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ABSTRACT (<100 words) 
 
Chronic Obstructive Pulmonary Disease (COPD) and Idiopathic Pulmonary Fibrosis         
(IPF) have contrasting clinical and pathological characteristics, and interesting         
whole-genome transcriptomic profiles. However, data from public repositories are         
difficult to reprocess and reanalyze. Here we present PulmonDB, a web-based           
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database ( http://pulmondb.liigh.unam.mx/) and R library that facilitates exploration of         
gene expression profiles for these diseases by integrating transcriptomic data and           
curated annotation from different sources. We demonstrated the value of this           
resource by presenting the expression of already well-known genes of COPD and            
IPF across multiple experiments and the results of two differential expression           
analyses in which we successfully identified differences and similarities. With this           
first version of PulmonDB, we create a new hypothesis and compare the two             
diseases from a transcriptomics perspective. 
 
 
Background 
  
A common way to study diseases is by using transcriptomic analysis, which can             
reveal components of the genome that are active and help us understand which             
biological processes are affected [1]. Over the years, transcriptomic profiles have          
been compiled and published in public repositories such as Gene Expression           
Omnibus (GEO)[2,3] and ArrayExpress [4]. Having a way to compare transcriptomic          
data from Chronic Obstructive Pulmonary Disease (COPD) and Idiopathic         
Pulmonary Fibrosis (IPF) will help identify common and distinct molecular          
mechanisms for these two diseases. However, an overwhelming task is to integrate            
high-throughput data from public repositories, because of platform differences         
(resulting in batch effects), heterogeneous experimental conditions and the lack of           
uniformity on experimental annotations. Wang et al. reviewed different approaches in           
which they discussed tools such as GEO2R[5], ScanGEO[6], ImaGEO[7],         
BioJupies [8]. These tools reuse public data, reanalyze it consistently, and integrate           
additional data. Even with these available tools, performing meta-analyses is still           
challenging [9]. In particular, for COPD and IPF, because information from only a few             
experiments is available in these resources, such an analysis requires manual           
annotation by the user or inclusion of only curated GEO Datasets (also referred as              
GDS), and none of them integrates microarray and RNA-Seq data, to our            
knowledge. 
  
Therefore, we created a curated gene expression lung disease database,          
PulmonDB, to organize the currently large amount of expression data for both COPD             
and IPF. To accomplish this task, we used COMMAND>_, a web application            
previously used to create two successful transcriptomic compendia: one for bacterial           
genomes, COLOMBOS[10,11] , and the second for grapevine VESPUCCI [12]. While         
there are other chronic respiratory diseases, such as asthma, cystic fibrosis, and            
pulmonary hypertension association, among others, given the biological similarities         
between COPD and IPF we decided to focus the first version of PulmonDB on these               
two diseases. We integrated transcriptomic experiments from different sources and          
their curated annotations, created an online web resource to facilitate the exploration            
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of gene expression profiles for COPD and IPF creating a new hypotheses, and to              
allow for the identification of co-expression patterns in further analyses. 
 
Construction and content 
Data sources 
In GEO, we searched for gene expression data sets related to COPD and IPF, we               
used raw data and metadata available. In specific cases, the platform information            
(.cdf file) was obtained from the Affymetrix website. Additional information, ( e.g.,           
clinical data, source of the biological sample), was obtained either from metadata or             
manually curated from the original papers. We only considered microarray          
experiments with available raw data and platform information and we only kept a             
single copy of each sample.For RNA-seq data we searched in Recount2 [13] to             
obtain raw counts per gene. 
 
 
PulmonDB is a relational database, implemented in MySQL with lung disease           
transcriptome measurements, re-annotated platform probes, and manually curated        
data with a controlled vocabulary designed for lung diseases. Tables were created to             
describe each feature and to connect the information across experiments, samples,           
measurements, platforms, genes, and annotated information. Raw and normalized         
data, microarray probes and mapped regions can be accessed using MySQL queries            
and an R package ( https://github.com/AnaBVA/pulmondb) that allows users to         
access and download the data in an R environment. The full database scheme is              
provided in Supplementary Figure 1.  
 
Compendium creation  
The compendium creation process was done as previously described in          
COLOMBOS and VESPUCCI [10,12] . In brief, after we filtered the public experiments           
from GEO that were related to COPD or IPF, we selected their GSE (the experiment               
ID from GEO), and used COMMAND>_ [14]. This web application provides a           
framework to perform the following steps: 1) download data from selected           
experiments, 2) parse files and store data in database form, 3) probe-to-gene            
(re)mapping process, 4) sample curation and annotation, 5) selection of references           
and sample experiments to determine contrasts, 6) homogenization (and         
normalization) of data, and 7) perform data quality control (Figure 1). 
  
In more detail, each experiment with a GSE ID, also referred to as a data set, was                 
normalized independently without performing background correction, as explained in         
[11]. We defined a contrast for each sample with a GSM ID (sample ID from GEO) by                 
using a unique control reference sample per data set. The sample contrast per gene              
was defined as the log ratio between the expression value in the test condition ( i.e.,               
IPF, COPD) and the expression value in the reference condition ( i.e., healthy,            
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untreated, smokers without COPD) (Figure 1, step 5). This gives every comparison            
an interpretable biological meaning when combined with extensive manual curated          
annotation. The condition properties describing the contrasts were then structured in           
a condition-controlled vocabulary tree. Finally, all contrasts were homogenized,         
resulting in direct comparable log ratios across all experiments; this information then            
became part of the final compendium of expression data (Supplementary Figure 2). 
  
PulmonDB uses a controlled vocabulary to describe sample metadata 
  
A controlled vocabulary is required to create databases with homogeneous and           
standard information. For PulmonDB, we created a controlled vocabulary organized          
in a hierarchical structure that contains terms to annotate transcriptome experiments           
in lung diseases. We defined classes describing the main categories and terms that             
can be found in experiments, with some of them as mandatory features ( e.i. sample              
type, sample status, and platform). Some non-IPF or non-COPD diseases were           
included in the controlled vocabulary because the original experiments used them. 
  
Once the controlled vocabulary was established, each article related to the           
experiment was manually curated, and whenever it was necessary, new terms were            
added, making the vocabulary flexible and allowing for the inclusion of other            
diseases to our database in the future. Complete definitions of the terms are             
provided in Supplementary Table 1. 
  
Experiment annotation 
  
Each sample was manually annotated using the controlled vocabulary; when          
necessary the vocabulary was updated to include new features. The information was            
curated by experts who reviewed the associated articles and protocols to retrieve            
data such as age, sex, ancestry, stage of disease or treatment, DLCO (the diffusing              
capacity of the lung for carbon monoxide, a common functional test), etc., from either              
GEO or the associated paper. 
  
  
Homogenization and quality control 
  
As described before, data homogenization was done with COMMAND>_ [11,12] . This          
step was performed on raw data without background correction, as it has been             
shown to retrieve more errors [15]. A nonlinear model was applied to homogenize            
raw data. We used RMA Quantile for Affymetrix samples, and loess fit for the other               
platforms. The next step was to summarize probes per transcript using RMA median             
polish summary from Affymetrix or with data averaged across replicates for the other             
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platforms. After performing the homogenization step, low-quality microarrays were         
identified using MA plots and histograms of raw and homogenized data. 
  
Website implementation 
  
PulmonDB has a web interface that uses Clustergrammer        
( https://clustergrammer.readthedocs.io/index.html ) [16] to visualize gene expression     
contrasts. Clustergrammer has a frontend in javascript and a backend in python            
supporting an interactive web application for gene expression exploration. The          
PulmonDB web interface requires one or several GSE identifiers and more than two             
gene names to generate interactive heatmaps. 
  
In addition, Clustergrammer is connected with EnrichR       
( http://amp.pharm.mssm.edu/Enrichr/ ) [17], an integrative web application tool for       
enrichment analysis that helps the user explore not only potentially differentiated           
genes but also enriched pathways, facilitating the discovery of transcriptomic          
signature patterns in lung diseases or related phenotypes.  
  
COPD and IPF comparative analysis 
  
We used limma 3.40.0 in an Rstudio environment 3.6.0 for our comparative            
analyses, and the GSE ID was included in the linear model. Then, two contrasts              
were created: 1) “COPD – IPF”, for obtaining differentially expressed genes between            
COPD and IPF, and 2) “(COPD + IPF)/2 – CONTROL”, for genes similarly expressed              
between COPD/IPF and CONTROL. Differential gene expression analyses were         
adjusted for multiple testing using false discovery rate (FDR) method, also referred            
to Benjamini & Hochberg adjustment. We applied a cutoff of adjusted p-value of <              
0.05, and after sorting based on the log fold change, the top 20 genes were               
obtained.  
 
 
Utility and discussion 
 
PulmonDB a curated gene expression lung disease database 
  
Our database has a total of 75 GSEs, corresponding to 4931 unique preprocessed             
GSMs that used 27 different platforms or GPLs (platform ID from GEO) (Figure 2C).              
PulmonDB contains different sample types, because we searched for human gene           
expression experiments related to COPD and IPF without any restriction. Lung           
biopsies account for 25.3% of samples and 43.7% are blood samples. However,            
different cell types can be found in PulmonDB: some of them are primary cells ( e.i.               
alveolar macrophages, fibroblasts, alveolar epithelial cells, etc.) and others are cell           
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lines ( e.i. A549) (Figure 2A). Of the samples, 42.3% correspond to COPD, 33.4% to              
healthy/control, 13.6% to IPF, 6.2% to match tissue/control, and 4.4% to other            
diseases (Figure 2B and Supplementary Table 2). PulmonDB is a curated gene            
expression database of human lung diseases, with RNA-seq and microarray data           
from different platforms that have been uniformly preprocessed and manually          
curated to add sample and experiment information. In addition, we developed a            
website to access and visualize homogenized data ( http://pulmondb.liigh.unam.mx/),        
and we also developed an R package ( https://github.com/AnaBVA/pulmondb to         
download curated annotation and preprocessed data that can be used for further            
analysis in the R environment. 
  
Although, there are other resources that reuse, and reanalyze GEO data using web             
interfaces [9], those tools are not specialized for lung diseases. Their limitations           
include the need for previous manual curation in each analysis, and they only             
consider a small number of COPD and IPF experiments due to the fact that only               
curated GEO data are used. We designed a web interface that enables data             
exploration and visualization to facilitate lung disease analysis. This interface uses           
Clustergrammer [16] to visualize gene expression values and the creation of          
interactive heatmaps that allow data exploration. In addition, Clustergrammer is          
connected to EnrichR[17], which allows pathway enrichment analysis. All these          
features together should help to generate new hypotheses about the pathologies of            
lung diseases to perform exploratory analyses, to visualize specific gene expression           
across public experiments for comparing results, and to generate new insights based            
on different data sets. 
  
PulmonDB can recapitulate gene expression patterns expected in COPD and          
IPF  
  
To show that PulmonDB can be used to recapitulate previously reported knowledge            
regarding COPD and IPF biology, we performed a literature search and manually            
selected relevant genes for each disease. We selected 19 genes related to IPF (not              
necessarily associated with gene expression in lung tissues) to visualize their gene            
expression: CCL18[18], CXCL12 [19], CXCL13 [20], collagens (COL1A1, COL1A2,       
COL3A1, COL5A2, COL14A1)[21], DSP [22], FAS[23], IL-8 [24], MMP1 [25],       
MMP2 [26], MMP7 [25], MUC5B [22], SPP1 [27], PTGS2[28], TGFB1[29] and       
THY1 [30]. Then, we selected eight IPF experiments performed with lung tissue           
biopsy samples (GSE32537, GSE21369, GSE24206, GSE94060, GSE72073,       
GSE35145, GSE31934), and using the PulmonDB website, we created a heatmap           
with the gene expression patterns and observed that the hierarchical clustering of            
these data separates IPF and control data sets (Figure 3A, green and grey clusters              
at the bottom). For COPD, we curated 16 genes from the literature that were              
deemed relevant to this disease: HHIP [31,32] , CFTR [33,34] , PPARG[35],        
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SERPINA1 [36,37] , JUN [38], FAM13A [39], MYH10 [38], CHRNA5[40], JUND [38],      
JUNB [38], TNF[37], MMP9 [37], MMP12 [37], CHRNA3 [40], TGFBR3[35], and       
GATA2[35]. We selected five experiments (GSE27597, GSE37768, GSE57148,        
GSE8581, GSE1122) performed on lung tissue biopsy samples from COPD patients           
and controls. Our hierarchical clustering analysis of the expression profiles using the            
PulmonDB interface allowed us to cluster patients and controls into two different            
groups (Figure 3B), similar to the case of IPF. In conclusion, PulmonDB not only              
helps to recapitulate previously published work (Supplementary Figure 3) but also           
helps to verify their expression stability across experiments. This may help to            
analyze concordance in different experiments, contrast study results, show         
implications of using different control groups, etc. We believe this resource can be             
used to drive, make decisions and support new hypotheses in experimental           
laboratories for studying molecular or cellular disease mechanisms. 
  
  
Differences and similarities in COPD and IPF 
  
PulmonDB can be used not only to replicate previous knowledge but also to provide              
a framework to test new hypotheses. In this context, we set out to investigate the               
differences and similarities between COPD and IPF in lung tissue when compared to             
samples from healthy individuals (Figure 4A). Using PulmonDB in the R           
environment, we selected contrasts where the sample was annotated as lung biopsy            
and the reference status as HEALTHY/CONTROLs (GSE52463, GSE63073,        
GSE1122, GSE72073, GSE24206, GSE27597, GSE29133, GSE31934, GSE37768)       
(Figure 4B), and then using limma [41] we assessed differential gene expression           
between COPD and IPF, we identified 1781 differentially expressed genes          
(Supplementary Figure 4). To have a visual representation of the differences           
between COPD and IPF, we selected the top 20 differentially expressed genes and             
visualized their expression using the PulmonDB website tool (Figure 4C). We           
observed that data sets tend to cluster by test status; Figure 4C shows IPF contrasts               
on the left (turquoise), control contrasts in the middle (blue), and COPD contrasts on              
the right (red). Genes are clustered in two groups (left panel, y-axis); the first gene               
group (I) is overexpressed in IPF while it is barely expressed or underexpressed in              
COPD contrasts. By comparison, the second gene cluster (group II) is           
overexpressed in COPD contrasts and underexpressed in IPF. To correlate          
similarities among samples, the 20 top differentially expressed genes were used           
(Figure 4C, right panel); samples from the same disease group showed higher            
correlations, and tended to have a null or negative correlation with the            
HEALTHY/CONTROL and the opposite disease (Figure 4C). For example, FOSB          
and CXCL2 have opposite behaviors, as both genes are overexpressed in COPD            
and underexpressed in IPF. FOSB is part of the family of Fos genes that can               
dimerize with JUN family proteins to form the transcription factor complex AP-1,            
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which is related to COPD [42]. CXCL2 is a chemokine secreted in inflammation that             
induces chemotaxis in neutrophils[43,44] ; these cells are predominant in COPD and           
they are key mediators in tissue damage[45]. While neutrophils are also important in             
IPF, we observed their underexpression in this disease.  
  
We also asked the opposite question, i.e., whether we could identify which genes             
that are shared between these two diseases. We assigned weight to COPD and IPF              
expression to perform limma contrasts (Figure 4D), which enabled us to identify            
when a differential expression profile was driven by both diseases. We selected the             
20 top differentially expressed genes and visualized their expression patterns using           
PulmonDB website tool, and we could see that a set of genes was consistently              
overexpressed or underexpressed in both COPD and IPF. In particular, VCAM1 and            
FCN3 are differentially expressed in COPD and IPF, with a similar trend in both              
diseases when compared with HEALTHY/CONTROLs. VCAM1 is the vascular cell          
adhesion molecule 1 and it is important in the immune response for mediating             
cellular adhesion in leukocytes[46]; it is overexpressed in these two diseases,           
suggesting infiltration of immune cells in both pathologies[47,48] . In contrast, FCN3           
(or ficolin 3) is underexpressed in both diseases: this gene is a collagen-like protein              
associated with the innate immune defense, as it activates the lectin complement            
pathway [49], which has been shown to be important in pulmonary pathologies           
[50,51] . 
 
As a result, PulmonDB assisted our analysis of COPD and IPF analogous and             
antagonist genes and can thus be used to dissect common molecular mechanisms,            
because both lung diseases are present under heterogeneous conditions with          
progressive and irreversible phenotypes mainly caused by smoking and by aging,           
plus both diseases entail cellular matrix remodeling. Furthermore, the differential          
gene signatures between COPD and IPF might explain the particularities of each            
disease. 
  
Conclusions 
  
PulmonDB can help the scientific community to study which genes have a distinct             
expression profile in COPD and IPF, explore experiments across technologies and           
platforms, identify interesting expression patterns across different diseases, generate         
new hypotheses, and find relationships among clinical or experimental variables.          
This database also enables comparisons of an updated collection of expression           
profiles already homogenized for their analyses of specific diseases. Additionally,          
having different lung diseases (COPD and IPF) in the same database creates the             
opportunity to observe their similarities and differences. In the future, we aim for             
PulmonDB to grow and include more diseases. To our knowledge, there is no other              
resource for transcriptomic analysis focused on the same lung diseases; for this            

.CC-BY-NC 4.0 International licenseavailable under a
not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (which wasthis version posted August 7, 2019. ; https://doi.org/10.1101/726745doi: bioRxiv preprint 

https://paperpile.com/c/5H9CO3/v7QC
https://paperpile.com/c/5H9CO3/k6t0+swvI
https://paperpile.com/c/5H9CO3/zxCt
https://paperpile.com/c/5H9CO3/RBNm
https://paperpile.com/c/5H9CO3/hDXs+I02I
https://paperpile.com/c/5H9CO3/09F3
https://paperpile.com/c/5H9CO3/17NF+NhTZ
https://doi.org/10.1101/726745
http://creativecommons.org/licenses/by-nc/4.0/


reason, we believe researchers of different backgrounds can use and benefit from            
the information contained in PulmonDB, its web interface and its package. 
  
We believe that an integrated comparable collection of homogenized values with           
controlled vocabulary describing biological and technical characteristics will facilitate         
further comparative analyses, such as the study of profiles in COPD and IPF,             
exploration of experiments across technologies and platforms, identification of         
interesting coexpression patterns across different diseases, the generation of new          
hypotheses, and determination of relationships among clinical or experimental         
variables. 
  
  
PERSPECTIVES 
  
This project sets the foundation to integrate transcriptomics data of other respiratory            
diseases or related phenotypes and thus facilitates the identification of common and            
divergent pathways that lead to a pathological state. The PulmonDB platform will be             
expanded to include other lung diseases. 
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FIGURES 
 

 
 
Figure 1 . Flow chart of PulmonDB. PulmonDB was created using COMMAND by            
downloading, parsing and storing COPD and IPF public transcriptomic data into a            
MySQL database. Then, we remapped microarray probes to establish a uniform           
gene annotation, and we also created a controlled vocabulary for clinical and            
biological annotations for each sample. We created contrasts based on the original            
hypothesis, selecting a sample as the reference. Finally, the data were homogenized            
and subjected to a quality check. 
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Figure 2 . Summary of PulmonDB. A) Number of contrast samples in PulmonDB per             
biological sample type. B) Proportions of sample states found in PulmonDB. The            
color key below the pie chart shows the sectors for COPD patients, healthy/controls,             
IPF patients, match_tissue_controls (nontumor cancer patients), and other diseases         
(such as asthma). C) Number of contrast samples measured using each platform            
(clustered by using Affymetrix, Agilent, Illumina and other platforms with fewer           
samples).  
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Figure 3 . IPF and COPD well-known disease-associated genes. In both heatmaps,           
rows are genes and columns are sample contrasts. Both were hierarchically           
clustered. The first annotation row represents their GSE IDs. The second annotation            
row is the sample type, LUNG_BIOPSY samples, in light brown. The third and the              
fourth annotation rows are sample states, the third annotation row represents the            
test state and the fourth annotation row is the reference state. A) IPF genes reported               
being relevant in the literature (CCL18[18], CXCL12 [19], CXCL13 [20], COL1A1,         
COL1A2, COL3A1, COL5A2, COL14A1[21], DSP [22], FAS[23], IL-8 [24], MMP1 [25],        
MMP2 [26], MMP7 [25], MUC5B [22], SPP1 [27], PTGS2[28], TGFB1[29] and       
THY1 [30]). The IPF experiments selected were GSE32537 (pink), GSE21369         
(purple), GSE24206 (blue), GSE94060 (grass-green), GSE72073 (lemon yellow),        
GSE35145 (green), and GSE31934 (yellow). The third and the fourth annotation           
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rows are sample states: light blue, MATCH_TISSUE_CONTROL; dark blue,         
HEALTHY/CONTROL; turquoise, IPF samples; and grey, NON_IPF_ILD. B) COPD         
genes reported being relevant in the literature (HHIP [31,32] , CFTR [33,34] ,         
PPARG[35], SERPINA1 [36,37] , JUN [38], FAM13A [39], MYH10 [38], CHRNA5[40],      
JUND[38], JUNB [38], TNF[37], MMP9 [37], MMP12 [37], CHRNA3 [40], TGFBR3[35],       
and GATA2[35]). The COPD experiments selected were GSE27597, GSE37768,         
GSE57148, GSE8581, and GSE1122. The third and the fourth annotation rows are            
sample states: light blue, MATCH_TISSUE_CONTROL; dark blue,       
HEALTHY/CONTROL; red, COPD samples. 
 
 

 
Figure 4. IPF and COPD differentially expressed and similarly expressed genes. A)            
Flow chart of steps used for COPD and IPF differential expression analysis to             
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evaluate transcriptomic differences and similarities. B) Experiments selected for the          
analysis, following the criteria of being lung biopsy samples and contrasted with            
HEALTHY/CONTROL references. The colors represent the sample state: COPD,         
red; HEALTH/CONTROL, blue; IPF, turquoise. At the top, the bar graph is the total              
sum of contrasts, rows are the GSE experiments, and each dot is the number of               
contrasts per experiment from COPD, HEALTHY/CONTROL, or IPF subjects. On the           
right side, we can see the distributions in volcano plots for all sample contrasts per               
experiment. C) Differentially expressed genes between COPD and IPF. D) Similar           
genes between COPD and IPF. In both C) and D), columns are sample contrasts,              
rows are genes, the first covariate is colored by each corresponding experiment, the             
second covariate is the sample type (in this case, lung tissue is shown in light               
brown), the third row is the test status and the fourth is the reference status.               
Columns are ordered by test status and genes by hierarchical clusterization. The            
right heatmap is the correlation among sample contrasts, and the covariates are the             
same.  
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