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Abstract 
A stochastic visual motion discrimination task is widely used to study rapid decision-

making in humans and animals. Among trials of the same sensory difficulty within a 

block of fixed decision strategy, humans and monkeys are widely reported to make 

more errors in the individual trials with longer reaction times. This finding has posed a 

challenge for the drift-diffusion model of sensory decision-making, which in its basic 

form predicts that errors and correct responses should have the same reaction time 

distributions. We previously reported that rats also violate this model prediction, but in 

the opposite direction: for rats, motion discrimination accuracy was highest in the trials 

with the longest reaction times. To rule out task differences as the cause of our 

divergent finding in rats, the present study tested humans and rats using the same task 

and analyzed their data identically. We confirmed that rats’ accuracy increased with 

reaction time, whereas humans’ accuracy decreased with reaction time in the same 

task.  These results were further verified using a new temporally-local analysis method, 

ruling out that the observed trend was an artifact of non-stationarity in the data of either 

species.  The main effect was found whether the signal strength (motion coherence) 

was varied in randomly interleaved trials or held constant within a block. The magnitude 

of the effects increased with motion coherence.  These results provide new constraints 

useful for refining and discriminating among the many alternative mathematical theories 

of decision-making. 

 

Introduction 
The accuracy and timing of sensory discriminations have been used to study 

mechanisms of decision-making for over a century (1).   In particular, a visual random 

dot coherent motion task (2, 3 ) has been extensively used to study decision-making in 

human and monkeys (4-22).  In each trial, many small high-contrast dots are plotted at 

random locations in part of the visual field of a subject. A fraction of the dots move in a 

coherent direction (“signal”) while others move at random (“noise”). The direction of the 

coherent motion provides information regarding which of two (or more) available actions 

will be associated with reward and which associated with non-reward or penalty in the 

current trial. In the pure reaction-time version of the task, both the time of response and 

the response selected are freely determined by the subject. 
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As stimulus strength (signal-to-noise ratio) increases, motion discrimination 

accuracy increases and reaction time decreases for both monkeys (23) and humans 

(10). Instructions that induce the subject to be more conservative result in longer 

reaction times and higher accuracy. Both these findings are predicted by biased random 

walk or bounded drift diffusion models (24), which postulate that noisy sensory evidence 

is integrated over time until the accumulated evidence reaches a decision threshold. In 

this framework, weak stimuli (i.e. with low signal-to-noise ratio) have low drift rates, and 

therefore accumulate evidence more slowly, reach threshold later, and have a higher 

likelihood of reaching the wrong threshold first (errors). This parsimoniously explains the 

psychometric curve (dependence of accuracy on signal strength), chronometric curve 

(dependence of reaction time on signal strength), and the characteristic long-tailed 

distribution of reaction times.  When subjects are cued to be conservative, this is 

modeled by setting higher decision thresholds, such that it takes longer for 

accumulating evidence to reach threshold, but the probability of error is reduced.  This 

provides an elegant explanation of the well-known Speed-Accuracy Trade-Off.  

Reaction time and accuracy interact in yet a third way, however. Among trials of 

equal sensory difficulty tested within a block of fixed decision criterion, studies of 

humans and other primates widely report that the trials with longer reaction times are 

more likely to be errors. This is not predicted by the simple bounded drift-diffusion 

model outlined above, which predicts no correlation between reaction time and 

accuracy.  Several variants of the drift-diffusion model can account for the result, 

however, for example by postulating variable drift rates, collapsing bounds, or urgency 

signals (reviewed in (1, 25, 26)).  

We previously trained rats to perform random dot motion discrimination and 

characterized the speed and accuracy of their decisions (27). Rats’ accuracy was 

dependent on the duration of stimulus presentation, and the increase in accuracy with 

reaction time was contingent on stimulus presence.  Moreover, reaction time declined 

with stimulus strength, and the shape of the reaction time distribution resembled the 

characteristic distribution produced by a bounded diffusion process. These results are 

consistent with the hypothesis that rats are accumulating evidence in the task. The data 

from rats differed from the primate literature in one key respect: in that study, rats’ later 

decisions were more likely to be accurate. This result has important implications, 

because some of the model modifications proposed to explain the primate data would 

be incompatible with the rat data.  

Given the apparent inconsistency of the result with the past literature, however, 

replication and further characterization of the result remained important. It was unclear 

whether the difference reflected a true species difference, or whether it arose from 

differences in the trial structure, task implementation or data analysis. Furthermore, the 

potential for artifacts due to non-stationarity has been under-appreciated in the 

literature. Undetected behavioral non-stationarity is rather likely, and might have caused 
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spurious correlations between accuracy and reaction time in the data of either or both 

species. The experiments and analyses presented here address these concerns, 

ultimately confirming that the dependence of accuracy on reaction time is different 

between species, and not an artefact of non-stationarity in either case.   

 

Results 
Experimental approach 
Our previously reported experiments with rats (27) used a similar visual random-dot 

coherent motion stimulus as the published primate studies to which we compared, but 

the trial structure was quite different. Notably, the rat experiments had no delay between 

trial engagement and stimulus onset, no delay between a correct response and reward 

delivery, and no enforced inter-trial interval. Experiments in the primate literature often 

enforced random delays to stimulus onset, delays to reward delivery, and/or fixed inter-

trial intervals. Such task differences affect the anticipation of sensory and reward events 

and the opportunity cost difference between early and late responses. We also 

implemented the task in our own custom software and hardware, which presumably 

differed in numerous details from those used in other studies. Thus it remained possible 

that task differences rather than species differences caused the difference in results. 

 To rule this out, in the present study both humans and rats were tested in the 

same task, with identical trial structure using the same hardware and software. The 

visual stimulus was a field of randomly located, moving white squares (“dots”) rendered 

on a black background. A fraction of the dots (“signal”) moved coherently in the same 

direction, either toward the left or right. The remaining dots (“noise”) were relocated 

randomly each video frame. The coherence (fraction of dots participating in signal) was 

either varied in randomly interleaved trials, or held constant within a testing session. 

The task structure was two-alternative forced-choice:  the subject was rewarded for 

selecting the response on the side toward which the coherent motion flowed. Correct 

(rewarded) responses were immediately indicated by an audible beep. Errors were 

penalized by a fixed time-out delay (1-2 s) before a new trial could be initiated. There 

was no deadline to respond, but most responses were between 500-2500 ms and 

reaction times exceeding five seconds were rare in both species. Additional task details, 

including the remaining task differences between species, are described in Methods.  

 

Visual Performance  
 For the purpose of studying perceptual decision-making, the visual signal must 

be perceptible but challenging. Humans and rats have different optics and visual 

systems. Therefore we used different display parameters (viewing distance, spatial 

extent of the visual motion field, and the number, contrast, size, and speed of the 
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moving dots) and different motion coherence ranges for humans and rats, although we 

did not attempt to optimize parameters in either case. We analyzed visual performance 

in blocks of trials in “epochs” during which stimulus and reinforcement parameters were 

fixed and subject performance was not trending (discussed in more detail below). 

 Motion coherence threshold is likely to be a function of other stimulus 

parameters, such as dot size, dot density, contrast, and motion speed. Since these 

parameters were not varied parametrically or optimized for either species, we cannot 

interpret the observed motion threshold as an absolute measure of motion perception 

ability in either species. The dot size, dot density, contrast and motion speed we chose 

for humans resulted in lower motion thresholds and higher motion sensitivity in human 

subjects than the parameters we chose for rats produced in rats (Fig. 1 A-F vs. G-L).  

Nevertheless, with the stimulus parameters we used, the overall reaction times of rats 

and humans were similar, with a minimum response latency of ~0.5 s, a median of ~1 s, 

and 95th percentile of ~3s in both species (not shown). Motion discrimination 

performance ranged from 50% (chance) to 100% as the motion coherence increased for 

most subjects.  

 Results of psychometric fits from all non-trending data epochs with a sufficient 

coherence range are summarized in Fig. 1 D-F (N=46 epochs from 11 rats) and Fig. 1 

J-L (N=79 epochs from 52 humans).   Most subjects (7/11 rats and 46/52 humans) had 

at least one epoch in which accuracy was ≥90% on the strongest stimuli; these epochs 

are indicated by blue in all Fig. 1 histograms.  Epochs with high lapse (>10% lapse, i.e., 

<90% correct at the highest coherence) were more frequent among rats than humans 

(red in Fig. 1 histograms). In some cases, performance plateaued as a function of 

contrast below 90% correct (Fig. 1 C,I), indicating that the rat sometimes responded 

incorrectly even when stimulus was perceptually obvious. Some but not all of these 

could be explained by response bias (preference to respond left or right).  In other 

cases of high lapse, however, rats’ psychometric curves were still not leveling off at 

100% coherence (not shown). In these cases interpretation of lapse is unclear, as other 

perceptual factors such as acuity or contrast sensitivity may have been limiting their 

performance.  In all epochs with lapse, measurement of threshold was problematic. If 

lapse reflected a vertical scaling of the psychometric curve without horizontal shift, the 

measure of perceptual threshold we used (coherence at which the subject reaches 70% 

correct) would be artificially high (cf., red in Fig. 1 E,K). Some epochs that did not 

exhibit lapse still had substantial response bias (shown in yellow in Fig. 1). This 

occurred because response bias was exhibited only in low-coherence trials – as if the 

subject relied on a prior only when sensory evidence was weak. Because of these 

caveats, epochs with high lapse or bias were either excluded in subsequent analyses, 

or analyzed separately. 
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 In summary, analysis of visual performance confirmed that we have data from 

both species in which the subjects were under stimulus control and for which 

performance was perceptually limited. 

  

 
Figure 1. Psychometric functions of rat and human populations. A-C and G-I: Accuracy 

(fraction correct) as a function of stimulus strength (coherence) for three rats (A-C) and three 

humans (G-I) from our data set. Points indicate fraction correct among trials at the indicated 

coherence. Curves are psychometric fits, from which we obtain lapse (extrapolated error rate at 

100% coherence), threshold (coherence at 75% correct), and sensitivity (slope of psychometric 

curve) for each epoch (see Methods).  Panels D, J: Distribution of lapse among qualifying epochs 

of rats and humans respectively (see Methods for inclusion criteria). Panels E, K: Distribution of 

motion discrimination threshold. Panels F, L: Distribution of motion sensitivity; note different 

scales. In all histograms in this figure, blue indicates epochs with <10% lapse and no bias; red 

indicates epochs with >10% lapse (e.g., panel C,I), some of which were also biased; yellow 

indicates epochs with response bias but not lapse; and purple indicates an atypical visually 

impaired human subject. The outlier near 100 in panel L is the example shown in panel G.      

 

Relationship between RT and accuracy confirmed for rats 

and humans 
 One way to visualize the species difference is to compare the reaction time 

distributions of errors to that of correct trials. For rats, we found that the reaction time 

distributions of correct trials had heavier tails (Fig. 2A), causing a rightward shift of the 

cumulative probability distribution of correct trials relative to errors (Fig. 2B). Therefore 
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accuracy increased with reaction time (Fig. 2C). For rats in general, the average 

reaction time of correct trials was greater than that of error trials of the same coherence 

within the same experimental test block (Fig. 2D). Therefore the accuracy of slow 

responses was lower than that of fast responses (Fig. 2E).  For humans, we found the 

opposite: reaction times of errors were longer, and therefore accuracy declined with 

reaction time (Fig 2F-J). Thus we can replicate the result that has been widely reported 

in past studies of humans and monkeys, using the same trial structure, task 

implementation, and data analysis procedures that yields the opposite result for rats.  

 

 
Figure 2. Relationship between reaction time and accuracy. A. Example reaction time 

probability distributions from a rat single-coherence experiment, N=10,858 trials, 82% correct. 

Green=correct trials, red=error trials. B. Cumulative distributions, the integrals of curves in A. C. 

Accuracy vs. reaction time quartiles (symbols) and linear regression to these points (line), for the 

data shown in A and B. D. Average reaction time of correct trials vs. of error trials in rat data. 

Each symbol represents analysis of all trials of like coherence from one non-trending, unbiased 

epoch. Colors indicate coherence from 0.1 (blue) to 0.85 (red). Black filled circle represents the 

data shown in A-C. E. Accuracy of slow trials vs. fast trials from rat epochs described in D.  Slow 

and fast defined as the bottom and top quartiles of reaction time respectively for that coherence in 

that epoch. Symbols as in D.  F. Example reaction time probability distributions from a human 

subject from a single-coherence epoch with N=909 trials, 83% correct, colors as in A. G. 

Cumulative distributions, the integrals of curves in F. H. Accuracy vs. reaction time for data in F-

G.  I. Average reaction times of correct vs. error trials from human epochs selected as described 

in D, also excluding the visually impaired human subject. Analyzed as in D; symbols as in D 

except that coherence scale is 0.02 (blue) to 0.16 (red). J. Accuracy of slow vs. fast responses for 

human experiments, analyzed as described in E, symbols as in I. Additional details in Methods.  

 

 To summarize the sign and strength of this trend, we determined the slope of the 

regression line of accuracy vs. reaction time for all candidate epochs (see Methods for 

details).  Epochs with fixed coherence were analyzed as shown in Fig. 2 C,H.  In the 

epochs with randomly interleaved coherences, there were often not enough trials of a 

single coherence to reliably estimate the accuracy in multiple reaction-time bins. 
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Therefore in all psychometric epochs we pooled trials from the coherences for which the 

subject was between 70-90% correct (c.f. Fig. 1 A-C,G-I) to estimate accuracy vs. 

reaction time (e.g., Fig. 3A,D). In epochs with sufficient numbers of trials to estimate 

trends within each coherence, these were consistent with the coherence-pooled slope 

for the same epoch (e.g., Fig. 3B,E).  

 

 
Figure 3. Relation of accuracy to reaction time is opposite in rats and humans. A. 

Dependence of accuracy on reaction time for an example rat subject evaluated within a single 

epoch for all trials within the sensitive range (70-90% correct) of psychometric curve. Symbols 

show mean accuracy and mean reaction time, in reaction time bins with equal numbers of trials; 

the slope of the linear regression (line) was +0.26 for this epoch.  B. Accuracy vs. reaction time 

for the same data as in A, computed separately by coherence. Color indicates coherence, 10-

100% coherence (bluered). Thick curves indicate the coherences pooled in panel A. This 

epoch contained 8149 qualifying trials.  C. Distribution of slopes computed as in A, for all 

qualifying rat epochs (see Methods). Colors indicate epochs with <1% lapse (dark blue, N=12), 1-

2% lapse (medium blue, N=8), 2-10% lapse (pale blue, N=10), or fixed coherence (green, N=23).  

D. Dependence of accuracy on reaction time for an example human subject within a single 

epoch, analyzed as described in A. Slope was -0.23 for this epoch.  E. Data from the example 

human subject in D, analyzed as in B. Coherences 2-32% (bluered). This epoch contained 

5652 qualifying trials. F. Distribution of slopes in all qualifying human epochs: <1% lapse (N=46), 

1-2% lapse (N=7), 2-10% lapse (N=8) and fixed coherence (N=5) colors as in C; visually impaired 

subject (N=1) in purple. Details of analysis are in Methods.          
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 The distribution of slopes for rats (Fig. 3C) and humans (Fig. 3F) are shown 

for all non-trending, unbiased, low-lapse (if psychometric) epochs. For rats the 

average slope was 0.16 ± 0.14 overall (mean±SD; N=53 epochs from 11 rats), and 

0.18 ± 0.14 in psychometric epochs with <1% lapse (N=12). For humans the average 

slope was – 0.16 ± 0.18 overall (N=66 epochs from 48 humans, excluding the 

visually impaired subject), and – 0.19 ± 0.19 in psychometric epochs with <1% lapse 

(N=46). These data confirm our earlier report that for rats, accuracy increases with 

reaction time in this task. Moreover, most humans showed the opposite trend: 

accuracy declined with reaction time, consistent with previous reports of humans 

and non-human primates on similar tasks. The results were opposite for rats and 

humans, but of equal magnitude and consistency within either species.   
    

The problem of non-stationarity 
Reaction time distributions are extremely broad; comparing the shapes of the 

correct and error reaction time distributions, particularly differences in the tails of the 

distributions, requires a substantial number of error trials for each value of motion 

coherence evaluated. Therefore analyses like those of Figure 2 and 3 require long 

experiments, particularly if coherence values are interleaved or for coherences with low 

error rates. It is crucial to validity of the analysis that the underlying distributions are 

stationary, i.e., not changing over the time these samples are taken to estimate them.  

To illustrate why this is important, consider some extreme examples of non-

stationarity. Most subjects get faster and more accurate with learning and practice; if 

this change were occurring over the range of trials included in an analysis, reaction time 

would be negatively correlated with accuracy for uninteresting reasons. Therefore we 

and others routinely exclude learning period data, analyzing only the trials after 

performance is deemed stable.  Or suppose subjects occasionally and implicitly shift 

strategies, either increasing or decreasing their threshold at unknown times for an 

unknown duration. It is known that a cued increase in the decision threshold for a block 

of trials will increase both reaction time and accuracy in that block, so we would expect 

such un-cued threshold changes to induce a positive correlation between reaction time 

and accuracy in the aggregated data, even if these variables were uncorrelated or 

negatively correlated among the trials performed with any given decision threshold. 

Therefore we and others routinely inspect data for overt signs of non-stationarity, such 

as long-term trends or abrupt shifts in reaction time distribution or accuracy. Finally 

suppose a subject’s motivation or attention wandered over the course of a two hour 

session. Depending on failure mode (which may be species-specific) this could induce 

positive or negative correlated fluctuations in both accuracy and reaction time. 

The ability to detect non-stationarity is statistically limited, and to our knowledge 

a fully satisfactory method does not exist.  Linear trends that are present may not be 

statistically distinguishable from chance due to limited power. A subject’s state could 
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fluctuate on shorter timescales with no net trend. Indeed we find in both species that if 

we compute the average reaction time in non-overlapping blocks of 16 trials within an 

apparently stationary epoch, the variance over blocks is nearly always significantly 

higher than chance, as measured in time-shuffled controls (not shown). Fluctuations in 

state are just as problematic as long-term trends for our analysis, but fluctuations on 

short timescales are even more difficult to detect statistically, and may be impossible to 

avoid experimentally. Therefore it is important to consider the possibility that either the 

positive correlation between reaction time and accuracy in rats, or the negative 

correlation in humans, or both, could arise from undetected non-stationarity. 

 To address this concern, we developed a complementary method to assess the 

difference in reaction time between correct and error trials using only temporally local 

comparisons. The premise of this approach is that the shorter the time window, the 

more likely the subject’s state is well approximated as stationary. We computed the 

difference in reaction time between each error trial and the closest correct trial of the 

same coherence that was at least 3 trials before it, and report the mean of these local 

time differences. We performed this analysis two ways: either each epoch was analyzed 

separately (Fig. 4 A-C,G-I), or each subject’s lifetime trial data were analyzed en masse, 

ignoring blatant non-stationarities including initial learning, session warm-up, and 

changes in task parameters (Fig. 4 D-F,J-L).  The similarity of the results of these two 

analyses shows the robustness of this method to non-stationarity. 

 For rat subjects, error trials consistently had shorter reaction times than their 

nearest correct trial of the same coherence (Fig. 4 A-F), whereas for human subjects 

error trials consistently had longer reaction times (Fig. 4 G-L). This result was the same 

whether we compared to the correct trials preceding or following the reference error trial 

(not shown). In both species, the difference between errors and correct trials was 

greater for higher coherence stimuli. This trend was found in psychometric epochs 

regardless of lapse (Fig. 4C,I, shades of blue) and in most epochs that used a fixed 

coherence (Fig. 4 C,I green). In conclusion, although non-stationarity cannot be fully 

eliminated from the data, such non-stationarity does not trivially explain the dependence 

of accuracy on reaction time in either humans or rats, nor the difference between the 

species. 

 

Discussion   
This study confirms our earlier report that for rats performing random dot motion 

discrimination, errors have faster reaction times than correct trials (Fig 2A-B), and 

therefore rats have higher accuracy at longer reaction times (Fig. 2C; 3A-C), when 

comparing trials of like coherence within testing blocks of apparently stable decision 

threshold. We also demonstrate that in our task, human errors have longer reaction 

times than correct trials (Fig 2D-E) and thus humans have lower accuracy at longer 

reaction times (Fig. 2F; 3D-F). By using the same task for both species, we can now 
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rule out the possibility that task differences (which were substantial) accounted for the 

difference between our previously reported finding in rats and the typical finding in 

humans and other primates.  

 
Figure 4. A temporally-local measure of the interaction between accuracy and reaction 

time. A. The mean difference between reaction times of nearby correct and error trials  as a 

function of coherence, for an example epoch from a rat. B. Population average of the mean 

difference in correct vs. error reaction times within coherence, averaged across psychometric 

epochs (solid) or fixed-coherence epochs (open). Error bars show SEM over the number of 

epochs for which the value of the respective coherence was estimated. C. Distribution over rat 

epochs of the mean reaction time difference between correct and error trials (computed within 

coherence as in B, then averaged within epoch over all coherences >=0.4). Colors as defined in 

Fig. 3C. D. Like panel A but computed from the lifetime trial data of one example rat subject, not 

excluding any trials. E. Like panel B, but averaged over lifetime-analyses of all rat subjects. F. 

Like panel C, but distribution is over rat subjects, each estimated from a lifetime analysis. G-L: 

like A-F but for human subjects. G. Example human epoch. H. Population average over 

psychometric (solid) and fixed-coherence (open) epochs of non-impaired human subjects. I. 

Distribution of mean reaction time differences all human epochs (averaged within epoch for 

coherences >=0.04), colors as defined in Fig. 3F. J. Example human subject lifetime analysis. K. 

Population average over non-impaired human subjects from lifetime analysis. L. Distribution over 

human subjects based on lifetime analysis; visually impaired subject in purple. See Methods for 

additional details.   

  

An increase in accuracy with reaction time has also been observed in image 

discrimination by rats (28) and in orientation discrimination by rats (our unpub. obs.) and 

mice (29). This trend may have escaped notice in other studies because rodent tasks 

often use go-no-go designs or cued response times, whereas this analysis requires a 

reaction time task, in which response time is dictated by the animal and distinct from 

choice.  

One visually impaired human subject was tested with customized stimuli that 

yielded a motion coherence threshold and sensitivity comparable to what we found in 

rats. While it would require much deeper investigation, it might not be a coincidence that 
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the relationship between reaction time and accuracy in this subject was similar to that of 

rats. The subject self-reported to have normal or corrected-to-normal vision, and did not 

present evident visual disability during consenting and task instruction procedures. We 

lack data to determine, however, whether this subject’s impairment was specific to 

motion discrimination or secondary to an impairment in contrast sensitivity, acuity, or 

motion speed sensitivity. We speculate that it does not matter which stimulus dimension 

is limiting for performance, but this assumption could be tested. To explore this further 

one would have to parametrically vary all these stimulus parameters in each subject, 

and obtain psychometric curves of each parameter dimension using peak or above-

ceiling values for all other parameters.  

One interpretation might be that subjects for whom the visual task is extremely 

difficult employ different strategies, regardless of species.  We note however that all 

subjects were assessed using stimuli that were comparably difficult for that subject, as 

judged by their accuracy (~80%) and comparable mean reaction times.  In each subject 

we know performance was perceptually limited because accuracy increased with 

coherence, and the effects we report were found at coherences above chance and 

below ceiling. We also note that the difference between error and correct reaction times 

increased with coherence. This suggests that making the task easier for the rat does not 

tend towards producing a more human-like behavioral pattern.   

 We emphasize that our claim is distinct from two other phenomena that are often 

confused and could be confounded. First, subjects make faster decisions about stronger 

sensory stimuli. In bounded diffusion models of decision making, this fact is attributed to 

different rates of evidence accumulation. Correlation between accuracy and reaction 

time in this sense appears to be the same for rodents and primates, and is not the 

phenomenon of interest.  If one analyzed a mixture of low-coherence and high-

coherence trials, however, the early and late decisions would differ in the proportion of 

trials with low vs. high coherence stimuli, muddling the interpretation of any relationship 

between average accuracy and reaction time. To avoid this confound, when analyzing 

experiments that had interleaved coherences we only compared accuracy vs. reaction 

time within a narrow band of coherence. Nevertheless in psychometric experiments it 

was usually necessary to pool over a few similar coherences to get enough trials to 

resolve the accuracy as a function of reaction time (e.g., in Fig. 3 A,D). In the epochs 

that had enough trials, however, we confirmed that the trend held within each discrete 

coherence (e.g., Fig. 2B,E).  Moreover, this caveat does not apply to the fixed-

coherence epochs, and this subset of epochs had qualitatively similar results (Table 1). 

 The second distinct phenomenon is that when subjects try harder to avoid errors, 

they tend to take more time to respond (higher average reaction time), and are also 

more accurate – the well-known Speed-Accuracy Trade-Off. In the bounded diffusion 

framework, correlations between accuracy and reaction time in this sense are attributed 

to differing decision bounds in testing blocks with differing priority instructions or reward 
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contingencies. Correlation between accuracy and reaction time in this sense appears to 

be the same for rodents and primates, and is not the phenomenon of interest. But if one 

unknowingly combined data from two time-ranges that differed in decision criterion, this 

would introduce a positive correlation between reaction time and accuracy, even if the 

opposite relationship held among the trials within any narrower time window.  To avoid 

this potential confound, we analyzed data within epochs that used constant testing 

conditions (stimulus and reinforcement parameters), and that lacked detectable trends 

in performance (accuracy or reaction time). 

Nevertheless non-stationarity may be impossible to detect or avoid. Even if 

statistical tests fail to detect significant non-stationarity in a time series, such tests have 

very limited statistical power, only test for specific kinds of non-stationarity, and make 

assumptions about the underlying distributions that are not true of binomial data or 

reaction time distributions.  It is perhaps wiser to assume that all behavioral time series 

are not stationary (30). Therefore we introduce a temporally-local analysis method that 

compares the reaction times of errors to adjacent correct trials of the same coherence. 

This analysis cleanly isolates the specific relationship between reaction time and 

accuracy that is of interest to this study. The temporally-local analysis confirmed our 

findings in both species: for rats, error trials have shorter reaction times, while for 

humans errors have longer reaction times (Fig. 4). 

Accumulation of evidence (drift diffusion model) is one theoretical framework for 

understanding reaction times and accuracy in reaction-time perceptual tasks, and our 

results may have implications for distinguishing among different drift diffusion model 

variants. But neither our experiment nor our analysis presumes a drift diffusion model, 

or that evidence is being accumulated, in either species. The data presented here are 

consistent with evidence accumulation, but we have not done other tests, such as 

motion kernel analysis (8) or choice prediction from reaction time (31), to distinguish 

integration from other strategies, such as extrema detection (32).   

In this study we considered only visual random dot motion discrimination and 

only two species. The dependence of accuracy on reaction time likely depends on 

sensory modality and may even depend on the specific type of visual discrimination. To 

determine where in the decision-making pathway or when in phylogeny the observed 

difference arises, more direct species comparisons such as this one are needed, testing 

other sensory modalities, other types of visual discrimination, and additional species. 

Much of the recent theory literature has focused on explaining how accuracy 

could decline with reaction time, as it does in many human and primate experiments (1, 

25, 26).  Here we present an example in which accuracy increases with reaction time, 

which is equally demanding of an explanation. Models that account for primate data by 

positing collapsing decision bounds (16, 33-37) or urgency signals (38-40) don’t 

intuitively explain the opposite effect in rat data. The Bayesian optimality argument for 

collapsing bounds also does not seem consistent with our observation that the decline 
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in accuracy with reaction time in humans is equally prevalent in fixed-coherence 

epochs.  An evidence accumulation model in which the decision time is determined by a 

soft deadline rather than an evidence threshold could explain an increase in accuracy 

with reaction time, because decisions which are later are based on more evidence. But 

there would be no reason to postulate the particular shape of the reaction time 

distribution we observe, which is characteristic of accumulation to an evidence 

threshold.   

Drift diffusion models that assume noise in the drift rate, starting point, and non-

decision time are known to be able to produce either an increase or decrease in 

accuracy with reaction time (41), and thus are at least qualitatively consistent with our 

data in both species. In particular, variability in the starting point of the diffusion process 

can produce increasing accuracy with reaction time, whereas variability in drift rate can 

produce declining accuracy with reaction time. Our subjects do not know a priori which 

side will be the correct response, so a fixed response preference would manifest as a 

variable starting point in that model. This could explain why biased rats had stronger 

positive slopes and biased humans’ slope was less negative, compared to unbiased 

subjects (Table 1). Fast guessing (ignoring stimulus evidence in a fraction of trials) also 

produces increasing accuracy with reaction time; this may explain why subjects with 

>10% lapse (errors on easy trials) had more positive (rat) or less negative (human) 

slopes.  Nevertheless, unbiased rats with <1% lapse show increasing accuracy with 

reaction time, which is not explained by these phenomena.   

It remains unclear to us whether and how other classes of models (19, 37, 42-45) 

might account for both species’ data, but this is an interesting question for future 

research. It is hoped that exploring this question will lead to model refinements and help 

distinguish among alternative theories (46). 

 

Methods 

Experimental Methods 
Ethics 

All experiments were performed in strict accordance with all international, federal 

and local regulations and guidelines for animal and human subject welfare. Experiments 

involving animals were performed in AAALAC accredited facilities with the approval and 

under the supervision of the Institutional Animal Care and Use Committee at the 

University of California, San Diego (IACUC protocol #S04135). This study used 19 

Long-Evans rats. Experiments involving human subjects were performed with the 

approval and under the supervision of the Human Research Protection Program at 

University of California at San Diego (IRB protocol #141790). This study used 69 

healthy adult human volunteers that provided informed consent to enroll in the study.   

 

Recruitment and inclusion criteria for human subjects 
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All human subject data were newly collected for this study. A total of 69 human 

volunteers were recruited from the UCSD campus by flyers. Both males and females 

were recruited and no difference between males and females was found.  Eligibility 

criteria for enrollment of the first 14 human subjects (Phase 1 group) were: healthy adult 

at least 18 years of age, normal or corrected-to-normal vision and ability to hear the 

feedback tones (all self-reported). Compensation was a flat fee for a 2 hour session, 

pro-rated for early withdrawal. One subject withdrew after 1 hour. The instructions to 

subjects evolved over the first 8 subjects, and then remained unchanged (see below). 

Performance in this cohort was highly variable. Among the subset of subjects that had 

high trial rates, low lapse (<10%), and fast reaction times, we found that accuracy 

declined with reaction time; but the results were inconsistent among subjects that were 

deficient in their effort level (number of trials), lapse, or speed (reaction time). 

We therefore recruited a second cohort of 55 new subjects (Phase 2).  In an 

effort to reduce inter-subject variability, the enrollment criteria specified a narrower age 

range (18-25) and required that the subject was not currently taking any psychiatric 

medication, in addition to normal or corrected vision and hearing (by self-report).  To 

improve motivation, compensation was linked to performance (number of correct 

responses, or “points” earned). To provide subjects with performance benchmarks, a 

leader board was maintained showing the top trial rates and scores. For this cohort, 

criteria for inclusion of data in analysis were set in advance to require at least 800 trials 

in 2 hours, with a lapse of less than 10%, and less than 10% of trials with a reaction 

time >3s (criteria that would have eliminated the “bad” subjects in Phase 1). Eligibility to 

return for subsequent test sessions was also contingent on satisfying these criteria. All 

subjects in the second cohort met the performance inclusion criteria for analysis, 

however, so exclusion was not necessary. Data are shown for all subjects that acquired 

the task, but we report results separately for Phase 1 and Phase 2 subjects (Table 1). 

Only Phase 2 subjects were included in the statistical test for positive or negative slope 

of accuracy vs. reaction time in humans (Methods). 

 

Inclusion criteria for rat subjects 

 Data from 19 Long-Evans rats (Harlan Laboratories) were included in this study. 

All rats ever tested with random dot motion discrimination task in our lab were included 

if they successfully acquired the task, were trained and tested with fixed (not ramped) 

reward size, and had data files containing all the fields required for this analysis. This 

included 11 male rats that were trained and tested in 2010-2011, and 8 female rats 

trained and tested in 2016-2017 by entirely different staff in a new location after 

improvements to the apparatus and overhaul of the code. Five of the male rats also 

contributed data to Fig. 1c,d and Fig. 2b of (27). We note that the rats that were 

analyzed in detail (Fig. 3-6) in (27) were trained and tested with ramped rewards and 

are not included here. The remaining 6 male and 8 female rats are newly reported in 
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this manuscript.  Only the subjects not already reported in (27) were included in the 

statistical test for positive or negative slope of accuracy vs. reaction time (Methods: 

Statistics). 

 

Experimental details common to both species  

Experimental trials were delivered on a PC computer (Windows XP-Pro or 

Windows 7-Pro operating system) using Ratrix (47), a custom software suite written in 

the Matlab environment (MathWorks). Specifically we used Ratrix v1.0.2 and the 

randomDots stimulus manager. Visual stimuli were rendered on either CRT or LCD 

monitors using PychToolbox v3.0.8 (48, 49). Rendering was synchronized to the 100 Hz 

vertical refresh of the monitor. Both humans and rats were tested in a darkened room 

after dark adaptation. Neither rats nor humans were head-fixed or eye-tracked. Auditory 

feedback was presented through headphones worn on the head (human subjects) or 

affixed to the left and right sides of training chamber (rats). The times of all subject 

inputs, visual stimuli, auditory feedback, and water delivery, were recorded in data files.  

The trial structure was the same used with rats previously (27). A blank screen 

indicated that the subject could request a trial at any time by a non-rewarded key press 

(human) or infrared beam break (rat). Upon request without delay, a set of white 

squares (“dots”) were rendered on the screen at random x,y positions against a black 

background. At each screen refresh thereafter, each dot was redrawn at a new location 

that was either random in the x,y plane (noise dots) or displaced by a fixed number of 

pixels toward the target side (signal dots).  Dots that were displaced off the edge of the 

visual field re-appeared simultaneously on the opposite edge, but with a randomly 

selected new y position. We verified that the dot density was stably uniform over x and 

y, the number of coherently moving dots was constant, and spatial patterns among the 

moving dots continually changed. The motion stimulus ended when the subject 

responded either L or R. If the response was incorrect, the subject heard a brief error 

tone and saw a distinct gray screen indicating a time-out, which lasted up to a few 

seconds before a new trial could be initiated. If the response was correct, the subject 

immediately heard a brief reward tone; for rats this was paired with water delivery; for 

humans it was paired with incrementing the number of “points” displayed elsewhere on 

the monitor. After delivery of reward or timeout, the task returned to the ready screen 

and waited for a new trial initiation, with no imposed inter-trial interval. This continued 

until the session was ended by the experimenter. 

In most experiments the motion stimulus persisted indefinitely until the subject 

responded. We found that both humans and rats usually respond within 1-2 seconds; 

responses later than 3s were rare and were routinely excluded from analysis. In some 

experiments the moving dots extinguished after 3-5s. If this occurred, the black 

background persisted until a response was made, with no deadline; responses after the 
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dots extinguished were still rewarded or penalized according to the motion stimulus that 

had been shown, but responses after stimulus offset were excluded from analysis.  

 

Details still differing between human and rat tasks 

 

Stimuli 

 The visual stimuli were chosen to be within a sensitive range for each species, 

but were not systematically optimized for either species. Rats’ eyes when licking center 

request port (i.e. at time of stimulus presentation) were at the bottom, centered 

horizontally, and ~10 cm away from the tangent screen. There were either 100 or 200 

dots, displayed at 100% contrast, in a field subtending 125x111 (CRT) or 134x107 

(LCD) degrees of visual angle in the upper central visual field. Individual dots were 2-4 

degrees on a side, and coherent dots moved at 97 deg/s (CRT) or 73 deg/s (LCD), with 

0-100% coherence. The left and right response ports were within the horizontal extent 

of the moving dot stimulus.  Humans’ eyes were centered vertically and horizontally at a 

distance of ~60cm from an LCD screen. There were more dots (500), displayed at lower 

contrast (50%) in a smaller field (22 x 13 deg). Individual dots were smaller (0.07 deg), 

moved slower (28 deg/s), and motion coherence was lower (0-32%).   

 One human subject was atypical: despite apparent diligence and understanding 

of the task, their performance was at chance in their first test session. When re-tested 

on a separate day with a mid-range coherence distribution, performance was above 

chance and coherence-dependent, with substantial lapse. Upon retesting on a third day 

with a high-range coherence distribution the subject exhibited high quality psychometric 

data with<1% lapse, sensitivity 8.8, and threshold coherence 0.37.We have not 

investigated whether the subjects’ perceptual deficit was specific to motion, or explained 

by other primary visual deficits in acuity or contrast. This non-representative subject was 

analyzed separately or excluded in subsequent analyses. This subject’s successful 

performance was obtained using 100 dots at 100% contrast in a field subtending 43x25 

degrees of visual angle. Individual dots were 0.4 degrees on a side, coherent dots 

moved at 14 deg/s, with 30-100% coherence. We did not parametrically vary 

parameters other than coherence to determine which of these changes were necessary 

to rescue performance.  

 

Operant modality and reward 

Humans were motivated by monetary compensation, indicated trial requests and 

responses by pressing keys on a keyboard, and were rewarded for correct answers by 

either “points” (Phase 1) or cash (Phase 2). Rats were motivated by thirst, indicated 

responses by licking one of two water tubes, and were rewarded for correct answers 

instantly with water drops. Although humans received monetary rewards only at the end 

of the two hour session, they received instant auditory reward-predicting feedback at the 
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time of each correct response, and Phase 2 subjects knew that this signal predicted 

cash reward at the end of the session.  

 

Instruction or training 

The first few human subjects were required to infer the task rules by trial and 

error; some failed to acquire the task. After this, verbal instructions with demonstration 

were developed and remained constant from the 8th subject onward. Subjects were 

advised that they could take a break at any time. The task began with 50% coherence 

stimuli and automatically advanced to the testing condition after the subject responded 

correctly in ten trials in a row. Subjects were eligible to return for up to 5 2-hour testing 

sessions (in Phase 2 this was subject to minimum performance criteria), but few 

subjects completed all 5 sessions. Generally we tested two blocks with different 

coherence distributions in each 2-hour session.  

Rats learned the task by operant conditioning through a shaping sequence that 

lasted for weeks. Briefly, naïve water-restricted rats were initially rewarded for initiating 

trials at the trial-request port and again for licking the response port below a large 

salient target stimulus, using large rewards (~200ul), no time limit, and no error penalty. 

Reward size was gradually reduced (to ~40ul), rewards for trial initiation eliminated, and 

penalty time-out increased (to 1 s) and this training step continued until rats responded 

at the visually cued port >80% of trials. Most rats then proceeded directly to the 85% 

coherence random dot motion task for a learning period of days to weeks until achieving 

>80% correct performance. (A few rats learned other visual tasks such as image 

discrimination or orientation discrimination before proceeding to the motion task). Rats 

acquired proficiency in the motion task over days to weeks.  

For rats, during initial training or whenever a response bias developed, correction 

trials were implemented. After an error trial there was a fixed low probability (≤25%) of 

entering a “correction trial state”, in which the target response was deterministically the 

same as the previous trial until the next correct response occurred. The stimulus was 

still generated randomly each trial, including the selection of coherence and positions of 

dots.  On all other trials, the target side was randomly selected (L or R) with equal 

probability. Sessions with ≥10% correction trial probability were excluded from analysis.  

Correction trials were not used with human subjects. 

All humans and most rats and were tested in scheduled 2 hour sessions, 

separated by at least one day. Some rats were also tested in a live-in (24 hour/day 

access) condition.   Most humans acquired task proficiency within the first ~250 trials of 

their first session, and were tested in only one or two sessions (at most five); we did not 

study any highly expert psychophysics subjects such as many previous human studies 

have exclusively used. Rats were tested for dozens to hundreds of sessions. Thus 

compared to our human subjects, the rats were highly practiced subjects. It will be 

interesting to learn whether and how highly-practiced human subjects or monkeys differ 
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from our human cohort, but our main goal was to replicate a well-established result in 

the literature, which we achieved even with comparatively naïve human subjects. 

 

Data Selection and Analysis Methods 
Exclusion of learning phase and warm-up trials 

 Individual testing sessions were included in the analysis only if they contained 

<10% correction trials and >100 total trials.  For purposes of this analysis, the task 

acquisition criterion for rats was the first occurrence of >80% correct motion direction 

discrimination over 200 consecutive trials at high coherence; only subsequent training 

sessions were included in analysis. Subjects that failed to acquire the task to 80% 

criterion at high coherence were excluded from the study. Human subjects generally 

performed >80% on high coherence immediately, but the first 250 trials of their first 

session were excluded as a presumed learning and practice phase.    

 Both humans and rats tested in 2-hour sessions exhibited “warm-up” effects at 

the beginning of sessions.  Average accuracy improved in the beginning of each 

session, even in 2nd and 3rd sessions (humans) or after dozens or hundreds of sessions 

(rats), and even in the absence of any long term trend in accuracy or reaction time over 

sessions.  The average reaction time of rats increased over the beginning part of each 

session, while humans showed a decrease in reaction time. These trends were often 

hard to distinguish from chance fluctuations in individual sessions, but apparent after 

averaging over sessions, and consistent across subjects (not shown).     

 When rats were tested in 2-hour sessions they were water restricted for the 

preceding 22 hours. Therefore rushing due to extreme thirst may explain why rats’ 

reaction times were initially fast and less accurate. When rats were tested in a 24-hour 

live-in condition, trials were done in bouts which occurred at random times, with weak 

circadian modulation. The session-onset effect was weaker and perhaps attributable 

instead to arousal due to handling. This effect stabilized within 100 trials (not shown). 

We have not analyzed whether within-session bouts exhibited a warm-up effect. Rats 

typically preformed hundreds of sessions, and thus were highly practiced in the task. 

Humans, on the other hand, performed only one or a few sessions, so practice effects 

may explain why reaction time sped up and accuracy increased at the beginning of 

each session.  When the task was stopped and re-started within a 2-hour session, 

humans showed a weak warm-up effect in the first 10 trials after resuming with new 

stimulus parameters (not shown).   

 These warm-up effects were different between species, and are of particular 

concern because they are in a direction that could cause a spurious positive correlation 

between reaction time and accuracy for rats, and a negative correlation for humans, 

potentially explaining the species discrepancy. Therefore we excluded the warm-up 

trials of every session from our analysis: for rats we excluded the first 200 trials of 2-

hour sessions and the first 100 trials of live-in sessions; for humans we excluded the 
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first 250 trials of each session and first 10 trials after resuming after a break within a 

session. 

 

Exclusion of individual trials 

 Generally there is a clear absolute refractory period of ~500 ms between trial 

initiation and the earliest responses, which we interpret as reflecting the subject’s non-

decision time (visual latency and motor latency). Rarely, shorter reaction times can be 

caused by false triggering of a lick sensor (such as by a water drop or animal paw), or 

by a human accidentally hitting two keys at once. To be sure these events were 

excluded, we took the 1st percentile of each subject’s lifetime reaction times as a 

conservative estimate of the subject’s non-decision time, and excluded shorter reaction 

time trials from analysis. 

 We note that in our previous investigations of speed-accuracy trade-off in rats 

(27, 28) we excluded from analysis all trials that followed error trials. These trials are not 

typically excluded in the human and primate literature, and were not excluded from any 

analysis in the present study. 

 

Identification of candidate epochs 

 From each subject’s lifetime data, the trials prior to task acquisition, warm-up 

trials in each testing session, and trials with reaction times longer than 5 s or shorter 

than the subject’s lifetime 1st percentile reaction time were excluded from analysis. The 

subject’s remaining lifetime trials were visualized as concatenated time series. From 

each contiguous block of trials that had the same reward value, penalty time-out 

duration, and coherence distribution, we manually selected the trial range that appeared 

to have stable average accuracy, average reaction time, and qualitative reaction time 

distribution. In the case of rats, this often entailed combining data from many separate 

daily sessions. For humans it often entailed selecting a subset of trials from a single 

session. 

The accuracy and reaction times of these candidate epochs were then visualized 

as smoothed time series, with linear regressions and autocorrelations of both accuracy 

and reaction time vs. trial number. These plots were compared to shuffled controls in 

which the temporal order of the trials was randomized. Although fluctuations and trends 

were often present in the raw time series, these appeared subjectively comparable to 

the time-shuffled (and thus statistically stationary) controls. All auto-correlograms fell 

sharply to within shuffle-control levels within ±1 trial and out to ±32 trials (not shown). 

This screening procedure yielded 144 candidate epochs from 19 unique rats, and 107 

candidate epochs from 62 unique human subjects. 

We were unable to identify suitable lags for either the Augmented Dickey-Fuller 

(ADF) test or the Kwiatkowski, Phillips, Schmidt and Shin (KPSS) test for stationarity on 

the basis of assessing temporally-shuffled controls. This is presumably because neither 
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accuracy nor reaction time were normally distributed variables. Therefore these tests 

were not used. Instead we used least squares linear regression to estimate the change 

in the mean of accuracy or reaction time from the beginning to end of the epoch, and a 

nonparametric correlation (Spearman) to measure the significance of such trends. We 

considered an epoch to be “trending” if it the correlation between trial number and 

reaction time involved >50 ms change from beginning to end of the epoch with P<0.01; 

or >100 ms change, regardless of P value; or if the correlation between trial number and 

accuracy involved >5% change in accuracy with P<0.01; or >10% change in accuracy 

regardless of P value. All remaining epochs were designated as “non-trending”. By this 

criterion there were 120 non-trending epochs from 19 rats, and 87 non-trending epochs 

from 57 human subjects in our data set. 

 

Analysis details for Figure 1 

This analysis included any non-trending epoch which included at least 5 

coherence values the highest of which was ≥0.8 (for rats or one visually impaired 

human subject) or ≥0.25 (for humans). A total of N=46 epochs from 11 rats and N=79 

epochs from 52 humans qualified for inclusion. The correct (rewarded) response side 

was assigned randomly each trial; this assignment determined whether or not the 

response is rewarded or scored as correct, even in a 0% coherence trial. Therefore we 

expect accuracy to be 50%, and the reaction time distributions of errors and correct 

trials to be identical, in 0% coherence trials. Psychometric fits were computed using the 

Palamedes Toolbox (50), using the jAPLE and PAL_Logistic options. We constrained 

the guess rate to 0.5, as this was a 2-alternative forced choice task, and fit the 

remaining three parameters: lapse, threshold and sensitivity. We defined “high lapse” 

epochs as those with a lapse of ≥10%, and “low lapse” as all other psychometric 

epochs.  In fixed coherence epochs lapse is not defined. Response bias was evaluated 

from the number of responses on a side, compared to the number of trials in which that 

side was the target (correct response). The tendency to respond on side 𝑖 was defined 

as:  𝑇𝑖 =
𝑅𝑒𝑠𝑝𝑜𝑛𝑠𝑒𝑠𝑖

𝑇𝑎𝑟𝑔𝑒𝑡𝑠𝑖
− 1, which is 0 if there is no bias, negative if the subject is biased 

against that side, and positive if biased towards it. Since there were only two response 

choices, 𝑇𝐿 =  −𝑇𝑅. We defined “biased” epochs as those with |𝑇𝐿| >=0.1, and other 

epochs “unbiased”.  

 

Analysis details for Figure 2 

  This analysis included all non-trending, unbiased fixed-coherence epochs, 

and all non-trending, unbiased, psychometric epochs with ≤10% lapse, excluding 

the visually impaired human subject. Reaction times longer than 3s were excluded 

in all panels. A total of 76 epochs from 14 rats and 80 epochs from 55 human 

subjects qualified for inclusion. For inclusion of a data point in the scatter plots, we 

further required at least 150 trials of the same coherence occurred within the epoch. 
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Within that set of trials, we determined the average reaction time of the correct vs. 

error responses, and the accuracy among the fast (bottom quartile of reaction time) 

vs. slow (top quartile) responses. There were 180 qualifying points for rats and 178 

qualifying points for humans.   

 

Analysis details for Figure 3 

We estimated the slope of the trend of accuracy vs. reaction time for every 

candidate epoch in the data set that had at least 500 trials. For each epoch, we selected 

trials with reaction times between the subject’s non-decision time and 3 seconds. If the 

epoch contained a single coherence, we used all the trials for analysis; if multiple 

coherences were interleaved, we selected the trials with coherences that had accuracy 

between 0.7-0.9 based on psychometric fits (c.f. Fig. 1), requiring at least 120 qualifying 

trials to proceed. We then chose reaction time bin boundaries by quantiles in order to 

obtain 6 reaction time bins containing equal numbers of trials (≥20 trials/bin). We 

computed the mean accuracy and mean reaction time in each reaction time bin. We fit a 

line to reaction time vs. accuracy for all bins that had a mean reaction time <=1.5 

seconds, requiring that at least 3 such bins were found (e.g. lines in Fig 3A,D). The 

slope of this line is the measure reported. Slopes could be estimated in this way for 

N=111 rat epochs and N=102 human epochs. 

For the histograms shown and associated numerical results in text, we included 

all epochs that were non-trending, unbiased, and had <10% lapse (if psychometric); 

among these, epochs with <1% lapse, 1-2% lapse, and 2-10% lapse, fixed-coherence 

epochs, and one visually impaired human subject are distinguished by color in the 

histograms and broken out in Table 1. We also checked if the results held true in other 

subsets of the data (Table 1). The predominance of increasing accuracy with reaction 

time (positive slope) in rats was found regardless of the subset considered: in the data 

set as a whole (no excluded epochs); in both non-trending than trending epochs; in 

epochs with either high or low trial numbers; in both psychometric and fixed-coherence 

experiments; in both biased and unbiased epochs; and in both water-restricted 2-hour 

sessions and live-in 24-hour sessions.  

The predominance of decreasing accuracy with reaction time (negative slope) in 

humans was found in most subsets, with some exceptions. Negative slopes 

predominated in the data set as a whole (no exclusions); in both trending and non-

trending epochs; both biased and unbiased epochs (though less consistently in the 

biased subset); and in both Phase 1 and Phase 2 cohorts (though more consistently in 

Phase 2). One exception was the visually impaired subject, who showed an increase in 

accuracy with reaction time comparable to rats. This was based on only one non-

trending epoch, which was free of lapse or bias.  A negative slope was not seen in the 

subset of human epochs with high lapse rates. This was attributable to positive slopes 

in two non-trending epochs from the same Phase 2 subject, who also had high bias in 
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both epochs. Slope was negative in human unbiased psychometric epochs of any lapse 

rate, but near zero on average in the small number of fixed-coherence experiments. 

The subset analysis was done to address specific caveats of the analysis, which 

apply differently to different conditions as mentioned in Discussion. Due to the post-hoc 

exploratory nature of these regroupings, it is not appropriate to report statistical 

significance of any of these distinctions. Importantly, however, Table 1 includes every 

alternative grouping or inclusion criterion that we tested, regardless of the result 

obtained.  

 

Analysis details for Figure 4 

The local reaction-time difference between correct and error trials was computed 

by comparing every error trial to the closest preceding correct trial of the same 

coherence, enforcing a minimum interval of 3 trials to avoid influence of sequential 

effects.. These local reaction time differences were then averaged to produce a scalar 

estimate for any coherence for which at least 50 qualifying pairs of trials were found.  

We expect this measure to be 0 on average in 0% coherence trials, as correct and error 

trials are identical from the viewpoint of the subject until after their decision is made. 

In Figure 4A, the average local reaction time difference is shown as a function of 

coherence for a single representative rat epoch. For Figure 4B, local reaction time 

difference was computed within epoch for N=31 low-lapse psychometric epochs from 7 

rats, and then averaged across psychometric epochs; and for N=23 fixed coherence 

epochs from 9 rats, then averaged over fixed-coherence epochs. For Figure 4C, the 

local time difference was computed within coherence and then averaged within epoch 

across all estimated coherences ≥0.40. In the 30 rat psychometric epochs that 

contained time difference estimates for at least one coherence ≥0.40, the median 

distance between the compared trials was 34 trials. In the 12 fixed-coherence epochs 

the median distance was 3 trials.      

In Figure 4D, local reaction time difference was computed separately for each 

coherence based on all the motion coherence task trials performed in one example rat 

subject’s lifetime with no exclusions. For Figure 4E a lifetime analysis was done 

separately for N=19 eligible unique rat subjects, and then averaged over subjects. For 

the histogram in Figure 4F, all 19 subjects had reaction time difference estimates for 

coherences ≥0.40; the median distance between compared trials was 27 trials.   

  Analysis of a single human epoch is shown in Figure 4G. For Figure 4H, results 

from N=66 low-lapse psychometric epochs from 47 subjects were averaged. Results 

from N=4 fixed coherence epochs from 3 subjects were averaged separately. The 

histogram in Figure 4I includes the 70 human psychometric epochs for which local 

reaction time difference estimates were obtained for at least one coherence ≥0.04; the 

median interval between compared trials in psychometric experiments was 29 trials. All 
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4 human fixed-coherence epochs used coherence ≥0.04 and are included; among these 

data the median distance between compared trials was 3 trials.  

 A single human subject’s lifetime analysis is shown in Figure 4J. Figure 4K is the 

average of the lifetime analysis from N=69 eligible unique human subjects including one 

visually impaired human. The histogram in Figure 4L includes all 60 human subjects for 

which an estimate was obtained for at least one coherence ≥0.04; among these data 

the median distance between compared trials was 24 trials. 

  Qualitatively similar results were obtained if instead we compared each error trial 

to the closest correct trial of the same coherence ≥3 trials later (rather than before). 

 

Statistics  

We advisedly refrain from assertions of statistical significance in this manuscript 

(51). Recruitment of both rat and human subjects was protracted and open-ended, with 

no predetermined sample size; data accrual was terminated for reasons of personnel 

departure and funding exhaustion. The analysis was ongoing during data collection and 

afterwards, and analysis methods were highly exploratory and iteratively refined. In 

particular, we tried many different ways of detecting and excluding nonstationary data; 

many different criteria for including or excluding subjects, sessions or trials; and 

numerous ways of analyzing for the relationship between reaction time and accuracy. 

Project progress reports included interim statistical analysis. Because it would be 

impossible to enumerate the number of implicit tests performed, multiple comparison 

correction is not feasible, and therefore P values are generally not stated. With the 

exception of the preliminary results from Phase I human subjects (discussed above), 

however, we note that we obtained the same qualitative results at every phase of 

interim analysis and with every alternative analysis method we tried. Accrual of 

additional subjects and refinement of analysis methods were aimed at increasing 

stringency to determine if the positive result already obtained could be falsified. After 

procedures for selecting candidate epochs and excluding trials were finalized as 

described above, every alternative subset analysis (regrouping) that we tested is 

reported regardless of outcome (Table 1). 

After completing all other analysis in this manuscript, we computed P values for 

the main claim of the paper, once only, as follows. We reasoned that the most valid data 

to use were the non-trending, unbiased, low-lapse (<10% lapse) epochs. We included 

only the human subjects recruited in Phase 2, for which inclusion criteria had been 

established prior to recruitment (but among which none were excluded by those 

criteria). The visually impaired subject was not in this group. To ensure independence of 

statistics in separate reports, only the rat subjects that were not already reported in (27) 

were included here. We used the measure of slope of accuracy vs. reaction time (c.f. 

Fig. 3 C,F) as the measure of the effect. Within each subject, if a slope had been 

determined for more than one epoch, we used the average of the slopes, such that 
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samples were independent (only one value per subject). We then performed the 

nonparametric Wilcoxon Sign Rank test against the null hypothesis that the median of 

the population is >0 or <0 respectively. From this analysis we obtained: Human 

population slope -0.18±0.18 mean±SD, N=43 subjects, P(>0)=1.00, P(<0)=1.58e-07. 

Rat population slope 0.18±0.09, N=9 subjects, P(>0)=1.95e-03, P(<0)=1.00. 

 
 
 
 
 
 
 
 
 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

(see facing page) 

 

Table 1. Analysis of slopes of accuracy vs. reaction time in different subsets of epochs. Indented 

pairs of lines indicate two mutually exclusive and exhaustive subsets of the parent category. All groupings 

that were analyzed are shown. Shaded cells indicate exceptions to the main reported effect. The number 

of epochs and the number of unique individuals included in the subset is indicated by “N eps” and “N 

subj” respectively. “Trials per epoch” indicates the average number of trials contained in the selected 

reaction time bins for the regression of binned accuracy vs. binned reaction time. The absolute number of 

epochs with a negative slope (out of N eps) is given in “# eps slope <0”. The mean and standard 

deviation of slopes within the subset are shown in “Slope (mean±SD)” The subsets in the bottom 6 rows 

(*) correspond to the histograms in Figure 3.  

certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprint (which was notthis version posted October 18, 2019. ; https://doi.org/10.1101/726703doi: bioRxiv preprint 

https://doi.org/10.1101/726703


25 
 

Table 1 

 

  Rats Humans 

Subset 

N 

eps 

N 

subj 

 

Trials 

per 

epoch 

# eps 

slope 

<0 

Slope 

(mean±S

D) 

N 

eps 

N 

subj 

 

Trials 

per 

epoch 

# eps 

slope 

<0 

Slope 

(mean±S

D) 

All candidate epochs 111 18 2411  14 0.20±0.17 102 62 1457  81 -0.15±0.20 

All Non-trending epochs 87 17 2261   9  0.20±0.17 81 56 1525  66 -0.15±0.18 

All Trending epochs 24 13 2953   5  0.16±0.17 21 19 1193  15 -0.15±0.24 

                      

Among Non-trending                     

Psychometric 43 11 2257   1  0.23±0.14 74 52 1552  61 -0.15±0.19 

Fixed Coherence 44 13 2265   8 0.18±0.19 7 6 1240  5 -0.08±0.13 

  

 

                  

Epochs with >=1K trials 66 15 2742   8  0.20±0.17 57 44 1845  50 -0.15±0.17 

Epochs with <1K trials 21 11 749   1  0.22±0.18 24 22 767  16 -0.13±0.21 

                      

Psycho >10% lapse 11 4 2596   0  0.360.16 3 2 651  1 0.00±0.34 

Psycho ≤10% lapse 32 7 2141   1  0.19±0.11 71 51 1590  60 -0.16±0.18 

                      

Humans Phase 1           11 7 1461  8 -0.06±0.14 

Humans Phase 2           70 49 1535  58 -0.16±0.19 

                      

Rats 2hr sessions  50 16 1729  7 0.21±0.19           

Rats 24hr sessions 37 9 2981  2 0.20±0.15           

                      

Biased  26 13 2973  3 0.25±0.20 14 12 1040  11 -0.10±0.18 

Unbiased  61 14 1958  6 0.19±0.16 67 49 1627  55 -0.16±0.18 

           *psycho  <10% lapse,                  

                      visually impaired           
1 1 1353  0 0.24±0.00 

psycho <10% lapse  30 7 2170  1 0.19±0.12 61 45 1660  52 -0.18±0.18 

*  0-1% Lapse 12 7 1762  0 0.18±0.14 46 36 1867  40 -0.19±0.19 

*  1-2% Lapse  8 4 2737  1 0.17±0.10 7 7 1188  5 -0.15±0.19 

*  2-10% Lapse  10 4 2207  0 0.22±0.09 8 7 878  7 -0.14±0.15 

*fixed coherence 23 9 1552  5 0.12±0.16 5 4 1280  3 -0.020.08 
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