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Abstract 

Modern neuroimaging represents three-dimensional brain activity, which varies across 

brain regions. It remains unknown whether activity within brain regions is organized in spatial 

configurations to reflect perceptual and cognitive processes. We developed a rotational cross-

correlation method allowing a straightforward analysis of spatial activity patterns for the 

precise detection of the spatially correlated distributions of brain activity. Using several 

statistical approaches, we found that the seed patterns in the fusiform face area were robustly 

correlated to brain regions involved in face-specific representations. These regions differed 

from the non-specific visual network meaning that activity structure in the brain is locally 

preserved in stimulation-specific regions. Our findings indicate spatially correlated perceptual 

representations in cerebral activity and suggest that the 3D coding of the processed 

information is organized in locally preserved activity patterns. More generally, our results 

provide the first demonstration that information is represented and transmitted as local spatial 

configurations of brain activity. 

Key words 

fMRI; cross-correlation; fusiform face area; patterns of brain activity; free energy  

.CC-BY-NC 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under 

The copyright holder for this preprint (which was notthis version posted August 6, 2019. ; https://doi.org/10.1101/726414doi: bioRxiv preprint 

https://doi.org/10.1101/726414
http://creativecommons.org/licenses/by-nc/4.0/


3 

 

Introduction 

Functional neuroimaging techniques represent the brain as a three-dimensional field of 

energy, which has a certain structure such as peaks, valleys etc. The classical analysis of brain 

activations focuses on finding the peaks of energy, but neglects the three-dimensional patterns 

of brain activity in the vicinity of the peaks. Several psychophysical and psychological studies 

have demonstrated that during perception, the brain processes spatial differences between 

perceived elements 1. E.g., this is evident in the visual system, where the differential approach 

begins in the retina, which consists of ON- and OFF-center receptive fields (see 2 for review). 

Due to the combination of excitatory and inhibitory connections, differences of activity 

between neuroglial populations are established as part of neural coding. This neural encoding, 

in turn, is the basis for low-level functions such as orientation detection 3,4, which are usually 

performed by clusters of cells with similar preferences (e.g. orientation columns). The spatial 

pattern formation is also seen in the primary visual cortex where some cortical layers may 

inhibit activity in the other layers 5 . Though there is no doubt about the importance of spatial 

activity patterns, traditional fMRI connectivity studies employ correlation analyses across 

time-courses of individual voxels, which does not take into account any spatial correlations 

that might exist among the activity patterns. It is crucial to recognise that the brain is a three-

dimensional structure which may be considered as an ensemble of small volumes called 

voxels, with the activity of each voxel representing a summary level of neuroglial activity 6,7. 

Therefore, in addition to a temporal component, neural codes may also have a strong spatial 

component observable as patterns of 3D activity 8. This possibility is also reinforced by the 

finding that repeating patterns of network information have been shown to account for up to 

50% of the variance in fMRI blood oxygen level dependent (BOLD) data 9,10. Furthermore, 

Majeed et al. (2009) have also suggested that spatial patterns of activity could be explained by 

propagating wave of synchronized activity along the rat cortex. This raises the hypothesis that 
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spatial configurations (patterns) of activity, which correspond to spatial differences of activity 

levels between the neighbouring neuroglial populations during a given stimulation, constitute 

an important aspect of information coding not only at the sensory stages, but also in higher 

cortical areas. An analysis of spatial patterns in fMRI data raises two questions: whether 

fMRI, as a technique, is sensitive enough to make meaningful measurements of local spatial 

activity patterns 11; and, if this is the case, how does one quantify correlations between local 

patterns. 

Using gradient and divergence calculations we demonstrated 12 that differences of activity 

between adjacent voxels in certain loci of the brain are significant at the group level and are 

stimulation-dependent. To explain the inter-subject stability of the differential code, we 

suggested that the stimulation-related differences of activity between adjacent voxels in the 

BOLD signal contrast images are consistent. This, in our view, further indicates that there 

may be a spatial organisation of this information in the form of patterns of activity in the 

brain. Another proof for the existence of spatially coded information in the brain can be found 

in the results of multivoxel pattern analysis (MVPA), which makes use of the spatial 

differences in activation between voxels (see 13,14 for review). Despite its proven ability to 

classify brain activity patterns based on the stimulation, it lacks neurophysiological 

interpretation and has poor localizing ability 15. However, local approaches with MVPA are 

also possible, e g. in some cases it is possible to distinguish complex sounds on the basis of 

the auditory activity patterns 16. A more precise approach to the estimation of spatial 

distribution of brain activity would be to correlate a certain multivoxel spatial pattern in a 

region of interest with other spatial patterns in the brain, in other words, a localised cross-

correlation analysis. The cross-correlation technique provides a unique correlation value per 

voxel, which summarizes the resemblance of spatial activity in the vicinity of this voxel with 

the seed pattern. 
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In this article, we present one possible implementation of such a cross-correlation analysis 

which allows us to estimate to what extent the variations of activity between the groups of 

voxels are similar in different brain regions. The existence of such correlated patterns of voxel 

activity could indicate local spatial coding in the brain. In line with our hypothesis, we further 

ask whether this local spatial coding in brain activity is specific to cognitive processing, and 

whether a given spatial pattern of activity can recur throughout various specialised cortical 

areas of the brain.  

Results 

Cross-correlation analysis in the occipital area 

In order to test the specificity of our method we took a seed pattern in the fusiform face area 

of the face-specific contrast, coordinates: x = 33, y = -76, z = -8 mm, equivalent to x =16, y = 

13, z = 15 voxels (here and in other places, we also indicated the voxel coordinates of the seed 

because they are used in the cross correlation toolbox). As expected, the most significant peak 

in the group analysis was found at the location which corresponds to the coordinates of the 

seed pattern (Tables 1 and 5) (a 1-2 voxel displacement is sometimes observed at the group 

level analysis, though exactly the same seed coordinates are found at the individual level).  

Table 1 Coordinates of significant correlations and their anatomic location. (Face vs. 

Random. Seed: right fusiform. x = 33, y = -76, z = -8 mm. Contrast: face-specific) 

Anatomic location p value Cluster size (KE ) z value x y z 

R fusiform 0.0001* 542(61) > 6 33 -76 -8 

R cerebellum   5.83 51 -58 -32 

L fusiform 0.0001* 123(1) 5.50 -30 -79 -8 

L fusiform 0.036** 16 4.34 -42 -49 -17 

L orbitofrontal 0.0001* 51 4.71 -12 44 -17 

*FWE cluster corrected p-value. **The FDR cluster corrected p-value. Cluster sizes are reported at the p < 
0.0001 uncorrected level. In brackets cluster sizes are indicated at the FWE corrected level when appropriate. 
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The rest of the results section will omit the predictable correlations of 1 found at the seed 

location. The other significant peaks were found in the contralateral FFA, the right 

cerebellum, and the left orbitofrontal region (Fig. 1 a, b). 

 

Fig. 1 Significant clusters resulting from the cross-correlation analysis in the face-specific contrast. a, Ipsi and 
contralateral significant clusters are shown in the occipital lobes (FFA) and the cerebellum on the 3D template 
map. b, Significant clusters in the orbitofrontal areas. In both images, clusters are shown at the uncorrected 
threshold for illustrative purposes. The arrow indicates the seed. MRICron software was used to display the 
figures (https://www.nitrc.org/projects/mricron). 

 

To verify the consistency of the analysis, we used the contralateral peak from the previous 

analysis as the seed pattern. If the technique is robust this reverse-seed analysis should be able 

to detect the initial seed. In fact, the most significant correlation peaks of this reverse-seed 

analysis were indeed found at the original seed and its vicinity (Fig. 2a; Tables 2 and 3). We 

further verified that this reverse-seed correlation holds for each subject (mean = 0.62, 

bootstrapped CI = [0.55, 0.66]). Thus, a pattern in the opposite hemisphere can be detected 

whatever the side of the seed pattern used for the analysis. 
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Table 2 Coordinates of significant correlations and their anatomic location. (Face vs. 

Random. Seed: Left fusiform. x = -30, y = -79, z = -8 mm. Contrast: face-specific) 

Anatomic 
location p value Cluster size (KE ) z value x y z 

L fusiform 0.0001* 408(66) > 6 -30 -79 -8 

L fusiform   5.38 -36 -49 -14 

L cerebellum   4.81 -33 -55 -35 

R fusiform 0.0001* 336(1) 5.15 36 -40 -17 

R inf. Temporal   5.07 51 -49 -14 
R fusiform/inf. 

Occip. 
  4.91 39 -73 -8 

*FWE cluster corrected p-value. Cluster sizes are reported at the p < 0.0001 uncorrected level. In brackets 
cluster sizes are indicated at the FWE corrected level when appropriate. 

 

 

Fig. 2 Significant clusters with the seed pattern in the contralateral FFA or in the primary auditory area. a, 
Significant clusters in the FFA resulting from cross-correlation in the face-specific contrast with the seed on the 
contralateral FFA. Ipsi and contralateral significant correlations are shown on the 3D template map. b, 
Significant clusters in the auditory area resulting from cross-correlation in the face-specific contrast. In both 
images, clusters are shown at the uncorrected threshold for illustrative purposes. Arrows indicate the seed. 
MRICron software was used to display the figures (https://www.nitrc.org/projects/mricron). 
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Table 3 The values of the cross-correlation for each subject in the fusiform areas 

(Contrast: face-specific, seed in the left fusiform area) 

Contrast Face-specific  

Location Seed (Left Fusiform) 
Fusiform 

Controlateral 
Fusiform 

Controlateral 
Coordinates 

x y z 
Subjects 

-30 -79 -8 39 -73 -8 33 -76 -8 

1 1 0.47 0.56 

2 1 0.71 0.73 

3 1 0.59 0.71 

4 0.99 0.58 0.65 

5 1 0.55 0.60 

6 1 0.72 0.74 

7 1 0.74 0.68 

8 0.99 0.59 0.50 

9 1 0.64 0.52 

10 1 0.55 0.52 

11 1 0.65 0.57 

12 1 0.70 0.70 

13 1 0.71 0.70 

14 1 0.61 0.70 

15 1 0.58 0.35 

16 1 0.68 0.66 

Mean 0.99 0.63 0.62 

Bootstrap CI [inf, sup] [0.99, 1] [0.59, 0.66] [0.56, 0.66] 

Each subject’s value indicates the result of the cross-correlation at the above mentioned coordinates.  Mean 
values and bootstrap confidence intervals are indicated (CI; re-sampling 10000 times with a bias corrected and 
accelerated (BCa) percentile algorithm for confidence intervals 50. 

 

Next, to verify, as a control, if the method provides other results for non-face-specific data, 

we analyzed the non-face-specific contrast with the seed pattern at the same coordinates as for 

the above described face-specific contrast (x = 33, y = - 76 and z = - 8 mm  � x = 16, y = 13, 

z = 15 voxels)(Table 4). 
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Table 4 Coordinates of significant correlations and their anatomic location. (Visual vs 

Random. Seed: right fusiform. x = 33, y = -76, z = -8 mm. Contrast: non-face-specific) 

Anatomic location p (corr) Cluster level Cluster size (KE ) z value x y z 

R fusiform 0.0001* 1259(99) > 7 33 -73 -8 

R cerebellum   6.74 45 -58 -32 

R lingual   6.62 24 -88 -5 

L cerebellum 0.0001* 2086(41) 6.43 -24 -58 -29 

L lingual/ fusiform    6.37 -18 -88 -8 

R postcentral   5.90 48 -25 43 
L MCC (Middle 

Cingulate Cortex) 
0.0001* 557(6) 5.82 -9 -4 46 

L MCC   5.75 0 -1 46 

*FWE cluster corrected p-value. Cluster sizes are reported at the p < 0.0001 uncorrected level. In brackets 
cluster sizes are indicated at the FWE corrected level when appropriate. Cognitive interpretations are limited for 
this contrast (non-specific visual activations). 

In addition to the seed coordinates, we found significant peaks in the occipital region (ex: x = 

24, y = -88, z = -5 mm; p < 0.001, FWE correction). These peaks did not coincide with those 

found in the face-specific contrast. 

Thus, significant correlations with a seed pattern can be found across the hemispheres both 

for face-specific and non-face-specific contrasts but at different locations. Furthermore, 

values of the cross-correlations per subject were above 0.5 and the mean correlation values for 

non-seed areas were in the range 0.6-0.8 (Table 5).   

Table 5 The values of cross-correlation for each subject in the fusiform, visual and other 

areas (Contrasts: face-specific and non-face specific contrasts; seed in the right fusiform 

area) 

Contrast face-specific  non-face specific 

Location Seed (right 
fusiform) 

Fusiform 
Contralateral 

L 
Orbitofrontal 

R Cerebellum Seed (right 
fusiform) 

Seed vicinity 
Occipital 

(L Lingual/ 
Fusiform) 

R lingual 

Coordinates 
x y z 

Subjects 
33 -76 -8  -30 -79 -8  -12 44 -17 51 -58 -32 33 -76 -8 33 -73 -8 -18 -88 -8 24 -88 -5 

1 0.99 0.61 0.71 0.67 0.99 0.93 0.74 0.76 

2 1 0.83 0.71 0.77 1 0.96 0.79 0.78 

3 1 0.66 0.38 0.68 1 0.95 0.74 0.58 

4 1 0.76 0.74 0.80 1 0.92 0.70 0.64 
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5 1 0.64 0.69 0.75 0.99 0.93 0.72 0.69 

6 1 0.65 0.59 0.63 1 0.91 0.70 0.73 

7 1 0.72 0.66 0.55 1 0.92 0.74 0.73 

8 1 0.54 0.50 0.76 0.99 0.94 0.77 0.77 

9 1 0.58 0.49 0.62 0.99 0.94 0.78 0.73 

10 1 0.53 0.63 0.55 0.99 0.87 0.77 0.74 

11 1 0.62 0.69 0.83 1 0.92 0.69 0.68 

12 0.99 0.69 0.54 0.65 0.99 0.93 0.78 0.74 

13 1 0.75 0.75 0.84 1 0.95 0.80 0.72 

14 1 0.64 0.72 0.77 1 0.95 0.80 0.69 

15 1 0.52 0.71 0.76 0.99 0.89 0.81 0.78 

16 1 0.76 0.66 0.76 1 0.95 0.79 0.77 

Mean 0.99 0.66 0.64 0.71 0.99 0.93 0.76 0.72 
Bootstrap CI [inf, 

sup] [0.99, 1] [0.61, 0.70] [0.57, 0.68] [0.67, 0.75] [0.99, 1] [0.92, 0.94] [0.74, 0.77] [0.69, 0.74] 

Each subject’s value indicates the result of the cross-correlation in the above-mentioned coordinates.  Mean 
values and bootstrap confidence intervals (BCa, p<0.05) are indicated. 

 

Likewise, we noticed that at the seed coordinates the values of the cross-correlation are 1 or 

0.999 for all the subjects. This indicates the high specificity and accuracy of our method.  

Consideration of the rotation angles for each significant peak in the cross-correlation results 

showed that the rotated seed pattern at the coordinates of the maximum significant correlation 

was approximately tangential to the cortex at these coordinates (for example, a seed pattern in 

the occipital region was rotated almost by 90 degrees for a correlation peak in the 

orbitofrontal region). This reflects the natural-occurring relative geometry between brain 

regions. 

Non-parametric analysis with SnPM toolbox gave similar results indicating the robustness of 

our analysis (see supplementary information). 

 

Cross-correlation analysis with auditory activity 

To verify the specificity of our method with respect to sensory modalities, we used the seed 

patterns defined in the auditory cortex for cross-correlation with both face-specific and non-
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specific contrasts (at the coordinates x = 10, y = 32, z = 21 voxels � x = 51, y = -19, z= 10 

mm). Here, the seed pattern is outside the stimulation specific areas. The most significant 

correlation peaks were found at the seed pattern and its vicinity of the auditory cortex (see 

supplementary Table S1). This suggests that our technique is stimulation specific. 

Conversely, we also compared the images resulting from a seed pattern in the fusiform face 

area with images resulting from the seed pattern in the auditory region (which served in this 

case as a non-specific statistical baseline). The results of this analysis (Table 6) were similar 

to those obtained using randomised images as the statistical baseline (see Methods for 

details).  

Table 6 Coordinates of significant correlations using cross-correlation with the auditory 

seed as statistical baseline (Face-specific contrast). 

Anatomic location p value Cluster size (KE ) z value x y z 

R fusiform 0.0001* 944(80) > 7 33 -76 -8 

R cerebellum   6.27 51 -49 -35 

L fusiform 0.0001* 434(5) 5.32 -24 -82 -11 

L orbitofrontal 0.001* 230 4.84 -12 47 -8 

*FWE cluster corrected p-value. Cluster sizes are reported at the p < 0.0001 uncorrected level. In brackets 
cluster sizes are indicated at the FWE corrected level when appropriate. 

 

Discussion 

Face processing viewed through long-range spatial correlations  

In the present work, we propose a new approach to analyze fMRI data using spatial 

correlations. As a proof-of-concept, we apply our approach to a publicly available fMRI 

dataset (see Methods), and show that our methodology allows us to find specific spatial 

patterns of the activity following the presentation of facial visual stimuli. These patterns are 

transmitted to the contralateral FFA with high correlation in both group and individual level 

analysis, indicating the conservation of spatial information regarding faces in both left and 
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right FFA. In addition, by performing reverse-seed correlations (setting the seed in the 

contralateral area) we found the same results in the FFA – confirming both robustness and a 

high specificity of our approach. In our results, we found that the correlations are high (up to 

0.8), suggesting that a large amount of spatial information in brain activity is transferred 

between these areas.  

The FFA is involved in face perception, and is known to respond actively to face stimuli 

17–21. However, the spatial conservation and transmission of activity-related information has 

never been observed. The present work provides the first demonstration of stable spatial 

patterns of brain activity in response to face stimuli, which preserve information across brain 

structures. In addition, we also find a high correlation in the orbitofrontal cortex, which is in 

line with several findings which have demonstrated the existence of face-selective neurons in 

the orbitofrontal cortex 20,22,23, and shown that this region is actively involved in face 

recognition 20,22–25. 

Barat and collaborators (2018) showed that orbitofrontal face cells encode facial stimuli by, 

first, discriminating them from non-facial ones, and thereafter categorizing them according to 

their social and emotional dimensions. Face neurons encode these aspects despite differences 

in face stimuli concerning, for example, identity or head position of the face 22. In the present 

study, we used the dataset from a work where the presented face-stimuli have various 

expressions (generally, happy or neutral). The presence of significant correlation in the 

orbitofrontal cortex in our findings indicate that the social and emotional dimensions that are 

carried by faces are represented as spatial patterns of activity. Similarly, we also found 

significant cerebellar correlations for face-stimuli – an observation that is in agreement with 

studies which have implicated the cerebellum in facial information analysis 20,26–28.  

Thus, the obtained correlations are highly specific to facial information. They are found in the 

FFA, and the orbitofrontal and cerebellum regions, which are known for being activated after 
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facial stimuli presentations in several studies as described above. In addition to the above 

agreement with literature, another argument for the stimulation specificity of our results is the 

fact that the spatial correlation analysis was performed on the "stimulation vs. baseline" 

contrasts and all the images were acquired under the same conditions and processed in the 

same way excluding acquisition and processing artefacts in contrast images. In addition, we 

also showed that using a seed in the auditory region produces high correlations in the auditory 

areas – further indication of the specificity of our methodology. 

 

General considerations of local activity patterns 

Our analysis shows that correlated stimulation specific patterns are found throughout the 

brain. Moreover, this suggests that there are recurring local patterns of meaningful stimulus-

related activity. One interpretation of these local patterns could be that there is a partial 

conservation of stimulus-related information in localised regions in the cortex, and that the 

activity of any single unit is related to the activity of the neighbouring units. The maintenance 

of these local patterns would also be energetically favourable as compared to longer range 

activity patterns, and could be an efficient neuro-glial code for local copies of stimulus-related 

information. Likewise, we suppose that brain information is spatially organized in such a way 

that each neuro-glial population, represented by a given voxel, maintains a given level of 

activation according to its neighbours to maintain this pattern stable. Maintaining patterns 

stable is also probably related to the necessity to spend less energy in an optimal way to 

maintain information-representation in close vicinity instead of using the long-distance 

arrangements.  

Spatial analysis is widely spread in electrophysiological research, e.g., to analyze the 

structure of cortical activity ; spatial differentiation is widely used in electrophysiological 

studies in the form of current source density (CSD) analysis 29,30. In the latter, spatial 
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differentiation permits to calculate electric current flows, given the measured electric 

potentials. Though the BOLD signal is an indirect and complex measure of brain activity 31, 

its correlation with electrical measurements in the brain has been established by numerous 

studies (e.g., 32–36. Given that electromagnetic and metabolic energies are highly correlated 

during brain activity, Friston 37 proposed that the most suitable summary form of energy to 

describe brain mechanisms is free energy. Physically, free energy represents a difference 

between internal energy and the product of entropy and temperature. In the case of stable 

temperature, the most important parameter that influences free energy will be entropy. In our 

previous research, we investigated the possibility to apply mathematical formalism, which is 

similar to the electrophysiological current source density (CSD) analysis 29,30, to the BOLD 

signal contrast maps. In the biophysical consideration of this analysis 12, we indicated that in 

line with the free energy minimization principle 38, gradients of energy between voxels should 

spontaneously disappear with time. However, we observed stable task-related gradients of 

activity at the group level 12, necessitating the existence of the stimulation-related processes 

which act to maintain the described spatial gradients. These oxygenation related gradients are 

likely to be driven by electrical gradients which encode the flow of local information. The 

results from our spatial-correlation analysis are in favour of this interpretation. We compared 

fMRI, EEG and MEG spatial differential activity during different tasks to see what amount of 

fMRI differential activity corresponds to the electromagnetic differential activity 39. 

Distributed source reconstruction was used to obtain 3-dimensional models of electric and 

magnetic activity in EEG and MEG prior to spatial differentiation. Using independent 

datasets with the same stimulation, we demonstrated that the mean spatial overlap of the 

fMRI differential activity with EEG and MEG may be about 80%. In addition, about 93% of 

divergence (spatial sources) in fMRI corresponded to the EEG and MEG divergence. 

Furthermore, previous studies have shown that glutamate related excitatory synaptic 
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transmission accounts for about 70% of total energy turnover 6 in the brain, whereas 

GABAergic processes account for only about 15% of total energy turnover by neurons and 

glia 40 – thus suggesting that the stable local BOLD patterns identified in our analysis are 

results of local excitatory interactions between neurons. 

Since brain activity is dynamic in time, it is important to understand how average BOLD 

contrasts can lead to local patterns of activity. To account for the stability in time of the 

observed energy flows and resulting spatial patterns, one can suggest that the repetitive 

stimulation-related patterns of energy flows in the brain form the average patterns reflected in 

the BOLD signal contrasted images. This is in line with what we find in our results, where 

spread of energy flow appears to be conserved and stable in a 3D space, as indicated by 

patterns of activation. Information-related activity patterns are closely related to the spatial 

distribution of stable energy flows in the brain. Energy flows in the brain are generally 

defined as coherent spatial and temporal changes in the energy turnover of neuroglial units 

related to information treatment 7; these flows are the result of the stimulation-driven 

transformations of energy that propagate in certain directions along the cellular structures  

(axons, dendrites, synapses, etc.) in neuroglial networks. When a neural signal reaches a 

neuroglial population, it increases the internal energy in this neuroglial population. These 

connections can be detectable only at their arrival point when they cause an abrupt increase of 

activity in the specialized population. The above described link between the directions of 

gradients and energy flows was confirmed by the finding that the sources, from which energy 

flows spread in the cortex, were in the occipital cortex during face processing and in the 

superior temporal cortex during auditory word processing 12. Patterns of brain activity may be 

related to integrative cognitive processes 41. 

We think that future studies using spatial cross-correlation analysis combined with MVPA 

could be very informative about whether activity-based decoding methods could be more 
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efficient in the regions where correlated spatial patterns are observed. The spatial connectivity 

approach may complement the data on intrinsic connectivity of homotopic brain areas 42. A 

fundamentally important question is whether during multisensory interactions patterns of 

brain activity carry the similar spatial information across modalities, these studies can further 

develop the models of such phenomena as McGurk effect 43.  Moreover, in pathologies such 

as multiple sclerosis, epilepsy and Alzheimer disease spatial cross correlations could be a 

useful methodology for testing how patterns of structure and activity are distributed 

throughout the cortex 44 in addition to identifying how these patterns of activity may change 

in early stages of these diseases, and also during the follow up of the patients, leading to a 

powerful new diagnosis tool, in addition to the existing techniques 45–47 . 

 

Materials and methods 

fMRI dataset 

In order to analyze functional pattern similarities in the brain during a given task, the freely 

available data were chosen from a work of Wakeman and Henson 48 (ftp://ftp.mrc-

cbu.cam.ac.uk/personal/rik.henson/wakemandg_hensonrn/). The Matlab scripts attached to 

the original dataset were used for pre-processing and statistical analysis (using the Matlab 

SPM toolbox), resulting in contrast images in the MNI space with 3mm isotropic voxels 

smoothed by a 3D 8mm isotropic Gaussian kernel. In the original study, the subjects (n = 16) 

were presented gray scale images of familiar and unfamiliar faces, and faces scrambled by a 

2-D Fourier transform. Original and scrambled faces were cropped using a mask built on the 

basis of a combination of familiar and unfamiliar faces. 
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 Toolbox description 

We built a toolbox in C++ using ITK (Insight Toolkit (https://itk.org/)) allowing cross-

correlation analysis using the Fourier transform of the 3D patterns. The seed 3D pattern taken 

at a given location in the brain was rotated in steps of 10 degrees along the z, y and x axes, 

and for each rotation step the pattern was cross-correlated with the entire brain activity (Fig. 

3a and b). Given 18 steps of rotations around each axis to obtain all possible non-redundant 

rotations, the total number of configurations was 18×18×18 = 5832. Since both the rotations 

and the cross-correlation analysis are computationally intensive, it is important to accelerate 

the analysis using Fourier transform. The analysis of one subject took about 43 minutes on the 

PC optimized for performance (available in Windows options). The whole analysis on 16 

subjects took about 4 hours. The maximal value of correlation for each rotation step was 

saved as a voxel value in the NIFTI file alongside with NIFTI files for the x, y and z angles of 

rotation corresponding to this correlation. The main executable file in our toolbox (cross.exe) 

takes as input the name of the NIFTI file and the coordinates of the seed pattern (tested with 

Windows 10). 

Data pre-processing 

We put the obtained result (crosscorr_final.nii) (see supporting information) into the same 

MNI space as the original image using the 3D matrix in the intial SPM contrast image. In 

addition, given the presence of a small shift between the cross-correlation image and the 

initial contrast, we used a translation of the obtained result in Matlab (v 2017a). The obtained 

file was renamed (crosscorr_final_co_trans.nii). In order to verify if the latter has correctly 

been realigned to the initial contrast, we superimposed both images in SPM and verified that 

the peak in the cross-correlation image corresponds to the chosen coordinates in the initial 

contrast. Furthermore, we z-transformed the data after subtracting the mean to approximate 

the normal distribution. The resulting files were then renamed 
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(Ztransf_Crosscorr_final_co_transl.nii). Thereafter, we created randomized brain images for 

every subject on the basis of the z-transformed images in order to use them as a reference for 

the statistical analysis. Indeed, in order to be considered statistically significant, a given data 

should be significantly different from a random distribution of the same type of data. 

Data analysis 

SPM12 toolbox (https://www.fil.ion.ucl.ac.uk/spm/software/spm12/) was used to analyze 

the data. We used the two-sample t-test to compare the obtained z-transformed images and the 

randomized images (FWE correction, p < 0.05, extent threshold = 0). In order to ensure that 

there were no spurious correlations, we also used the two-sample t-test on the z-transformed 

images to compare the visual and auditory seed regions from the same initial contrast image. 

Given the nature of the stimuli used by Wakeman and Henson, we chose two regions of 

interests in our analysis: an occipital and a temporal one. In the occipital region, we 

considered the coordinates corresponding to the peak of the brain activity in the contrasts. In 

the temporal one, as a control region, we choose the coordinates of the primary auditory area 

which should not show activity during visual stimulation. We used the contrasts 

con_0006.img (Faces (familiar + unfamiliar) > scrambled) and con_0005.img (scrambled > 

baseline) of every subject (the numbers of the contrasts are indicated according to the attached 

to the dataset Matlab scripts). We considered two seed points, the first one at the peak of the 

activity (Fig. 3c and d) in the two contrasts (x= 33, y = - 76, z = - 8 mm)  in the Fusiform Face 

Area (FFA), (� x = 16, y = 13, z = 15 voxels in matrix coordinates found from SPM Image 

view), the second peak (x = 51, y = -19, z = 10 mm)  in the temporal region (� x = 10, y = 

32, z = 21 voxels in matrix coordinates, corresponding to the middle of the primary auditory 

area 49). The corresponding coordinates’ areas were verified in the SPM Anatomy (Version 

2.2b) and xjView (http://www.alivelearn.net/xjview) toolboxes. 
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Fig. 3 Schematic representation of the procedure of cross correlation. a, The seed pattern is turned then 
compared with target patterns. b, Activity in the seed pattern is cross-correlated with the entire brain activity. c, 
An example of a peak of activity where the pattern is centered deeper in the brain with respect to the peak. d, An 
example of a pattern that has a large part outside of the brain (indicated by the word ‘Out’ with arrow) – the 
situation to be avoided by moving the pattern deeper. In both c and d, the square represents the pattern and the 
dot inside the location of the peak of activity. MRICron software was used to display the figures 
(https://www.nitrc.org/projects/mricron). 

 

We used the matrix coordinates to perform the cross-correlation analysis with a radius of 5 

voxels. When the activity peak is at the periphery of the brain, it is not useful to take the 

center of the pattern at the peak of the activity because in this case a large part of the pattern 

would be located outside the brain. When peaks are peripheral, it is better to center the pattern 

deeper into the brain with respect to the peak of activity so that the periphery of the pattern 
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includes the peak (see Fig. 3c and d). We verified whether the considered pattern of activity 

with a radius of 5 voxels contains the peak of the activity. Given that the center of the pattern 

is the point q, the distance between that peak p and the point q should be inferior to the chosen 

radius for the pattern. In order to calculate that distance, we used the Euclidean distance 

d(p,q) between the peak of activity p and the point q in the chosen coordinates (1): 

d(p,q) =�� ��� � ���²�

���
         (1) 

The obtained distance was 4.12 voxels, so inferior to the radius of 5 voxels. 

To ensure the robustness of the cross-correlation analysis, we employed a seed-reversal 

approach. In this approach, the peaks of a given correlation-analysis were used as a new seed 

(in the contralateral FFA). If the technique is robust, this seed-reversal should lead us back to 

the initial seed. 

Likewise, at the strongest peak of significance in the group analysis, we verified in each 

subject if the correlations at these coordinates are not different from 1 (Table 3). 

In addition, given the distribution of the resulting data, which may not always respect the 

normal one, we also replicated the same analysis with a non-parametric approach using the 

SnPM toolbox (https://warwick.ac.uk/fac/sci/statistics/staff/academic-

research/nichols/software/snpm) (two sample t-test, number of permutations = 256, variance 

smoothing = [8, 8, 8]). In this case, we did not apply the z-transformation to the images; we 

only put them into the same MNI space as the original contrast and performed the above-

mentioned translation. This analysis is included in the supporting information part. 

Materials & Correspondence. Correspondence and requests for materials should be 

addressed to A.S. or K.S (e-mails: amirouche.sadoun@cnrs.fr; kuzma.strelnikov@cnrs.fr, 

respectively). 
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Data and scripts availability.  Data generated and analyzed during the current study as well 

as the cross program and the MatLab scripts will be made available upon publication. 
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