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Abstract 

RNA sequencing has proved to be an efficient high-throughput technique to robustly characterize 

the presence and quantity of RNA in tumor biopsies at a given time. Importantly, it can be used to 

computationally estimate the composition of the tumor immune infiltrate and to infer the immuno-

logical phenotypes of those cells. Given the significant impact of anti-cancer immunotherapies and 

the role of the associated immune tumor microenvironment (ITME) on its prognosis and therapy 

response, the estimation of the immune cell-type content in the tumor is crucial for designing effec-

tive strategies to understand and treat cancer. Current digital estimation of the ITME cell mixture 

content can be performed using different analytical tools. However, current methods tend to over-

estimate the number of cell-types present in the sample, thus under-estimating true proportions, bias-

ing the results. We developed MIXTURE, a noise-constrained recursive feature selection for support 

vector regression that overcomes such limitations. MIXTURE deconvolutes cell-type proportions of 

bulk tumor samples for both RNA microarray or RNA-Seq platforms from a leukocyte validated 

gene signature. We evaluated MIXTURE over simulated and benchmark data sets. It overcomes 

competitive methods in terms of accuracy on the true number of present cell-types and proportions 

estimates with increased robustness to estimation bias. It also shows superior robustness to 

collinearity problems. Finally, we investigated the human immune microenvironment of breast can-

cer, head and neck squamous cell carcinoma, and melanoma biopsies before and after anti-PD-1 

immunotherapy treatment revealing associations to response to therapy which have not seen by pre-

vious methods. 
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Introduction  

 Recruitment and activation of immune cells to the tumor microenvironment are closely asso-

ciated with clinical outcome (Mantovani et al. 2008; Gajewski et al. 2013). The malignant pheno-

type of cancer is defined not only by the intrinsic activities of cancer cells but also by components in 

the tumor microenvironment, especially tumor-infiltrating immune cells. The immune infiltrate in 

both primary and metastatic sites correlates closely with patient prognosis and survival in several 

cancer types (Fridman et al. 2017). Cytotoxic CD8 T cells are mostly linked to prolonged survival 

(Galon et al. 2006). For example, a high density of CD8+ T cells is predictive of a longer overall 

survival duration in patients with breast cancer, head and neck cancer and colorectal cancer (CRC) 

with hepatic and/or lung metastases (Fridman et al. 2017), but also predicts poor overall survival in 

patients with lung metastases from clear cell renal cell carcinoma (ccRCC) (Giraldo et al. 2015). 

 Immunosuppressive T-regulatory cells are associated with shorter survival in non-small cell 

lung cancer (NSCLC), pancreatic and breast cancer, RCC, hepatocellular carcinoma (HCC) and 

melanoma (Fridman et al. 2012; Fridman et al. 2017). In most tumors, macrophages mainly display 

an M2 phenotype, generally favoring the growth and development of an invasive and pro-angiogenic 

phenotype. The density of such macrophages correlates with a poor prognosis among patients with 

breast, bladder, ovarian, gastric, or prostate cancers, RCC and melanoma (Fridman et al. 2017). 

Based on the protumorigenic properties of M2-macrophages, several clinical trials are currently test-

ing the effect of macrophage inhibitors in combination with PD-1/PD-L1- and CTLA-4-targeting 

immunotherapies (Yang and Zhang 2017). Conversely, a high density of M1-macrophages has been 

correlated with a favorable prognosis among patients with ovarian and gastric cancer, NSCLC and 

HCC (Fridman et al. 2017).  

 The development of new and effective anti-cancer immune therapies based on immune 

checkpoint blockade (ICB) has revolutionized the treatment of cancer due to the significant im-

provement of patient survival in several indications (Couzin-Frankel 2013; Callahan et al. 2016). 
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However, since therapy remains ineffective for a substantial number of patients, there is an urgent 

clinical need to identify and develop predictive biomarkers of response to ICB both to foster preci-

sion immunotherapy and to understand and overcome the mechanisms of resistance. Retrospective 

analyses of patient immune infiltrate revealed that tumor–immune phenotypes influence response to 

immune checkpoint inhibitors (Havel et al. 2019). Hence, the characterization of the immune tumor 

microenvironment (ITME) has been suggested as a predictor of therapy response and outcome 

(Bense et al. 2017). Therefore, its analysis represents a possible, reliable biomarker of response to 

therapy (Fridman et al. 2012; Herbst et al. 2014; Tumeh et al. 2014; Mariathasan et al. 2018; Havel 

et al. 2019).  

 Several computational approaches and algorithms have made possible to systematically infer 

the ITME composition levels, i.e. digital cytometry, in large-scale cancer patient datasets using gene 

expression information (Gaujoux and Seoighe 2013; Yoshihara et al. 2013; Cesano 2015; Newman 

et al. 2015; Becht et al. 2016; Aran et al. 2017). Thanks to these computational approaches, the im-

mune cell content, represented by a reference molecular signature of known cell-types gene expres-

sion profiles, can be computationally dissected from a subject gene expression profile by means of 

statistical and/or machine learning linear methods (Abbas et al. 2009; Newman et al. 2015; Li et al. 

2017; Monaco et al. 2019; Newman et al. 2019). A recent study in pan-cancer samples has demon-

strated that the presence of T‑lymphocyte and B‑lymphocyte signatures, estimated by a digital 

cytometry method, is associated with a favorable prognosis (Gentles et al. 2015). The presence of 

specific plasma‑cell signatures was also associated with a good prognosis. Among T‑cell subsets, 

the presence of regulatory T-cells (Tregs) indicated a poor prognosis, whereas a signature that in-

cluded γδT-cells constituted the most influential factor indicating a favorable prognosis. Signatures 

including myeloid cells (macrophages, neutrophils, eosinophils granulocytes and dendritic cells), 

NK cells, and also those including memory B cells were all associated with a poor prognosis 

(Gentles et al. 2015). Although these works show the potential of deconvolution methods to infer the 
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immune infiltrate, current methods have been compared with highly controversial results regarding 

their efficacy (Li et al. 2017; Hunt et al. 2018). Here it is shown that current competitive state of the 

art methods (Abbas et al. 2009; Newman et al. 2015; Hunt et al. 2018; Monaco et al. 2019) tend to 

overestimate the number of present cell types, providing inaccurate and biased proportion immune 

estimates as well as lack of robustness to multicollinearity of the cell-types profiles present in the 

signature matrix and prediction dependent bias. These problems may negatively impact their relia-

bility as therapy response biomarkers, as well as their use to infer cell-type gene expression profiles 

from bulk sample cohorts (Newman et al. 2019). 

 To overcome such limitations, we developed a new digital cytometry method, MIXTURE, 

utilizing a v-SVR-based noise constrained Recursive Feature Selection algorithm. We compared 

MIXTURE against the current state of the art methods (Abbas et al. 2009; Newman et al. 2015; 

Hunt et al. 2018; Monaco et al. 2019) to estimate 22 mature human hematopoietic populations and 

activation states cell-type proportions [LM22 molecular signature from (Newman et al. 2015)] over 

simulated and flow cytometry derived cell-type proportions data. We have also analyzed patients’ 

data from breast cancer (BRCA - TCGA), head and neck squamous cell carcinoma (HNSCC) with 

known survival outcome, and melanoma patient biopsies with known response to immunotherapy. 

Our analyses show that MIXTURE outperforms the competing methods and helps to estimate the 

immune cell landscape associated with outcome and response to immune checkpoint blockade accu-

rately. 

Results 

Algorithm Overview 

 The linear deconvolution of the cell types present in a gene signature matrix (X), holding N 

genes for k cell types, associated with the components of a mixture of cell types present in a tumor 

gene expression profile (Y), involves solving the following regression model equation � � � · ��, 

where the proportions for all cell types in the mixture sample is represented by the column 
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tor � � ��� 	 0  �  ∑ �� � 1 � � � 1,...,� � (Avila Cobos et al. 2018). Our newly developed algo-

rithm, MIXTURE, provides accurate estimates of the number of cell types present in the samples 

with a consequent improvement in the estimated proportion cell levels. MIXTURE define falsely 

detected cell types based on a floating-point error constrain in addition to a recursive feature selec-

tion process to iteratively remove such false detected cell types upon a v-SVR approach as a regres-

sion function similar to the one used by CIBERSORT (see supplementary material). Source code of 

MIXTURE, as well as all the described evaluations, are available at 

https://github.com/elmerfer/MIXTURE.App 

 

Simulated scenarios  

We compared MIXTURE performance against state of the art algorithms (i.e ABBAS, 

ABIS, CIBERSORT and DTANGLE) over simulated, flow cytometry derived benchmark data and 

cancer data sets as follows:  

 Scenario 1: the algorithms were tested using Y as: S1.1) the single pure cell types present in 

the LM22 signature matrix (i.e. the same cell types of the immune cell-type molecular signature X 

were alternatively used as the observed expression profile; i.e., Y=Xk, Xk being a column of the gene 

signature matrix LM22 from (Newman et al. 2015), S1.2) Simulated mixture of cell types without 

noise: between 2 and 8 cell types of the immune cell-type molecular signature LM22 were randomly 

selected to simulate Y, X being the LM22 matrix. At each simulation run, the cell type proportions 

were sampled from a uniform [0.2, 1] distribution and normalized to satisfy the sum-to-one con-

strain. Then the cell-types were multiplied by the sampled proportions and summed to build the sim-

ulated Y. The process was simulated 1000 times. For the Scenario S1.3, the simulated mixture of 

cell-types with noise was same as S1.2 but adding a noise vector to Y; this noise vector is composed 

of a random sample of N (i.e., the number of genes in the signature matrix) values of gene expres-

sions drawn from LM22.  
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 Scenario 2: S2.1) The same data from Newman et al., 2015 and Hunt et al, 2018 were used. 

The Newman Follicular Lymphoma (FL) data set, generated by taking lymph node biopsy samples 

and enumerating the immune cell sub-types using flow cytometry (Newman et al. 2015). In this 

case, the process identified 3 leukocyte types (B, CD8, and CD4) in various proportions across 14 

patient samples. Since LM22 contains 22 cell-types, the proportions of those leukocytes types were 

summarized according to (Newman et al. 2015). S2.2) The Newman Peripheral Blood Mononuclear 

Cells (PBMC) data, generated from blood samples from 22 adults where the proportion of nine leu-

kocytes were determined by flow cytometry.  

 Scenario 3: The algorithms were applied over real data to evaluate: S3.1) the 1095 Breast 

Cancer TCGA biopsies (Cancer Genome Atlas 2012), downloaded from TCGA repository site in 

November 2018 (see supplementary material). These RNA-Seq data used to feed the PBCMC R 

library (Fresno et al. 2017). In order to confidently assign subjects to the PAM50 intrinsic breast 

cancer subtypes S3.2) Transcriptomic samples of 81 head and neck squamous cell carcinoma 

(HNSCC) primary tumors (Rickman et al. 2008) used to investigate the propensity for subsequent 

distant metastasis from patients initially treated by surgery that developed or not-developed metasta-

ses as the first recurrent event. S3.3) Transcriptomic tumor samples from 68 patients with advanced 

melanoma, who progressed on the anti-CTLA-4 drug ipilimumab or were ipilimumab naive, before 

and after they commenced anti-PD-1 therapy with nivolumab (Riaz et al. 2017). 

Comparing methods over simulated data 

 When cell-type proportions were estimated under scenario S1.1, the expected result was the 

identification of a single cell type in the sample and the remaining ones should be determined as 

null. The CIBERSORT tool estimated between one (23% of the cases) and 8 cell-types present in the 

sample. This tool is affected by floating-point errors since those regression coefficients associated 

with false cell-type detection ranged between 1e-4 and 2e-4. The ABBAS method estimated between 

6 and 9 cell-types. The range of those falsely detected cell type coefficients was between 2e-5 and 

certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprint (which was notthis version posted August 7, 2019. ; https://doi.org/10.1101/726562doi: bioRxiv preprint 

https://doi.org/10.1101/726562


 8

0.32, also suggesting sensitivity to floating-point errors. The DTANGLE method always estimated 

22 cell-types with a range for falsely detected cell-type coefficients between 5e-4 and 0.35. The 

ABIS method does not constraint ��� � 0 (�� ��������� ��������� �!, so those  ��� " 0 were con-

sidered as null cell-types. In this sense, it estimated between 10 to 13 cell-types and the falsely de-

tected proportions range between 2e-5 to 0.25 for those estimated ��� � 0 and between -0.21 to 0.25 

for all estimated ��� (i.e. truly and falsely detected cell types). All these methods overestimated the 

number of cell types in a given sample; consequently, they underestimated the true proportion of the 

real cell type, except the ABIS, which may over and/or underestimate, since it does not satisfies the 

non-negativity and sum-to-one constraints (Avila Cobos et al. 2018). Also, high regression coeffi-

cients associated with false cell-type detection by ABBAS, ABIS and DTANGLE mimic correlation 

coefficients patterns of the molecular signature matrix (see Supplementary Figure 1), suggesting 

collinearity problems affecting their estimations. On the contrary, MIXTURE indicated the presence 

of only one cell type in all the simulated samples.  

 In Figure 1 it is represented the estimated number of cell types, for the simulated cell-type 

mixture samples, in both scenarios S1.2 and S1.3 (without noise – left panel and with noise – right 

panel). It can be observed that ABBAS, ABIS and DTANGLE methods overestimate the number of 

cell-types; in particular, DTANGLE always provides 22 cell-types. The CIBERSORT method pro-

vides accurate estimated coefficients for mixtures samples without noise (S1.2), overestimating 

mainly for mixture samples composed with less than four cell-types. However, it significantly over-

estimated the number of cell-types for mixture samples with noise compared against MIXTURE 

(Wilcoxon paired test, p < 0.001) which provides much more accurate estimates in any simulated 

scenario, thus resulting the method less affected by noise. 
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Figure 1. Distribution of the estimated number of coefficients (proportions) for simulated mixtures

without added noise (Pure) and with it (left and right panels, respectively). It can be observed that

DTANGLE consistently estimates 22 cell-types independently of the number of simulated cell-types (no

boxplot is shown but overlapped points at “Estimated number of coefficients” = 22). MIXTURE pro-

vides the true number of cell-types when feeding with pure samples (without noise). CIBERSORT per-

forms similar to MIXTURE for pure samples with more than three mixed cell-types. For noisy mix-

tures, MIXTURE always provides more accurate estimates of the true number of cell-types. 

  

 In Figure 2A, Bland-Altman plots represent the difference between estimated and simulated

(true) coefficients. All the evaluated methods tend to underestimate the true simulated proportions (

0.039 ± 0.059, -0.021 ± 0.048, -0.113±0.113, -0.011±0.014, -0.002±0.007) for ABBAS, ABIS,

DTANGLE, CIBERSORT and MIXTURE respectively.  However, MIXTURE shows a lesser bias

with the lesser standard deviation of the errors. Also, it can be observed that all the methods except

MIXTURE show increased underestimation bias towards high proportion values. When evaluating

the simulated null coefficients (i.e. cell-types not present in the sample are represented by ),

all methods overestimate extra proportions related to false cell-types identification. The DTANGLE
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method shows the highest false proportion estimates (maximum value of 0.94), followed by ABBAS 

and ABIS (0.48), CIBERSORT (0.15) and MIXTURE (0.11). Thus, both v-SVR based methods 

outperform the rest, but the noise constrained RFE algorithm implemented in MIXTURE signifi-

cantly improves the accuracy of the estimated coefficients compared to CIBERSORT (Wilcoxon 

paired test p < 0.001, See Supplementary Material for details).  

Evaluation over real mixture samples with flow cytometry derived proportions 

 Panels B and C from Figure 2 show the Bland-Altman plot of the differences between the 

estimated and B) flow cytometry derived (FCD) cell-types for the Follicular Lymphoma (FL) data, 

and C) FCD cell-types from Peripheral Blood Mononuclear Cells (PBMC) data (Scenario S2.1 and 

S2.2 respectively). For the first case (FL), DTANGLE tends to overestimate for low FCD values and 

underestimate towards higher proportion values, while for ABIS and MIXTURE methods resulted to 

be the most robust to estimation bias (no statistically significant difference between both methods), 

in accordance with results from Scenario S1.3. However, for the PBMC case, MIXTURE resulted to 

be the most robust against the overall mean difference between estimated and true flow cytometry 

derived proportions as well as shows to be more robust to bias towards high proportion values. It can 

be observed that the smooth curve (light blue continuous line), resulted closer to the error=0 value 

along the FCD axis for MIXTURE compared to the rest. In tables 1 and 2, the mean and standard 

deviation of the difference between estimated and flow cytometry derived cell-type proportions are 

shown (horizontal lines continuous and dashed lines, respectively, in Figure 2). It can be observed 

that ABIS and MIXTURE present the lesser overall bias (no significant difference between them, 

Wilcoxon paired test) for the FL data. However, MIXTURE resulted in being the one providing the 

lesser mean in PBCMC data sets for both FCD > 0 and FCD = 0. These differences were significant-

ly smaller (paired Wilcoxon test p < 0.01) against the other methods. 
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Figure 2. Bland-Altman plots to evaluate error bias between estimated and true (simulated and flow cytometry

derived) proportion values. Horizontal continuous and dashed lines represent the overall mean and standard

deviation errors. The light blue continuous line represents the smooth (loess) line to show prediction dependent

bias. A: Estimation errors between predicted and simulated proportions, B and C: Estimation errors between

predicted and flow cytometry derived cell-type proportions for FL and PBMC data respectively 

 

Table 1: Summary statistics of the difference between estimated and Flow cytometry derived proportions for FL data 

 FCD > 0 FCD = 0 

 Mean SD Mean SD 

ABBAS -0.129 0.123 0.043 0.076 

ABIS -0.098† 0.112 0.033 0.073 

DTANGLE -0.157 0.222 0.052 0.039 

CIBERSORT -0.122 0.144 0.040 0.056 

MIXTURE -0.103* 0.132 0.034* 0.062 
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FCD: Flow cytometry-derived immune cell proportions. * Statistically significant against the other methods except for 

ABIS (Wilcoxon paired test, p < 0.001). †: no significant differences against MIXTURE 

 

Table 2: Summary statistics of the difference between estimated and Flow cytometry derived proportions for PBMC 
data 

 FCD > 0 FCD = 0 

 Mean SD Mean SD 

ABBAS -0.047 0.120 0.033 0.062 

ABIS -0.019 0.151 0.013 0.066 

DTANGLE -0.029 0.082 0.020 0.027 

CIBERSORT -0.021 0.093 0.014 0.029 

MIXTURE -0.009* 0.097 0.008* 0.026 

FCD: Flow cytometry-derived immune cell proportions. *Statistically significant against all the rest (Wilcoxon paired 

test, p < 0.05) 

 

Applying MIXTURE on Breast Cancer TCGA data: Revealing the role of tumor-associated 

macrophages (TAMs) 

Tumor-associated macrophages (TAMs) are abundant inflammatory cells in the tumor mi-

croenvironment capable of orchestrating different stages of breast cancer development. TAMs par-

ticipate in the tumor angiogenesis, matrix remodeling, invasion, immunosuppression, metastasis, 

and chemo-resistance in breast cancer (Velaei et al. 2016). Several clinical studies indicate an asso-

ciation between the high influx of TAMs in tumor and the poor prognosis of hepatocellular, ovari-

an, cervical, breast cancer, among others (Qiu et al. 2018). Moreover, it has been revealed that M2 

macrophages play a significant role in tumor development. This advocates for the efficient identifi-

cation of the ITME to discover potential therapeutic targets that may help in the development of 

new therapies targeting tumor-associated macrophages (Hammerl et al. 2018). 

Since all methods except those based on v-SVR present collinearity problems as well as high 

overall standard deviation errors, we applied CIBERSORT and MIXTURE to 1095 primary tumor 
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(including 113 normal tissue) BRCA TCGA subjects (Scenario S3.1) to explore the ITME and its 

association with the outcome and PAM50 intrinsic subtypes. The subjects were confidently classi-

fied into the five PAM50 intrinsic breast cancer subtypes employing the PBCMC algorithm (18% 

Basal-like, 11% Her2-Enriched, 12% Luminal B, 25% Luminal A, 25% Not Assigned and 9% 

Normal-Like). We found that MIXTURE provides between 0 and 11 cell-types while CIBERSORT 

between 8 and 17, suggesting cell-type overestimation of the latter one. In Table 3, the proportion 

of samples for which each cell-type was identified is shown for the tumors samples. It is possible to 

observe that for most of the cell types MIXTURE identifies much fewer samples. However, 

MIXTURE identifies cell types known to be highly related to breast cancer survival with better dis-

crimination power than CIBERSORT (see Figure 3), such as M2-macrophages, present in 97.72% 

of the tumor samples, follicular T-helper cells (93.79%), M0-macrophages (79.00%) and M1-

macrophages (77.63%). They were the cell types more frequently found in breast cancer samples 

(see Table 3). It was described that tumor-associated macrophages (TAM) exhibit high plasticity in 

response to various external signals and play critical roles in innate and adaptive immune responses 

controlling numerous ITME factors strongly associated with clinical outcome (Choi et al. 2018). 

Table 3: Percentage of cell types identified in the primary tumor TCGA BRCA cohort by CIBERSORT and 

MIXTURE, respectively. 

The LM22 cell types 

Only primary tumors 

CIBERSORT MIXTURE 

Naïve B cells 92.33 37.35 

Memory B cells 18.54 6.03 

Plasma cells 82.01 58.90 

CD8 T cells 72.15 32.88 

Naïve CD4 T cells 1.83 0.27 

Memory resting CD4 T cells 95.98 37.81 

Memory activated CD4 T cells  19.00 3.56 

Follicular helper T cells 99.54 93.79 
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T regulatory cells (Tregs)  88.49 48.68 

Gamma delta T cells (γδT-cells) 7.03 1.00 

Resting NK cells  78.26 12.97 

Activated NK cells 41.10 3.01 

Monocytes 53.97 8.40 

Macrophages M0 87.49 79.00 

Macrophages M1 92.42 77.63 

Macrophages M2 99.18 97.72 

Resting dendritic cells 27.58 8.22 

Activated dendritic cells 34.61 17.53 

Resting mast cells 96.89 49.95 

Activated mast cells 3.74 0.46 

Eosinophils 5.39 0.00 

Neutrophils 12.69 1.19 

 

 By splitting estimated proportions into three percentile levels (Low=[0,0.33), Mid-

dle=[0.33,0.66) and High=[0.66,1]}) we found that M2-macrophages and follicular T-helper cells 

(FTHC) cell types resulted associated to worse survival independently of PAM50 only by 

MIXTURE estimation (p<0.01 for both cell types). These findings are supported by 

immunohistochemical staining of M2 and FTHC markers previously described by (Tiainen et al. 

2015) and (Gu-Trantien et al. 2013) suggesting the appropriateness of MIXTURE estimations. For 

the Basal subtype, M2-macrophages were also strongly associated with outcome, but MIXTURE 

tends to stratify better the population reaching a smaller significance p-value (0.044 and 0.032 for 

CIBERSORT and MIXTURE respectively). When analyzing subjects by ER status, MIXTURE was 

the only method able to identify the association with survival for ER+ but only comparing Low vs 

High M2-Macrophages levels (p=0.036). The Low, Middle and High percentile M2-Macrophages 

levels were associated with survival for both methods in ER- case (P=0.016 and p=0.009 for 

MIXTURE and CIBERSORT respectively). High levels of M1-macrophages were found to be asso-
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ciated with a better prognosis for ER- subjects (p=0.008) meanwhile Low vs. High levels of FTHC 

were associated with worse prognosis for these subjects (p=0.038) only by MIXTURE. The results 

are in agreement with what was previously reported by Ali and colleagues (Ali et al. 2016) for a 

more extensive breast cancer population. It has been previously reported that targeting the repro-

gramming programs leading from M2 toward M1 macrophages phenotypes would be an efficient 

way to promote tumor regression which can be achieved through therapies including chemotherapy, 

immunotherapy, and radiotherapy (Genard et al. 2017), suggesting the importance of accurate TAM 

estimates. MIXTURE results regarding the behavior of M2, M1 macrophages and FTHC are in 

agreement with those previously found for the different breast cancer subtypes (Gu-Trantien et al. 

2013; Gu-Trantien and Willard-Gallo 2017). Thus, MIXTURE represents a reliable and reproducible 

platform to estimate the nature and magnitude of particular immune cell populations in the tumor 

microenvironment. 
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Figure 3. Kaplan Meier plots representing patient survival and immune infiltrate M2-macrophages (left panels) 

and follicular T-Helper cells (right panels) for the BRCA TCGA data by both methods (MIXTURE, top panels 

and CIBERSORT bottom panels). Each cell type proportion was split into three quantile levels (Low ≤ quantile 

0.33, quantile 0.33 < Middle ≤ quantile 0.66, and High ≥ quantile 0.66). n=1095 (primary tumor samples) 

MIXTURE analysis reveals a differential immune infiltrate on HNSCC that correlates with 

PFS and OS 

 
 Head and Neck tumor development is closely related to the host immune system where the 

use of immunotherapy in the management of metastatic HNSCC may pave the way for future treat-
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ment due to their promising results (Schoenfeld 2015). These results advocate the study of the ITME 

and outcome association. For instance, Rickman et al, have predicted future metastasis development 

and characterized molecularly head and neck squamous cell carcinoma (HNSCC) based on 

transcriptome and genome analysis data (Rickman et al. 2008). The authors investigated the propen-

sity for subsequent distant metastasis in head and neck squamous cell carcinoma HNSCC using 186 

primary tumors from patients initially treated by surgery that developed (M) or did not develop 

(NM) metastases as the first recurrent event. Although the authors found that the most significantly 

altered transcripts in M versus NM were associated with metastasis-related functions, including ad-

hesion, motility and cell survival, the study did not address the role of the immune infiltrate in the 

development of future metastasis. Here, we have inferred the immune infiltrate by CIBERSORT and 

by MIXTURE analysis of transcriptomic data of 41 biopsies from HNSCC patients who metasta-

sized (M) vs. 40 biopsies from HNSCC patients who did not present metastasis (NM). We found that 

M2-macrophages were significantly increased in NM patients by CIBERSORT (p=0,034) while 

MIXTURE did not find a statistical significance between the M and NM cohorts (Figure 4A). The 

protumorigenic role of M2-macrophages has been widely reported and the literature does not sup-

port the increased proportion of this cell population in NM patients. Oppositely, while CIBERSORT 

did not find a differential infiltrate related to the monocyte infiltrate in the M vs. NM cohorts, 

MIXTURE found that the monocyte population was significantly increased in the metastatic (M) 

group (Figure 4B). This finding is supported by a previous study in HNSCC showing that patients 

with high monocyte frequency had lower survival with 8% 5-year overall survival (OS) compared to 

65% 5-year OS for patients with low activation levels (Aarstad et al. 2015). Although this study was 

performed on peripheral blood, it shows a link between increased monocyte activation and decreased 

survival in HNSCC patients. 

 

certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprint (which was notthis version posted August 7, 2019. ; https://doi.org/10.1101/726562doi: bioRxiv preprint 

https://doi.org/10.1101/726562


 18

 

Figure 4. Box plots representing relative cell abundance of M2-macrophages and monocytes in biopsies of 

HNSCC patients who metastasized (M) vs. patients who did not present metastasis (NM) calculated by 

CIBERSORT or MIXTURE. M, n=41, NM, n=40. 

 
 

Applying MIXTURE to infer the immune infiltrate of melanoma biopsies and response to im-

munotherapy 

 
Immunotherapy based on immune checkpoint blockade can induce durable clinical respons-

es in melanoma patients. However, objective clinical responses are only observed in a small propor-

tion of patients. Given the high financial costs and potential toxicities associated with these thera-

pies, there is an urgent need to identify new, reliable biomarkers to distinguish better cancer patients 

likely to respond to immunotherapy. Riaz and colleagues (Riaz et al. 2017) assessed genomic 

changes in tumors from 68 patients with advanced melanoma, who progressed on the anti-CTLA-4 

drug ipilimumab or were ipilimumab naive, before and after they commenced anti-PD-1 therapy 

with nivolumab. We analyzed public transcriptomic data from this cohort (Riaz et al. 2017) to study 

the tumor immune infiltrate before and during immunotherapy treatment in patients responding 

(Responders) and not-responding (Non-responders) to anti-PD-1 therapy using the CIBERSORT 

and MIXTURE algorithms.  

Figure 5 shows that both methods revealed changes in distinct immune cell subsets before and 

during nivolumab therapy in responders and non-responders. However, only MIXTURE analysis 

revealed that M2-macrophage infiltrate decreased in biopsies from responding patients while 

CIBERSORT analysis only showed a trend that did not reach statistical significance (Figure 5A). 
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This difference could be explained by the CIBERSORT limitation of underestimating highly repre-

sented immune cell populations. Vast evidence indicates that M2-macrophages are key players 

components of the immuno-suppressive tumor microenvironment (Cassetta and Kitamura 2018; 

DeNardo and Ruffell 2019) and several M2-macrophage targeting strategies (depletion, repro-

gramming, and targeting functional molecules) have been proposed to enhance the efficacy of the 

immune checkpoint inhibition. Tumor-associated macrophages were suggested as important thera-

peutic targets to enhance the efficacy of checkpoint blockade immunotherapies (Mantovani et al. 

2017) thus its accurate identification turns crucial in understanding their tumor-associated activities 

and the design of novel anticancer agents. Also, the M2-macrophage population decrease in biop-

sies from patients responding to immunotherapy as previously shown for anti-CTLA-4 therapy (Yu 

et al. 2016). 

Interestingly, only MIXTURE analysis revealed an increase in the proportion of γδT-cells in 

biopsies of responding patients (Figure 5B) while CIBERSORT analysis did not reach statistical 

significance. The relevance of this finding is supported by previous literature showing the cytotoxic 

potential of γδT-cells against tumor cells (Silva-Santos et al. 2015; Wu et al. 2017; Zou et al. 2017; 

Lo Presti et al. 2018; Zhao et al. 2018). Biologically, vast publications support the antitumor role of 

γδT-cells by direct or indirect ways. γδT-cells recognize antigens shared by tumor cells in an MHC-

II independent manner and mediate antitumor effects by the perforin-granzyme pathway, through 

the ligands TRAIL and FasL (death-inducing ligands), via antibody-dependent cellular cytotoxicity 

and production of IFN-γ and TNF-α with cytotoxic activity against tumor cells. This effect may 

occur directly or indirectly via stimulating other immune cell types such as macrophages or dendrit-

ic cells (Lo Presti et al. 2018; Zhao et al. 2018). Moreover, the intratumoral infiltrate of γδT-cells 

has been identified as the most significant predictor of survival in some cancer types including 

ovarian cancer, in which these cells display critical immunosuppressive effects by releasing high 

amounts of pro-tumorigenic galectin-1 (Rutkowski et al, 2015). In the last years, these cells have 
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become critical cells with both effector and immunosuppressive activity in cancer settings. These 

findings suggest that MIXTURE analyses are more robust and meaningful.  

 

 

Figure 5. Paired analysis of relative cell abundance of M2-macrophages and γδT-cells in pre-treatment vs. on-

treatment melanoma biopsies calculated by CIBERSORT or MIXTURE from patients responding to anti-PD-1 

immunotherapy; n=24. 

Discussion 

 In this study, we present a new digital cytometry method, MIXTURE, for accurate estimation 

of cell-type content of bulk tissues which provide a meaningful understanding of the ITME behavior 

in cancer samples. The MIXTURE algorithm implements a novel approach to handle the overesti-

mation of the amount of present ITME cell types utilizing a noise constraint threshold to prevent 

floating point errors jointly with the Recursive Feature Selection (RFE) process which improves the 

known robustness of the v-SVR to collinearity. In this way, it provides a robust estimation of the 

tumor immune microenvironment content, defined from a given and validated molecular signature 
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matrix. The added advantage of providing accurate estimates of the cell-types composition positive-

ly impacts the consequent improvement on the accuracy of estimated cell types proportions. The 

MIXTURE algorithm also diminished the estimation bias towards high proportion values, shown by 

the other evaluated methods. This estimation bias may negatively impact the estimation process hid-

ing relevant biological information. The appropriateness of MIXTURE was verified using simulated 

and benchmark flow cytometry derived content data. Also, by using real cancer data, MIXTURE 

reveals that M2-macrophages proportions levels correlate with poor prognosis in BRCA TCGA 

samples independently of the subtype and also for their Basal and ER+ subtypes as well as their role 

in the immunotherapy response in melanoma samples. These associations against survival and ther-

apy responses were previously identified in such cancer types by other authors and techniques. 

However, they were not found by using CIBERSORT proportion estimates. 

 The same happened with follicular T-Helper cells and γδT cells, where MIXTURE estimates 

allow to identify known and well-described associations with survival for BRCA and with therapy 

response for melanoma. On the contrary, CIBERSORT found an association of their M2-

macrophages estimated levels with the development of metastasis in HNSCC meanwhile MIXTURE 

not. However, we were not able to find supporting bibliography evidence of such association. Con-

versely, MIXTURE provides monocyte levels and their association to metastasis development, 

which has been previously reported. All these differences may be due to both floating-point errors 

and an incomplete feature selection process as well as collinearity that may lead to missing estima-

tion of cell types number and proportion levels. Collinearity problems have been recognized strongly 

affecting the estimation of cell type contents in digital cytometry and has been addressed in tools 

like TIMER (which use OLS), but the method should be set for each molecular signature trough a 

specific correlation analysis thus it cannot be easily extended to other molecular signature matrices. 

In this context, SVR method has been proven to be robust to collinearity in several scenarios 

(Fernandez et al. 2011; Newman et al. 2015; Newman et al. 2019). However, the noise constrained 

RFE implemented in MIXTURE improves the collinearity robustness of the v-SVR implemented in 
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CIBERSORT, with the consequent advantage of diminishing the amount of false cell type detections 

and estimation bias. The MIXTURE algorithm was developed both as an R code and as a shiny ap-

plication available for downloading from GitHub repository (a guide for installation, use, and appli-

cation of MIXTURE to other data sets is available in Supplementary Material). It can be easily im-

plemented as a previous digital cytometry step for the determination of cell-type expression profiles 

from bulk tissues as used by CIBERSORTx (Newman et al. 2019). 

 

Methods 

Mixture: a novel algorithm to infer the immune infiltrate in tissue samples 

 The linear deconvolution of the cell types present in a gene signature matrix (X), holding N 

genes for k cell types, associated with the components of a mixture of cell types present in a tumor 

gene expression profile (Y), involves solving the following regression model equation � � � · ��, 

where the proportions for all cell types in the mixture sample is represented by the column 

tor � � ��� 	 0  �  ∑ �� � 1 � � � 1,...,� � , i.e. the vector of regression coefficients satisfying 

both, the non-negativity and sum-to-one constraints (Avila Cobos et al. 2018). Among the several 

algorithms developed for estimating �, the most competing ones (Li et al. 2016; Hunt et al. 2018) 

are the ordinary least squares (OLS), initially presented by Abbas and colleagues (Abbas et al. 2009) 

[ABBAS method currently used in TIMER tool by (Li et al. 2016)], the ν-support vector regression 

(ν -SVR) implemented in CIBERSORT (Newman et al. 2015), the recently presented algorithms: 

DTANGLE (Hunt et al. 2018) based on multivariate logistic function, and the ABIS method based 

on Robust Linear Model [rlm, (Monaco et al. 2019)].  

 The ABBAS, ABIS and CIBERSORT methods, estimate the regression coefficients utilizing 

OLS, rlm or v-SVR, the later a machine learning algorithm claimed to be robust to multicollinearity, 

yielding �∞  ���  ∞. To satisfy �� 	 0 � �, in (Abbas et al. 2009), the columns of X associated with 

those ��� � 0 are iteratively removed until all the estimated regression coefficients resulted positive 
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(A recursive feature selection approach). The CIBERSORT method provides a set of ��� coefficients 

obtained using an optimized v-SVR by selecting v (i.e., a regularization parameter controlling the 

number of support vectors included in the solution) over three fixed values (� � 0.25,0.5 ��� 0.75). 

It chose the one that minimizes the root mean squared error (RMSE) after setting as null those 

��� � 0. Finally, both algorithms normalize the resulting vector of regression coefficients as 

�� �  � ∑ ���!  to satisfy  ∑ �� � 1. On the other hand, the ABIS method directly estimates  ��  utilizing 

the Robust Linear Model (rlm) without setting as null those ��� � 0 nor normalizing �� thus not forc-

ing to satisfying the non-negativity and sum-to-one constraints (Avila Cobos et al. 2018). 

 These methods work with non-log RNA-Seq data or one-color microarray technology, as 

proposed by (Zhong and Liu 2011), for the preservation of the underlying linear relationship be-

tween the observed gene expression profile and the gene signature matrix. On the contrary, 

DTANGLE, provides proportion estimates by mapping the weighted average difference between the 

signature and the sample mixture profiles, in the log2 scale, into the unit interval [0,1] by a multivar-

iate logistic function (Hunt et al. 2018). 

 Our newly developed algorithm, MIXTURE, re-estimates � by iteratively removing the col-

umns of X associated with null coefficients from the regression step, after all estimated coefficients 

resulted not-null, as in ABBAS, but using the v-SVR approach as a regression function similar to 

CIBERSORT. However, we observed that floating-point errors affect the inequality comparison 

��� � 0 used to define the null coefficients, which produce overestimation of the number of positive 

coefficients, thus negatively affecting the feature selection step. To avoid these floating-point errors, 

MIXTURE defines a noise constraint threshold ∆ (equal to 0.007 and chosen through a simulation 

process (see supplementary material). In this way, active coefficients (i.e. not-null ones) are recog-

nized as those normalized �� # ∆, thus identifying the cell types present in the sample (see Supple-

mentary Table 1 for MIXTURE algorithm implementation details). 
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The ABBAS least square method was implemented following the source code of (Li et al. 2016). 

The CIBERSORT method was run from the web site https://cibersort.stanford.edu in February 2019, 

the ABIS method was implemented using the code provided at 

https://github.com/giannimonaco/ABIS and for DTANGLE the code implemented by (Hunt et al. 

2018) was run from their “DTANGLE” R library. 

Statistical Analysis 

 The Wilcoxon test was used to compare the estimated coefficient between methods (paired or 

unpaired accordingly) with p < 0.05 as the significance threshold value. The Bland-Altman Statisti-

cal method for assessing agreement between clinical measurements (Bland and Altman 1986) was 

used to compare estimated proportions against the true simulated or flow cytometry derived ones 

(Fernandez et al. 2001). The mean ± standard deviation was used to show the overall bias when ap-

propriate. 

 
Data Access 
 
All data access description is detailed in supplementary material and available at 

https://github.com/elmerfer/MIXTURE.App 
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