
given bleed-through level for one photon can thus be quantified as

ppbq “

#

1´ ∆
T for b “ 0

∆
T

1
gpT´τpbqq for 0 ă b ď

ş∆
0 gptqdt , (17)

where τpbq represents the delay τ that is needed to result in a given bleed-through b. Since the
relationship between b and τ ,

b “

ż ∆

T´τ
gptqdt,

is monotonically increasing when gptq ě 0 for all t, τpbq is a well defined function. Since photon
arrivals are approximately independent, the bleed-through probability distribution for multiple pho-
tons is the convolution of the distribution for a single photon. The resulting statistical model then
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takes a random fraction (uniformly chosen between zero and 50%) of each pixel with probability
0.2, and adds that amount to the next pixel,

ppbq “

"

1´ pbleed for b “ 0
pbleed
bmax

for 0 ă b ď bmax
(18)

Hemoglobin absorption

To calculate the absorption due to hemoglobin, we assume default concentrations pf 150mg/ml Hb,
64500 g/mol Hb, 2.9 (abs/µm)/(mol/L) in units of abs/µm. The absorbance is then calculated
using Scott Prahl’s Hb curve [104] and eGFP emission spectrum [105].

Estimation of per-trace noise variance

To estimate the noise variance for each time-trace, we begin with the basic per-pixel noise model

y “ Φf ` d` ε, (19)

where the noise is heteroskedastic in that the variance is proportional to the mean

ε „ N p0, diagpΦf ` dqq . (20)

The least-squares estimate of the activations under the imperfect spatial profiles pΦ is

pf “ arg min
f

›

›

›
y ´ pΦf

›

›

›

2

2
(21)

“ ppΦT
pΦq´1

pΦTy (22)
“ ppΦT

pΦq´1
pΦT pΦf ` d` εq (23)

The covariance of this estimate is then

Covp pfq “ CovrppΦT
pΦq´1

pΦT pΦf ` d` εqs (24)
“ CovrppΦT

pΦq´1
pΦT εs. (25)

“ ErppΦT
pΦq´1

pΦT εεT pΦppΦT
pΦq´1s. (26)

“ ppΦT
pΦq´1

pΦTErεεT spΦppΦT
pΦq´1. (27)

“ ppΦT
pΦq´1

pΦTdiagpΦf ` dqpΦppΦT
pΦq´1. (28)

Local correlation calculation

To calculate the local correlations, V1 two-photon recordings and simulations were motion corrected
using correlation-based rigid motion correction [106]. A 1500-frame subsection of each dataset over a
250ˆ250 pixel area was extracted. For each pixel, the Pearson correlation between it’s fluorescence
activity and that of each of the neighboring pixels in a 51 ˆ 51 pixel square neighborhood (up to
25 pixels away in each direction) were calculated. The results were averaged over all pixels (to
create the mean images) and histograms were created to depict the spread for correlations along
the fast-scan direction.
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Calculation of auxiliary time-traces

To calculate the auxiliary, noisy “ground truth” time traces, we consider the movie frames yt for
t “ 1...T and the calculated ground-truth spatial profiles X “ rx1, ...,xN s. The noisy time trace
estimates are then calculated via the least-squares estimation procedure at each time-step t

pst “ arg min
S
}yt ´Xs}

2
2 . (29)
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4.6 Supplementary tables

Anatomical:

Parameter Lit. Val. Fit type NAOMi
Val. Unit Refs

Neural density 9.20E+04 Direct – mm´3 [58]
Axonal diameter 0.3 Direct – µm [58]
Fraction vasculature 0.01-0.04 Indirect 0.032 – [58, 74, 75]
Fraction cell bodies 0.12 Indirect 0.135 – [58]
Fraction neuropil 0.84 Indirect 0.833 – [58]
Fraction dendrites* 0.294 Indirect 0.223 – [58]
Fraction other (fluorescing)* 0.401 Indirect 0.33 – [58]
Fraction other (not fluorescing)* 0.293 Indirect 0.28 – [58, 76]
Vessel radius (capillary) 2.00E+00 Direct – µm [56]
Vessel radius (penetrating) 10 (9,11) Direct – µm [56]
Vessel radius (surface) 4-30 Direct – µm [56]
Vessel length 50 Indirect 50 µm [56]
Vessel orientation Uniform Indirect Uniform – [56]
Vascular density 1-3 Indirect 2 % [56, 58, 74, 75]
Penetrating vessel density 30: Direct – mm´2 [56]
Somatic volume* 1.80E+03: Indirect 1.80E+03 µm3 [77]
Nuclear volume* 800: Indirect 800 µm3 [77]
Cytoplasm volume* 1000: Indirect 1000 µm3 [77]
Somatic radius* 6.25-7.5: Indirect 7.5 µm [60, 77]
Nuclear radius* 6: Indirect 6 µm [77]
Fraction cell bodies 0.12 Indirect 0.135 – [58]
Basal dendrite endings 23-25: Direct – – [59–61]
Basal dendrite diameter 0.7 Direct – µm [78]
Basal dendrite length 100-160: Indirect 105 µm [59–61]
Apical dendrite endings 6-20: Direct – – [59, 60]
Apical dendrite diameter 1-2 Direct – µm [79]
Rall exponent 1.5 Direct – – [107]

*Adjusted for shrinkage: 31% [86],:Value estimated from data in the literature

Supplementary Table 1: Anatomical parameters used for in-silico simulation of neural activity
in layer II/III of mouse primary visual area V1. Values for each parameter were either directly
found in the literature or estimated from published data (entries with a :). The third column
indicates whether these parameters were set directly in NAOMi, or were fit indirectly by setting other
simulation parameters. In the latter cases, the measured values from a simulated NAOMi volume
are shown for comparison, indicating that the simulated anatomy matches measured anatomical
statistics.
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Fluorescence model:

Parameter Anat. Val. Fit type NAOMi
Val. Unit Refs

GCaMP6f binding affinity Kd 290 Direct – nMol [70]
Baseline Ca2` concentration 50.00 Direct – nMol [68]
Ca2` axon diffusion constant γ 2800 Direct – s´1 [67, 80, 83]
Endogenouse Ca2` binding ratio ks 100,110 Direct 110 AU [67, 80–82]
Ca2` diffusion constant γ 1800 Data fit 292.3 s´1 [67, 80, 81]
Onset time constant τon – Data fit 98.62 AU –
Decay time constant τoff – Data fit 0.85 AU –
GCaMP6f Hill eqn. exponent nh 2.7 Direct – AU [70]
GCaMP6f Hill eqn. amplitude 25.2 Direct – F [70]
Indicator concentration 10-200 Direct 10 µM [68, 84, 85]

Supplementary Table 2: Fluorescence parameters used for in-silico simulation of neural activity
in layer II/III of mouse primary visual area V1. Values for each parameter were either directly
found in the literature or estimated from published data (entries with a :). The third column
indicates whether these parameters were set directly, or were fit indirectly by setting other simulation
parameters. In the latter cases, the measured values simulated fluorescence traces are shown for
comparison, indicating a good match between the NAOMi simulation and known activity statistics.

4.7 Supplementary figures
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Supplementary Figure 1: Histograms comparing the distribution of vasculature orientation (angles
from the x- y- and z-axes).
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Optical:
Parameter Value Unit Refs
Refractive index (tissue average) 1.35 – [108]
Refractive index (SD) 0.02 – [77, 108]
Scatter size [0.51 1.56 4.52 14.78] µm [77, 100], See Methods
Scatter weight [0.57 0.29 0.19 0.15] – [77, 100], See Methods
Wavelength λ 920 nm [109]
System aberrations (astigmatism) 0.1 λ See Methods
System aberrations (spherical) 0.12 λ See Methods
Hemoglobin absorption 0.00674*log(10) – [104], See Methods
Objective NA 0.8 – [110]
PMT QE 0.4 – [111]
eGFP Quantum Yield 0.6 – [109]
∆, baseline F0 2 GM [109]
∆, saturation Fmax 35 GM [109]
Sech pulse shape 0.588 – [112]
Ti:S rep rate 80 MHz [112]
Ti:S pulse width 140 fs [112]

Supplementary Table 3: Optical parameters used for in-silico simulation of two-photon microscopy
scanning.

Scanning:
Parameter Value Unit Refs
PMT dynode model [113], See Methods

PMT Poisson-Gauss 1, 100 (mean photon,electronic)
0.23, 2300 (std photon,electronic) counts See Methods

Bleed-through probability 0.3 – See Methods
Bleed-through weight 0.4 V*s See Methods
PMT darkcount mean 0.05 counts See Methods

Supplementary Table 4: Scanning parameters used for in-silico simulation of two-photon microscopy
scanning.
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Supplementary Figure 2: Histograms comparing the lengths of vasculature.
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Other parameters:

Parameter Anat. Val. Fit type NAOMi
Val. Unit Refs

Axonal diameter 0.3 Direct – um [58]
Fraction vasculature 0.01-0.04 Indirect 0.032 – [58, 74, 75]
Fraction cell bodies 0.12 Indirect 0.135 – [58]
Fraction neuropil 0.84 Indirect 0.833 – [58]
Fraction spines* 0.118 Indirect 0 – [58]
Fraction dendrites* 0.294 Indirect 0.223 – [58]
Fraction Axons* 0.283 Indirect 0.33 – [58]
Fraction Glia* 0.0924 Indirect 0.08 – [58]
Fraction extracellular 0.2 Direct 0.2 – [76]

*scaled to full volume [86]

Supplementary Table 5: Detailed fractional volume of components

40m W power CNMF (1091 total) Suite2p (661 total) PCA/ICA (265 total)
Corr. cutoff >0.1 >0.3 >0.5 >0.1 >0.3 >0.5 >0.1 >0.3 >0.5
Paired 704 522 338 519 479 423 170 152 144
Unique 566 438 303 366 335 292 152 139 137
Doubled 95 54 27 68 64 58 11 9 7

Supplementary Table 6: Results of automated calcium imaging video segmentation as applied to
simulated data generated from NAOMi. Of the total number of components isolated, only a fraction
(« 30%´ 50%) unique, true cells in the scanned volume strongly matched the found components.

40m W power Unique Cells found
Corr. cutoff >0.1 >0.3 >0.5
CNMF (1091 total) 566 438 303
Suite2p (1091 total) 366 335 292
PCA/ICA (265 total) 152 139 137
CNMF Only 238 69 28
Suite2p Only 43 26 17
PCA/ICA Only 13 2 3
CNMF & Suite2p 321 307 273
CNMF & PCA/ICA 144 136 134
Suite2p & PCA/ICA 134 137 134
All algorithms 137 135 132

Supplementary Table 7: Results of automated calcium imaging video segmentation as applied to
simulated data generated from NAOMi. While sets of found components largely overlapped between
algorithms, each method’s design allowed for the extraction of slightly different cell activities.
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40m W power Unique Cells found
Corr. cutoff >0.1 >0.3 >0.5
Ideal (8117 total) 2088 817 415
Ideal & not CNMF 1523 383 120
Ideal & not Suite2p 1722 483 128
Ideal & not PCA/ICA 1936 678 278
CNMF & not Ideal 1 4 8
Suite2p & not Ideal 0 1 5
PCA/ICA & not Ideal 0 0 0

Supplementary Table 8: Results of automated calcium imaging video segmentation as applied to
simulated data generated from NAOMi. De-mixing the data using oracle spatial profile knowledge
allowed for isolating many more components, indicating that automated methods have room for
improvement. Interestingly some algorithms, due to built in denoising not included in the ideal
de-mixing, were able to isolate some cell time-traces more accurately.

80m W power CNMF (999 total) Suite2p (639 total) PCA/ICA (635 total)
Corr. cutoff >0.1 >0.3 >0.5 >0.1 >0.3 >0.5 >0.1 >0.3 >0.5
Paired 651 546 460 532 479 462 420 322 292
Unique 579 493 424 413 369 358 337 280 264
Doubled 60 41 30 61 54 53 47 28 20

Supplementary Table 9: Results of automated calcium imaging video segmentation as applied to
simulated data generated from NAOMi with 80m W laser power.

80m W power Unique Cells found
Corr. cutoff >0.1 >0.3 >0.5
CNMF (999 total) 579 493 424
Suite2p (639 total) 413 369 358
PCA/ICA (635 total) 337 280 264
CNMF Only 198 118 85
Suite2p Only 46 24 22
PCA/ICA Only 90 38 24
CNMF & Suite2p 357 334 325
CNMF & PCA/ICA 261 247 243
Suite2p & PCA/ICA 240 242 240
All algorithms 237 231 229

Supplementary Table 10: Results of automated calcium imaging video segmentation as applied to
simulated data generated from NAOMi with 80m W laser power.
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80m W power Unique Cells found
Corr. cutoff >0.1 >0.3 >0.5
Ideal (8117 total) 3206 1528 904
Ideal & not CNMF 2629 1036 481
Ideal & not Suite2p 2793 1159 546
Ideal & not PCA/ICA 2870 1248 640
CNMF & not Ideal 3 1 1
Suite2p & not Ideal 1 0 0
PCA/ICA & not Ideal 2 0 0

Supplementary Table 11: Results of automated calcium imaging video segmentation as applied to
simulated data generated from NAOMi with 80m W laser power.
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Supplementary Figure 3: Comparison of overall length of the vasculature and the number of vascu-
lature nodes within a cubic mm volume.
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Supplementary Figure 4: Examples of measured and simulated somas. Both measured somas (left)
and simulated somas (right) have a bumpy cell wall with one end exhibiting the cone-shaped tight-
ening characteristic of pyramidal cells. The nuclei of both sets of somas (blue shape inside of the
red shape) are shrunken and smoothed versions of the exterior cell wall.

Supplementary Figure 5: Histogram comparing simulated somas with measured anatomy.
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Supplementary Figure 6: Scatter plots comparing the nucleus, soma and cytoplasm volumes for
simulated neurons with measured anatomy from EM reconstructions.
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Supplementary Figure 7: A: Histogram of total basal dendrite length per cell from measured [60]
and simulated data. B: Histogram of total number of basal dendrite endings

35

certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprint (which was notthis version posted August 6, 2019. ; https://doi.org/10.1101/726174doi: bioRxiv preprint 

https://doi.org/10.1101/726174


0 2 4 6 8 10 12 14 16 18
Time (s)

F/
F 

(A
U

)

Spiking events
Recorded GCaMP6f
Simulated GCaMP6f

Supplementary Figure 8: Simultaneously recorded spikes and two-photon fluorescence time-
course [114] along with the estimated fluorescence timecourse using a forward model of calcium
response.

Supplementary Figure 9: Example of a Hawkes point-process. (a) The total activity of the network
is correlated with the total activity in the background processes. (b) The Hawkes process gives the
network- and single neuron- bursting statistics common in many neural activity recordings.
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Supplementary Figure 10: A: Spatial frequency weights of an EM volume of mouse visual cortex,
the fit to a Gaussian mixture model (GMM), and weights from a 3D Gaussian process sampling
using the GMM. B: Measured PMT single photon response digital count distribution as compared
to a Poisson amplification model or a dynode amplification model.
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Supplementary Figure 11: A: Example hill plots that can be used in the fluorescence simulation
(relating calcium concentration to ∆F/F). The height and slope dictate the saturation and decay
behavior. These curves were to the indicators in [71], using the parameters supplied therein. B:
Example ∆F/F behavior for GcAMP6f and GcAMP6s in response to a ten-spike burst.
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Supplementary Figure 12: Bleed-through of photon responses during TPM electronic analog-to-
digital conversion. Left: A single photon causes a response in the electronics that persists over a
time frame ∆. Right: any photons that arrive within ∆ of the end of the sampling period cutoff
(every T seconds) have responses that are partially integrated into the current sample (green) and
partially integrated into the next sample (orange).
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Supplementary Figure 13: Example frames showing the effect of reducing the power of the scanning
PSF.
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Supplementary Figure 14: A: Histogram of values in the mean image over 20000 frames for both
real and simulated V1 data. B: Histogram of standard deviations across the FOV over 2000 frames
for both real and simulated V1 data. C: Histogram of the ratio of the maximum value to the median
value (approximate estimte of activity) across all pixels in the FOV, calculated over 20000 frames.
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Supplementary Figure 15: Simulated propagation of a point-spread function through layers of dif-
fusing tissue using NAOMi. Simulated PSFs equally spaced across two «2000µm cross sections of
tissue, sampled at
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Supplementary Figure 16: Results of using the ideal spatial components to de-mix the simulated
TPM video with frame-by-frame least-squares.
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Supplementary Figure 17: Results of using CNMF to analyze the simulated TPM video.
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Supplementary Figure 18: Results of using Suite2p to analyze the simulated TPM video.
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Supplementary Figure 19: Results of using the PCA/ICA to analyze the simulated TPM video.

41

certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprint (which was notthis version posted August 6, 2019. ; https://doi.org/10.1101/726174doi: bioRxiv preprint 

https://doi.org/10.1101/726174


Strong pairs Weak pairs Unpaired

Id
e
a
l 
p
ro
fi
le

s
C

N
M

F
P
C

A
/I
C

A
S
u
it

e
2

p

100 um100 um100 um

100 um100 um100 um

100 um100 um100 um

100 um100 um100 um

G
ro

u
n
d
 t

ru
th

Supplementary Figure 20: Profile shapes for strongly paired profiles (ρ ą 0.5; left column), weakly
paired profiles (0.1 ă ρ ă 0.5; middle column) and unpaired profiles (ρ ă 0.1; right column). Most
cells (top row), were unpaired. Paired cells tended to be found via their somatic signal. CNMF
(second row) tended to find the most profiles and matched the most cells. CNMF, however, also
found the most false-positives, which tended to be dendritic shapes. Suite2p (third row) found both
fewer cells and fewer false positives. PCA/ICA had the lowest number of found cells but still had
a significant number of false positives.
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Supplementary Figure 21: Examples of finer features in the segmented profiles. Amongst the profiles
found by the three different methods (CNMF in red, Suite2p in blue and PCA/ICA in green) somas
were often found by multiple methods while finer features, such as dendrites were often found by
only one algorithm. A: A segment containing somas found by both CNMF and Suite2p (one also
found using PCA/ICA) and a dendrite found only with CNMF. B: A segment containing somas
found by both CNMF and Suite2p (one also found using PCA/ICA) and a dendrite found only with
Suite2p.
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Supplementary Figure 22: Examples of strongly paired time-traces in simulations using 0.6-NA
Gaussian beams 40m W and 80m W power.
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Supplementary Figure 23: Examples of cells that were found with multiplicity by one or more
algorithms. A: Such cells can have profiles that are hundreds of µm away. B. More than two
profiles can represent the same cell and often capture dendritic portions away from the soma. C:
Such duplicity can happen when the F.O.V. cuts off a portion of the cell. D: Some examples were
observed where the dendrite profile and soma profile were very close, where the profiles should have
been merged. E: An example where two profiles represent the same soma and overlap. F: All three
algorithms are susceptible to the multiplicity effect, proportionally to the number of profiles found.
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Supplementary Figure 24: Examples ROC curves at different power levels (40 mW on the left and
80 mW on the right) and with different correlation cutoffs for determining true vs. artifact sources
(0.1, 0.3, and 0.5 in the three rows). Each set of curves show on the left the rates of true vs. false,
as a fraction of the total number of true and artifact cells found by each algorithm, and on the right
the total number of true and artifact sources.
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Supplementary Figure 25: Analysis of signal loss as a function of subsampling interval. A: Mean
images calculated from imaging movies of the same volume and activity, taken at 1, 2, 3, and 4µ m
intervals. B: Example cell spatial profile and time traces at all four image subsampling resolutions,
as compared to the ground truth used to generate the data. C: Comparison of the number of
cells confidently found (correlation ą 0.5) at all four resolutions indicate a steep fall-off after 3µ m
subsampling.
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Supplementary Figure 26: Comparison of resulting ∆F/F distinguishability for bursts of different
spike numbers. A: Simulations were run by generating videos with preset spiking activity that
ramped up the number of spikes in each burst. Much of the error in recovered component time-
traces can be attributed to insufficiently removed neuropil, and using algorithmic techniques such
as in Suite2P [18] can increase the accuracy of the time traces. B: The recovered ∆F/F for larger
bursts was more reliable and more separable between the different burst strengths. For example
there is less overlap between the peak ∆F/F for 5- and 4-spike bursts then for 1- and 2-spike bursts.
C: The peak ∆F/F offset time is also more reliable for bursts with more spikes.
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Supplementary Figure 27: Analysis of signal strength as a function of numerical aperture (NA). A:
Signal strength drops off as a function of the displacement of the cell from the peak PSF excitation.
B: Same data plotted as an image to better compare spread and peak intensity of the various curves.
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