Biological Pathways and Gene Networks Link Inflammation and Vascular Remodeling to Both Heart Failure with Preserved and Reduced Ejection Fraction

in Women across Ethnicities

Qing Liu, Ph.D.^{1,2}, Kei Hang K. Chan, Ph.D.^{2,3}, Alan R. Morrison, M.D., Ph.D.^{4,5}, Stephen

T. McGarvey, Ph.D.¹, Xi Luo, Ph.D.⁶, James G. Wilson, M.D.⁷, Adolfo Correa, M.D., Ph.D.

⁸, Alexander P. Reiner, M.D. ^{9,10}, Jie Li, Ph.D. ^{1,2}, *Simin Liu, M.D., Sc.D. ^{1,2,5}, *Wen-Chih Wu, M.D. ^{1,4,5}

¹Department of Epidemiology, School of Public Health, Brown University, Providence, RI 02912, USA

² Center for Global Cardiometabolic Health, Brown University, 121 South Main St, Providence, RI, 02903

³ Department of Biomedical Sciences, City University of Hong Kong, Hong Kong

⁴ Providence Veterans Affairs Medical Center, Providence, RI 02908, USA

⁵ Alpert Medical School at Brown University, Providence, RI 02903, USA

⁶ Department of Biostatistics and Data Science, School of Public Health, University of Texas Health Science Center at Houston, Houston, TX 77030, USA

⁷ Department of Physiology and Biophysics, University of Mississippi Medical Center, Jackson, MS 39216

⁸ Department of Medicine, University of Mississippi Medical Center, Jackson, MS 39216

⁹ Department of Epidemiology, University of Washington, Seattle, WA 98195, USA

¹⁰ Division of Public Health Sciences, Fred Hutchinson Cancer Research Center, Seattle, WA 98109, USA.

*Co-Corresponding Authors:

Simin Liu simin_liu@brown.edu

Center for Global Cardiometabolic Health and Department of Epidemiology, Brown University, 121 South Main St, Providence, RI, 02903

Wen-Chih Wu Wen-Chih.Wu@va.gov

Center of Innovation in Long Term Services & Support, Providence VA Medical Center,

Providence, RI

Division of Cardiology, Department of Medicine, Alpert Medical School, Brown University, Providence, RI

Abstract

Introduction: Heart failure (HF) is understudied among women; especially, genomic evidence implicating shared or unique mechanisms of HF with respect to reduced or preserved ejection fraction (HFrEF, HFpEF) is lacking across ethnic populations of women. Prior genome-wide association studies (GWAS) have identified approximately 30 suggestive genetic variants for HF, although none have been specifically linked to HFrEF or HFpEF. **Objectives:** We aimed to define, replicate, and annotate genetic variants to HFrEF, HFpEF, or both, as well as to investigate potential biological mechanisms underlying HFrEF and HFpEF among African American (AA) and European American (EA) women in three wellcharacterized, high-quality prospective cohorts, the Women's Health Initiative (WHI) study, the Jackson Heart Study (JHS), and the Framingham Heart Study (FHS).

Methods: GWAS analysis on HFrEF and HFpEF were first performed among 7,982 AA and 4,133 EA in the WHI, followed by pathway analysis employing two independent methodological platforms (GSA-SNP and Mergeomics) curating KEGG, Reactome, and

BioCarta pathway databases. GWAS signals and biological pathways identified using the WHI were replicated in the JHS and FHS. For all replicated pathways, we performed crossphenotype and cross-ethnicity validation analyses to examine shared pathways between HFrEF and HFpEF, and phenotype-specific pathways, across ethnicities. We further prioritized key driver genes for HF according to specific pathways identified.

Results: We validated one previously reported genetic locus and identified six new ones, among which one locus was allocated to HFrEF and five to HFpEF. Additionally, we defined five biological pathways shared between HFrEF and HFpEF and discovered six HFpEFspecific pathways. These pathways overlapped in two main domains for molecular signaling: 1) inflammation and 2) vascular remodeling (including angiogenesis and vascular patterning), involving key driver genes from collagen and HLA gene families.

Conclusions: Our network analysis of three large prospective cohorts of women in the United States defined several novel loci for HF and its subtypes. In particular, several key driver genes reinforce the mechanistic role of inflammation and vascular remodeling in the development of HF, especially HFpEF. Given that therapeutic strategies developed for left ventricular dysfunction have had limited success for HFpEF, several new targets and pathways identified and validated in this study should be further assessed in risk stratification as well as the design of potential new HF interventions.

1 Introduction

2 According to the American Heart Association (AHA), approximately 6.5 million U.S. 3 adults have heart failure (HF) in 2018^{1} , representing a major cause of morbidity and mortality 4 in the United States. Heart failure is phenotypically and genetically heterogeneous, and much 5 remains unknown about the etiology for subtypes of HF, including HF with preserved 6 ejection fraction (HFpEF) and HF with reduced ejection fraction (HFrEF). Of note as many 7 as 40-71% of patients have HFpEF for which limited clinical treatment options are available with little to no impact on outcomes². Moreover, HF is understudied in women, who 8 experience a higher mortality than men¹. African American (AA) women have the highest 9 10 HF incidence, followed by Hispanic Americans (HA) and European Americans (EA), and morbidity and mortality are twice as high for AA women relative to EA³⁻⁶. Observational 11 12 studies have shown that while patients with HFpEF and HFrEF often display similar clinical 13 symptoms, they often have markedly different risk factors, underlying pathophysiological 14 processes, and responses to clinical therapies⁷. Many therapies with unequivocal benefit in 15 HFrEF have failed to show efficacy for HFpEF^{8,9}. Thus, there is a urgent need to further 16 research biological pathways and gene networks for HFpEF and HFrEF that could provide 17 mechanistic insight into the disease processes and identify potential targets for novel 18 treatment modalities, particularly for women, who are disproportionately affected by HF^{1} . 19 Recent candidate gene studies and genome-wide association studies (GWAS) have identified several genetic loci (such as ADRB1, USP3, ITPK1, and BAG3 genes^{10,11} 20 21 associated with HF risk. However, these studies are primarily focused on genes associated 22 with inherited HFrEF and are limited by reproducibility, effect size, and lack of ethnic diversity^{10,11}. Although women are at higher risk of HF, no studies to date have 23 24 examined/observed sex-specific genetic variants. Moreover, few studies have directly 25 investigated the genetic mechanisms underlying the two HF subtypes, HFpEF and

26	HFrEF ^{12,13} ; and no studies were conducted in an ethnically diverse population of women. As
27	genes tend to behave conjointly on HF processes, analyzing a cluster of genes with related
28	biological functions, using an integrative pathway and network approach ^{14,15} , improves the
29	statistical power to identify genetic variants of biological importance. To enhance the
30	understanding of biological mechanisms underlying different HF phenotypes (HFpEF versus
31	HFrEF) as well as genomic and ethnic diversity in women with HF, we therefore investigated
32	genetic risk factors and biological pathways predisposing to HF and its subtypes among AA
33	and EA women in the Women's Health Initiative (WHI) study. We replicated our findings
34	using AA women from the JHS, EA from FHS, and HA women from the WHI.
35	
36	Methods
37	Study Population
38	Discovery Population
39	The WHI study enrolled 161,808 postmenopausal women aged between 50 and 79
40	years old from 1993 to 1998. The original WHI study has two major components: a partial
41	factorial randomized clinical trial (CT) including 68,132 participants and an observational
42	study (OS) of 93,676 participants. The detailed study design has been reported elsewhere ¹⁶ .
43	Briefly, medical records from enrollment through September 2014 for 44,174 WHI
44	participants, including all women randomized to the hormone trial component ($n = 27,347$)
45	and all AA participants ($n = 11,880$) and HA participants ($n = 4,947$) from the CT and the
46	OS, were sent to the University of North Carolina (UNC) for HF adjudications.
47	Of the participants enrolled in the WHI-OS, 8,515 self-identified AA women had
48	consented to and were eligible for the WHI-SNP Health Association Resource (SHARe), and
49	of the participants enrolled in the WHI hormone trial, 4,909 EA women were included in the
50	WHI-Genomics and Randomized Trials Network (GARNET). After quality control, the

51	standard GWAS and pathway analyses were conducted among 8,298 AA and 4,257 EA
52	participants of the WHI. Considering the lack of replication cohort of HA participants in the
53	WHI-SHARe, we treated the HA participants as a replication sample in the pathway analysis.
54	
55	Population for validation and replication
56	The current study included three populations as validation and replication: AA in the
57	Jackson Heart Study (JHS), EA in the Framingham Heart Study (FHS), and HA in the WHI-
58	SHARe. Considering the WHI only enrolled postmenopausal women, we replicated the
59	proposed analyses among women in the JHS and FHS. The main FHS enrolled three
60	generations: the original generation (started in 1948), offspring generation (started in 1971),
61	and generation three (started in 2005). Because of the poor measurement of left ventricular
62	ejection fraction (LVEF) among the original generation and the relatively young age of
63	generation three (baseline age < 40 years old), we only included the offspring generation in
64	the analysis. In total, we conducted the proposed analyses among 1,871 AA women in the
65	JHS, 1,764 EA women in the FHS, and 3,461 HA women in the WHI-SHARe.
66	
67	Definition of Heart Failure
68	In the WHI, HF adjudication was based on the Atherosclerosis Risk in Communities
69	(ARIC) classification guidelines ¹⁷ , in which HF was defined as having acute decompensated
70	HF (ADHF) and chronic stable HF ¹⁸ . Participants with adjudicated HF were further classified
71	as HFrEF or HFpEF according to their LVEF. For patients with ADHF, those with LVEF $<$
72	45% were considered as HFrEF and those with LVEF \geq 45% were considered as HFpEF. For
73	patients with chronic stable HF, baseline LVEF or lowest estimated LVEF on medical
74	records were used to classify HF subtypes. Similar criteria were applied to replication

cohorts, the JHS and FHS. Participants without LVEF were excluded from the analysis

76 (n=440).

78	Genotype Data
79	Genome-wide genotyping of the WHI-SHARe and JHS participants were performed
80	using the Affymetrix 6.0 array (Affymetrix, Inc, Santa Clara, CA), and WHI-GARNET and
81	FHS participants were genotyped using Illumina HumanOmni1-Quad SNP platform
82	(Illumina, Inc, San Diego, CA). As the gene chips used for genotyping are designed to
83	capture common genetic variants, genetic variants with frequency \geq 5% were genotyped.
84	Reference panels from the 1000 Genomes (1000G) Project Consortium (Version 3, March
85	2012 release), which provide near complete coverage of common genetic variation with
86	minor allele frequency $\geq 0.5\%$, were used for genotype imputation.
87	
88	Statistical Analysis
89	Genome-wide association analyses
90	We performed standard GWAS analysis for HFrEF and HFpEF for AA and EA
91	women, using multivariable logistic regressions. The regression models were implemented
92	using allelic dosage at each SNP (single-nucleotide polymorphism) as the independent
93	variable, with covariate adjustment for age, age ² , and first four principal components (PCs)
94	for global ancestry in all three cohorts. We also adjusted for region in two WHI cohorts, and
95	randomized hormone treatment group and baseline hysterectomy status in the WHI-
96	GARNET study. Since the associations between germline genetic variants and HF are not
97	confounded by demographic and lifestyle factors, no other confounders were adjusted in the
98	GWAS analysis. The general form of the GWAS model is specified as follows:
99	$logit Pr[Y G, V] = \alpha_0 + \alpha_g G + \alpha_v V,$

100	where Y denotes HF subtype, G denotes SNPs, and V denotes adjusted covariates. Common
101	genetic variants reaching the suggestive significance (5 \times 10 ⁻⁶) were identified as potential
102	GWAS hits. Suggestive SNPs were validated in the JHS and FHS using nominal P value <
103	0.05, followed by cross-ethnicity meta-analyses combining AA, EA, and HA women from
104	WHI, JHS, and FHS using METAL ¹⁹ (FDR-adjusted q value < 0.05).
105	
106	Pathway analysis
107	We obtained knowledge-driven metabolic and signaling pathways from three
108	databases: the Kyoto Encyclopedia of Genes and Genomes (KEGG) ²⁰ , Reactome ²¹ , and
109	BioCarta ²² . SNPs showing potential associations with HF subtypes (P value <0.05 in GWAS)
110	were mapped to relevant genes based on their chromosome locations or functions, and further
111	mapped to biological pathways. Each pathway was tested for enrichment of genetic signals
112	for HFrEF and HFpEF by ethnic groups. To avoid potential biases due to a particular method,
113	we applied two different well-established methods based on known biological pathways: 1)
114	GSA-SNP ¹⁴ , and 2) Mergeomics ¹⁵ . Pathways were defined as significant if they met the
115	following criteria: 1) identified by both methods from the WHI study with a FDR-adjusted q
116	value < 0.2; and 2) validated by GSA-SNP or Mergeomics with a significant P value after
117	Bonferroni correction in JHS (as replication of WHI-AA) and FHS (as replication of WHI-
118	EA). We then performed cross-phenotype and cross-ethnicity analyses in WHI to examine
119	shared pathways between HFrEF and HFpEF, as well as phenotype-specific pathways, across
120	ethnicities (AA, EA, and HA).
121	
122	Key Driver Analysis for Identification of Key Regulatory Genes for HF-related Pathways

123 As hundreds of genes are involved in the biological pathways, we seek to further 124 prioritize key driver (KD) genes, defined as genes that played a central role in the disease

125	progress and once perturbed, should have major impact on many other genes. We integrated
126	all genes involved in significant pathways with seven Bayesian networks and one protein-
127	protein interaction network using KD analysis methods ^{15,23,24} . We designed a normalized
128	rank score (NRS) to summarize the consistency and strength of identified KD genes across
129	multiple networks ²⁵ , where $NRS = \frac{C_{KD}}{N} \times \sum_{i=1}^{C_{KD}} R_{KDi}$; C_{KD} is the count of networks from
130	which a KD was identified; C_{KD} is then normalized by total number of networks N to
131	represent the consistency of a KD across all networks tested (Bayesian networks from seven
132	tissues, including adipose, blood, brain, islet, liver, kidney, and muscle, and one protein-
133	protein interaction). The KD strength is represented by the summation of normalized
134	statistical rank in each network $i(R_{KDi})$ across all networks from which the KD is identified;
135	$R_{KDi} = \frac{Ran k_{KDi}}{N_{KDi}}$, which was calculated by dividing the rank of a KD based on the <i>P</i> values of
136	the Fisher exact test in descending order $(Rank_{KDi})$ by the total number of KDs identified
137	from a network $i(N_{KDi})$. KDs with high NRS were those with high network enrichment for
138	pathways and high consistency across tested networks.
139	

140 **Results**

141 Among WHI participants, 860 (10.4%) AA, 601 (14.1%) EA, and 165 (4.7%) HA 142 were initially identified as having HF. After excluding those without LVEF measurement 143 (316 WHI-AA and 124 WHI-EA), we performed primary analyses among 7,982 AA and 144 4,133 EA women in the WHI, and replication analyses among 1,853 AA women in the JHS, 145 1,755 EA women in the FHS, and 3,461 HA women in the WHI. The descriptive statistics on 146 demographic and lifestyle factors of each study population are shown in Table 1. Compared 147 to WHI-EA, WHI-AA women were younger in age and less physically active, had higher 148 BMI and lower intakes of alcohol and total calories, and with a higher proportion of 149 cardiovascular disease and diabetes.

Identification of Significant Genetic Loci Using Standard GWAS Analysis
In the validation analysis of previously reported 30 loci for HF from the GWAS
catalog ²⁶ , we validated one locus and further allocated it to HFpEF in the WHI, JHS, and
FHS populations with FDR-adjusted q value < 0.05 . The validated SNP rs4420638 is located
on chromosome 19 and close to APOE and APOC genes. Detailed information regarding the
validated locus can be found in Supplemental Table 1 .
The standard GWAS results for HFrEF and HFpEF within WHI-AA (n=7,982) and
WHI-EA (n=4,133) are shown in the Manhattan plots (Supplementary Figure 1). Among
AA, this discovery analysis revealed one significant ($P < 5 \times 10^{-8}$, rs35900865) and 57
suggestive ($P < 5 \times 10^{-6}$) SNPs related to HFrEF, and three significant ($P < 5 \times 10^{-8}$, rs7834398,
rs78668964, and rs12203350) and 94 suggestive ($P < 5 \times 10^{-6}$) SNPs related to HFpEF.
Among EA, we failed to identify significant SNPs, but found 50 suggestive ($P < 5 \times 10^{-6}$)
SNPs related to HFrEF and 47 SNPs for HFpEF.
In the replication analysis for AA women among JHS (n=1,853) participants, eight
SNPs from four loci (lead SNPs: rs12067046, rs114553497, rs10229703, and rs149663839)
out of 94 SNPs for HFpEF reached the threshold of $P < 0.05$. In the replication analysis for
EA women among FHS (n=1,755) participants, one SNP (rs12719020) reached the $P < 0.05$
threshold among the 50 suggestive SNPs for HFrEF; and 19 SNPs (concentrated on
chromosome 16, lead SNP: rs12599260) among the suggestive 47 SNPs for HFpEF reached
the threshold of $P < 0.05$. The effect of all lead SNPs on HF was in the same direction in the
discovery population and the ethnicity-specific replication population. In the cross-ethnicity
meta-analysis combining AA, EA, and HA women from the WHI, JHS and FHS, all loci
passed ethnicity-specific validation and were further validated with FDR-adjust q value of <

174 0.05 (**Table 2**). More information regarding the newly discovered loci can be found in

175 Supplemental Table 1.

176

177 Identification of Biological Pathways Using Integrative Pathway Analysis

178 We initially identified 21 pathways for HFrEF (nine for EA and 12 for AA) and 42

179 pathways for HFpEF (31 for EA and 17 for AA) among WHI participants, of which 11

180 pathways were validated for HFrEF and 15 pathways for HFpEF, among the JHS and FHS

181 women. The results of cross-phenotype and cross-ethnicity analysis were presented in Table

182 **3 and Supplemental Tables 2 and 3**. Based on the functions of the pathways, we identified

183 two main overarching domains with some cell signaling and metabolism common to both: 1)

angiogenesis and vascular patterning and 2) inflammation. Five pathways, emerging from

angiogenesis and vascular patterning, were shared between HFrEF and HFpEF across AA,

186 EA, and HA women, namely, extracellular matrix (ECM)-receptor interaction, cell adhesion

187 molecules (CAMs), axon guidance, netrin-1 signaling, and developmental biology (Figure

188 1). The five shared pathways were highly interconnected as demonstrated by a shared

189 common set of 256 genes among them (**Figure 2**).

190 In addition, we found six pathways specifically enriched for HFpEF across AA and

191 EA, namely, adherens junction, endocytosis, phosphatidylinositol signal system, vascular

- 192 smooth muscle contraction, and heparan sulfate/heparin (HS)-glycosaminoglycan (GAG)
- 193 biosynthesis and degradation; all of which corresponded to the domain of angiogenesis and

194 vascular patterning (Figures 1 and 3). Of the aforementioned six HFpEF-specific pathways,

195 the first three pathways were further replicated in the WHI-HA participants.

197 Identification of Key Drivers for HFpEF and HFrEF

- 198 In the KD analysis to identify potential genes that played a central role in the
- 199 significant pathways for HF, we used eight different regulatory or interaction networks that
- 200 capture gene-gene or protein-protein interactions among the pathways. The top 10 KD genes
- 201 for the five shared pathways (developmental biology, axon guidance, netrin-1 signaling,
- 202 ECM-receptor interaction, and CAMs) between HFrEF and HFpEF across two ethnicities are
- 203 COL1A1, COL1A2, COL3A1, COL4A2, COL5A1, and COL6A3 from ECM and axon
- 204 guidance pathways, and HLA-DQA1, HLA-DQB1, HLA-DRB1, and HLA-DMB from CAMs
- 205 pathway (Figure 2 and Supplemental Figure 2). For the six pathways specific for HFpEF,
- 206 the top 10 KD genes are *MYH11*, *MYLK* and *PRKACB* from vascular smooth muscle
- 207 contraction, PRKCG, PIK3R1 from phosphatidylinositol signal system, HGS, EGF, and
- 208 SH3KBP1 from endocytosis, and CTNNB1 and RAC1 from adherens junction (Figure 3 and
- 209 Supplemental Figure 2). Variants in the identified top KD genes collectively account for 15-
- 210 19% and 15-16% variations of HFrEF and HFpEF among women in the WHI.
- 211

212 Discussion

213 In this GWAS analysis of 7,982 AA and 4,133 EA women from the WHI, we 214 validated one previously reported genetic locus and allocated it to HFpEF, and additionally 215 discovered one HFrEF and five HFpEF novel genetic loci of potential importance. Also, five 216 biological pathways appeared to be shared for both HFrEF and HFpEF across AA, EA, and 217 HA women, and six pathways were specific for HFpEF across AA and EA women. Our 218 results suggested the presence of core mechanisms across HF subtypes (HFrEF and HFpEF), 219 such as vascular remodeling and inflammation alone with some common overlapping 220 mechanisms of cell signaling and metabolism. It is important to note the paucity of 221 cardiomyocyte-specific gene variants, including those for nuclear envelope proteins,

222	sarcomere proteins, cytoskeletal, and calcium regulatory proteins, given their extensive
223	involvement in familial dilated cardiomyopathies. Our data highlight the genetic and/or
224	biological significance of the vascular remodeling and inflammation, rather than that of the
225	cardiomyocyte in the acquisition of HFpEF and HFrEF.
226	Given the increased diversity of gene involvement, the genetic architecture underlying
227	HFrEF and HFpEF remains challenging to delineate. We validated one previously reported
228	locus close to APOE and APOC, and further allocated it to HFpEF. Genes in the
229	apolipoprotein family (APOE, APOC1, APOC2, etc.) encode lipid transport proteins that
230	regulate cholesterol metabolism and are associated with obesity and cardiovascular
231	disease ^{27,28} . Of note, we were not able to validate other suggestive HF loci reported from
232	previous European-based cohorts, which may be due to effect modifications by sex and/or
233	ethnicity.
234	In addition, we discovered one HFrEF and five HFpEF loci from intergenic regions.
235	Variant rs12719020, associated with HFrEF, is located upstream (< 20 Kb) to COBL, a gene
236	related to vasculitis and type 1 diabetes ²⁹ . For variants associated with HFpEF, rs12067046 is
237	located 500 Kb downstream of PLXNA2, which is related to the development of blood
238	vessel ³⁰ and inflammatory-induced immune disorders ³¹ ; the linkage disequilibrium (LD)
239	block around rs12599260 is upstream (5 Kb) to HEATR3, which regulates inflammatory
240	immune response ³² ; rs149663839 is located upstream (50 Kb) to CAT, a key antioxidant
241	enzyme, which is hypothesized to play a role in the development of many chronic or late-
242	onset diseases such as HF ³³ ; ACTA1 (60 Kb to the LD block around rs114553497) and
243	CALD1 (5 Kb to rs10229703) are fundamental genes for skeletal/smooth muscle contraction
244	and had been linked to pulmonary hypertension in animal studies ^{34,35} (Table 2 and
	and had been mixed to putnonary hypertension in animal studies (1 able 2 and

246	Genetic pathway and network analysis, as novel approaches to integrate genetic
247	signals that complements current GWAS analysis, have been yielded new insight into the
248	biology of coronary heart disease ³⁶ , type 2 diabetes ²⁵ , obesity ³⁷ , and LV function ³⁸ . Our
249	pathway-based analysis revealed five consistent pathways between HFrEF and HFpEF across
250	the two ethnicities (Table 3). All the five pathways were linked to angiogenesis and vascular
251	patterning, among which three pathways, ECM-receptor interaction, CAMs, and Netrin-1
252	signaling were also linked to inflammation (Figure 1). From the five pathways shared by
253	both HFrEF and HFpEF, three pathways, axon guidance, ECM-receptor interaction, and
254	CAMs, had been implicated previously in thromboembolic cardiovascular disease, type 2
255	diabetes, and LV function ^{25,38} .
256	There appears to be a substantial overlap in the major areas of inflammation and
257	angiogenesis among shared pathways between HFrEF and HFpEF. The ECM is an intricate
258	network composed of multidomain macromolecules organized to support mechanical and
259	structural properties of cells and tissue but also to control behavioral characteristics of cells,
260	including proliferation, adhesion, migration, polarity and differentiation ^{39,40} . Major
261	components include collagens, proteoglycans, elastin, and cell-binding glycoproteins, each
262	with distinct physical and biochemical properties. ECM molecules connect to the cells
263	through integrins, syndecans, and other receptors which provides signaling input in addition
264	to mechanical support ⁴¹ . This ECM-receptor interaction contributes to angiogenesis and
265	vascular patterning in multiple ways, including the organization and maintenance of gradients
266	for angiogenic factors like vascular endothelial growth factor (VEGF)-A ^{42,43} . Endothelial
267	ECM receptors like intergrins play a critical role in adhesion and migration via control of
268	cytoskeletal dynamics while at the same time directing cell-cell interactions through
269	pathways like Notch signaling in order to coordinate sprouting and tube organization in early
270	capillary networks ⁴⁴ . ECM-CAM interactions also have the ability to influence inflammatory

271	state of both vascular and immune cells through focal adhesion complexes comprised of
272	integrins, protein kinases such as focal adhesion kinase (FAK), Src and many other kinases,
273	adaptor proteins such as Shc, signaling intermediates such as phosphoinositide 3-kinase
274	(PI3K), Rho and Rac GTPases, and actin binding cytoskeletal proteins ⁴⁵ . Further, cardiac
275	ECM (primarily collagen I) may also play a critical role in providing a platform for
276	cardiomyocytes to maintain structure and function, and any change in ECM properties
277	following an insult has potential to drive the progression toward HF, including myocardial
278	fibrosis and altered ECM protein orientation ^{46,47} . Details regarding the main functions of
279	other identified pathways can be found in Supplemental Table 4.
280	Taken together, the above identified pathways highlight the previously known but
281	likely underappreciated importance of angiogenesis and vascular patterning as well as
282	inflammation on HF that appear to link HFrEF and HFpEF to other cardio-metabolic health
283	outcomes via multiple mechanisms. The fact that these pathways were consistently identified
284	across multiple ethnicities further highlights a convergent or central role in the joint
285	mechanisms between interrelated cardiac diseases.
286	We additionally identified six pathways specifically for HFpEF across ethnicities. All
287	the six pathways were linked to angiogenesis and vascular patterning, from which three
288	pathways (phosphatidylinositol signal system, HS-GAG biosynthesis and degradation) were
289	additionally linked to inflammation (Figure 1). None of the six HFpEF pathways have
290	previously been implicated in pathway-based studies, making these findings novel.
291	Specifically, the phosphatidylinositol signaling system is critically linked to
292	inflammation and vascular remodeling, and in particular angiogenesis and vascular
293	patterning. Activation of the PI3K pathway can occur in response to a variety of extracellular
294	(e.g., ECM, CAM) as well as growth factor (e.g., fibroblast growth factor, VEGF-A)
295	signaling and can regulate broad spectrum of molecular functions which involve

296	proliferation, adhesion, migration, invasion, metabolism and cell survival ^{48,49} . Activation of
297	the PI3K pathway involves recruitment via Src-homology 2 (SH2) to phosphotyrosine
298	residues on the intracellular portion of membrane receptors, followed by phosphorylation of
299	phosphatidylinositol-4,5-bisphosphate (PIP2) to generate the second messenger molecule
300	PIP3. The Akt family of serine/threonine kinases has been shown to be the primary
301	downstream mediator of the effects of PI3K. Through the phosphorylation of IkB kinase
302	(IKK) and activation of nuclear factor κ B (NF- κ B) transcriptional activity, Akt leads to
303	upregulation of inflammatory and prosurvival genes ⁵⁰⁻⁵³ . Akt can also activate mTOR,
304	resulting in stabilization of hypoxia inducible factor-1 (HIF-1) and consequent expression of
305	VEGF-A in order to promote angiogenesis ⁵⁴⁻⁵⁶ . PI3K signaling may also play a role in
306	regulating cardiomyocyte size, survival, and inflammation during cardiac hypertrophy and
307	HF, in part via calcium signaling ^{57,58} . Details regarding the main functions of other identified
308	pathways can be found in Supplemental Table 4. Detailed knowledge of these relationships
309	at the molecular level will allow researcher to understand the distinct mechanisms underlying
310	HFpEF and enable the development of effective therapeutic strategies.
311	In addition, we observed two pathways with highly significant P values: Rac1
312	pathway for HFrEF within EA and HFpEF within AA, and signaling by bone morphogenetic
313	proteins (BMP) pathway for HFpEF among AA (Supplemental Tables 2, 3, and 4). Rac1 is
314	a GTPase protein, a member of the Rac subfamily of the Rho family of GTPases, and plays a
315	critical role in inflammation and vascular remodeling. Activated Rac1 can promote NF- κ B
316	signaling and reactive oxygen species (ROS) production via nicotinamide adenine
317	dinucleotide phosphate (NADPH) oxidase, both known activators of the NACHT, LRR, and
318	PYD domains-containing protein 3 (NLRP3) inflammasome protein complex that promotes
319	expression of the critical inflammatory cytokine, interleukin-1 β (IL-1 β) ⁵⁹⁻⁶¹ . A number of
320	studies have found that activation of Rac1 is associated with atrial fibrillation ⁶² ,

atherosclerotic calcification⁶³, cardiac hypertrophy⁶⁴, and HF⁶⁵, suggesting Rac1 may have 321 strong potential as a new therapeutic target⁶⁶. BMPs belong to transforming growth factor 322 323 beta (TGF β) superfamily, which is one of the most potent profibrogenic cytokine systems governing cardiac fibrosis⁶⁷. BMP signaling is also increasingly recognized for its influence 324 on endocrine-like functions in postnatal cardiovascular and metabolic homeostasis⁶⁸. Some 325 326 BMP molecules, such as BMP9 and BMP10, had been found to reduce pulmonary arterial 327 hypertension, cardiac fibrosis, and myocardial infarction, thereby providing potentially 328 benefits for HF patients^{68,69}.

The KD gene analysis prioritized KD genes of coronary heart disease⁷⁰, type 2 329 330 diabetes²⁵, and obesity⁷¹, but has not been performed for HF. In our KD gene analysis based 331 on shared pathways between HFrEF and HFpEF, we found that the KD genes belong to the 332 collagen gene family, shared between axon guidance and ECM-receptor interaction, and 333 HLA genes from CAMs pathway. HLA gene family members are components of the major 334 histocompatibility complex (MHC) and play a central role in the immune system with 335 established allelic contributions to type 1 diabetes susceptibility⁷², and a host of inflammatory disorders, including rheumatoid arthritis⁷³, Sjögren's⁷⁴, ulcerative colitis⁷⁵, and systemic 336 337 lupus erythematosus⁷⁶. Collagen gene family, as previously described, encodes proteins to 338 regulate vascular patterning and maintain the structure and function of cardiomyocytes. 339 These KD genes further highlight the effect of angiogenesis, vascular patterning and 340 inflammation in HF. Importantly, genes COLIA1 and COL3A1 were also found to be the KD 341 genes for thromboembolic cardiovascular disease and type 2 diabetes²⁵; thus, showing 342 potential shared biological mechanisms underlying these interrelated diseases as well as the 343 pleiotropic effects of these KD genes. COL4A2 is a critical component of the basement 344 membrane, and loss of function leads to disordered capillary networks during angiogenesis^{77,78}. The C-terminal portion of *COL4A2* is a potent inhibitor of angiogenesis, 345

346 prevents proliferation and migration of endothelial cells and induces apoptosis⁷⁹. Moreover,

347 variants of *COL4A2* are implicated in vascular cell survival, atherosclerotic plaque stability

and risk of myocardial infarction, as well as hemorrhagic stroke^{80,81}.

349 The KD genes for HFpEF were mainly from the vascular smooth muscle contraction, 350 phosphatidylinositol signal system and endocytosis pathways, which further highlight the 351 functional roles of inflammation and systemic vascular remodeling in the pathogenesis of 352 HFpEF. Two examples of genes intricately linked to vascular wall mechanics rather than 353 cardiomyocyte mechanics include MYH11 and MYLK. MYH11 encodes one of the smooth 354 muscle cell myosin heavy chains, and variants are associated with familial thoracic aneurysm 355 syndrome^{82,83}. *MYLK* encodes a myosin light chain kinase that is implicated in inflammatory 356 responses, apoptosis, and vascular permeability. Variants of MYLK are associated with arterial and aortic aneurysmal disease^{84,85}. 357

358 Several strengths and limitations need to be considered when interpreting these 359 findings. First, this study represents the first attempt to systematically examine and integrate 360 genetic variants for HF phenotypic subtypes using pathway and network approaches with 361 special emphasis on revealing mechanistic similarities and differences between HFrEF and 362 HFpEF with higher statistical efficiency. The second strength is the large, previously 363 validated and high-quality phenotyping of women of different ethnic backgrounds, which 364 allows the detection of HF mechanisms shared across ethnicities. Thirdly, two additional 365 high-quality cohorts, JHS and FHS, served as replication populations supporting the 366 robustness of our findings. One major limitation is that our results were based upon germline 367 mutations. Therefore, it is unclear whether mutations in the identified genomic regions and 368 pathways would impact downstream expression levels in particular tissues of interest, and 369 whether the identified genes and pathways are up-/down-regulated before and after HF 370 events. This highlights the critical need for future studies that will quantify the downstream

371	gene expression changes by comparing population with and without HF. Moreover, it will be
372	important to validate these results in men in order to examine the effect of sex on HF and to
373	replicate our finding using suitable animal models of HF in order to further validate these
374	newly discovered pathways.
375	
376	Conclusion
377	This study validated previously identified locus and defined novel loci for HF and its
378	subtypes, implicating specific molecular pathways, some shared and others unique, that
379	contribute to HF and its subtypes. We highlight the significant mechanistic role of the
380	inflammation and vascular remodeling (angiogenesis and vessel patterning) in the genetic
381	signals associated with HFpEF and HFrEF, supporting the concept that HF is largely a
382	disease of the systemic vasculature. Finally, this work defines several leading and novel
383	targets and pathways for risk stratification and design of potential new HF interventions.
384	

385 Funding

386 This study is funded by the American Heart Association grant 17UNPG33750001.

387

388 Acknowledgements

- 389 The WHI program is funded by the National Heart, Lung, and Blood Institute, National
- 390 Institutes of Health, U.S. Department of Health and Human Services through contracts

391 HHSN268201600018C, HHSN268201600001C, HHSN268201600002C,

392 HHSN268201600003C, and HHSN268201600004C.

393

394 The Jackson Heart Study (JHS) is supported and conducted in collaboration with Jackson

395 State University (HHSN268201800013I), Tougaloo College (HHSN268201800014I), the

396 Mississippi State Department of Health (HHSN268201800015I) and the University of

397 Mississippi Medical Center (HHSN268201800010I, HHSN268201800011I and

398 HHSN268201800012I) contracts from the National Heart, Lung, and Blood Institute

399 (NHLBI) and the National Institute on Minority Health and Health Disparities (NIMHD).

400 The authors also wish to thank the staffs and participants of the JHS.

401

402 From the Framingham Heart Study of the National Heart Lung and Blood Institute of the

403 National Institutes of Health and Boston University School of Medicine. This project has

- 404 been funded in whole or in part with Federal funds from the National Heart, Lung, and Blood
- 405 Institute, National Institutes of Health, Department of Health and Human Services, under
- 406 Contract No. 75N92019D00031.

407

408 Dr. Alan R. Morrison is supported by the Research Project Grant NIH NHLBI

409 R01HL139795, the Institutional Development Award (IDeA) from NIH NIGMS

- 410 P20GM103652, and the Career Development Award Number 7IK2BX002527 from the
- 411 United States Department of Veterans Affairs Biomedical Laboratory Research and
- 412 Development Program.
- 413

414 **Disclaimer**

- 415 The views expressed in this manuscript are those of the authors and do not necessarily
- 416 represent the views of the National Heart, Lung, and Blood Institute; the National Institutes
- 417 of Health, the Department of the Veterans Affairs; or the U.S. Department of Health and
- 418 Human Services.

Tables and Figures

Table 1. Baseline Characteristics of African and European American Women in Study Populations ^a

	Discovery Populations		Replication Populations ^b		
	WHI-AA	WHI-EA	JHS-AA	FHS-EA	WHI-HA
	(N=7,982)	(N=4,133)	(N=1,853)	(N=1,755)	(N=3,461)
No. of participants with HF, n (%) ^c	544 (6.8)	477 (11.5)	166 (9.0)	108 (6.2)	100 (2.9)
HFpEF, n (%)	345 (63.4)	304 (63.7)	140 (84.3)	103 (95.4)	67 (67.0)
HFrEF, n (%)	199 (36.6)	173 (36.3)	26 (15.7)	5 (4.6)	33 (33.0)
Years of follow-up, year (SD)	10.0 (5.2)	8.9 (5.3)	6.4 (2.3)	38.9 (4.8)	10.4 (5.3)
Age, year (SD)	61.5 (7.0)	65.6 (6.9)	55.5 (12.7)	34.8 (9.8)	60.2 (6.7)
Region, n(%) ^d					
Northeast	1410 (17.7)	1039 (25.1)			436 (12.6)
South	3902 (48.9)	879 (21.3)			1423 (41.1)
Midwest	1854 (23.2)	1185 (28.7)			126 (3.6)
West	816 (10.2)	1030 (24.9)			1476 (42.6)
Current smoking, n (%)	901 (11.3)	449 (10.9)	202 (10.9)	723 (41.2)	233 (6.7)
Cardiovascular disease, n (%) ^e	1355 (17)	647 (15.7)	191 (10.3)	0 (0)	356 (10.3)
Diabetes, n (%)	1054 (13.2)	285 (6.9)	436 (23.5)	8 (0.5)	278 (8)
BMI, kg/m ² (SD)	31 (6.5)	29.6 (6.1)	33.3 (7.8)	24 (4.4)	28.9 (5.8)
Physical Activity, MET-h/week (SD) ^d	9.7 (12.7)	10.2 (12.8)			10.8 (13.8)
Alcohol drinking, serving/week (SD)	1.1 (3.9)	2.3 (5.1)	1.5 (6.2)	3.5 (5.8)	1.3 (3.9)
Total energy intake, kcal/day (SD)	1614.1 (759.5)	1683.3 (663.1)	1826.2 (751.8)	1757.0 (579.6)	1656.7 (777.4)

Abbreviations: AA (African American), ADHF (acute decompensated heart failure), BMI (body mass index), EA (European American), FHS (Framingham Heart Study), HA (Hispanic American), HF (heart failure), HFpEF (heart failure with preserved ejection fraction), HFrEF (heart failure with reduced ejection fraction), JHS (Jackson Heart Study), LVEF (left ventricular ejection fraction), SD (standard deviation), WHI (Women's Health Initiative Study).

^a Continuous variables were presented as mean (SD).

^b 62.0% in the JHS and 52.5% in the FHS participants were women.

^c HF was defined as having ADHF or chronic stable HF, and further classified as HFrEF (LVEF< 45%) or HFpEF (LVEF \ge 45%). For WHI patients with ADHF, LVEF closest to the diagnosis date of ADHF was used, and for patients with chronic stable HF, baseline LVEF or lowest estimated LVEF on medical records were used to classify HF subtypes. In the JHS, considering over 50% of ADHF patients were missing LVEF, baseline LVEF was used to determine HFrEF and HFpEF for those without coronary heart disease before HF, and for chronic stable HF patients, baseline LVEF was used. In the FHS, HF was defined as incident or prevalent congestive HF. Since LVEF was not measured at baseline, LVEF closest to the diagnosis date of HF was used to define HFrEF and HFpEF. Participants without LVEF measurement were excluded in the analysis.

^d Results in the replication populations were not presented for variables which were not applicable (region) or measured in different scales (physical activity).

^e Cardiovascular disease was defined as self-reported coronary heart disease, heart failure, stroke, and peripheral artery disease at baseline.

Table 2. Newly Discovered Loci for Heart Failure among Women across Ethnicities in the Women's Health Initiative Study, Jackson

rs12719020 European Ame rs12599260	Position (hg19)	Candidate Gene ^a	Al 1/	Discovery ^b		Validation $^{\circ}$		Cross-ethnicity Meta-analysis ^d			
			Al 2	β (SE)	P value	β (SE)	P value	Direction	FDR-q value		
European American - HFrEF											
rs12719020	7:51066547	Near COBL	A/C	1.08 (0.2)	3.1×10 ⁻⁶	2.59 (0.9)	0.02	+++?+ ^e	8.8×10^{-4}		
European American - HFpEF											
rs12599260	16:50093238	Near HEATR3	A/G	-0.42 (0.1)	4.9×10 ⁻⁶	-0.43 (0.2)	5.5×10 ⁻³	+	0.01		
African Americ	an - HFpEF										
rs12067046	1:208913216	Near PLXNA2	A/G	0.47 (0.1)	4.2×10^{-6}	0.44 (0.2)	6.6×10 ⁻³	++-++	7.2×10^{-4}		
rs114553497	1:229507916	Near CCSAP, ACTA1	T/C	0.92 (0.2)	5.2×10 ⁻⁷	0.67 (0.3)	0.04	+?-+?	1.6×10^{-4}		
rs10229703	7:134661230	Near CALD1, AGBL3	A/G	0.49 (0.1)	3.6×10 ⁻⁶	0.41 (0.2)	0.02	++-	7.6×10^{-3}		
rs149663839	11:34408645	Near ABTB2, CAT	A/G	2.61 (0.9)	1.4×10^{-6}	1.69 (0.8)	5.1×10 ⁻³	+??+?	7.1×10^{-6}		

Heart Study and Framingham Heart Study.

Abbreviations: Al (allele), FDR (false discovery rate), HFpEF (heart failure with preserved ejection fraction), HFrEF (heart failure with reduced ejection fraction), SE (standard error), SNP (single-nucleotide polymorphism).

^a Closest genes within \pm 300 kb of the lead SNPs.

^b The discovery populations were African Americans (N=7,982) and European Americans (N=4,133) within the Women's Health Initiative study.

^c The validation populations were African Americans women (N=1,853) in the Jackson Heart Study and European American women (N=1,755) in the Framingham Heart Study.

^d The cross-ethnicity meta-analysis was performed among African Americans, European Americans, and Hispanic Americans in the Women's health Initiative study, and the Jackson Heart Study and Framing Heart Study.

^e The following symbols denote the directions of the ethnicity-specific GWAS results: + denotes a positive association between the genetic variant and HF; - denotes a negative association between the genetic variant and HF; and ? denotes the tested variant was not available in the population.

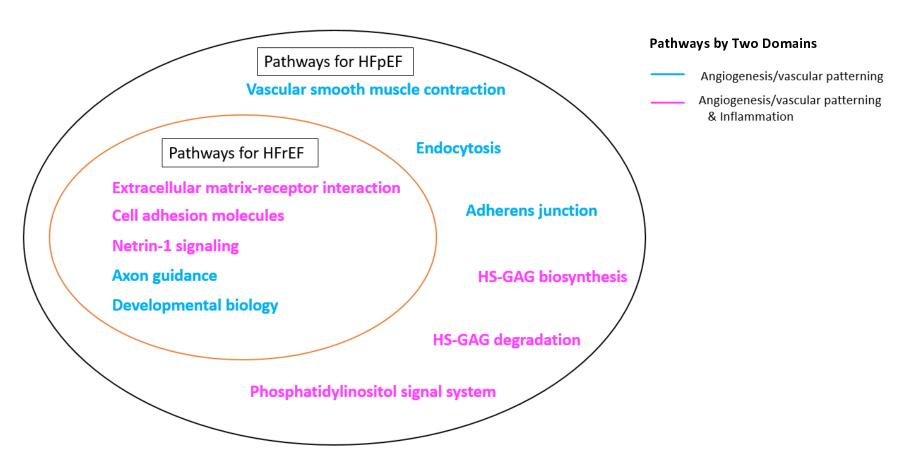
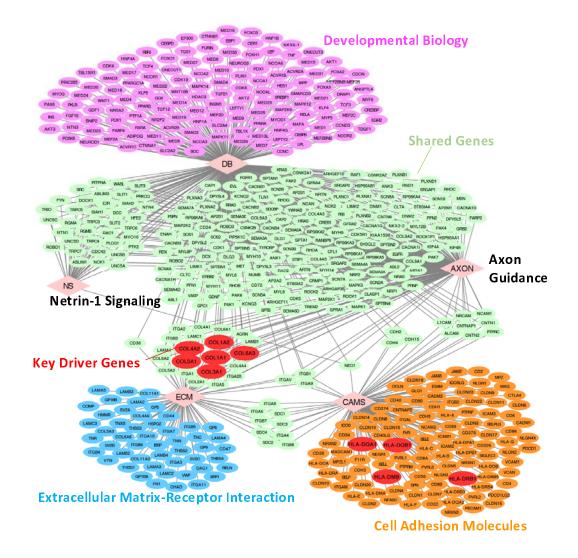
Table 3. Biological Pathways Enriched for HFrEF and HFpEF among African and

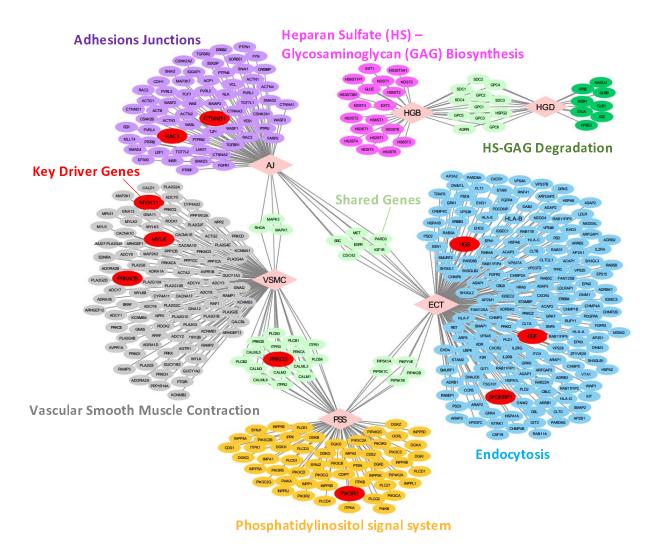
European American Women across Ethnicities^a.

De 4berra er		HFpEF				
Pathway	EA	AA	HA	EA	ÂÂ	HA
Angiogenesis and Vascular Patterning						
Extracellular matrix-receptor interaction	Х	Х	Х	Х	Х	Х
Cell adhesion molecules	Х	Х	Х	Х	Х	Х
Axon guidance	Х	Х	Х	Х	Х	Х
Netrin-1 signaling	Х	Х	Х	Х	Х	Х
Developmental biology	Х	Х	Х	Х	Х	Х
Adherens junction		Х	Х	Х	Х	Х
Endocytosis		Х	Х	Х	Х	Х
Phosphatidylinositol signal system				Х	Х	Х
Vascular smooth muscle contraction	Х		Х	Х	Х	
HS-GAG biosynthesis		Х		Х	Х	
HS-GAG degradation				Х	Х	
Mucin type O-glycan biosynthesis		Х	Х	Х		Х
Pre-Notch expression and processing				Х		Х
Signaling by BMP					Х	
Cell-cell junction organization			Х		Х	
Intrinsic pathway	Х		Х			Х
Inflammation						
Extracellular matrix-receptor interaction	Х	Х	Х	Х	Х	Х
Cell adhesion molecules	Х	Х	Х	Х	Х	Х
Netrin-1 signaling	Х	Х	Х	Х	Х	Х
Phosphatidylinositol signal system				Х	Х	Х
HS-GAG biosynthesis		Х		Х	Х	
HS-GAG degradation				Х	Х	
Rac1 pathway	Х				Х	
NRAGE signals death through JNK		Х		Х		
Signaling by Rho GTPases		Х	Х	Х		Х
Cell-cell junction organization			Х		Х	
Intrinsic pathway	Х		Х			Х

Abbreviations: AA (African Americans), BMP (Bone morphogenetic proteins), EA (European Americans), GAG (glycosaminoglycan), HA (Hispanic American), HFpEF (heart failure with preserved ejection fraction), HFrEF (heart failure with reduced ejection fraction), HS (Heparan sulfate), JNK (JUN Kinase).

^a Biological pathways presented in the table were those identified from AA and EA women in the Women's Health Initiative Study, and validated in the Jackson Heart Study and Framingham Heart Study. A pathway was marked with "X" when nominal *P* value from GSA-SNP or Mergeomics < 0.05 in the Women's Health Initiative Study


Figure 1. Venn Diagram for Biological Pathways Enriched for HFrEF and HFpEF among African and European American Women across Ethnicities

Abbreviations: GAG (glycosaminoglycan), HFpEF (heart failure with preserved ejection fraction), HFrEF (heart failure with reduced ejection fraction), HS (Heparan sulfate).

Figure 2. Network of 5 Pathways Enriched for HFrEF and HFpEF with Top 10 Key Driver Genes among African and European American Women.

The diamond nodes represent pathway and the ellipse modes represent genes, and the edge shows the interaction, that is, the association between a gene and a pathway. The color nodes are: red, top 10 key driver genes; light green, genes involved in \geq 2 pathways; others are pathway-specific genes. The figure was created using Cytoscape⁸⁶. Abbreviations: AXON (axon guidance), CAMS (Cell adhesion molecules), DB (developmental biology), ECM (Extracellular matrix-receptor interaction), HFpEF (heart failure with preserved ejection fraction), HFrEF (heart failure with reduced ejection fraction), NS (Netrin-1 signaling).

Figure 3. Network of 6 Pathways Enriched for HFpEF with Top 10 Key Driver Genes

among African and European American Women.

The diamond nodes represent pathway and the ellipse modes represent genes, and the edge shows the interaction, that is, the association between a gene and a pathway. The color nodes are: red, top 10 key driver genes; light green, genes involved in \geq 2 pathways; others are pathway-specific genes. The figure was created using Cytoscape⁸⁶. Abbreviations: AJ (adherens junction), ECT (endocytosis), HGB (heparan sulfateglycosaminoglycan biosynthesis), HGD (heparan sulfate-glycosaminoglycan degradation), HFpEF (heart failure with preserved ejection fraction), PSS (phosphatidylinositol signal system), VSMC (vascular smooth muscle contraction).

References

1. Benjamin EJ, Virani SS, Callaway CW, et al. Heart Disease and Stroke Statistics-2018 Update: A Report From the American Heart Association. Circulation 2018;137:e67e492.

2. Eaton CB, Pettinger M, Rossouw J, et al. Risk Factors for Incident Hospitalized Heart Failure With Preserved Versus Reduced Ejection Fraction in a Multiracial Cohort of Postmenopausal Women. Circulation Heart failure 2016;9.

3. Dries DL, Exner DV, Gersh BJ, Cooper HA, Carson PE, Domanski MJ. Racial differences in the outcome of left ventricular dysfunction. The New England journal of medicine 1999;340:609-16.

4. Bahrami H, Kronmal R, Bluemke DA, et al. Differences in the incidence of congestive heart failure by ethnicity: the multi-ethnic study of atherosclerosis. Archives of internal medicine 2008;168:2138-45.

5. Eaton CB, Abdulbaki AM, Margolis KL, et al. Racial and ethnic differences in incident hospitalized heart failure in postmenopausal women: the Women's Health Initiative. Circulation 2012;126:688-96.

6. Loehr LR, Rosamond WD, Chang PP, Folsom AR, Chambless LE. Heart failure incidence and survival (from the Atherosclerosis Risk in Communities study). The American journal of cardiology 2008;101:1016-22.

7. Yancy CW, Jessup M, Bozkurt B, et al. 2013 ACCF/AHA guideline for the management of heart failure: executive summary: a report of the American College of Cardiology Foundation/American Heart Association Task Force on practice guidelines. Circulation 2013;128:1810-52.

8. Schwartzenberg S, Redfield MM, From AM, Sorajja P, Nishimura RA, Borlaug BA. Effects of vasodilation in heart failure with preserved or reduced ejection fraction implications of distinct pathophysiologies on response to therapy. J Am Coll Cardiol 2012;59:442-51.

9. Zile MR, Brutsaert DL. New concepts in diastolic dysfunction and diastolic heart failure: Part II: causal mechanisms and treatment. Circulation 2002;105:1503-8.

10. Lopes LR, Elliott PM. Genetics of heart failure. Biochim Biophys Acta 2013;1832:2451-61.

11. Aragam KG, Chaffin M, Levinson RT, et al. Phenotypic Refinement of Heart Failure in a National Biobank Facilitates Genetic Discovery. Circulation 2018.

12. Franceschini N, Kopp JB, Barac A, et al. Association of APOL1 With Heart Failure With Preserved Ejection Fraction in Postmenopausal African American Women. JAMA Cardiol 2018;3:712-20.

13. Tayal U, Prasad S, Cook SA. Genetics and genomics of dilated cardiomyopathy and systolic heart failure. Genome Med 2017;9:20.

14. Nam D, Kim J, Kim SY, Kim S. GSA-SNP: a general approach for gene set analysis of polymorphisms. Nucleic acids research 2010;38:W749-54.

15. Arneson D, Bhattacharya A, Shu L, Makinen VP, Yang X. Mergeomics: a web server for identifying pathological pathways, networks, and key regulators via multidimensional data integration. BMC genomics 2016;17:722.

16. Design of the Women's Health Initiative clinical trial and observational study. The Women's Health Initiative Study Group. Controlled clinical trials 1998;19:61-109.

17. Rosamond WD, Chang PP, Baggett C, et al. Classification of heart failure in the atherosclerosis risk in communities (ARIC) study: a comparison of diagnostic criteria. Circulation Heart failure 2012;5:152-9.

18. Hall PS, Nah G, Howard BV, et al. Reproductive Factors and Incidence of Heart Failure Hospitalization in the Women's Health Initiative. Journal of the American College of Cardiology 2017;69:2517-26.

19. Willer CJ, Li Y Fau - Abecasis GR, Abecasis GR. METAL: fast and efficient metaanalysis of genomewide association scans.

20. Kyoto Encyclopedia of Genes and Genomes. 2018. (Accessed Oct 17th, 2018, at <u>https://www.genome.jp/kegg/</u>.)

21. Reactome. 2018. (Accessed Oct 17th, 2018, at <u>https://reactome.org/</u>.)

22. BioCarta. 2018. (Accessed Oct 17th, 2018, at

http://software.broadinstitute.org/gsea/msigdb/genesets.jsp?collection=CP:BIOCARTA.)

23. Zhu J, Zhang B, Smith EN, et al. Integrating large-scale functional genomic data to dissect the complexity of yeast regulatory networks. Nat Genet 2008;40:854-61.

24. Wang IM, Zhang B, Yang X, et al. Systems analysis of eleven rodent disease models reveals an inflammatome signature and key drivers. Mol Syst Biol 2012;8:594.

25. Chan KH, Huang YT, Meng Q, et al. Shared molecular pathways and gene networks for cardiovascular disease and type 2 diabetes mellitus in women across diverse ethnicities. Circulation Cardiovascular genetics 2014;7:911-9.

26. GWAS Catalog. 2018. (Accessed Oct 18th, 2018, at <u>https://www.ebi.ac.uk/gwas/</u>.)

27. Kei AA, Filippatos TD, Tsimihodimos V, Elisaf MS. A review of the role of apolipoprotein C-II in lipoprotein metabolism and cardiovascular disease. Metabolism 2012;61:906-21.

28. Haan MN, Mayeda ER. Apolipoprotein E Genotype and Cardiovascular Diseases in the Elderly. Curr Cardiovasc Risk Rep 2010;4:361-8.

29. Torn C, Hadley D, Lee HS, et al. Role of Type 1 Diabetes-Associated SNPs on Risk of Autoantibody Positivity in the TEDDY Study. Diabetes 2015;64:1818-29.

30. Sun Q, Liu S, Liu K, Jiao K. Role of Semaphorin Signaling During Cardiovascular Development. Journal of the American Heart Association 2018;7.

31. Takamatsu H, Kumanogoh A. Diverse roles for semaphorin-plexin signaling in the immune system. Trends Immunol 2012;33:127-35.

32. Zhang W, Hui KY, Gusev A, et al. Extended haplotype association study in Crohn's disease identifies a novel, Ashkenazi Jewish-specific missense mutation in the NF-kappaB pathway gene, HEATR3. Genes Immun 2013;14:310-6.

33. Ribeiro-Samora GA, Rabelo LA, Ferreira ACC, et al. Inflammation and oxidative stress in heart failure: effects of exercise intensity and duration. Braz J Med Biol Res 2017;50:e6393.

34. Wallner M, Eaton DM, Berretta RM, et al. A Feline HFpEF Model with Pulmonary Hypertension and Compromised Pulmonary Function. Sci Rep 2017;7:16587.

35. Moreno-Vinasco L, Garcia JG. Receptor tyrosine kinase inhibitors in rodent pulmonary hypertension. Adv Exp Med Biol 2010;661:419-34.

36. de las Fuentes L, Yang W, Davila-Roman VG, Gu C. Pathway-based genome-wide association analysis of coronary heart disease identifies biologically important gene sets. European journal of human genetics : EJHG 2012;20:1168-73.

37. Wang L, Jing J, Fu Q, et al. Association study of genetic variants at newly identified lipid gene TRIB1 with coronary heart disease in Chinese Han population. Lipids Health Dis 2015;14:46.

38. Wells QS, Veatch OJ, Fessel JP, et al. Genome-wide association and pathway analysis of left ventricular function after anthracycline exposure in adults. Pharmacogenet Genomics 2017;27:247-54.

39. Lu P, Takai K Fau - Weaver VM, Weaver Vm Fau - Werb Z, Werb Z. Extracellular matrix degradation and remodeling in development and disease. LID -

10.1101/cshperspect.a005058 [doi] LID - a005058 [pii].

40. Mecham RP. Overview of extracellular matrix.

41. Gattazzo F, Urciuolo A, Bonaldo P. Extracellular matrix: a dynamic microenvironment for stem cell niche.

42. Gerhardt H, Golding M Fau - Fruttiger M, Fruttiger M Fau - Ruhrberg C, et al. VEGF guides angiogenic sprouting utilizing endothelial tip cell filopodia.

43. Ruhrberg C, Gerhardt H Fau - Golding M, Golding M Fau - Watson R, et al. Spatially restricted patterning cues provided by heparin-binding VEGF-A control blood vessel branching morphogenesis.

44. Mettouchi A. The role of extracellular matrix in vascular branching morphogenesis. Cell Adh Migr 2012;6:528-34.

45. Mitra SK, Hanson Da Fau - Schlaepfer DD, Schlaepfer DD. Focal adhesion kinase: in command and control of cell motility.

46. Jourdan-Lesaux C, Zhang J, Lindsey ML. Extracellular matrix roles during cardiac repair. Life sciences 2010;87:391-400.

47. Bayomy AF, Bauer M, Qiu Y, Liao R. Regeneration in heart disease-Is ECM the key? Life sciences 2012;91:823-7.

48. Bader AG, Kang S Fau - Zhao L, Zhao L Fau - Vogt PK, Vogt PK. Oncogenic PI3K deregulates transcription and translation.

49. Dillon RL, White De Fau - Muller WJ, Muller WJ. The phosphatidyl inositol 3-kinase signaling network: implications for human breast cancer.

50. Kane LP, Shapiro Vs Fau - Stokoe D, Stokoe D Fau - Weiss A, Weiss A. Induction of NF-kappaB by the Akt/PKB kinase.

51. Ozes ON, Mayo LD, Gustin JA, Pfeffer SR, Pfeffer LM, Donner DB. NF-κB activation by tumour necrosis factor requires the Akt serine–threonine kinase. Nature 1999;401:82.

52. Romashkova JA, Makarov SS. NF-kappaB is a target of AKT in anti-apoptotic PDGF signalling.

53. Sizemore N, Leung S Fau - Stark GR, Stark GR. Activation of phosphatidylinositol 3kinase in response to interleukin-1 leads to phosphorylation and activation of the NF-kappaB p65/RelA subunit.

54. Li Y, Corradetti Mn Fau - Inoki K, Inoki K Fau - Guan K-L, Guan KL. TSC2: filling the GAP in the mTOR signaling pathway.

55. Tan C, Cruet-Hennequart S Fau - Troussard A, Troussard A Fau - Fazli L, et al. Regulation of tumor angiogenesis by integrin-linked kinase (ILK).

56. Zhong H, Chiles K, Feldser D, et al. Modulation of hypoxia-inducible factor 1α expression by the epidermal growth factor/phosphatidylinositol 3-kinase/PTEN/AKT/FRAP pathway in human prostate cancer cells: implications for tumor angiogenesis and therapeutics. Cancer research 2000;60:1541-5.

57. Ghigo A, Laffargue M, Li M, Hirsch E. PI3K and Calcium Signaling in Cardiovascular Disease. Circulation research 2017;121:282-92.

58. Aoyagi T, Matsui T. Phosphoinositide-3 kinase signaling in cardiac hypertrophy and heart failure. Current pharmaceutical design 2011;17:1818-24.

59. Hordijk PL. Regulation of NADPH oxidases: the role of Rac proteins. Circ Res 2006;98:453-62.

60. Arbibe L, Mira Jp Fau - Teusch N, Teusch N Fau - Kline L, et al. Toll-like receptor 2mediated NF-kappa B activation requires a Rac1-dependent pathway. 61. Khan OM, Ibrahim Mx Fau - Jonsson I-M, Jonsson Im Fau - Karlsson C, et al. Geranylgeranyltransferase type I (GGTase-I) deficiency hyperactivates macrophages and induces erosive arthritis in mice.

62. Adam O, Frost G, Custodis F, et al. Role of Rac1 GTPase activation in atrial fibrillation. J Am Coll Cardiol 2007;50:359-67.

63. Ceneri N, Zhao L, Young BD, et al. Rac2 Modulates Atherosclerotic Calcification by Regulating Macrophage Interleukin-1beta Production. Arterioscler Thromb Vasc Biol 2017;37:328-40.

64. Satoh M, Ogita H, Takeshita K, Mukai Y, Kwiatkowski DJ, Liao JK. Requirement of Rac1 in the development of cardiac hypertrophy. Proc Natl Acad Sci U S A 2006;103:7432-7.

65. Do e Z, Fukumoto Y, Sugimura K, et al. Rho-kinase activation in patients with heart failure. Circ J 2013;77:2542-50.

66. Ridker PM, Everett BM, Thuren T, et al. Antiinflammatory Therapy with Canakinumab for Atherosclerotic Disease. The New England journal of medicine 2017;377:1119-31.

67. Leask A. TGFbeta, cardiac fibroblasts, and the fibrotic response. Cardiovasc Res 2007;74:207-12.

68. Morrell NW, Bloch DB, ten Dijke P, et al. Targeting BMP signalling in cardiovascular disease and anaemia. Nat Rev Cardiol 2016;13:106-20.

69. Morine KJ, Qiao X, York S, et al. Bone Morphogenetic Protein 9 Reduces Cardiac Fibrosis and Improves Cardiac Function in Heart Failure. Circulation 2018.

70. Makinen VP, Civelek M, Meng Q, et al. Integrative genomics reveals novel molecular pathways and gene networks for coronary artery disease. PLoS genetics 2014;10:e1004502.

71. Wang L, Perez J, Heard-Costa N, et al. Integrating genetic, transcriptional, and biological information provides insights into obesity. International journal of obesity (2005) 2018.

72. Roark CL, Anderson KM, Simon LJ, Schuyler RP, Aubrey MT, Freed BM. Multiple HLA epitopes contribute to type 1 diabetes susceptibility. Diabetes 2014;63:323-31.

73. Zanelli E, Breedveld Fc Fau - de Vries RR, de Vries RR. HLA association with autoimmune disease: a failure to protect?

74. Nakken B, Jonsson R Fau - Brokstad KA, Brokstad Ka Fau - Omholt K, et al. Associations of MHC class II alleles in Norwegian primary Sjogren's syndrome patients: implications for development of autoantibodies to the Ro52 autoantigen.

75. Garrity-Park MM, Loftus Ev Jr Fau - Sandborn WJ, Sandborn Wj Fau - Bryant SC, Bryant Sc Fau - Smyrk TC, Smyrk TC. MHC Class II alleles in ulcerative colitis-associated colorectal cancer.

76. Morris DL, Taylor Ke Fau - Fernando MMA, Fernando Mm Fau - Nititham J, et al. Unraveling multiple MHC gene associations with systemic lupus erythematosus: model choice indicates a role for HLA alleles and non-HLA genes in Europeans.

77. Poschl E, Schlotzer-Schrehardt U Fau - Brachvogel B, Brachvogel B Fau - Saito K, Saito K Fau - Ninomiya Y, Ninomiya Y Fau - Mayer U, Mayer U. Collagen IV is essential for basement membrane stability but dispensable for initiation of its assembly during early development.

78. Kuo DS, Labelle-Dumais C Fau - Gould DB, Gould DB. COL4A1 and COL4A2 mutations and disease: insights into pathogenic mechanisms and potential therapeutic targets.
79. Kamphaus GD, Colorado Pc Fau - Panka DJ, Panka Dj Fau - Hopfer H, et al. Canstatin, a novel matrix-derived inhibitor of angiogenesis and tumor growth.

80. Meuwissen ME, Halley DJA-Ohoo, Smit LSA-Ohoo, et al. The expanding phenotype of COL4A1 and COL4A2 mutations: clinical data on 13 newly identified families and a review of the literature.

81. Yang W, Ng FL, Chan K, et al. Coronary-Heart-Disease-Associated Genetic Variant at the COL4A1/COL4A2 Locus Affects COL4A1/COL4A2 Expression, Vascular Cell Survival, Atherosclerotic Plaque Stability and Risk of Myocardial Infarction. PLoS Genet 2016;12:e1006127.

82. Zhu L, Vranckx R Fau - Khau Van Kien P, Khau Van Kien P Fau - Lalande A, et al. Mutations in myosin heavy chain 11 cause a syndrome associating thoracic aortic aneurysm/aortic dissection and patent ductus arteriosus.

83. Takeda N, Morita H, Fujita D, et al. A deleterious MYH11 mutation causing familial thoracic aortic dissection.

84. Wang L, Guo Dc Fau - Cao J, Cao J Fau - Gong L, et al. Mutations in myosin light chain kinase cause familial aortic dissections.

85. Lindsay ME, Dietz HC. The genetic basis of aortic aneurysm.

86. Shannon P, Markiel A, Ozier O, et al. Cytoscape: a software environment for integrated models of biomolecular interaction networks. Genome research 2003;13:2498-504.