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1 

ABSTRACT 47 

 The fossil record provides direct empirical data for understanding macroevolutionary patterns 48 

and processes. Inherent biases in the fossil record are well known to confound analyses of this data. 49 

Sampling bias proxies have been used as covariates in regression models to test for such biases. 50 

Proxies, such as formation count, are associated with paleobiodiversity, but are insufficient for 51 

explaining species dispersal owing to a lack of geographic context. Here, we develop a sampling 52 

bias proxy that incorporates geographic information and test it with a case study on early 53 

tetrapodomorph biogeography. We use recently-developed Bayesian phylogeographic models and 54 

a new supertree of early tetrapodomorphs to estimate dispersal rates and ancestral habitat locations. 55 

We find strong evidence that geographic sampling bias explains supposed radiations in dispersal 56 

rate (potential adaptive radiations). Our study highlights the necessity of accounting for geographic 57 

sampling bias in macroevolutionary and phylogenetic analyses and provides an approach to test 58 

for its effect. 59 

Keywords: sampling bias, fossil record, biogeography, phylogenetics, macroevolution, tetrapod 60 

water-land transition 61 
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1. Introduction 70 

Our understanding of macroevolutionary patterns and processes are fundamentally based 71 

on fossils. The most direct evidence for taxonomic origination and extinction rates come from the 72 

rock record, as do evidence for novelty and climate change unseen in data sets gleaned from extant 73 

sources. There are no perfect data sets in science; there are inherent limitations and biases in the 74 

rock record that must be addressed when we form and test paleobiological hypotheses. For instance, 75 

observed stratigraphic ranges of fossils can mislead inferences about diversification and extinction 76 

rates (Raup and Boyajian, 1988; Signor and Lipps, 1982). Observed species diversity is also known 77 

to increase with time due to the preferential preservation and recovery of fossils in younger 78 

geological strata—referred to as "the Pull of the Recent" (Jablonski et al., 2003). Large and long-79 

surviving clades with high rates of early diversification tend to result in an illusionary rate slow-80 

down as diversification rates revert back to a mean value—referred to as “the Push of the Past” 81 

(Budd and Mann, 2018). Paleobiologists test and account for these biases when analyzing 82 

diversification and extinction at local and global scales (Alroy et al., 2001; Benson et al., 2010; 83 

Benson and Butler, 2011; Benson and Upchurch, 2013; Benton et al., 2013; Foote, 2003; Jablonski 84 

et al., 2003; Koch, 1978; Lloyd, 2012; Sakamoto et al., 2016a, 2016b). These bias-detection and 85 

correction techniques include fossil occurrence subsampling (Alroy et al., 2001; Jablonski et al., 86 

2003; Lloyd, 2012); correcting origination, extinction, and sampling rates using evolutionary 87 

predictive models (Foote, 2003); the use of residuals from diversity-sampling models (Benson et 88 

al., 2010; Benson and Upchurch, 2013; Sakamoto et al., 2016b); and the incorporation of sampling 89 

bias proxies as covariates in regression models (Benson et al., 2010; Benson and Butler, 2011; 90 

Benton et al., 2013; Sakamoto et al., 2016a). Benton et al. (2013), studying sampling bias proxies, 91 

demonstrated that diversity through time closely tracks formation count (Benton et al., 2013). 92 
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However, case studies in England and Wales suggest that proxies for terrestrial sedimentary rock 93 

volume (such as formation count) do not accurately explain paleobiodiversity, particularly if the 94 

fossil record is patchy (Dunhill et al., 2014a, 2014b, 2013). Marine outcrop area and 95 

paleoecological-associated facies changes are, however, associated with shifts in paleobiodiversity 96 

(Dunhill et al., 2014b, 2013). Moreover, Benton et al. (2013) argue that the direction of causality 97 

between paleobiodiversity and formation count is unclear; there may be a common cause to explain 98 

their covariation, such as sea level (Benton et al., 2013). Nonetheless, formation count is a widely-99 

used sampling bias proxy in phylogenetic analyses of macroevolution (O’Donovan et al., 2018; 100 

Sakamoto et al., 2016a, 2016b; Tennant et al., 2016a, 2016b). The advent of computational 101 

modeling approaches, particularly phylogenetic comparative methods, has made it easier to 102 

include proxies, like formation count, into models. Additional sampling bias proxies used in these 103 

studies include occurrence count, valid taxon count, and specimen completeness and preservation 104 

scores. Absent from these proxies is geographic context, which could confound many types of 105 

macroevolutionary analyses. 106 

Despite advancements made in understanding the origin and evolution of early 107 

tetrapodomorphs, biogeographical studies are hindered by the incompleteness of the early 108 

tetrapodomorph fossil record. For example, “Romer’s Gap” represents a lack of tetrapodomorph 109 

fossils from the end-Devonian to mid-Mississippian, a period crucial for understanding early 110 

tetrapodomorph diversification. Recent collection efforts recovered tetrapodomorph specimens 111 

from “Romer’s Gap”, suggesting that a collection and preservation bias explains this gap (Clack 112 

et al., 2017; Marshall et al., 2019). In addition, a trackway site in Poland demonstrates the existence 113 

of digit-bearing tetrapodomorphs 10 million years before the earliest elpistostegalian body fossil, 114 

showcasing the limitation of body fossils to reveal evolutionary history (Niedźwiedzki et al., 2010). 115 
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A recent study by Long et al. (2018) leveraged phylogenetic reconstruction of early 116 

tetrapodomorphs to frame hypotheses about the origin of major clades, as well as their dispersal 117 

patterns, including the hypothesis that stem-tetrapodomorphs dispersed from Eastern Gondwana 118 

to Euramerica. However, this study did not use phylogenetic comparative methods to estimate 119 

ancestral geographic locations or to model dispersal patterns. 120 

Here, we present a phylogeographic analysis of early tetrapodomorphs. Our goals are: 1) 121 

to construct a phylogenetic supertree of early tetrapodomorphs that synthesizes previous 122 

phylogenetic reconstructions; 2) to estimate the paleogeographic locations of major early 123 

tetrapodomorph clades using recently-developed phylogeographic models that account for the 124 

curvature of the Earth; and 3) to test for the influence of geographic sampling bias on dispersal 125 

rates. Our results indicate that geographic sampling bias substantially confounds analyses of 126 

dispersal and paleogeography. We conclude with a discussion about the necessity of controlling 127 

for fossil record biases in macroevolutionary analyses. 128 

2. Materials and Methods 129 

2.1. Nomenclature 130 

Tetrapoda has been informally defined historically to include all terrestrial vertebrates with 131 

limbs and digits (Laurin, 1998). Gauthier et al. (1989) first articulated a phylogenetic definition of 132 

Tetrapoda as the clade including the last common ancestor of amniotes and lissamphibians. This 133 

definition excludes stem-tetrapodomorphs, like Acanthostega and Ichthyostega. Stegocephalia 134 

was coined by E.D. Cope in 1868 (Cope, 1868), but was more recently used to describe fossil taxa 135 

more closely related to tetrapods than other sarcopterygians. A recent cladistic redefinition of 136 

Stegocephalia includes all vertebrates more closely related to temnospondyls than Panderichthys 137 

(Laurin, 1998). Here, we use the definitions of Laurin (1998) for a monophyletic Stegocephalia 138 
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and of Gauthier et al. (1989) for Tetrapoda, which refers specifically to the crown group. We use 139 

Tetrapodomorpha to refer to all taxa closer to the tetrapod crown-group than the lungfish crown-140 

group (Ahlberg, 1998). We additionally use Elpistostegalia (= Panderichthyida) to refer to the 141 

common ancestor of all stegocephalians and Panderichthys as well as Eotetrapodiformes to refer 142 

to the common ancestor of all tristichopterids, elpistostegalians, and tetrapods (Coates and 143 

Friedman, 2010).  144 

2.2. Supertree 145 

We inferred a supertree of 69 early tetrapodomorph taxa from five edited, published 146 

morphological data matrices, focusing on tetrapodomorphs whose previously inferred 147 

phylogenetic position bracket the water-land transition (Clack et al., 2017; Friedman et al., 2007; 148 

Pardo et al., 2017; Swartz, 2012; Zhu et al., 2017). Since downstream analyses might be sensitive 149 

to unequal sample sizes between taxa pre- and post-water-land transition, we did not include 150 

several crownward stem-tetrapodomorphs from the original matrices (see Supplementary 151 

Material). For each matrix, we generated a posterior distribution of phylogenetic trees using 152 

MrBayes 3.2.6 (Ronquist et al., 2012b). In each case, we ran two Markov chain Monte Carlo 153 

(MCMC) replicates for 20,000,000 generations with 25% burn-in, each with four chains and a 154 

sampling frequency of 1,000. We used one partition, except for Clack et al.’s (2017) matrix, which 155 

was explicitly divided into cranial and postcranial characters. To time-calibrate the trees, we 156 

constrained the root ages and employed a tip-dating approach (Ronquist et al., 2012a). Tip dates 157 

(last occurrence) were acquired from the Paleobiology Database (PBDB; https://paleobiodb.org/) 158 

and the literature (see Supplementary Table 2). Root calibrations (minimum and soft maximum 159 

age estimates) were collected from the PBDB and Benton et al. (2015). We also used the fossilized 160 

birth-death model as the branch length prior (Didier et al., 2017, 2012; Didier and Laurin, 2018; 161 
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Gavryushkina et al., 2014; Heath et al., 2014; Stadler, 2010; Zhang et al., 2016). All pairs of 162 

MCMC replicates converged as demonstrated by low average standard deviation of split 163 

frequencies (<0.005; Lakner et al., 2008; see Supplementary Table 3). 164 

Next, we used the five maximum clade credibility trees (source trees; Supplementary Fig. 165 

1-10) to compute a distance supermatrix using SDM 2.1 (Criscuolo et al., 2006). We then inferred 166 

an unweighted neighbor-joining tree (UNJ by Gascuel, 1997) from the distance supermatrix using 167 

PhyD* 1.1 (Criscuolo and Gascuel, 2008). The UNJ* algorithm is preferable for matrices based 168 

on morphological characters. Unlike most supertree methods, the SDM-PhyD* combination 169 

produces a supertree with branch lengths. We rooted the supertree using phytools 0.6.60 (Revell, 170 

2012) by adding an arbitrary branch length of 0.00001 to break the trichotomy at the basal-most 171 

node in R 3.5.2 (R Core Team, 2018), designating the dipnomorph Glyptolepis as the outgroup. 172 

 We qualitatively compared the supertree topology with the published source trees and 173 

Marjanović and Laurin's (2019) Paleozoic limbed vertebrate topologies. We also calculated 174 

normalized Robinson-Foulds (nRF) distances (Robinson and Foulds, 1981) using phangorn 2.4.0 175 

(Schliep, 2011) in R to assess the congruency of topologies. In each comparison, polytomies in the 176 

supertree or the source tree were resolved in all possible ways using phytools. We then calculated 177 

all nRF distances and took an average (see Supplementary Table 4). The supplementary materials 178 

include a more detailed description of this approach. 179 

2.3. Phylogeography 180 

We obtained paleocoordinate data (paleolatitude and paleolongitude) for 63 early 181 

tetrapodomorphs from the PBDB using the GPlates software setting (https://gws.gplates.org/). By 182 

default, GPlates estimates paleocoordinates from the midpoint of each taxon’s age range. For 16 183 

taxa that did not have direct paleocoordinate data in the PBDB, we searched for the geological 184 
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formations and geographic regions within the time range from which they are known and averaged 185 

the paleolocations across each valid taxonomic occurrence in the PBDB. If the paleolocation of 186 

the formation was not listed in the PBDB, we used published geographic locations of the 187 

formations. This level of precision is adequate for world-wide phylogeographic analyses, such as 188 

conducted here. Present-day coordinates for these geographic locations were obtained from 189 

Google Earth and matched with PBDB entries that date within each taxon’s age range (see 190 

Supplementary Table 5). Four additional taxa, Kenichthys, Koilops, Ossirarus, and Tungsenia, had 191 

occurrences in the PBDB but the GPlates software could not estimate their paleocoordinates. For 192 

Koilops and Ossirarus, we used all tetrapodomorph occurrences from the Ballagan Formation of 193 

Scotland, UK—a formation in which these two taxa are found (Clack et al., 2017). For Kenichthys 194 

and Tungsenia, we calculated paleocoordinate data from the GPlates website directly using the 195 

present-day coordinates from the PBDB (https://gws.gplates.org/#recon-p). This approach did not 196 

work for the 16 previously mentioned taxa (see Supplementary Table 5). We therefore obtained 197 

paleocoordinate data from nearby entries in the PBDB. We excluded the following taxa from our 198 

analyses due to the lack of data and comparable entries in the PBDB: Jarvikina, Koharalepis, 199 

Spodichthys, and Tinirau. We excluded the outgroup taxon, Glyptolepis, in our analysis to focus 200 

on the dispersal trends within early Tetrapodomorpha. We also excluded Eusthenodon and 201 

Strepsodus because their high estimated dispersal rates—being reported from multiple 202 

continents—masked other rate variation throughout the phylogeny and inhibited our downstream 203 

analyses from converging on a stable likelihood. We do, however, discuss their geographic 204 

implications in Section 4. 205 

A model that incorporates phylogeny is crucial for paleobiogeographic reconstruction 206 

because it accounts for both species relationships and the amount of evolutionary divergence 207 
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(branch lengths). Using continuous paleocoordinate data, rather than discretely-coded regions, 208 

allows dispersal trends to be estimated at finer resolutions. Discretely-coded geographic regions 209 

also limit ancestral states to the same regions inhabited by descendant species. However, standard 210 

phylogenetic comparative methods for continuous data assume a flat Earth because they do not 211 

account for spherically structured coordinates (i.e., the proximity of −179° and 179° longitudes). 212 

Recently-developed phylogenetic comparative methods for modeling continuous paleocoordinate 213 

data, implemented as the ‘geo’ model in the program BayesTraits V3, overcome this hurdle by 214 

“evolving” continuous coordinate data on the surface of a globe (O’Donovan et al., 2018). The 215 

model is implemented with a Bayesian reversible jump MCMC algorithm to estimate rates of 216 

geographic dispersal and ancestral paleolocations simultaneously. To account for the spheroid 217 

shape of the globe, the ‘geo’ model converts latitude and longitude data into three-dimensional 218 

coordinates while prohibiting moves that penetrate the inside of the globe. Ancestral states, which 219 

are converted back to standard latitude and longitude, are estimated for each node of the phylogeny. 220 

The method includes a variable rates model to estimate variation in dispersal rate (Venditti et al., 221 

2011). The ‘geo’ model makes no assumptions about the location of geographic barriers or 222 

coastlines, but a study on dinosaur biogeography found 99.2% of mean ancestral state 223 

reconstructions to be located within the bounds of landmasses specific to the time at which they 224 

occurred (O’Donovan et al., 2018). We ran three replicate independent analyses using the Bayesian 225 

phylogenetic ‘geo’ model for 100 million iterations each with a 25% burn-in and sampling every 226 

1,000 iterations. We estimated log marginal likelihoods using the Stepping Stone algorithm with 227 

250 stones sampling every 1,000 iterations (Xie et al., 2011). We used Bayes factors (BF) to test 228 

whether a variable rates model explained the data better than a uniform rates model. Bayes factors 229 

greater than two are considered good evidence in support of the model with the greater log 230 
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marginal likelihood. We compared estimated rate scalars and ancestral states among the three 231 

independent variable rates analyses to check for consistency in our results. Rates of dispersal were 232 

estimated for each branch by dividing the average rate scalars by the original branch lengths 233 

(scaled by time). We assessed the MCMC convergence of all analyses using Tracer 1.7 (Rambaut 234 

et al., 2018). 235 

To test for the effect of sampling bias on dispersal rates, we developed a sampling bias 236 

proxy that incorporates geographic context: regional-level formation count. Formation counts are 237 

meant to capture multiple biases: uneven global rock exposure, uneven fossil collection and 238 

database efforts, and global variation in sediment deposition in environments conducive to 239 

preservation. Stage-level (stage-specific) formation count represents the mean number of 240 

formations, or distinct rock units, globally known to produce relevant fossils along each terminal 241 

branch of a phylogeny. Following the protocol of Sakamoto et al. (2016) and O’Donovan et al. 242 

(2018), stage-level formation counts are calculated by taking the average number of formations 243 

known from each geological age across the globe that encompass the time period between the 244 

taxon’s tip date and its preceding node. These average stage-level formation counts are weighted 245 

by the proportion that each terminal branch length covers each geological age. For example, if a 246 

terminal branch covers two geological ages (e.g., Frasnian and Famennian) at 30% and 70%, 247 

respectively, then the stage-level formation counts from each geological age are weighted by those 248 

proportions and then divided by the number of geological ages covered: 249 

 250 

Stage − Level FormationCount =
FrasnianCount × 0.3 + FamennianCount × 0.7

2
 251 

 252 

Stage-level formation count is not informed by geography; it is a global metric. It is 253 
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therefore an inadequate proxy if bias has a strong geographic component (e.g., if the majority 254 

of formations recorded are from a specific region or if few formations are exposed within a region). 255 

The number of fossil-bearing geological formations, accounting for geographic distribution, is 256 

expected to be an important confounding bias in the fossil record. We developed a proxy that 257 

includes geographic sampling bias. Our approach breaks down stage-level formation count by 258 

geographic region. To account for the arrangement of the continents during the Devonian, 259 

Carboniferous, and Permian, we recognized five major regions: Northern Euramerica (including 260 

Northeastern Eurasia and Central Asia), Southern Euramerica (North America, Greenland, and 261 

Western Europe), Western Gondwana (South America and Africa), Eastern Gondwana (Antarctica, 262 

Australia, and Southern Asia), and East Asia (e.g., China). For each branch in the phylogeny, we 263 

used the average ancestral state and taxon paleolocation estimates to determine if the branch 264 

crossed multiple geographic regions. The number of formations within this time window are 265 

totaled for every region covered by the branch and then divided by the number of regions covered. 266 

For example, if ancestral state estimates at node 1 and 2 are located in Eastern Gondwana and 267 

Southern Euramerica, respectively, then the number of formations recorded in Eastern Gondwana, 268 

Southern Euramerica, and the regions in between (i.e., Western Gondwana or Northern Euramerica 269 

+ East Asia) are counted for that geological age; this total is then divided by the number of 270 

geographic regions covered by the entire branch (three for the Western Gondwana route and four 271 

for the Northern Euramerica + East Asia route). If the dispersal path between two consecutive 272 

ancestral states does not cross any of the five regions, then the number of formations in the 273 

inhabited region is counted alone. Figure 1 illustrates an example of how this proxy is measured. 274 

This results in the average number of formations present along the dispersal path (at geographic 275 

region scale) for each branch in the phylogeny. As with stage-level formation counts, the regional-276 
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level formation counts are weighted by the proportion that the branch length covers each geological 277 

age. We hypothesize that dispersal rate will inversely correlate with regional-level formation count 278 

because we expect that the lack of formations in intermediate regions will lead to inflated dispersal 279 

rates. The ‘geo’ model will increase the dispersal rate along a branch to account for the geographic 280 

variation observed when there is a lack of intermediate geographic fossil occurrences. This 281 

hypothesis can be falsified if high dispersal rates are associated with larger average numbers of 282 

formations along dispersal paths. Benton et al. (2013) provide a global sample of tetrapod-bearing 283 

rock formations known for each geological age from the Middle Devonian through the Triassic. 284 

We supplemented these lists with stratigraphic units known to produce sarcopterygian fossils 285 

entered in the PBDB (collected on December 10th, 2018). 286 

Period Epoch Age 

End 

Time (Ma) 

Northern 

Euramerica 

Southern 

Euramerica 

Western 

Gondwana 

Eastern 

Gondwana 

East 

Asia Total 

Permian Cisuralian Kungurian 272.95 10 44 11 0 0 65 

Permian Cisuralian Artinskian 283.5 2 39 9 0 0 50 

Permian Cisuralian Sakmarian 290.1 2 44 4 0 0 50 

Permian Cisuralian Asselian 295 2 47 3 0 0 52 

Pennsylvanian Late Gzhelian 298.9 1 42 0 0 0 43 

Pennsylvanian Late Kasimovian 303.7 0 33 0 0 0 33 

Pennsylvanian Middle Moscovian 307 0 16 0 0 0 16 

Pennsylvanian Early Bashkirian 315.2 0 28 0 0 0 28 

Mississippian Late Serpukhovian 323.2 0 16 0 0 0 16 

Mississippian Middle Viséan 330.9 0 14 0 1 0 15 

Mississippian Early Tournaisian 346.7 0 7 0 1 0 8 

Devonian Late Famennian 358.9 1 9 1 5 1 17 

Devonian Late Frasnian 372.2 1 11 0 3 2 17 

Devonian Middle Givetian 382.7 1 8 1 4 1 15 

Devonian Middle Eifelian 387.7 1 8 0 5 2 16 

Devonian Early Emsian 393.3 2 5 0 7 3 17 

Devonian Early Pragian 407.6 1 6 0 4 2 13 

Devonian Early Lochkovian 410.8 1 3 0 3 1 8 

Silurian Přídolí Přídolí 419.2 0 0 0 0 1 1 

Silurian Ludlow Ludfordian 423 0 0 0 0 2 2 

Silurian Ludlow Gorstian 425.6 0 0 0 0 2 2 

Table 1: Regional- and stage-level (total) formation counts through time. 287 
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 288 

To test for the effect of regional-level formation count bias on dispersal rate, we conducted 289 

a non-parametric two-sample, upper-tailed Mann-Whitney U-test using the base package ‘stats’ in 290 

R (R Core Team, 2018). This approach ranks all branches of the phylogeny by their regional-level 291 

formation count and tests if the branches with lower dispersal rates rank higher on average than 292 

branches with higher rates. We define “high” vs “low” dispersal rates based on whether or not they 293 

are two standard deviations greater than the average rate across the tree. Due to the vast difference 294 

in sample size between the two groups (“high rates”: n = 9, “low rates”: n = 111), we bootstrapped 295 

the regional-level formation counts from each group with 100,000 replicates. From this bootstrap 296 

analysis, we obtained a 95% confidence interval for the summed ranks of the branches with low 297 

dispersal rates (n = 100,000 U-statistic values). The expected U-statistic is 499.5 given the null 298 

hypothesis that only 50% of the regional-level formation counts along branches with low rates 299 

rank higher than the formation counts with high rates (half of all possible combinations =
9×111

2
). 300 

A 95% confidence interval of bootstrapped U-statistics that does not include the null expected U-301 

statistic is considered good evidence for higher mean dispersal rates along branches with lower 302 

regional-level formation counts. The full dataset and code for the phylogeographic analyses can 303 

be requested by email to the corresponding author.  304 

Estimated ancestral states do not identify specific dispersal routes, so we conducted 305 

sensitivity analyses to test if the dispersal route chosen for counting formations influenced our 306 

results. We conceived of three scenarios for dispersal routes between Eastern Gondwana and 307 

Southern Euramerica or vice versa: 1) a dispersal route through Western Gondwana; 2) a route 308 

through Northern Euramerica and East Asia; and 3) a direct route between Eastern Gondwana and 309 

Southern Euramerica. For the first scenario, we averaged the number of formations found in 310 
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Eastern and Western Gondwana and Southern Euramerica for a given time period. The second 311 

scenario is similar to the first but included formation counts from Northern Euramerica and East 312 

Asia in place of Western Gondwana. The third scenario only averaged formation counts from 313 

Eastern Gondwana and Southern Euramerica.  314 

3. Results 315 

3.1. Supertree 316 

Topological differences resulted among our supertree, the published source trees, and 317 

Marjanović and Laurin's (2019) tree (Figure 2). In our tree, a polyphyletic “Megalichthyiformes” 318 

is the basal-most tetrapodomorph group instead of Rhizodontida (Swartz, 2012; Zhu et al., 2017). 319 

Canowindrids and rhizodontids formed an unexpected sister clade to Eotetrapodiformes. Clack et 320 

al.’s (2017) five Tournaisian tetrapod taxa cluster together. Colosteidae is rootward of 321 

Crassigyrinus. Caerorhachis is next to Baphetidae. Baphetidae moved crownward compared to 322 

previous topologies (likely because of a small character sample size [Marjanović and Laurin, 323 

2019]). Two crownward nodes are unresolved (polytomous). We retained Tungsenia and 324 

Kenichthys as the oldest and second oldest tetrapodomorphs. Tristichopteridae, Elpistostegalia, 325 

Stegocephalia, Aïstopoda, Whatcheeriidae, Colosteidae, Anthracosauria, Dendrerpetidae, and 326 

Baphetidae remain monophyletic. Aïstopoda (Lethiscus and Coloraderpeton) fell rootward to 327 

Tetrapoda as reported in Pardo et al. (2017; 2018). The average nRF distances quantify differences 328 

in topology (see Supplementary Table 4). On average, there are 39.7% different or missing 329 

bipartitions in the source trees compared to the supertree. 330 

3.2. Phylogeography 331 

We found overwhelming support for a variable rates model of geographic dispersal in early 332 

tetrapodomorphs (BF = 632.3; Figure 3). The estimated rates across the three replicate runs are 333 

.CC-BY-NC-ND 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under 

The copyright holder for this preprint (which was notthis version posted August 6, 2019. ; https://doi.org/10.1101/726786doi: bioRxiv preprint 

https://doi.org/10.1101/726786
http://creativecommons.org/licenses/by-nc-nd/4.0/


14 

consistent (out of 122 branches, only three had a median rate scalar with an absolute value 334 

difference among the three runs greater than 3). All rate shifts that were two standard deviations 335 

greater than the average dispersal rate were reconstructed dispersal events moving from East Asia 336 

to Southern Euramerica, from Eastern Gondwana to Southern Euramerica, or Southern Euramerica 337 

to Eastern Gondwana. The fastest estimated dispersal rate occurs along the branch leading to 338 

Eotetrapodiformes, moving from Eastern Gondwana to Southern Euramerica (14.34x the average 339 

rate). As Long et al. (2018) suggest, we find evidence for an East Asian origin for Tetrapodomorpha 340 

but with moderate uncertainty (average estimate ± standard deviation of posterior distribution; 341 

longitudeavg = 81.5° ± 10.1°, latitudeavg = −6.4° ± 8.5°). We also reconstruct an origin for 342 

“Megalichthyiformes” that borderlines East Asia and Eastern Gondwana (longitudeavg = 107.2° ± 343 

14.1°, latitudeavg = −22.6° ± 8.7°), along with an Eastern Gondwana origin for the clade uniting 344 

“Canowindridae” and Rhizodontida (longitudeavg = 137.1° ± 8.2°, latitudeavg = −32.0° ± 4.7°). We 345 

recover a Southern Euramerican origin for Eotetrapodiformes, consistent with previous studies 346 

(longitudeavg = −12.5° ± 7.0°, latitudeavg = −19.4° ± 6.4°). A Southern Euramerican origin was also 347 

found for Tristichopteridae (longitudeavg = −12.7° ± 6.9°, latitudeavg = −19.7° ± 6.3°) and 348 

Elpistostegalia (longitudeavg = −12.3° ± 5.5°, latitudeavg = −13.5° ± 5.3°). As expected in a 349 

phylogenetic comparative analysis, uncertainty in estimated node states increases toward the root. 350 

However, despite the level of uncertainty within a single run, only three nodes have mean ancestral 351 

state values that are greater than an absolute value of 5° among the replicate three runs.  352 

 We find good evidence that geographic sampling bias influences dispersal rate estimates, 353 

regardless of the route used (95% CI: Western Gondwana route U = [800, 928]; Northern 354 

Euramerica + East Asia route U = [832, 946]; direct route U = [729, 889]; no scenario includes the 355 

null U = 499.5; Figure 4 and Supplementary Figures 12-13). A U-statistic considerably higher than 356 
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499.5 suggests that branches with high dispersal rates have lower regional-level formation counts, 357 

on average, than branches with low rates. One can also interpret the null U-statistic of 499.5 as a 358 

50% probability that a random branch with a low dispersal rate will rank higher in its regional-359 

level formation count than a random branch with a high dispersal rate. With bootstrapping, we are 360 

95% confident that the probability of a random branch with a low dispersal rate having a higher 361 

regional-level formation count than a random branch with a high rate is 72.97–88.99% for the 362 

more conservative ‘direct route’ scenario. Under the more liberal ‘Northern Euramerica + East 363 

Asia route’ scenario, the probabilities are 83.28–94.69%. In sum, branches with high dispersal 364 

rates (two standard deviations greater than average) have a smaller number of recorded formations, 365 

on average, along their reconstructed dispersal path.  366 

 Our results cannot be explained by a fossil record that is more complete through time (Pull of 367 

the Recent). A regression model relating regional-level formation count to the minimum age of 368 

each branch shows only a weak relationship (slope = -0.044, r2 = 0.1, P < 0.001). However, total 369 

global (stage-level) formation count (which does not account for geographic variation) does show 370 

potential bias from Pull of the Recent (slope = −0.3, r2 = 0.71, P < 0.0001). If dispersal rates are 371 

biased by the increase in number of formations globally, we would also expect to see elevated 372 

dispersal rates decrease toward the tips, but a regression model relating stretched branch lengths 373 

with time is not supported (slope = −0.025, r2 = 0.006, P = 0.41).  374 

4. Discussion 375 

We expected to infer high dispersal rates for closely related taxa that are distributed across 376 

the globe. Our results, unadjusted for geographic bias in the fossil record, confirm this notion. 377 

However, we also find a compelling statistical association between high dispersal rates and a low 378 

number of formations along dispersal paths—a patchy fossil record is driving inferences of high 379 
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dispersal rates. Although we did not test for a correlation between dispersal rate and previously 380 

used proxies, such as valid taxon count and stage-level formation count, these proxies do not offer 381 

clear predictions for explaining dispersal rate variation. High dispersal rate variation is inferred 382 

when closely related taxa are geographically separate. For example, valid taxon count cannot 383 

explain geographic rate variation because spatial information is lacking in this bias proxy and 384 

because sister taxa are likely to have similar counts (these data are phylogenetically structured). 385 

Stage-level formation counts will also not explain dispersal rate variation, particularly if high rate 386 

variation exists within the same geological age. Assuming geological formations are evenly 387 

exposed and sampled worldwide, low stage-level formation counts should yield geographically 388 

variable fossil species and, therefore, drive high dispersal rate variation. However, formations are 389 

not evenly exposed or recorded in geological/paleontological databases, including the PBDB. Our 390 

formation count table demonstrates this bias (Table 1). Without geographic context, stage-level 391 

formation count cannot distinguish between global and local regions. For example, the geological 392 

ages that have the highest recorded number of formations are restricted to Southern Euramerica 393 

where the majority of eotetrapodiform taxa have been discovered. The association between high 394 

formation counts in specific regions and high paleobiodiversity in those regions is likely not a 395 

coincidence and has a clear impact on how we interpret dispersal history. The earliest 396 

tetrapodomorphs are known from China and Australia at geological ages where relatively few 397 

formations are recorded outside of East Asia and Eastern Gondwana. The basal-most ancestral 398 

state estimates reconstruct paleolocations in East Asia (not surprisingly). This inference 399 

(hypothesis) is predicated on the lack of geological formations recorded outside of East Asia during 400 

this time period. In addition, the majority of more crownward taxa and their reconstructed ancestral 401 

states are located in North America and Europe at geological ages in which relatively fewer 402 
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formations are known elsewhere. This bias may heavily influence any conclusions made on the 403 

location and habitat of the tetrapod water-land transition. Recently discovered taxa could help 404 

mitigate this problem by increasing the power of taxon sampling (Heath et al., 2014), such as 405 

Tutusius and Umzantsia from South Africa (Gess and Ahlberg, 2018). However, the current lack 406 

of cladistic coding for these taxa excludes them from phylogeny-based analyses. The taxonomic 407 

resolution of globally-occurring species, like Eusthenodon and Spodichthys, also impacts current 408 

models of species dispersal history because of their relatively uniform distribution (Long et al., 409 

2018). Eusthenodon and Spodichthys represent possible cases where taxonomic resolution is too 410 

coarse for phylogeographic analyses. Including these species inhibited our MCMC algorithms 411 

from reaching convergence. Widely distributed cosmopolitan species that lack intermediate 412 

geographic occurrences increase the uncertainty of parameter estimates within phylogeographic 413 

models, as is the case here for these two species. 414 

Phylogenetic studies on macroevolution also often fail to incorporate data from the fossil 415 

record itself, such as trace fossil occurrences. Non-anatomical data often contribute to our 416 

understanding of taxonomic originations, including chiridian (or digit-possessing) 417 

tetrapodomorphs for which trace fossil evidence exists about 10 million years before the first 418 

elpistostegalian body fossils (Niedźwiedzki et al., 2010). The inclusion of additional data from 419 

trace fossils could radically alter our current models of species dispersal history. Finally, it is 420 

important to note that the sampling bias proxies are also constrained by database curation biases. 421 

Phylogenetic studies on macroevolutionary trends now regularly leverage public databases, such 422 

as the PBDB, which allows larger and broader studies. It is unclear how patchy entries, on 423 

taxonomic occurrences and geological formations, for example, interact with other biases inherent 424 

in the fossil record. Caution is therefore warranted when these databases are mined, as is the case 425 
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here. 426 

5. Conclusions 427 

Phylogenetic studies on macroevolution have not previously incorporated geographic 428 

context, which could influence a wide variety of analyses. We demonstrate here that 429 

phylogeographic methods are influenced by geographic sampling variability. We develop a simple 430 

sampling bias proxy that incorporates geographic information and show that it explains variation 431 

in estimated dispersal rates. The majority of elevated dispersal rates are associated with large-scale 432 

movements between major landmasses that have very few, if any, relevant geological formations 433 

in between. Our analysis is also unlikely to be influenced by “Pull of the Recent”-like effects. 434 

Although not the first supertree for early tetrapodomorphs (Ruta et al., 2003), this study presents the 435 

first (to our knowledge) with branch lengths, making it useable for phylogenetic comparative 436 

analyses. The new supertree comprises many of the major clades previously inferred, but also 437 

recovers new ones that will be subject to scrutiny in future studies (discussed further in the 438 

Supplementary Material). This supertree should be useful to researchers who aim to use 439 

phylogenetic comparative methods to test hypotheses on the evolution of early tetrapodomorphs. 440 

In sum, our study estimates ancestral geographical reconstructions consistent with previously 441 

hypothesized dispersal patterns in early tetrapodomorphs. We also find that rates of dispersal are 442 

strongly influenced by geographic sampling bias. We suggest that researchers incorporate this 443 

proxy in phylogeny-based macroevolutionary studies that could be influenced by spatial 444 

distribution of the fossil record. 445 
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 619 

Figure Captions 620 

1. Example of how the regional-level formation count proxy is calculated. A) Five major 621 

geographic regions are highlighted by color in the Devonian map. Red arrows represent a branch-622 

specific dispersal path to species A, beginning in Southern Euramerica and ending in Eastern 623 

Gondwana. The blue arrow represents the dispersal path to species B. B) The phylogeny of species 624 

A and B scaled by time, with equal branch lengths to both species, and colored to represent the 625 

rate of dispersal (red is fast, blue is slow). For every branch of the tree, the number of formations 626 

is counted for every region and for each geological age covered by the dispersal pathway. It is then 627 

weighted by the number of geological ages and geographic regions covered. Under the Western 628 

Gondwana route scenario, the branch to species A covers three geographic regions, while the 629 

branch to species B only covers one. Assuming both branches cover only one geological age, the 630 

high dispersal rate for species A can be explained by the lack of recorded geological formations in 631 

Western Gondwana. C) A line plot of the formation counts through time, colored by geographic 632 
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region according to the Devonian map above, shows temporal and geographic variability. 633 

 634 

2. The time-scaled tetrapodomorph supertree. Taxonomic groups in quotes are not monophyletic. 635 

Here, Glyptolepis, a dipnomorph, is the outgroup. We downloaded the silhouettes from 636 

phylopic.org: Eucritta and Greererpeton by Dmitry Bogdanov (vectorized by Michael Keesey), 637 

Eusthenopteron by Steve Coombs (vectorized by Michael Keesey), and Gogonasus and Tiktaalik 638 

by Nobu Tamura (CC BY-SA 3.0). 639 

 640 

3. A) Trimmed tetrapodomorph phylogeny with mapped rates of dispersal. Cooler (bluish) colors 641 

represent slower rates and warmer (reddish) colors represent faster rates. B) Non-eotetrapodiform 642 

(left in blue) and eotetrapodiform (right in green) trees and taxon paleolocations plotted on a map 643 

of the Middle Devonian. Transparent polygons illustrate broad geographic regions of sampled taxa 644 

in Southern Euramerica, Eastern Gondwana, and East Asia. Numbers show the total number of 645 

geological formations recorded from each major geographic region (Eastern Gondwana and East 646 

Asia combined). Colored circles show average paleolocations of major clades estimated by the 647 

‘geo’ model and indicated in the tree above. Red circle: Tetrapodomorpha, orange: 648 

“Megalichthyiformes”, yellow: “Canowindridae” + Rhizodontidae, green: Tristichopteridae, and 649 

blue: Elpistostegalia. Phylogeny with mapped dispersal rates was produced in BayesTrees 650 

(http://www.evolution.rdg.ac.uk/BayesTrees.html). Middle Devonian tree and paleolocation plots 651 

were made using the ‘phylo-to-map’ function in the R package, phytools (Revell, 2012). Middle 652 

Devonian map was sourced from the R package, paleoMap (Rothkugel and Varela, 2015). 653 

Tetrapodomorph silhouettes were sourced from phylopic.org: Eucritta by Dmitry Bogdanov 654 

(vectorized by T. Michael Keesey), Osteolepis by Nobu Tamura, and Acanthostega by Mateus Zica. 655 
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 656 

4. A) Scatter-plot of the average dispersal rates over the regional-level formation counts for each 657 

branch of the phylogeny, using the Northern Euramerica + East Asia route scenario. Points colored 658 

by the dispersal rate being above (red) or below (blue) two standard deviations greater than the 659 

average rate across the tree. B) Histogram of the bootstrapped U-statistics. Values outside of the 660 

95% confidence interval are grayed out. The median and null expected U-statistics are indicated 661 

by the red and blue dotted lines, respectively. The null expected U-statistic is based on the null 662 

hypothesis that 50% of the branches with low dispersal rates will have a greater regional-level 663 

formation count than branches with higher rates. Rejecting the null hypothesis suggests that 664 

estimated dispersal rates are biased and correlate with regional-level formation count. 665 
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