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Abstract 10 

When populations of a rare species are small, isolated and declining under climate change, some 11 

populations may become locally maladapted. Detecting this maladaptation may allow effective 12 

rapid conservation interventions, even if based on incomplete knowledge. Population 13 

maladaptation may be estimated by finding genome-environment associations (GEA) between 14 

allele frequencies and environmental variables across a local species range, and identifying 15 

populations whose allele frequencies do not fit with these trends. We can then design assisted 16 

gene flow strategies for maladapted populations, to adjust their allele frequencies, entailing 17 

lower levels of intervention than with undirected conservation action. Here, we investigate this 18 

strategy in Scottish populations of the montane plant dwarf birch (Betula nana). In genome-19 

wide single nucleotide polymorphism (SNP) data we found 267 significant associations 20 

between SNP loci and environmental variables. We ranked populations by maladaptation 21 

estimated using allele frequency deviation from the general trends at these loci; this gave a 22 

different prioritization for conservation action than the Shapely Index, which seeks to preserve 23 

rare neutral variation. Populations estimated to be maladapted in their allele frequencies at loci 24 

associated with annual mean temperature were found to have reduced catkin production. Using 25 
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an environmental niche modelling (ENM) approach, we found annual mean temperature 26 

(35%), and mean diurnal range (15%), to be important predictors of the dwarf birch 27 

distribution. Intriguingly, there was a significant correlation between the number of loci 28 

associated with each environmental variable in the GEA, and the importance of that variable in 29 

the ENM. Together, these results suggest that the same environmental variables determine both 30 

adaptive genetic variation and species range in Scottish dwarf birch. We suggest an 31 

assisted gene flow strategy that aims to maximize the local adaptation of dwarf birch 32 

populations under climate change by matching allele frequencies to current and future 33 

environments. 34 

Keywords  35 

Landscape genomics, conservation genetics, environmental association analysis, evolutionary 36 

conservation, adaptive potential, climate change, assisted gene flow, provenance matching. 37 
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Introduction 46 

Climate change is predicted to become a major driver of global biodiversity loss (Bellard et al., 47 

2012; Urban, 2015).  Species that lack relevant phenotypic plasticity (Gratani, 2014; Nicotra et 48 

al., 2010) may survive environmental changes by dispersing to new locations, consequently 49 

tracking conditions they are currently adapted to (Aitken et al. 2008; Meier et al. 2012), or 50 

remaining in the same location and rapidly evolving adaptation to their new environments from 51 

standing genetic variation or gene flow (Aitken et al., 2008; Alberto et al., 2013). Migration in 52 

response to rapid climate change may be particularly difficult for plants (Corlett and Westcott, 53 

2013; Hampe and Petit, 2005; Zhu et al., 2012). In some cases plants lack the dispersal ability 54 

to keep pace with accelerated climate shifts (Loarie et al., 2009), there is an absence of potential 55 

habitat at higher latitudes (McKenney et al., 2007) and altitudes (Engler et al., 2011), or suitable 56 

new habitats may be separated by too large distances (Meier et al., 2012). In these cases, 57 

conservation managers aiming to prevent extinction of species or populations face a choice 58 

between relying on in situ evolution to track the environmental change, or attempting 59 

conservation interventions such as assisted migration or assisted gene flow that seeks to 60 

enable, facilitate or accelerate adaptation.  61 

To evaluate whether interventions are appropriate, a first step is understanding current local 62 

adaptation and the potential for adaptation to future environments (Davis et al., 2005; 63 

Hoffmann et al., 2017; Funk et al 2019). The classical way to identify local adaptation is via 64 

reciprocal transplant experiments (Kawecki and Ebert, 2004; Leimu and Fischer, 2008; Pardo-65 

Diaz et al., 2015). However, this approach is often unfeasible for wild organisms with long 66 

generation times in need of urgent conservation, meaning that more rapid approaches using 67 

genomics are desirable (Williams et al., 2008).  68 

Genotype-environment association (GEA; also referred to as environmental association 69 

analysis, EAA) methods are increasingly used to identify loci involved in local adaptation 70 

(Abebe et al., 2015; Ahrens et al., 2018; Bay et al., 2017; Coop et al., 2010; Flanagan et al., 2018; 71 
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Günther and Coop, 2013; Rellstab et al., 2015; Funk et al 2019). These approaches detect 72 

replicated signatures of selection (SNPs that deviate strongly from estimated neutral 73 

population structure) across many independent populations. Thus far the majority of studies 74 

to apply GEA in tree species have been targeted at candidate genes, and surveyed fewer than 75 

350 loci (Keller et al., 2012; Nadeau et al., 2016; Rellstab et al., 2016; Wang et al., 2016). 76 

Building on the assumption that GEA captures an important component of locally adaptive 77 

allelic variation, especially if based on genome-wide markers, we may extend it to rapidly assess 78 

local adaptation and adaptive potential within populations. The principal of this approach is the 79 

detection of discordance between genotype and environment, in certain populations, as an 80 

indicator of reduced local adaptation and vulnerability to  future demographic decline (Alberto 81 

et al., 2013). In a previous study, Rellstab et al. (2016) developed a model to estimate the 82 

average change in allele frequency at environmentally-associated loci that would be required 83 

to respond to projected future environmental conditions. They based this estimate on the allele 84 

frequency changes that would maintain the present-day associations between genotype and 85 

environment and term this mismatch, the risk of non-adaptedness (RONA). For clarity we term 86 

this ‘future risk of non-adaptedness’ (f-RONA) and comment that rather than a ‘risk’ this is a 87 

forecast, but for consistency we maintain the same terminology in this manuscript. This 88 

approach to estimating adaptation has many simplifying assumptions. Environmental variation 89 

in nature is complex, as are the mechanisms by which organisms adapt to them, but as Funk et 90 

al (2019) argue, any available evidence may improve conservation decision making.  91 

Here, we extend the work of Rellstab et al. (2016) to explicitly define c-RONA, the ‘current risk 92 

of non-adaptedness’, that is the average change in allele frequency at climate-associated loci 93 

required to match our estimate of the optimum for current climatic conditions (for a given 94 

environmental factor). Current risks are likely to be particularly important for species that are 95 

already declining due to climate change, and have small isolated populations. Furthermore, we 96 
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extend the univariate RONA model to a multi-locus analysis of genome-wide markers, and use 97 

best linear unbiased prediction (BLUP) to improve our estimate of the effect of each allele. 98 

In populations where c-RONA is high, local genotypes would not match local environmental 99 

variables as expected. Therefore, a possible management intervention is to use assisted gene 100 

flow (AGF) to introduce more appropriate alleles or adjust population allele frequencies. Here, 101 

AGF is defined as the managed movement of individuals or gametes between populations, from 102 

source populations that have been selected with the aim of accelerating adaptation, so that it is 103 

faster than would occur by passive natural dispersal alone (Aitken and Whitlock, 2013). This 104 

AGF strategy could be used to inform sourcing of seed stock for reforestation programs 105 

(Boshier et al., 2015) and mitigate maladaptation to future climate (Aitken and Bemmels, 2016; 106 

Havens et al., 2015; Jin et al., 2016). Importantly, only modest translocation of genotypes may 107 

enhance adaptation by introducing genetic variation upon which selection can act to further 108 

refine local allele frequencies (Bay et al., 2017; Pavlova et al., 2017). Conversely such 109 

interventions could have negative effects (i.e. outbreeding depression) if they cause gene flow 110 

between populations with undetected adaptive differentiation (Frankham et al., 2011; Pavlova 111 

et al., 2017). We note that where target populations are small, maladapted and dominated by 112 

drift, Assisted Gene Flow is equivalent to Genetic Rescue (see Aitken and Whitlock (2013) for a 113 

detailed review). 114 

If AGF is to be effective, there must be appropriate populations from which to source migrants. 115 

Such populations might be found towards the species’ retreating range edge or other locations 116 

where environmental conditions are closer to those anticipated in the future (Olson et al., 117 

2013). To design a sampling strategy that encompasses both environmental gradients and 118 

declining range edge populations threatened by environmental change, we can use 119 

environmental niche models (ENMs) (Maguire et al., 2015). ENMs project the distribution of 120 

species’ ranges under current and future climate scenarios based on observation data and can 121 

guide effective sampling (Elith and Leathwick, 2009). ENMs are also an established tool for 122 
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conservation practitioners seeking to understand major climatic selection pressures and 123 

projected range shifts for threatened species, but often lack integration and comparison with 124 

genomic assays of local adaptation (Hällfors et al., 2015; Razgour et al., 2019).  125 

Here, we conduct GEA and ENM analysis of wild populations of dwarf birch (Betula nana), for 126 

which we have field observation and genome-wide population genetic data. In the UK, dwarf 127 

birch is a nationally scarce montane tree that has experienced an accelerated decline in recent 128 

decades, likely due to the combined impact of anthropogenic climate change and moorland 129 

management that permits over-browsing and burning (Aston, 1984; Borrell et al., 2018; Wang 130 

et al., 2014; Zohren et al., 2016). Dwarf birch, like many tree species, is the focus of a 131 

conservation program to restore populations, delimit management units and prioritise the 132 

protection of important genetic diversity (Koskela et al., 2013). Germplasm collection from 133 

central Scottish Highland populations is already underway for reintroduction to other parts of 134 

the species former range (pers. obs. J Borrell). Previous research by our group has found that 135 

despite extensive fragmentation, most populations of dwarf birch in the UK contain diversity 136 

comparable to that of large, unfragmented Scandinavian populations (Borrell et al., 2018). 137 

Nevertheless, we concluded that this diversity has become increasingly partitioned among 138 

populations. In other words, much of the adaptive diversity in dwarf birch is still extant in the 139 

UK, but due to restricted gene flow and dispersal, marginal populations may be maladapted due 140 

to a failure to track environmental change, or by drift of adaptive alleles away from their 141 

optimum frequency. There is limited potential for naturally occurring gene flow to enhance 142 

future adaptation in many populations.  143 

In species subject to conservation management such as dwarf birch, evolutionary processes 144 

have sometimes been overlooked, despite the importance of adaptation to species persistence 145 

(Eizaguirre and Baltazar-Soares, 2014; Fitzpatrick and Keller, 2015). Therefore the adaptive 146 

potential of populations may be underrepresented in conservation prioritization strategies 147 

(Funk et al., 2019; Harrisson et al., 2014). For example, where genetic diversity information is 148 
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available to conservationists, metrics that score populations on neutral genetic distinctiveness, 149 

such as the Shapley Index are often used (Haake et al., 2007; Isaac et al., 2007; Volkmann et al., 150 

2014). However there is no guarantee that neutral and adaptive diversity will be correlated 151 

(Bonin et al., 2007), and indeed approaches designed solely to promote or conserve neutral 152 

diversity may be harmful (Reed and Frankham, 2003; Weeks et al., 2016). Therefore evaluating 153 

adaptive diversity, rather than using more established metrics of genetic diversity should 154 

improve the prioritisation decisions in species management, though see Kardos and Shafer, 155 

(2018) for potential pitfalls. 156 

To explore potential management strategies for dwarf birch, that takes into account local 157 

adaptation and evolutionary potential, we first characterise the species’ range using ENMs 158 

under present and projected future climate scenarios. We evaluate these ENMs by assessing 159 

whether populations on the margins of the inferred distribution had lower scores for 160 

phenotypic and fitness proxies for local adaptation. Second, we use GEA to survey putative 161 

adaptive loci across the species’ range and estimate c-RONA to identify populations with a 162 

discordance between genotype and environment. The combined ENM and GEA data present an 163 

opportunity to test the hypothesis that limiting environmental variables (which have higher 164 

discriminatory power in an ENM) have more genomic loci associated with them in GEA, perhaps 165 

as a result of stronger selection for adaptation (an alternative would be that certain variables 166 

limit species’ ranges precisely because they lack genetic adaptation). We provide preliminary 167 

evidence in support of this hypothesis in dwarf birch. Third, we evaluate our estimates of non-168 

adaptedness (c-RONA) of dwarf birch populations against the Shapley Index, an existing 169 

conservation prioritization most often applied to neutral markers. Finally, we illustrate a 170 

strategy of AGF to maximize adaptive genetic diversity and hence sustain the adaptive potential 171 

of British dwarf birch populations. We discuss the advantages and limitations of this approach 172 

in the context of managing dwarf birch and other plants exposed to rapid environmental 173 

change. 174 
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Methods 175 

Environmental niche modelling 176 

To determine the environmental variables influencing the present and future distribution of 177 

dwarf birch in the UK, we developed an ENM based on 763 resampled fine-scale (≤1 km) 178 

records from the period 1960-present. Records were sourced from national databases, 179 

conservation partners and fieldwork observations (see Borrell et al. 2018). Nineteen 180 

bioclimatic layers were obtained from the WorldClim database (www.worldclim.org) at 1km 181 

resolution (Hijmans et al., 2005), for the period 1960-1990, including 11 temperature and eight 182 

precipitation derived variables reflecting annual trends, seasonality and limiting 183 

environmental factors. High resolution elevation data was used to compute slope and aspect 184 

terrain characteristics using the Raster package (Hijmans & Etten, 2012) in R software (R 185 

Development Core Team, 2014). These variables are indicators of soil moisture, erosion, wind 186 

and solar radiation (Hoersch et al., 2002). To avoid overfitting, we removed multiple highly 187 

correlated variables (correlation coefficient >0.7), retaining 10 for analysis (preferring less 188 

derived, e.g. Annual Mean Temperature, rather than Monthly or Quarterly values) (Table 1, 189 

Figure S1). Elevation was excluded due to its high correlation with temperature (Parolo et al., 190 

2008).  Temperature was retained because it captures the projected change in climate change 191 

models, whilst elevation does not. All retained variables were standardized to a mean of zero 192 

and unit variance. Eight further datasets consisting of the same retained variables were 193 

generated under four representative concentration pathways (RCP) defined by the 194 

Intergovernmental Panel on Climate Change Fifth Assessment (IPCC, 2014a) at each of two 195 

future time points (2045-65 and 2081-2100). These projections allow estimation of future 196 

temperature and precipitation values across the study area derived from the Community 197 

Climate System Model (Gent et al., 2011) (Table S1). 198 

The ENMs were generated using MaxEnt (Phillips et al., 2006) within the dismo package 199 

(Hijmans et al., 2011). We performed 50 randomly subsampled replicate runs with 25% of 200 
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observations retained for cross-validation. Models were further evaluated using a binomial test 201 

of omission rate and Area Under the Receiver Operating Characteristic Curve (AUC). A species 202 

occurrence threshold to assess changes in occupied area was defined by ‘maximum training 203 

sensitivity plus specificity’, which optimizes the trade-off between commission and omission 204 

errors (Liu et al., 2016). Rank and percentage contribution of environmental variables is 205 

reported here, as these have been demonstrated to capture biologically important factors 206 

(Searcy & Shaffer, 2016). 207 

Phenotypic data and habitat suitability projections 208 

We identified 29 dwarf birch populations that encompass the extant UK range (Table 2, Figure 209 

S2). To test the performance of our ENM, we collected extensive phenotypic measurements of 210 

traits related to reproductive output and fitness in 20-30 individuals per population in June-211 

August 2013. These included: the number of male and female catkins, plant area, plant height 212 

and diameter of the largest stem. Cambial tissue samples were retained for genetic analysis. A 213 

subset of 18 populations was also tested for seed viability in germination experiments, a fitness 214 

proxy relevant to population persistence (Alsos et al., 2003). Seed were collected in late 215 

summer, over-wintered at 4°C then kept in moist conditions at 18-20°C with a 14h photoperiod 216 

for 60 days the following spring . For nine of these populations, 100-day survival of seedlings 217 

during the following Spring was measured (See Supplementary Materials for details).  218 

To assess change in habitat quality across the study area, we first plotted the ENM derived 219 

habitat suitability index (HSI) estimates for all populations under current and future conditions. 220 

Second, ENM performance was assessed using a generalized linear model with a quasipoisson 221 

error distribution to test for a relationship between present time HSI estimates and mean 222 

population catkin counts. We also tested for a relationship between HSI (explanatory variable) 223 

and mean germination rates (response variable) using a quasibinomial error distribution. Here 224 
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we are explicitly testing the hypothesis that plants displayed greater reproductive output in 225 

locations with a higher ENM derived HSI.  226 

RAD sequencing 227 

The genetic samples used in this study are a subset of those described in (Borrell et al., 2018). 228 

Briefly, DNA was extracted from 130 individuals (Table 2) and submitted to Floragenex 229 

(Oregon, USA) for 100bp single-end RAD sequencing with the enzyme PstI. Raw reads were 230 

filtered using Stacks v1.35 (Catchen et al., 2013) and aligned to the dwarf birch genome, 231 

retaining only reads that align uniquely (Wang et al., 2013) using Bowtie2 (Langmead and 232 

Salzberg, 2012) and the ref_map.pl pipeline. SNPs were called with a minimum depth of 5, the 233 

bounded model and a minimum log likelihood of -20, with corrections made using rxstacks. 234 

Finally, we filtered for loci present in ≥8 populations, and a minor allele frequency >0.05.  235 

Genomic signatures of local adaptation 236 

We first used BayeScan (Foll and Gaggiotti, 2008) to compare allele frequency differences 237 

among populations and identify FST outlier loci. Analysis was performed with 50,000 iterations 238 

thinned every 10, with 20 pilot runs, a burn-in of 50,000 iterations and other parameters at 239 

default. Whilst FST outliers are candidate loci of adaptation, they can also emerge because of 240 

selection due to deleterious alleles, hybrid zones and historical demography (Bierne et al., 241 

2013). Thus, we use relaxed BayeScan parameters to screen outlier loci prior to GEA analysis 242 

in Bayenv2 (Günther and Coop, 2013).  243 

Bayenv2 incorporates neutral genetic structure using a covariance matrix based on neutral 244 

markers and attempts to identify correlations between outliers and environmental gradients, 245 

potentially reducing false positives (De Mita et al., 2013).  Based on recommendations in 246 

François et al. (2016), to further minimize false positives we initially excluded loci detected in 247 

BayeScan to compute a null covariance matrix of relatedness between populations, over 248 

100,000 iterations and five independent runs. We then tested all loci (including those initially 249 
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identified by BayeScan) under an alternative model where allele frequencies are determined by 250 

a combination of the covariance matrix and an environmental variable. We performed our 251 

analysis independently across all environmental variables, with the expectation that correlated 252 

predictors would return subsets of the same markers. The posterior probability that a locus is 253 

under selection, across each independent environmental variable was assessed using Bayes 254 

factors (BF), with log10 posterior odds ratio values >1 defined as strong support (Jeffery, 1961). 255 

We averaged BFs over independent runs as recommended by Blair et al. (2014), and following 256 

Günther & Coop (2013) we retained loci as good candidates if, in addition to a high BF, they also 257 

fell in the top 10% of Spearman correlation coefficient values, to further reduce false positives.  258 

For comparison, we also independently tested for signatures of local adaptation using 259 

Redundancy Analysis (RDA) (Forester et al., 2018; Rellstab et al., 2015), (see Supplementary 260 

Materials) though we consider only the candidates identified using Bayenv2 in subsequent 261 

analyses. 262 

Gene expression 263 

To provide an additional line of evidence on the activity of our candidate adaptive loci, we 264 

extracted up to 10,000bp flanking each side of the candidate locus from the B. nana reference 265 

genome and searched for these sequences in an RNA expression database using dwarf birch 266 

tissues derived from our genome reference plant under glasshouse conditions (Wang et al., 267 

2013). Briefly, RNA was extracted from fresh dwarf birch leaves and flowers using a modified 268 

RNAeasy Plant Mini Kit (Qiagen, Hilden, Germany), incorporating additional CTAB and phenol-269 

chloroform steps to generate 100bp paired-end reads with an average insert size of 280bp (for 270 

full methods see Zohren, 2016). These were mapped to the reference genome using Trinity 271 

software (Grabherr et al., 2013). 272 

Maladaptation under present and future conditions 273 
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We carried out RONA analysis on the nine standardized environmental variables that were 274 

associated with six or more candidate loci, allocating each locus to the single environmental 275 

variable with the largest Bayes factor (thereby avoiding double-counting a locus in the c/f-276 

RONA calculations below). We estimated the vector of effect sizes, β, in which each row 277 

corresponds to a locus, using R package rrBLUP (Endelman 2011).  In this analysis, the vector 278 

of allele frequencies f for each population was used as the predictor of the environment in that 279 

location. The sum of fβ gives an estimate of the environment (the value of the environmental 280 

variable) to which the population would be best adapted.  The residual deviation of the 281 

observed value from this expectation is a measure of the deviation from the optimum 282 

environment for that population (c-RONA), and is proportional to the change in allele frequency 283 

that would be required to match the population to its local environment (weighted by β).  This 284 

measure is therefore analogous to those employed by Rellstab et al. (2016) and Pina-Martins et 285 

al. (2018), which quantify the mismatch between genotypes and environment in terms of allele 286 

frequencies. We combined information across variables by calculating the mean of the absolute 287 

residuals. Similarly, we could calculate the difference from the projected values of the 288 

environmental values under each climate change scenario to estimate f-RONA (Figure 2).  289 

Conservation prioritization 290 

We compared the magnitude of c-RONA across dwarf birch populations with the Shapley index 291 

(Haake et al., 2007). The Shapley index prioritizes populations based on evolutionary isolation 292 

and contribution to overall diversity based on pairwise differentiation. Several similar metrics 293 

are widely used for conservation management (Collen et al., 2011; Gumbs et al., 2018; Jetz et 294 

al., 2014). Here, we used the method outlined in Volkmann et al. (2014), which maximizes 295 

within-species genetic diversity using a network approach implemented in NeighborNet 296 

(Bryant and Moulton, 2004; Huson and Bryant, 2006). We used linear regression to test for a 297 

relationship between absolute c-RONA values and the Shapley index for neutral and adaptive 298 

loci.  299 
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Simulated assisted gene flow 300 

For each environmental variable, and for each population in the study, we identified the 301 

population most appropriate for AGF based on the match between the local environment and 302 

the sum of fβ. Where several suitable populations were identified within the confidence interval 303 

of our regression, we selected the location geographically closest to the recipient population, 304 

since there could be local adaptation to undetected environmental variables (cf. Boshier et al. 305 

2015).  306 

Method validation and ENM-GEA comparison 307 

To validate our model we tested the hypothesis that higher c-RONA values would be associated 308 

with the reduced performance of fitness proxies. Therefore we tested for a correlation between 309 

population c-RONA values for each environmental variable or their interactions and the 310 

response of i) square root transformed catkin counts and ii) germination rate across study 311 

populations. Finally, we tested for a correlation between the relative importance of 312 

environmental variables identified in our ENM and the number of GEA loci associated with each 313 

variable. 314 

Results 315 

Environmental niche models 316 

The dwarf birch ENM was well parameterized with high mean test AUC (0.946 ±0.008) and a 317 

low mean test omission rate (0.09, p<0.001) at a logistic threshold of occurrence of 0.193. Four 318 

variables together contributed >85% to the predictive model performance including annual 319 

mean temperature (34.9%) and maximum temperature of the warmest month (22.1%) (Table 320 

1). The resulting model is highly concordant with qualitative field observations and inspection 321 

of variable curves showed biologically plausible responses (Figure S3). Future projections show 322 

significant declines across the species’ range with persistent populations restricted to areas of 323 
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higher elevation (Figures 1, S4). Excluding other anthropogenic pressures, under the most 324 

severe scenario (RCP8.5, 2081-2100), suitable habitat may be reduced to ~1% of the current 325 

extent (Table S2).  326 

Phenotypic data and habitat suitability 327 

Phenotypic data means are reported in Table S3. Germination success was assayed in 190 328 

individuals, and averaged 7.6% for both years with 6.1% 100-day survival (i.e. 80% of those 329 

that germinated) with substantial variation among populations (Table S4). A single large outlier 330 

individual (Emblehope) produced an exceptionally large number of catkins strongly biasing 331 

results, thus was excluded from subsequent analysis. Present time habitat suitability index 332 

(HSI) estimates for dwarf birch ranged from 0.0006 to 0.81 (Table 2), with substantial declines 333 

under all future scenarios (Figure S4). We found a significant non-linear positive relationship 334 

between HSI and mean population catkin count (F1,26=7.50, P=0.011) as well as HSI and the 335 

proportion of seeds that germinated (F1,16=9.52, P=0.007) (Figure 1).  336 

RAD Sequencing and genotype-environment associations 337 

After quality control, RAD sequencing produced 173,460,998 reads, of which 79.1% aligned to 338 

the B. nana genome. Subsequently 73.2% of aligned reads mapped to a single unique position. 339 

Three samples were excluded due to low coverage. After filtering we retained 14,889 SNPs over 340 

8,727 contigs. These contigs together cover approximately a third of the dwarf birch genome 341 

assembly.  Bayescan identified 382 putative outlier SNPs with a relaxed false discovery rate of 342 

0.2 which were excluded during the generation of the Bayenv2 null covariance matrix. 343 

Subsequent GEA analysis detected 267 highly significant locus-environment associations, 344 

encompassing 303 SNPs (Table S5), with a single SNP from each locus retained for subsequent 345 

analysis. The most frequent associations were between mean diurnal range and 71 loci, and 346 

annual mean temperature and 64 loci, whereas variables such as temperature seasonality and 347 

mean temperature of driest or wettest quarters had comparatively few associated loci. Just six 348 
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loci were in common between Bayescan and Bayenv2 detection methods, and Bayescan 349 

candidate loci did not report significantly higher BF scores compared to the dataset as a whole. 350 

A comparison between bayenv2 and RDA found highly significant correlation (R2 = 071, F1,6 = 351 

14.76, p = 0.008) between methods, in the number of genotype-environment associations 352 

identified for each environmental variable (Table S6, Figure S5) suggesting that both methods 353 

are identifying a similar genomic pattern of adaptation. 354 

Expression of putative adaptive loci 355 

The 267 loci mapped to 185 unique scaffolds in our reference genome. Based on RNAseq data, 356 

35 candidate regions showed evidence of gene expression in flower tissue (19%), 15 showed 357 

gene expression in leaf tissue (8%) and 13 showed gene expression in both (7%). In comparison 358 

to the overall SNP dataset, we found that both flower (X2=23.14, p<0.001) and leaf (X2=8.59, 359 

p=0.003) expressed sequences are significantly over-represented among putatively adaptive 360 

loci. 361 

Potential for adaptation and conservation prioritization 362 

The c-RONA based on environmentally associated SNPs under present climate varied from 0.07 363 

(SE ±0.06) at Glen Cannich, to 0.39 (±0.24) at Beinn Enaiglair on the Western periphery of the 364 

species range (Table 2, S7). BLUP estimates for all variables are presented in Figure S6. Under 365 

future climate scenarios mean population f-RONA was greater than c-RONA increasing from 366 

0.22 (±0.10) to a maximum of 0.27 (±0.11) under scenario RCP8.5 (Table S8), with substantial 367 

variation across populations and projections. We found positive correlation between c-RONA 368 

and the Shapley Index for neutral genetic diversity (R2=0.2, F1,24=5.895, p=0.023), despite a 369 

number of outliers as shown by the low correlation coefficient, but no such pattern for putative 370 

adaptive genetic diversity (R2=0.00, F1,24=0.003, p=0.983) (Figure 3). The Shapley Index for 371 

neutral diversity also strongly favoured a small number of relict and range edge populations 372 

dominated by drift (e.g. BG, SA, see Borrell et al., 2018) whereas for adaptive diversity, the range 373 
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of values was narrower suggested more even support across populations. Therefore, the 374 

Shapley Index and our metric for maladaptation (c-RONA) provide very different ranking for 375 

conservation value (Table 2). A consensus ranking of populations is provided in Table S9.  376 

Simulating assisted gene flow 377 

For each population across each environmental variable we identified the geographically 378 

closest ‘donor’ population with an allele frequency that would reduce c-RONA (within 379 

confidence limits) at the ‘recipient’ site (Figure 4, S7). This strategy proposes a pattern of 380 

dispersal from the centre of the distribution towards the periphery, particularly at the Southern 381 

range edge, though there are exceptions such as transfer from the Northern to Southern range 382 

edge (e.g. MTColdQ, Figure S7). In some cases, the analysis does not indicate the need for AGF 383 

in particular populations, such as those at the centre of the species distribution which appear 384 

to be well matched to their environment (i.e. locally adapted). 385 

Method validation and ENM-GEA comparison 386 

If c-RONA values do indeed quantify the degree of maladaptation, they should be negatively 387 

correlated with independent measurements of population fitness. The c-RONA values for 388 

annual mean temperature (AMTemp) were significantly negatively correlated with mean 389 

population catkin counts (F1,23=5.84, p=0.025) (Figure 5A) (we found a similar relationship for 390 

c-RONA averaged across all environmental variables, data not shown). The interaction of c-391 

RONA for Annual Mean Temperature and Mean Diurnal Range correlated with germination rate 392 

(F11,14=8.07 , p=0.004). Finally, in a comparison of ENM and GEA methods, we found a significant 393 

correlation between the number of genotype-environment associations and the percentage 394 

contribution of environmental variables defining species range in our ENM (F1,8 = 7.28, p = 395 

0.027) (Figure 5B). 396 

Discussion 397 
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Environmental niche modelling projects that the decline of dwarf birch across the UK is likely 398 

to continue and become increasingly severe, with almost total range loss possible by the end of 399 

the century under the highest emission scenarios. We found that catkin production and seed 400 

germination are positively correlated with ENM projections of habitat suitability. This suggests 401 

lower reproductive fitness of plants in populations with lower habitat suitability index. We 402 

cannot fully exclude the possibility that low seed germination rates are partly due to high 403 

dormancy, but it is not obvious that dormancy would increase fitness unless it was a bet-404 

hedging strategy for a plant in a poor environment. Temperature was particularly important to 405 

our ENM projections, and previous work has shown reduced production of germinable seeds 406 

by dwarf birch in warmer climates (Alsos et al. 2003). In future, an overall decline in habitat 407 

suitability across the species’ British range is likely to further reduce reproductive fitness and 408 

subsequent population persistence.  409 

Genome-wide analysis identified 267 significant genotype-environment associations (0.018 of 410 

loci surveyed) across 24 environmental variables, which is consistent with the number of 411 

associations identified in similar studies (Abebe et al. 2015; Manthey and Moyle 2015; reviewed 412 

in Ahrens et al. 2018).  These loci were significantly more commonly found within 10kb of a 413 

gene annotated on our reference genome sequence with cDNA evidence for expression than 414 

were SNP loci that were not identified as candidates, increasing our confidence that candidate 415 

loci could be involved in phenotypic traits. 416 

We observe that of the four environmental variables that contribute substantially to the dwarf 417 

birch ENM (Table 1) three of these also account for the largest number of associated loci in the 418 

genotype-environment analysis (GEA) (Table 1, Table S5). Therefore, in a comparison of the 419 

two methods, we find significant agreement between ENM and GEA results in identifying 420 

important environmental variables (Figure 5B). It is not a logical necessity for environmental 421 

variables with the largest effects on species range limits to show the strongest correlation with 422 

allele frequencies. However, it is an interesting finding that suggests that we have identified 423 
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biologically relevant environmental variables that influence both distribution and local 424 

adaptation of dwarf birch. It would be valuable to test for this pattern in other species, in the 425 

context of genetic models of species range limits (Polechová, 2018; Polechová and Barton, 426 

2015).  427 

We surveyed the allele frequencies of these GEA loci across populations to estimate c-RONA. As 428 

expected, we find the populations which we have identified as having a poor match between 429 

genotype and environment (high c-RONA) are particularly small or isolated, and those on the 430 

margins of the species’ niche. This result is consistent with reconstruction of demographic 431 

history and genetic differentiation by Borrell et al. (2018), who inferred that several of these 432 

small and isolated populations have been subject to severe genetic drift.  We also found some 433 

of our c-RONA estimates or their interaction to correlate with catkin production and seed 434 

germination rates. This suggests low fitness due to maladaptation. We cannot exclude the 435 

possibility that reduced reproductive success could be an adaptive response to a poorer 436 

environment, but given the short timescales involved this seems unlikely. 437 

Based on our inference that that populations with low c-RONA are more locally adapted, we 438 

then performed a comparison between c-RONA and the Shapley Index based on neutral 439 

diversity. We find that populations with the highest inferred conservation value (highest 440 

Shapley score for neutral loci) were also those with the greatest deviation from optimum allele 441 

frequencies (highest c-RONA) (Table 2, Figure 3). This implies that it may be inappropriate to 442 

use the Shapley Index (and by extension, other similar metrics) based solely on neutral 443 

diversity for conservation prioritization, since this strategy would inadvertently favour poorly 444 

adapted populations that display a high degree of unique variation – in the case of dwarf birch, 445 

this is most likely due to genetic drift. Instead, we propose a conservation framework where 446 

populations with a low c-RONA and high Shapley Index based instead on adaptive diversity are 447 

prioritized. This would maximize both local adaptation and adaptive diversity, supporting 448 

future adaptive potential (Table S9). 449 
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To illustrate a possible application for this prioritization framework, we sought to identify 450 

putative dwarf birch donor populations that possess adaptive alleles at frequencies that would 451 

display reduced c-RONA in a recipient population (Figures 4, S6). We chose to demonstrate our 452 

approach using a current climate reference, as it could be considered more conservative, 453 

though we note that planning for future climate may have a better chance of long-term success. 454 

In this example, our hypothetical AGF strategy involves a substantial translocation of 455 

genotypes, particularly from the centre of the range towards the periphery. Whilst 456 

controversial, AGF may be advantageous, as it can introduce or increase the frequency of 457 

preadapted alleles to allow more rapid adaptation to track changing climate, alleviate 458 

inbreeding depression or increase adaptive potential (Frankham, 2015; Prober et al., 2015); 459 

and in the process provide a demographic safeguard by augmenting population size (Hodgins 460 

and Moore, 2016). In practice, implementation of AGF is likely to take the form of composite 461 

provenancing, whereby genetic material from a combination of source populations is used 462 

(Breed et al., 2013; Hodgins and Moore, 2016). This may seek to target adaptive diversity across 463 

multiple important environmental variables from across the species range, sometimes 464 

irrespective of the distance to the source population and the ‘local is best’ paradigm (Boshier et 465 

al., 2015; Havens et al., 2015; Jones, 2013).  466 

Our suggested approach has some limitations: RADseq only identifies variation in a subset of 467 

the genome (Lowry et al., 2016) possibly missing important adaptive loci (Harrisson et al., 468 

2014). This concern may be addressed in future by whole genome population sequencing, and 469 

a better understanding of the limiting returns from typing more adaptive loci (for example 470 

Ahrens et al. 2018). Second, our approach does not explicitly account for phenotypic plasticity 471 

(which can be adaptive or non-adaptive), or the adaptive input from new mutations (Chevin 472 

and Lande, 2011). More generally, we caution against interpreting the statistical association 473 

between the RADseq alleles and the bioclimatic variates (for example, MDR) as a demonstration 474 

that the allele in question is linked to a quantitative trait locus with adaptive variation. Rather, 475 
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the causal environmental variable may be unmeasured, but closely correlated with MDR. 476 

Finally, we highlight that, in our study area, the climate has been changing, albeit slowly, for 477 

several millennia, with the rate of climate change increasing more recently (Wang et al., 2014). 478 

Therefore, the clines identified here could represent adaptation to the environment of the 479 

recent past, rather than the present, and therefore may underestimate the current ecological 480 

risk. In the future, methods to accommodate change in the relative importance of 481 

environmental variables through time (Clark et al. 2014) and non-linear associations 482 

(Fitzpatrick and Keller 2015) are likely to advance our understanding and improve estimates 483 

of local adaptation in wild populations.  484 

Conclusions 485 

Estimating the degree of maladaptation in populations as a criterion to inform selection of plant 486 

material for genetic rescue, composite provenancing or species reintroductions is currently the 487 

subject of considerable interest (Gibson et al., 2016; Leroy et al., 2018), and this is likely to 488 

increase in the context of environmental change (Aitken and Bemmels, 2016). Here we present 489 

an approach to permit rapid assessment of local adaptation and future adaptive potential in 490 

wild populations. Importantly, the estimation of maladaptation presents a testable hypothesis; 491 

specifically, that if an AGF programme translocated individuals to a site where they are 492 

expected to display reduced c-RONA, the response of measurable fitness proxies such as catkin 493 

production should be positive. In dwarf birch, AGF would have to be combined with other 494 

management interventions focused on mitigating burning and grazing pressure to support 495 

natural regeneration, with the aim that larger populations eventually support ‘natural’ gene 496 

flow. Similarly, AGF need not entail translocation of genetic material to an existing recipient 497 

population in the first instance. Initially individuals of different provenance (and known allele 498 

frequencies) could be translocated to trial locations and subsequent fitness assessments would 499 

enable validation of the predicted adaptive potential. Conservationists and practitioners would 500 

then be in a better position to manage and, where appropriate, facilitate adaptation.  501 
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Tables 835 

Table 1. Contribution of retained environmental variables to the dwarf birch environmental 836 

niche model (ENM), and the number of environmentally associated loci detected. 837 

Variable Description Correlated 

Variables1 

ENM percent 

contribution2 

GEA Loci GEA Loci 

(inc. cor.)3 

AMTemp Annual Mean Temperature 
MTColdQ, 

MTColdM 
34.9 17 64 

MTWarmM 
Max Temperature of Warmest 

Month 
MTWarmQ 22.1 2 6 

MDR Mean Diurnal Range - 14.8 71 71 

ISO Isothermality - 14.6 11 11 

APrec   Annual Precipitation 

PColdQ, PWetM, 

PSeason, PWetQ, 

PWarmQ, PDryM, 

PDryQ 

7.3 2 21 

Slope Slope - 2.8 7 7 

MTDryQ 
Mean Temperature of Driest 

Quarter 
- 1.6 7 7 

TS Temperature Seasonality ATempR 1.4 1 3 

MTWetQ 
Mean Temperature of Wettest 

Quarter 
- 0.3 7 7 

Aspect Aspect - 0.2 4 4 

1 Correlated variables include Mean Temperature of the Coldest Quarter (MTColdQ); Minimum Temperature 

of the Coldest Month (MTColdQ); Mean Temperature of Warmest Quarter (MTWarmQ); Precipitation of 

Coldest Quarter (PColdQ); Precipitation of Wettest Month (PWetM); Precipitation Seasonality (Pseason); 

Precipitation of Wettest Quarter (PWetQ); Precipitation of the Warmest Quarter (PWarmQ); Precipitation of 

Driest Month (PDryM); Precipitation of Driest Quarter (PDryQ); Annual Temperature Range (ATempR). 

2 Percentage contribution is calculated as the increase in regularized gain added to the contribution of the 

corresponding variable over each iteration of the model. 

3 Total number of SNPs associated with both the retained variable, as well as related highly correlated 

variables that were excluded from the ENM analysis. 
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Table 2. Summary information for 29 dwarf birch populations, including the number of 843 

genotyped and phenotyped individuals, habitat suitability (HSI). 844 

Location Pop. Lat. Long. Elev. (m) Genotyped  Phenotyped HSI c-RONA ShapleyNEUTRAL 

Ben Loyal BL 58.4 -4.4 300 6 30 0.38 0.194 0.011 

Meall Odhar MO 58.16 -4.42 404 6 29 0.45 0.168 0.006 

Beinn Enaiglair BE 57.79 -5.01 480 5 27 0.37 0.479 0.01 

Luichart LH 57.72 -4.9 268 6 29 0.54 0.131 0.008 

Ben Wyvis W BW 57.65 -4.6 482 5 30 0.77 0.149 0.01 

Ben Wyvis E* DG 57.65 -4.56 472 - 21 0.75 - - 

Loch Meig ME 57.53 -4.8 450 6 26 0.57 0.128 0.005 

Glen Cannich GC 57.34 -4.86 455 6 31 0.51 0.045 0.027 

Faskanyle* FS 57.33 -4.85 486 - 17 0.66 - - 

Dundreggan Excl. DE 57.23 -4.75 448 6 30 0.81 0.174 0.009 

An Suidhe AS 57.22 -4.81 661 2 17 0.77 0.219 0.119 

Beinn Bhreac BB 57.21 -4.82 500 6 33 0.66 0.366 0.008 

Portclair PC 57.2 -4.64 478 6 38 0.54 0.081 0.008 

River Avon AV 57.14 -3.49 549 6 28 0.59 0.306 0.01 

Monadhliaths MD 57.06 -4.31 712 6 6 0.49 0.222 0.01 

Meall an tslugain SL 57.05 -3.45 633 6 31 0.59 0.085 0.035 

Loch Muick E MU1 56.92 -3.2 492 6 31 0.17 0.223 0.006 

Loch Muick W MU2 56.92 -3.21 517 6 16 0.1 0.218 0.008 

Loch Laggan LG 56.89 -4.54 364 6 33 0.35 0.064 0.007 

Loch Loch LL 56.85 -3.65 673 6 32 0.57 0.106 0.005 

Ben Gullabin BG 56.84 -3.47 594 1 7† 0.58 0.194 0.422 

Loch Rannoch LR 56.76 -4.42 499 6 28 0.23 0.097 0.008 

Rannoch West RW 56.65 -4.79 306 6 32 0.61 0.218 0.007 

Rannoch Moor B RB 56.6 -4.74 304 6 10 0.51 0.169 0.008 

Rannoch Moor A* RA 56.6 -4.74 295 - 27 0.51 - - 

Lennox LX 55.97 -4.28 164 2 10 0 0.241 0.102 

Emblehope† EM 55.24 -2.48 448 1 1† 0.06 0.254 0.155 

Spadeadam† SA 55.05 -2.57 275 1 1† 0.01 0.321 0.35 

Teesdale† TD 54.65 -2.28 499 2 2† 0.06 0.291 0.133 

*Populations not submitted for genetic analysis, but are considered in the comparison of HSI 845 
and reproductive output. 846 
†Populations were exhaustively sampled. 847 

 848 

 849 

 850 
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Figure Legends 851 

Figure 1. A) Environmental niche model of dwarf birch habitat suitability (HSI) under current 852 

environmental conditions, black points indicate species distribution records and red points 853 

indicate sampled locations included in this study. B) Regression of phenotypic fitness traits 854 

against the derived habitat suitability index. C) dwarf birch habitat suitability index 855 

projections under future climate scenarios. 856 

Figure 2. Schematic diagram of current and future risk of non-adaptedness (c-RONA and f-857 

RONA), presented on a genotype-environment association (GEA) plot; where genotypes are 858 

BLUP estimates of population polygenic allele frequency for 17 loci and the environmental 859 

predictor is Annual Mean Temperature.  c/f-RONA is the average change in allele frequency 860 

required to match our estimated optimum for current environmental conditions. Where 861 

RONA is large, we show two possible adaptation strategies; i) Assisted migration indicates the 862 

change in environmental conditions required for a population to match a genotype-863 

environment optimum. This could take the form of a translocation of individuals to a location 864 

with a more suitable climate (e.g. a higher elevation). ii) Assisted Gene Flow (which in small 865 

populations is equivalent to Genetic Rescue) proposes movement of genetic material from a 866 

donor population with allele frequencies predicted to be better suited to the environmental 867 

conditions at the focal population. We show that the allele frequency change is likely to be 868 

larger under an example future climate scenario of 1°C warming. Blue and red bands indicate 869 

suitable candidate donor populations for assisted gene flow under current and future 870 

scenarios respectively. 871 

Figure 3. Barplot of Shapley index for neutral and adaptive loci across UK B. nana 872 

populations, ordered by latitude with northernmost populations to the left. Inset plots show 873 

the relationship between the log transformed Shapley Index and the current risk of non-874 

adaptedness (c-RONA) for neutral and adaptive loci respectively. 875 
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Figure 4. Hypothetical plots of assisted gene flow (AGF) for dwarf birch in the UK. Arrows 876 

denote movement from donor to recipient populations (red circles). Blue populations report 877 

an allele frequency close to predicted optimums, thus introduction of novel diversity does not 878 

decrease c-RONA and is not required. Base maps show Annual Mean Temperature (AMTemp) 879 

and Mean Diurnal Range (MDR) environmental variables.  880 

Figure 5. A) The relationship between c-RONA (for AMTemp) and mean population catkin 881 

count. B)  Correlation between the number of loci identified in genotype-environment 882 

analyses, for each environmental variable, and the corresponding percentage contribution of 883 

that variable to the environmental niche model. 884 

 885 

 886 
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Phenotyping and germination protocol 964 

All UK populations were visited once or twice in the spring and summer of 2012, 2013 or 2014, 965 

once plants were in leaf to aid identification. For each individual, the following phenotypic 966 

measurements were made: 967 

• Latitude and longitude (GPS: Garmin Oregon 550) 968 

• Elevation (GPS based) 969 

• Number of male and female catkins. 970 

• Perpendicular eight from ground level. 971 

• Browsing pressure (percentage of browsed stems, to nearest 5%). 972 

• Plant area (length of the longest horizontal growing axis multiplied by maximum width 973 
perpendicular to this) 974 

• Diameter of the largest available stem at ground level. 975 

In the years 2013 and 2014, seeds were collected from a subset of 18 populations (9 per year) in 976 

Scotland to assess germination rates. We ensured that collected catkins displayed dry brown 977 

bracts and readily dehisced to ensure maturity. Catkins were placed in labelled glassine envelopes 978 

and further air-dried for 3-5 days before being stored at 4°C for planting the following Spring. It 979 

should be noted that collected catkins would have been from the previous year’s growth, so not 980 

necessarily correlated to the female catkin count also reported in this study. 981 

To assay germination, seeds were counted and spread on filter paper in individually labelled petri 982 

dishes. Where a large amount of seed was available for a given individual, petri dishes were 983 

replicated to avoid overcrowding. A thin layer of vermiculite was then added to prevent 984 

desiccation. Seeds were maintained at 18-20°C with a 14h photoperiod for 60 days. Germination 985 

was scored twice weekly and considered successful where a radicle ≥ 5mm was observed. For 986 
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populations assayed in 2014, successfully germinated seedlings were transferred to a nutrient 987 

poor soil (similar to their preferred habitat) to assess survivability at 100 days. 988 

Redundancy Analysis of genotype-environment associations 989 

For comparison, we also tested the pattern of genotype-environment associations (GEA) using 990 

Redundancy Analysis (RDA), a method that has shown robust performance in scenarios of weak 991 

selection (Forester et al., 2018; Rellstab et al., 2015). RDA is a two-step analysis which extends 992 

multivariate linear regression to allow regression of multiple response variables on multiple 993 

explanatory variables. A PCA of the fitted values results in canonical axes which are linear 994 

combinations of the environmental predictors, therefore permitting identification of significant 995 

GEAs (Legendre and Legendre, 2012). 996 

We implemented RDA in the R package vegan (Oksanen et al., 2019), using the full 14,889 SNP 997 

dataset, and a reduced set of environmental variables. Whilst we used all environmental predictor 998 

variables across independent runs of the Bayenv2 analysis (main text), here we use a reduced set 999 

of environmental variables to avoid correlated predictors being analyzed together. The reduced 1000 

set of environmental variables was the same as those used for environmental niche modelling 1001 

(n=10), with the additional exclusion of MTDryQ and MTWet (n=8), which showed collinearity > 1002 

0.7 in this reduced number of population sampling locations (variables for the ENM were assessed 1003 

across the whole study area). 1004 

We followed the methodology outlined in (Forester et al., 2018), retaining candidate SNPs from 1005 

the first three axes, with a 2.5 standard deviation significance threshold. For each candidate SNP, 1006 

we first identified the environmental predictor with which it reported the highest correlation. 1007 

Second, we compare candidates to those identified in the Bayenv2 GEA analysis (main text). 1008 

Finally, we compare the number of SNPs associated with each environmental predictor variable 1009 

across both RDA and Bayenv2 methods. 1010 
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RDA identified 601 significant genotype-environment associations across eight retained predictor 1011 

variables (Table S6). In a comparison of candidates between GEA methods, 11.2% of significant 1012 

Bayenv2 loci were also significant in the RDA analysis. This is consistent with 9.4% of loci found in 1013 

common between Bayenv2 and RDA analyses in Schweizer et al. (2016) and Forester et al. (2018). 1014 

Finally, we report a highly significant correlation between the number of associations identified for 1015 

each environmental variable using RDA and Bayenv2 (F1,6 = 14.76, p = 0.008), Figure S5). We note 1016 

that this pattern was significant across a range of RDA significance thresholds, as well as with both 1017 

the loci directly associated with retained variables, and the loci correlated with retained variables 1018 

(see columns 5 and 6, Table 1), therefore we are satisfied it is a robust and repeatable pattern. 1019 

 1020 
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Supplementary Tables 1037 

 1038 

 1039 

 1040 

 1041 

 1042 

 1043 

 1044 

 1045 

 1046 

 1047 

 1048 

 1049 

 1050 

 1051 

 1052 

 1053 

 1054 

 1055 

 1056 

 1057 

 1058 

 1059 

 1060 

Scenario 
2046-2065 2081-2100 

Mean Δ °C (Likely range) Mean Δ °C (Likely range) 

RCP2.6 +1.0 (0.4 to 1.6) +1.0 (0.3 to 1.7) 

RCP4.5 +1.4 (0.9 to 2.0) +1.8 (1.1 to 2.6) 

RCP6.0 +1.3 (0.8 to 1.8) +2.2 (1.4 to 3.1) 

RCP8.5 +2.0 (1.4 to 2.6) +3.7 (2.6 to 4.8) 

Table S1. Projected change in global mean surface air temperature, 

relative to the period 1986–2005. Adapted from (IPCC, 2014b). 
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Table S2. Changes in suitable habitat area as defined by ‘maximum training sensitivity plus 1061 

specificity’ threshold for dwarf birch under IPCC future climate scenarios.  1062 

Period Scenario 
Suitable Suitable   

Area (Km2)  Area (%) 

1960-1990 Present 11415 100.00 

2045-2065 

RCP2.6 2799 24.52 

RCP4.5 1774 15.54 

RCP6.0 2783 24.38 

RCP8.5 952 8.34 

2081-2100 

RCP2.6 3021 26.47 

RCP4.5 463 4.06 

RCP6.0 1406 12.32 

RCP8.5 128 1.12 

 1063 

 1064 

 1065 

 1066 

 1067 

 1068 

 1069 

 1070 

 1071 

 1072 

 1073 

 1074 

Table S3. Phenotypic data summary for sampled dwarf birch populations.  1075 
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Site Pop Lat. Long. 
Male 

catkins 

Female 

catkins 

Area  

(m2) 

Height 

(cm) 

Perc. 

browsing (%) 

Stem 

(mm) 

Ben Loyal BL 58.40 -4.40 0.17 2.43 0.27 13.13 41 4.25 

Meall Odhar MO 58.16 -4.42 1.03 28.34 0.61 21.69 16 3.88 

Beinn Enaiglair BE 57.79 -5.01 1.52 15.33 0.23 24 31 5.11 

Luichart LH 57.72 -4.90 1.42 12.39 0.62 23.52 40 5.77 

Ben Wyvis BW 57.65 -4.60 3.13 16.57 0.35 19.77 19 4.8 

DJG Ben Wyvis DG 57.65 -4.56 - - - - - 6.86 

Loch Meig ME 57.53 -4.80 5.42 9.96 0.70 23.67 36 7.67 

Glen Cannich GC 57.34 -4.86 3.84 37.65 1.33 26.26 9 5.69 

Faskanyle FS 57.33 -4.85 32.3 57.19 0.89 38.1 12 5.54 

Dundreggan Excl. DE 57.23 -4.75 24.8 56.31 0.92 28.97 0 5.5 

An Suidhe AS 57.22 -4.81 0.71 0.88 0.89 12.76 6 4.5 

Beinn Bhreac BB 57.21 -4.82 5.15 4.88 0.72 15.15 40 5.2 

Portclair PC 57.20 -4.64 8.16 61.63 8.71 36.58 20 7.3 

River Avon AV 57.14 -3.49 9.00 12.75 0.58 38.75 29 8.48 

Monadhliaths MD 57.06 -4.31 0.00 0.33 1.03 11.0 25 4.67 

Meall an tslugain SL 57.05 -3.45 1.42 0.23 0.93 15.08 51 3.88 

Loch Muick 1 MU1 56.92 -3.20 1.45 0.94 0.54 37.52 40 9.61 

Loch Muick 2 MU2 56.92 -3.21 0.69 1.19 1.25 50.06 41 14.59 

Loch Laggan LG 56.89 -4.54 0.77 6.77 0.64 23.73 43 6.81 

Loch Loch LL 56.85 -3.65 11.5 6.84 0.99 21.72 43 6.75 

Ben Gullabin BG 56.84 -3.47 0.14 0.00 1.18 15.57 66 4.29 

Loch Rannoch LR 56.76 -4.42 8.71 25.46 0.25 23.04 14 5.13 

Rannoch West RW 56.65 -4.79 3.75 3.28 0.19 22.72 38 5.08 

Rannoch Moor B RB 56.60 -4.74 0.00 2.10 - - 13 3.89 

Rannoch Moor A RA 56.60 -4.74 3.93 12.6 0.88 15.7 13 5.76 

Lennox LX 55.97 -4.28 2.00 5.88 - 41.0 - 6.5 

Emblehope* EM 55.24 -2.48 50.0 300 25.0 60.0 10 15 

Spadeadam SA 55.05 -2.57 0.00 0.00 - 45.0 - 15 

Teesdale TD 54.65 -2.28 0.00 4.00 - 18.5 18 5.5 

*Emblehope consisted of a single very large, presumably clonal individual, with an extremely high number of catkins. 1076 
This single data point strongly influenced subsequent analyses thus it was excluded as an outlier. 1077 
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Table S4. Germination success and survivability summary data for assayed populations. 1078 

Year Population Individuals 
Seeds 

Planted 
Germinated Germ. % 

100-Day 

Survivability 
Surv. % 

2013 AV 13 438 1 0.23 - - 

2013 BB 7 102 2 1.96 - - 

2013 BL 2 35 0 0.00 - - 

2013 DE 17 540 24 4.44 - - 

2013 GC 8 833 68 8.16 - - 

2013 LL 10 187 0 0.00 - - 

2013 LR 6 63 0 0.00 - - 

2013 ME 3 67 0 0.00 - - 

2013 MU 8 151 0 0.00 - - 

Total 

2013 
  74 2416 95 3.93 

- - 

2014 DJG 21 1345 134 9.96 27 2.01 

2014 FS 23 492 89 18.09 86 17.48 

2014 LG 31 310 16 5.16 15 4.84 

2014 LX 5 230 0 0.00 0 0.00 

2014 RA 2 31 1 3.23 0 0.00 

2014 RB 3 21 0 0.00 0 0.00 

2014 PC 28 672 101 15.03 77 11.46 

2014 TD 2 14 0 0.00 0 0.00 

2014 EM 1 250 5 2.00 1 0.40 

Total 

2014 
  116 3365 346 10.28 206 6.12 

 1079 

 1080 

 1081 

 1082 

 1083 

 1084 
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Table S5. The 24 environmental variables included in this study. Uncorrelated retained 1085 

environmental variables were used for Environmental Niche Modelling (ENM), whilst all variables 1086 

were tested independently for genotype-environment associations (GEA). 1087 

Variable Description 
Retained 
for ENM 

Grouping 
Bayenv2 
GEA Loci 
(totals inc. cor.) 

AMTemp Annual Mean Temperature X A 17 (64) 

MTColdQ Mean Temperature of Coldest Quarter 
 

A 24 

MTColdM Min Temperature of Coldest Month 
 

A 23 

MTWarmM Max Temperature of Warmest Month X B 2 (6) 

MTWarmQ Mean Temperature of Warmest Quarter 
 

B 4 

MDR Mean Diurnal Temperature Range X C 71 (71) 

ISO Isothermality X D 11 (11) 

APrec   Annual Precipitation X E 2 (21) 

PWetQ Precipitation of Wettest Quarter 
 

E 2 

PDryQ Precipitation of Driest Quarter 
 

E 4 

PWetM Precipitation of Wettest Month 
 

E 2 

PDryM Precipitation of Driest Month 
 

E 3 

Pseason Precipitation Seasonality 
 

E 1 

PWarmQ Precipitation of Warmest Quarter 
 

E 4 

PColdQ Precipitation of Coldest Quarter 
 

E 3 

Slope Slope (derived from elevation) X F 7 (7) 

MTDryQ Mean Temperature of Driest Quarter X G 7 (7) 

Tseason Temperature Seasonality X H 1 (3) 

ATempR Annual Temperature Range 
 

H 2 

MTWetQ Mean Temperature of Wettest Quarter X I 7 (7) 

Aspect Aspect (derived from elevation) X J 4 (4) 

Elev. Elevation - - 12 

Lat. Latitude - - 6 

Long. Longitude - - 48 

 1088 

 1089 

 1090 

 1091 
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Table S6. Comparison of GEA candidate loci identified in RDA and Bayenv2 analysis 1092 

Variable GEA Loci 
GEA Loci (inc. 
cor.) 

RDA (s.d. = 3) 
RDA (s.d. 
=2.5 

AMTemp 17 64 21 101 

MTWarmM 2 6 3 37 

MDR 71 71 40 134 

ISO 11 11 16 69 

APrec   2 21 20 82 

Slope 7 7 17 93 

MTDryQ 7 7 - - 

TS 1 3 13 41 

MTWetQ 7 7 - - 

Aspect 4 4 13 44 

 1093 

 1094 

 1095 

 1096 

 1097 

 1098 

 1099 

 1100 

 1101 

 1102 

 1103 

 1104 
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Table S7. Current risk of non-adaptedness across all genotype-environment analyses for retained 1105 

environmental variables. 1106 

pop AMTemp MDR ISO MTColdM MTWetQ MTDryQ MTColdQ Slope Elev. Combined 

BL 0.287 0.188 0.216 0.374 0.349 0.021 0.079 0.091 0.011 0.18 

MO 0.056 0.232 0.237 0.117 0.167 0.251 0.156 0.043 0.018 0.14 

BE 0.636 0.483 0.46 0.672 0.135 0.222 0.637 0.23 0.015 0.39 

LH 0.059 0.069 0.48 0.307 0.009 0.39 0.057 0.131 0.006 0.17 

BW 0.049 0.283 0.318 0.017 0.02 0.08 0.028 0.05 0.003 0.09 

ME 0.126 0.135 0.081 0.078 0.013 0.383 0.22 0.015 0.018 0.12 

GC 0.053 0.017 0.077 0.082 0.064 0.196 0.006 0.157 0.013 0.07 

DE 0.136 0.159 0.353 0.048 0.114 0.373 0.323 0.144 0.012 0.18 

AS 0.392 0.085 0.144 0.347 0.02 0.559 0.267 0.843 0.032 0.30 

BB 0.363 0.469 0.3 0.337 0.056 0.146 0.516 0.106 0.005 0.26 

PC 0.092 0.058 0.071 0.166 0.044 0.297 0.036 0.115 0.001 0.10 

AV 0.242 0.317 0.348 0.464 0.014 0.268 0.443 0.08 0.016 0.24 

MD 0.329 0.125 0.078 0.377 0.061 0.09 0.554 0.162 0.006 0.20 

SL 0.009 0.117 0.111 0.09 0.033 0.102 0.067 0.065 0.032 0.07 

MU1 0.213 0.311 0.561 0.09 0.012 0.536 0.066 0.027 0.009 0.20 

MU2 0.142 0.314 0.55 0.036 0.089 0.161 0.063 0.566 0.003 0.21 

LG 0.031 0.05 0.164 0.031 0.076 0.292 0.027 0.226 0.001 0.10 

LL 0.012 0.149 0.23 0.026 0.005 0.026 0.161 0.075 0.025 0.08 

BG 0.389 0.204 0.05 0.041 0.063 0.769 0.23 0.039 0.026 0.20 

LR 0.076 0.125 0.141 0.051 0.003 0.53 0.02 0.013 0.001 0.11 

RW 0.254 0.258 0.109 0.309 0.2 0.509 0.099 0.072 0.002 0.20 

RB 0.138 0.16 0.402 0.253 0.063 0.155 0.159 0.112 0.007 0.16 

LX 0.234 0.17 0.561 0.22 0.325 0.455 0.41 0.046 0.001 0.27 

EM 0.383 0.292 0.479 0.128 0.175 0.756 0.109 0.084 0.008 0.27 

SA 0.552 0.317 0.54 0.541 0.023 0.464 0.109 0.107 0.011 0.30 

TD 0.304 0.211 0.149 0.558 0.174 0.55 0.491 0.038 0.008 0.28 
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Table S8. Risk of non-adaptedness under current and future climate scenarios, excluding 1110 

associations with altitude and slope. 1111 

Pop 
c-RONA f-RONA (2045-2065) f-RONA (2081-2100) 

(no-
elev/slope) 

RCP2.6 RCP4.5 RCP6.0 RCP8.5 RCP2.6 RCP4.5 RCP6.0 RCP8.5 

BL 0.216 0.272 0.311 0.262 0.375 0.280 0.236 0.254 0.242 

MO 0.174 0.243 0.286 0.231 0.360 0.247 0.247 0.255 0.218 

BE 0.463 0.455 0.478 0.458 0.521 0.454 0.405 0.483 0.426 

LH 0.196 0.167 0.243 0.190 0.306 0.187 0.199 0.169 0.189 

BW 0.113 0.135 0.205 0.104 0.218 0.127 0.089 0.134 0.103 

ME 0.148 0.255 0.104 0.244 0.165 0.225 0.203 0.233 0.202 

GC 0.071 0.182 0.076 0.159 0.086 0.188 0.116 0.188 0.113 

DE 0.215 0.338 0.275 0.175 0.274 0.338 0.231 0.304 0.235 

AS 0.259 0.278 0.220 0.274 0.223 0.294 0.267 0.300 0.305 

BB 0.312 0.398 0.392 0.433 0.354 0.417 0.294 0.419 0.323 

PC 0.109 0.117 0.202 0.107 0.163 0.114 0.157 0.112 0.161 

AV 0.299 0.333 0.407 0.296 0.323 0.322 0.300 0.317 0.290 

MD 0.230 0.422 0.374 0.453 0.344 0.415 0.214 0.436 0.226 

SL 0.075 0.080 0.108 0.085 0.186 0.074 0.048 0.081 0.088 

MU1 0.255 0.244 0.210 0.243 0.320 0.236 0.228 0.258 0.240 

MU2 0.193 0.241 0.261 0.206 0.310 0.207 0.211 0.233 0.205 

LG 0.096 0.160 0.136 0.180 0.135 0.170 0.123 0.167 0.133 

LL 0.087 0.078 0.219 0.087 0.201 0.089 0.081 0.069 0.086 

BG 0.250 0.254 0.185 0.251 0.124 0.237 0.240 0.238 0.232 

LR 0.135 0.130 0.083 0.123 0.075 0.142 0.095 0.093 0.104 

RW 0.248 0.240 0.236 0.206 0.243 0.170 0.212 0.236 0.263 

RB 0.190 0.159 0.194 0.184 0.234 0.190 0.216 0.203 0.172 

LX 0.339 0.523 0.538 0.497 0.387 0.535 0.327 0.523 0.350 

EM 0.332 0.387 0.398 0.397 0.388 0.260 0.324 0.242 0.369 

SA 0.364 0.329 0.360 0.322 0.333 0.357 0.374 0.344 0.375 

TD 0.348 0.421 0.385 0.433 0.365 0.431 0.355 0.436 0.342 

Mean 0.220 0.263 0.265 0.254 0.270 0.258 0.223 0.259 0.230 
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Table S9. Shapley values for neutral and putative adaptive loci, and population c-RONA ordered by 1114 

rank. Final column represents a consensus ranking with Shapley Index for adaptive loci maximized 1115 

and c-RONA minimized to optimize both adaptive diversity and current local adaptation. 1116 

Pop Shapley (neutral) Pop Shapley (adaptive) Pop c-RONA Consensus rank 

BG 0.422 SA 0.148 GC 0.045 GC 

SA 0.350 BG 0.073 LG 0.064 SL 

EM 0.155 BW 0.071 PC 0.081 BW 

TD 0.133 LX 0.063 SL 0.085 LR 

AS 0.119 TD 0.048 LR 0.097 BL 

LX 0.102 MU2 0.046 LL 0.106 DE 

SL 0.035 SL 0.043 ME 0.128 ME 

GC 0.027 BL 0.042 LH 0.131 LH 

BL 0.011 DE 0.041 BW 0.149 MO 

AV 0.010 ME 0.039 MO 0.168 BG 

BW 0.010 MO 0.027 RB 0.169 RB 

MD 0.010 LH 0.025 DE 0.174 LX 

BE 0.010 GC 0.022 BL 0.194 MU2 

DE 0.009 MU1 0.020 BG 0.194 MU1 

LR 0.008 LR 0.019 MU2 0.218 RW 

BB 0.008 BB 0.017 RW 0.218 TD 

RB 0.008 RW 0.016 AS 0.219 LL 

PC 0.008 EM 0.016 MD 0.222 MD 

MU2 0.008 RB 0.014 MU1 0.223 EM 

LH 0.008 MD 0.008 LX 0.241 BB 

RW 0.007 AV 0.007 EM 0.254 AV 

LG 0.007 LL 0.007 TD 0.291 PC 

MO 0.006 BE 0.006 AV 0.306 SA 

MU1 0.006 PC 0.005 SA 0.321 LG 

ME 0.005 LG 0.004 BB 0.366 AS 

LL 0.005 AS 0.004 BE 0.479 BE 
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Supplementary Figures 1118 

 1119 

1120 

Figure S1. Topology of collinearity between environmental variables used in this study, at a 1121 

threshold of 0.7. Red boxes denote groups of retained variables (see Table S5). 1122 
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 1152 

 1153 

Figure S2. Map of dwarf birch sampling locations in the UK. Adapted from (Borrell et al., 1154 

2018). 1155 
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Figure S3. Environmental niche model variable response curves for the 10 retained environmental 1177 

variables used in this study. 1178 
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 1179 

Figure S4. Changes in environmental niche model derived habitat suitability index (HSI) for dwarf 1180 

birch under four future climate scenarios. Red line indicates overall mean for all recorded locations 1181 

 1182 
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 1191 

 1192 

Figure S5. Comparison of the number of the number of candidate adaptive loci identified for each 1193 

environmental predictor variable in RDA and Bayenv2 GEA analyses. 1194 
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Figure S6. Genotype-environment association plots for nine environmental variables each with more than six associated loci, with dotted line 

denoting theoretical optimum genotype. 
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Figure S7. Assisted gene flow maps for nine environmental variables with more than six 

significantly associated loci. 
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