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Abstract 

In bacteria, a primary s factor associates with the core RNA polymerase (RNAP) to 

control most transcription initiation, while alternative s factors are used to coordinate 

expression of additional regulons in response to environmental conditions. Many 

alternative s factors are negatively regulated by anti-s factors. In Escherichia coli, 

Salmonella enterica, and many other g-proteobacteria, the transcription factor Crl 

positively regulates the alternative sS regulon by promoting the association of sS with 

RNAP without interacting with promoter DNA. The molecular mechanism for Crl activity 

is unknown. Here, we determined a single-particle cryo-electron microscopy structure of 

Crl-sS-RNAP in an open promoter complex with a sS regulon promoter. In addition to 

previously predicted interactions between Crl and domain 2 of sS (sS2), the structure, along 

with p-benzoylphenylalanine crosslinking, reveals that Crl interacts with a structural 

element of the RNAP b' subunit we call the b'-clamp-toe (b'CT). Deletion of the b'CT 

decreases activation by Crl without affecting basal transcription, highlighting the 

functional importance of the Crl-b'CT interaction. We conclude that Crl activates sS-

dependent transcription in part through stabilizing sS-RNAP by tethering sS2 and the 

b'CT. We propose that Crl, and other transcription activators that may use similar 

mechanisms, be designated s-activators. 

 

Keywords: bacterial stress response | Crl | cryo-electron microscopy | RNA polymerase | RpoS | 

transcription initiation  
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Significance Statement 

In bacteria, multiple s factors can bind to a common core RNA polymerase (RNAP) to 

alter global transcriptional programs in response to environmental stresses. Many γ-

proteobacteria, including the pathogens Yersinia pestis, Vibrio cholera, Escherichia coli, and 

Salmonella typhimurium, encode Crl, a transcription factor that activates σS-dependent 

genes. Many of these genes are involved in processes important for infection, such as 

biofilm formation. We determined a high-resolution cryo-electron microscopy structure of 

a Crl-sS-RNAP transcription initiation complex. The structure, combined with biochemical 

experiments, shows that Crl stabilizes sS-RNAP by tethering sS directly to the RNAP. 
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Bacterial transcription initiation requires the assembly of a promoter-specificity sigma (s) factor 

with the RNA polymerase (RNAP) catalytic core (E, subunit composition a2bb'w), forming the 

RNAP holoenzyme (Es) (1). Multiple s factors compete for binding to core RNAP, with each 

s factor directing transcription of a specific set of promoters, or regulon (2). An essential 

primary s directs most transcription during normal growth conditions, while alternative s's 

direct transcription of regulons in response to metabolic, developmental, and environmental 

signals (2). 

 The vast majority of s factors belong to the s70-family (3), which minimally contain two 

flexibly linked, conserved structural domains, σ2 and σ4. In the absence of core RNAP, many σ70-

family factors have been proposed to adopt a compact conformation where the promoter DNA-

binding determinants in s2 (recognizing the promoter -10 element) and s4 (recognizing the 

promoter -35 element) are inaccessible, explaining why s70-family members bind their cognate 

promoter sequences very poorly or not at all without the core RNAP. In the holoenzyme, σ 

factors adopt an open conformation where the s2 and s4 domains are displayed on the RNAP 

surface with the proper spacing to recognize the -10 and -35 promoter elements, centered 75 to 

80 Å apart (4-11). 

 A key mechanism to control transcription initiation in bacteria is to regulate access of 

s factors to the core RNAP with anti-s factors (12). Anti-s factors stabilize occlusive inter-

domain interactions within the s factor and/or physically occlude the RNAP interacting surface 

(13-19). Upon relief of inhibition, the RNAP binding surfaces of the s factor are exposed, 

allowing interactions with RNAP.  
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 Escherichia coli (Eco) has seven s factors; s70 is the primary (housekeeping) s, while σS 

(encoded by rpoS) is the master regulator of transcription programs in the stationary phase of 

growth as well as in response to various stresses including antibiotics, UV light, low 

temperature, osmolarity changes, acidity changes, and nutrient depletion (20). In certain 

conditions, the rapid and efficient expression of genes under σS control is critical for the survival 

of bacteria. However, once conditions become favorable for growth the σS transcription program 

must be shut down for optimal fitness. For these reasons, the expression of σS is highly regulated 

at transcriptional, translational, and post-translational levels (21).  

 Transcription from sS-dependent promoters can be limited by the EsS concentration. To 

form EsS, σS must compete against other s factors to assemble with free core RNAP, for which 

sS has the lowest binding affinity (22). Crl is an ~16 kDa protein, widely distributed in g-

proteobacteria, that specifically activates EsS transcription (23, 24). Crl does not bind DNA like 

most transcription factors (25) but rather acts by directly binding domain 2 of σS (sS2) (26) and 

stimulating expression of stress response genes, genes required for formation of amyloid curli 

fibers involved in adhesion and biofilm formation (23), and many other genes in the sS regulon 

(24).  

 Crl accumulates during bacterial exponential growth and reaches peak levels as bacteria 

enter stationary phase, with levels dropping as cells progress into late stationary phase (27, 28). 

By contrast, σS is not detectable until bacteria begin to enter stationary phase, and the level of sS 

continues to increase until late stationary phase (29). This interplay in the levels of Crl and σS 

suggests a critical role for Crl when the levels of σS are very low. This is consistent with in vitro 

experiments demonstrating that transcription activation by Crl is most pronounced when σS 
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concentrations are lowest (30-32). These findings have led to proposals that Crl functions by 

facilitating the assembly of core RNAP and sS into EsS (26, 30).  

 Previous studies have determined structures of EσS (33) and Crl (34, 35) in isolation. 

However, understanding the molecular mechanism of Crl has been hindered by the lack of 

structures of complexes of Crl with σS or with EσS. Here, we employed single-particle cryo-

electron microscopy (cryo-EM) to determine the structure of Crl bound to an EσS open promoter 

complex (RPo) containing a sS-regulon promoter. Our analysis of the structure, combined with 

biochemical assays, shows that Crl simultaneously interacts with sS and core RNAP in the 

complex, stabilizing EsS by tethering sS with RNAP. We propose that Crl, and other 

unconventional transcription activators that use a similar mechanism, be designated as s-

activators. 

 

Results 

Salmonella Crl-sS activates Eco core RNAP. For our structural and functional analyses, we 

studied a complex between Salmonella enterica serovar Typhimurium (Sty) Crl, Sty sS, and 

Eco core RNAP lacking the a C-terminal domains (hereafter designated Crl-EsS) rather than 

from the same bacterium because overexpressed Eco Crl and Eco sS tended to form insoluble 

aggregates. Sty and Eco Crl-sS have 95% sequence identity over 463 residues. The entire 

443 kDa Crl-EsS complex has 98.3% sequence identity over 4,576 residues (SI Appendix, Table 

S1). Purified Sty Crl activated EsS transcription ~5-fold (compared to no Crl) in an in vitro 

certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprint (which was notthis version posted August 6, 2019. ; https://doi.org/10.1101/726851doi: bioRxiv preprint 

https://doi.org/10.1101/726851


 8 

abortive initiation assay on a linear fragment of a sS-regulon promoter, dps (36, 37)(Fig. 1A), 

indicating that our Crl-EsS complex is structurally and functionally relevant. 

 

Cryo-EM structure of Crl-EsS-dps-RPo. To prepare a complex for structure determination, we 

incubated Crl-EsS with a duplex dps promoter construct (-46 to +20) containing a non-

complementary 'seed' bubble from -7 to -4 (SI Appendix, Fig. S1A) to pre-nucleate the 

transcription bubble and favor the formation of a homogenous open promoter complex (RPo) as 

described previously (33). The entire 477 kDa complex (Crl-EsS-dps-RPo) was purified by size-

exclusion chromatography (SI Appendix, Figs. S1B, C) and cryo-EM grids were prepared as 

described in Materials and Methods.  

 The structure of the complex was determined by single-particle cryo-EM (Fig. 1B). 

Analysis of the cryo-EM data yielded a single structural class (SI Appendix, Fig. S2) at a nominal 

resolution of 3.3 Å, ranging from 2.8 Å in the well-ordered core of the complex to 6.5 Å at the 

flexible periphery (SI Appendix, Fig. S3). A structural model was built and refined into the cryo-

EM map (Fig. 1B; SI Appendix, Table S2). Initial examination of the cryo-EM structure revealed 

three key features (Fig. 1B): First, expected interactions occurred between σS4 and the -35 

promoter element, which were not observed in a previously determined crystal structure of a σS 

transcription initiation complex due to crystal packing restraints (PDB 5IPL) (33). Second, Crl 

bound σS2 in a manner predicted from the results of previous studies (26, 38) and is located at the 

periphery of the complex near the upstream edge of the transcription bubble. Third, Crl also 

interacted with the RNAP β' subunit. 
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Structural basis for selective activation of σS by Crl. The σS is the closest relative of σ70 in 

terms of sequence, domain architecture, and promoter recognition properties (39). Our structure 

and the EsS-RPo crystal structure (33) revealed the expected structural similarity between 

domains 2, 3, and 4 of σS and σ70 (SI Appendix, Fig. S4). Despite these similarities, Crl 

specifically activates σS. The main difference between σS and σ70 is the non-conserved region 

(NCR) of σ70, a 250 amino acid insertion located between regions 1.2 and 2.1 that is absent in sS 

(SI Appendix, Figs. S4, S5). 

 As previously reported, Crl is small arc-shaped protein with a shallow concave surface 

composed of four antiparallel β-strands and flanked by intervening loops (34, 35). This cavity 

makes extensive electrostatic, polar, and hydrophobic interactions with helix α2 (A73 to R85) of 

σS, which resides within conserved region σS1.2 (3) (SI Appendix, Fig. S4). In σ70, the 

corresponding helix extends to become part of the NCR and would sterically clash with Crl 

binding (26), explaining why Crl selectively binds and activates σS but not σ70.  

 The central role of sS helix α2 confirms previous reports that identified key residues in σS 

for its interaction with Crl. Sty σS R82 is not conserved in Pseudomonas aeruginosa (Pae) sS, 

and Pae σS does not interact with Sty Crl in in vivo bacterial two-hybrid assays unless the 

corresponding amino acid (Leu) is mutated to an arginine (38). Mutations at this site lead to 

bacterial colony morphology changes, which is consistent with the interaction of Crl and σS 

being important for processes like biofilm formation. In our structure, Sty sS R82 is positioned 

towards the central cavity of Crl and forms an extensive network of electrostatic, polar, and 

hydrophobic interactions with Crl-P21, Y22, I23, D36, and C37 (Fig. 2). Our structure also 

validates the importance of other sites in helix α2 like Y78 and F79, which have been substituted 

with benzoyl-L-phenylalanine (BPA) and shown to crosslink to Crl (26). 
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 Adjacent to sS helix α2 is a loop within σS2.3 that also makes significant interactions with 

Crl, in particular sS residues D135 and E137 (Fig. 2). D135 makes favorable electrostatic 

interactions with Crl R51, which is absolutely conserved among Crl homologs (40). Substitutions 

Crl R51A or R51K were totally defective in Crl function in vitro and in vivo (34). D135 and 

E137 of sS, along with P136, have been referred to as the DPE motif (Fig. 2) and is a key 

difference from σ70 (26). In bacterial two-hybrid assays, substitutions in the DPE motif 

significantly decrease the interactions between Crl and σS, and a chimeric s70 mutant containing 

this region of sS can interact with Crl (26). Thus, substitutions that alter either partner of the 

Crl/sS-DPE motif interaction interface highlight the importance of this interaction for Crl 

function.   

 Altogether, the interaction between Crl and σS forms an interfacial area of 785 Å2 (41) 

and is completely consistent with previous analyses of Crl-sS interactions (26, 34, 38, 40). In 

summary, our structure: 1) confirms the sS residues previously proposed to interact with Crl 

based on genetic and biochemical data; 2) identifies additional residues in sS and Crl involved in 

the intermolecular interaction; 3) reveals that 6 out of 11 (55%) of the residues of σs contacting 

Crl are not conserved in σ70 (Fig. 2; SI Appendix Fig. S4); and 4) shows that the NCR of σ70 

would sterically clash with Crl as previously predicted (26) (SI Appendix, Fig. S5), thereby 

explaining the molecular basis of Crl discrimination for regulating σS and not σ70.  

 

Crl tethers σS to core RNAP to help activate transcription. In addition to extensive contacts 

with σS2 (Fig. 2), Crl in the Crl-EσS-dps-RPo structure interacts with a small domain of the 

Eco RNAP b' subunit we call the b'clamp-toe (b'CT; b' residues 144-179; Figs. 1B, 3). A 
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sequence alignment of evolutionarily diverse Crl homologs reveals conservation of basic amino 

acids in the region of Crl that interacts with the b'CT, corresponding to Sty Crl K9, R11, K14, 

and K15 (Fig. 3A). The b'CT is not strictly conserved among bacterial RNAP b' subunits as it is 

the site of lineage-specific-insertions in many bacterial clades, including Deinococcus-Thermus 

and Actinobacteria (42). However, the sequence of the b'CT is conserved among RNAP b' 

sequences from g-proteobacteria, including residues that interact directly with Crl: Eco b'L166, 

as well as two acidic residues, D167 and E170 (Fig. 3A). The a-helix of the b'CT that interacts 

with Crl harbors five conserved acidic residues corresponding to Eco b' E162, E163, D167, 

E170, and E171 (Fig. 3A). The observation that Crl interacts with core RNAP was verified in 

photocrosslinking experiments. Crl crosslinked to β' with BPA substitutions at D167 & F172 but 

not E142 in a σS-dependent manner, consistent with our structure (Figs. 3B, C). 

 These observations suggest that Crl may assist EsS assembly by interacting with sS2 and 

RNAP simultaneously. To test this hypothesis, we investigated Crl function with a mutant RNAP 

in which the entire b'CT was deleted (Db'CT-E) using the quantitative abortive initiation assay 

with the dps promoter. While wt-EsS and Db'CT-EsS had essentially the same transcription 

activity in the absence of Crl, the presence of a saturating concentration of Crl activated wt-EsS 

~5-fold compared to only ~2.3-fold with Db'CT-EsS (Fig. 3D). We conclude that the 

simultaneous interaction of Crl with sS2 and the b'CT helps tether sS to the core RNAP, 

increasing the stability of EsS, accounting for partial, but not full, transcription activation 

function of Crl.      
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Discussion 

Our results provide insights into the mechanisms by which Crl promotes EσS assembly. The Crl-

EσS-dps-RPo cryo-EM structure is consistent with, and expands upon, previous information 

about the interactions of Crl with σS2 (26, 28, 34, 35, 40), and includes an interaction with the 

RNAP β'CT. To our knowledge, this region of core RNAP has not been previously described as 

a binding determinant for transcription factors and may represent a target for other 

uncharacterized transcription factors. Deletion of the β'CT had little effect on basal transcription 

(-Crl) but Crl was unable to fully activate the Δβ'CT-RNAP, suggesting that one mechanism by 

which Crl activates EσS transcription is to stabilize the EσS complex by tethering σS and RNAP. 

This mechanism is consistent with previous studies showing that Crl activation function is most 

pronounced when σS concentrations are low (28, 30). 

The tethering mechanism only accounts for partial Crl activity (Fig. 3D). Our studies do 

not exclude a post-EσS assembly role for Crl in transcription activation, such as facilitating 

promoter melting (RPo formation) or promoter escape. Crl was shown to promote full 

transcription bubble formation at the Sty katN promoter, particularly at 20°C where EsS without 

Crl could only form partially melted intermediates (43). In our structure, Crl does not interact 

with the promoter DNA. However, the σS DPE motif (D135/P136/E137), critical for the Crl-σS 

interaction (Fig. 2), is part of the conserved region 2.3 of σS, comprising a short loop that forms a 

part of the binding pocket for the nontemplate strand -11A, the most conserved position of 

bacterial promoters (44, 45). In fact, the -11A base forms a hydrogen-bond with the α-carbon 

backbone NH of σS D135, the side chain of which interacts with Crl (Fig. 4). Thus, Crl might 

stabilize a conformation of the sS DPE motif that facilitates transcription bubble formation.   
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 Our results suggest Crl exerts direct transcription activation through contacts with the 

β'CT. The β'CT was previously shown to interact with the σ70NCR, which antagonized the σ70-

β'clamp-helices interaction to enhance promoter escape and reduce early elongation pausing 

(46). The roles of Crl in promoter escape and early elongation pausing have not been examined, 

but the similarity in spatial arrangement between Crl and the σ70NCR with respect to the b'CT 

point towards possible analogous roles. Furthermore, the conservation of the β'CT in Crl-

containing g-proteobacteria (Fig. 3A) highlights its mechanistic importance and suggests it might 

be the target of regulation by other transcription factors or play other important roles.   

Previous studies determined crystal structures of EσS bound to a promoter fragment 

(highest resolution of 3.6 Å; 5IPL) containing σ70 consensus -10 and -35 elements (33). These 

structures showed the engagement of EσS with the promoter -10 element and downstream part of 

the promoter, but the upstream promoter -35 element was not bound to σS4 due to exclusion by 

crystal packing. The protein components of our structure align well with this previous structure 

(0.96 rmsd over 2,600 Cα's), and σS2 (σS residues 53-167) aligns with an rmsd of 0.51 Å over 

104 Cα's, indicating that Crl binding does not induce significant conformational changes in σS2 

once EσS is formed. Similarly, Crl in the Crl-EsS-dps-RPo cryo-EM structure aligns with an 

rmsd of 0.8 Å over 113 Ca's with the Crl crystal structure [3RPJ; (34)].  

Our cryo-EM structure contains a dps promoter DNA fragment. The dps promoter is part 

of the σS regulon (36, 47). The dps promoter is transcribed by both Eσ70 and EσS in vitro but 

shows a marked preference for EσS (37). However, our RPo structure does not reveal striking 

differences in promoter DNA interactions comparing s70 and σS, which suggests that differences 

in promoter preference may not be simply due to σ-promoter interactions in the final RPo, but to 

differences in the kinetics of RPo formation. Since Crl is induced at low temperatures, it would 

certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprint (which was notthis version posted August 6, 2019. ; https://doi.org/10.1101/726851doi: bioRxiv preprint 

https://doi.org/10.1101/726851


 14 

be interesting to determine if activation by Crl has more mechanistic functional importance for 

transcription initiation at low temperature where promoter melting by RNAP is inhibited (27, 

43).  

 Transcription activators Crl, GcrA, GrgA, and RbpA interact with domain 2 and/or the 

NCR of σ factors and represent an emerging paradigm in bacterial transcription regulation (48-

51). Crl plays a unique role as it specifically activates transcription of σS-dependent genes, which 

bacteria express in order to respond to changes in their environment. We propose that Crl be 

termed a s-activator, which may represent a class of factors with similar function. We note that 

mycobacterial RbpA has been shown to tether σA to core RNAP via the b’ Zinc binding domain 

(52). It remains to be seen whether GcrA or GrgA interact with RNAP to tether the s factors 

they regulate.  

 

Materials and Methods 

Detailed descriptions of the purification of Sty Crl, Sty sS, Eco DaCTD-RNAP, construction and 

purification of the Eco Db'CT-RNAP, transcription assays, preparation of Crl-sS-dps-RPo for 

cryo-EM, cryo-EM grid preparation, cryo-EM data acquisition and processing, model building 

and refinement, and benzoyl-L-phenylalanine crosslinking, are provided in SI Appendix.  
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Fig. 1. Cryo-EM structure of Crl-EsS-dps-RPo. 

(A) Sty Crl with Sty sS activates transcription by Eco RNAP on the Eco dps promoter.  
top. In vitro abortive initiation of RNA trinucleotide synthesis using a dps promoter template. 
Transcription was initiated with GpU RNA dinucleotide and a-32P-UTP. The radioactive 
GpUpU product was visualized by denaturing polyacrylamide gel electrophoresis and 
autoradiography. 

bottom. Plotted is RNA trinucleotide synthesis with Crl (+Crl) relative to no Crl (-Crl). The error 
bars denote standard deviation of three measurements. 

 (C) The 3.3 Å nominal resolution cryo-EM density map of Crl-EsS-dps-RPo is rendered as a 
transparent surface and colored as labeled. The map is low-pass filtered according to the local 
resolution (53). Superimposed is the final refined model. The proteins are shown as backbone 
ribbons, and the nucleic acids are shown in stick format. 
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Fig. 2. Crl-sS2 interactions. 

top left. The overall structure of Crl-EsS-dps-RPo. Proteins are shown as molecular surfaces with 
subunits colored as labeled. The DNA is shown as Corey-Pauling-Koltun (CPK) spheres and 
colored according to Fig. 1B. The circled region is magnified below. 

bottom right. Crl-sS2 interactions. Crl (green) and sS2 (orange) are shown as backbone worms. 
Residues that interact are shown in stick format. Polar interactions are denoted by dashed gray 
lines. 
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Fig. 3. The Crl-b'CT interaction. 

(A) The overall structure of Crl-EsS-dps-RPo. Proteins are shown as molecular surfaces with 
subunits colored as labeled, except Crl and the b'CT are colored according to electrostatic 
surface potential (red -3kT; blue, +3kT) (54). The DNA is shown as CPK spheres and colored 
according to Fig. 1B. On the right are shown sequence logos (55) for the regions of Crl (top) and 
the b'CT (bottom) that interact with each other. Residues that directly interact are denoted by a 
green '*' above. The rectangle denotes a region of the structure magnified in (B). The sequence 
logos were derived from sequence alignments of Crl and the RNAP b' subunit from the same 51 
evolutionarily diverse g-proteobacteria (56).  

(B) Magnified view from (A) focusing on Crl (green) - b'CT (pink) interaction.  

(C) SDS-PAGE gel showing effect of UV exposure on RNAP core with b' BPA substitutions 
incubated with 32P-Crl. Crosslinked complexes and free 32P-Crl are indicated. RNAP b' BPA 
substitutions at residues 167 and 172 crosslink to Crl [magenta in (B)]; BPA substitution at 142 
[red in (B)] does not crosslink to Crl.  

(D) The b'CT is required for full Crl activation. Plotted is RNA trinucleotide synthesis without 
Crl (-, white bars) or with Crl (+, black bars) for wt-EsS or Db'CT-EsS. The values are 
normalized with respect to wt-EsS(-Crl). The error bars denote standard deviation of three 
measurements. 
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Fig. 4. Crl interacts with sS residues involved in non-template strand -11A capture. 

top left. The overall structure of Crl-EsS-dps-RPo. Proteins are shown as molecular surfaces with 
subunits colored as labeled. The DNA is shown as CPK spheres and colored according to 
Fig. 1B. The boxed region is magnified below. 

bottom right. Crl (light green) and sS2 (light orange) are shown as backbone worms. The 
promoter DNA is shown in stick format. The side chains of Crl-R51 (green) and sS-D135 
(orange) are also shown in stick format. The side chain and backbone amide of sS-D135 make 
simultaneous polar interactions with Crl-R51 and -11A(nt), respectively (denoted by dashed gray 
lines). 
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