Stopnisek and Shade

1	Prioritizing persistent microbiome members in the common bean rhizosphere: an integrated
2	analysis of space, time, and plant genotype
3	
4	Nejc Stopnisek ^{1,2,3} and Ashley Shade ^{1,2,3,4,5}
5	1. Department of Microbiology and Molecular Genetics, Michigan State University, East
6	Lansing, MI 48840 USA
7	2. The Plant Resilience Institute, Michigan State University, East Lansing, MI 48840
8	3. The DOE Great Lakes Bioenergy Research Center, Michigan State University, East
9	Lansing, MI 48840
10	4. Program in Ecology, Evolutionary Biology and Behavior, Michigan State University, East
11	Lansing, MI 48840
12	5. Department of Plant, Soil and Microbial Sciences, Michigan State University, East Lansing,
13	MI 48840
14	
15	Corresponding author: shadeash@msu.edu
16	
17	Keywords: plant-microbiome, Phaseolus vulgaris, plant health, neutral model, co-occurrence
18	network, abundance-occupancy, 16S rRNA, ITS, hub taxa, sustainable agriculture, core
19	microbiome
20	
21	

Stopnisek and Shade

22 Abstract

23 The full potential of managing microbial communities to support plant health is yet-24 unrealized, in part because it remains difficult to ascertain which members are most important for 25 the plant. However, microbes that consistently associate with a plant species across varied field 26 conditions and over plant development likely engage with the host or host environment. Here, we 27 applied abundance-occupancy concepts from macroecology to quantify the core membership of 28 bacterial/archaeal and fungal communities in the rhizosphere of the common bean (Phaseolus 29 *vulgaris*). Our study investigated the microbiome membership that persisted over multiple 30 dimensions important for plant agriculture, including major growing regions, plant development, 31 annual plantings, and divergent genotypes, and also included re-analysis of public data. We found 48 core bacterial taxa that were consistently detected in all samples, inclusive of all datasets and 32 33 dimensions. This suggests reliable enrichment of these taxa to the plant environment and time-34 independence of their association with the plant. More generally, this work provides a robust 35 approach for systematically prioritizing core microbiome memberships in any host or system.

Stopnisek and Shade

36 Introduction

37	Agriculture requires more efficient use of available resources, and the naturally occurring,
38	soil-dwelling microbiota offers potential to contribute to the responsible intensification of
39	agriculture. Selection and breeding of plants for their beneficial associations with microbiota has
40	promise to deliver a new generation of microbe-improved plants [1–6]. The ideal outcome of such
41	efforts would achieve a balance of sustainable agriculture with food security. To achieve this, we
42	must understand the relationships between plants and their associated microbiomes, including the
43	differentiation of key or "core" members that engage with the plant directly from transient or
44	opportunistic members that do not.
45	Common bean (Phaseolus vulgaris L.) is the most important food legume grown
46	worldwide, and especially for developing economies in South America, Africa and Asia [7]. The
47	origin of common bean is central Mexico, and from there it spread to central and to south America
48	around 165,000 years ago [8]. This resulted in the development of two major and eco-
49	geographically distinct common bean gene pools with partial reproductive isolation [9–11]. The
50	Mesoamerican gene pool was distributed from northern Mexico to Colombia and the Andean gene
51	pool ranged from southern Peru to northwestern Argentina. Since 8,000 years ago, each pool was
52	separately and selectively bred, leading to further diversification between them [8, 12, 13]. Because
53	of pre-existing genetic differences in each gene pool followed by divergent breeding history,
54	common bean presently offers a distinctive opportunity for understanding how the host and the
55	environment contribute to rhizosphere microbiome assembly.
56	The objective of this study was to apply approaches from macroecology to prioritize the
57	persistent members of a core bacterial, archaeal, and fungal root microbiome inclusive of multiple
58	gradients and categories of drivers expected to be important for plant agriculture. With the
59	cooperation of the U.S. Bean coordinated agricultural project (Bean CAP), we executed a first-of-

Stopnisek and Shade

60	its kind study of two divergent bean genotypes grown under field conditions in five major North
61	American bean growing regions, including Michigan, Nebraska, Colorado and Washington. These
62	two genotypes belong to the Mesoamerican (Eclipse genotype) and Andean (California Early Light
63	Red Kidney, CELRK genotype) gene pools that represent the major divergences from the wild
64	bean ancestor [8]. For these two divergent genotypes, we also assessed how core members of the
65	root microbiome changed over plant development and root compartment. We also used public data
66	to perform a comparative analysis of the bacterial microbiome found in our study with microbiome
67	members detected in other bean genotypes grown in South America [14, 15]. From our effort that
68	was inclusive of both broad biogeography (including the U.S. and Colombia), plant development,
69	and inter-annual plantings, we discovered a core bean rhizosphere microbiome of 48 members that
70	persistently associated with this nutritionally, agronomically, and economically important crop.
71	This core was discovered in spite of apparent microbiome differences that were attributable to local
72	soil conditions and management. However, we did not detect an influence of plant genotype,
73	suggesting that this core membership supersedes it.

Stopnisek and Shade

74 Material and Methods

75 Study design, sampling and soil physicochemical analysis

76	We designed a biogeography study of two divergent bean genotypes (from Mesoamerican
77	and Andean gene pools [16, 17]), both grown in the field in the summer of 2017 at five research
78	and extension farms that represent major U.S. bean production regions (Table 1) [18]. The research
79	and extension farms were: Saginaw Valley (SVERC), Michigan (MI), Montcalm county (MRF),
80	MI, Scott Bluff county, Nebraska (NE), Fort Collins, Colorado (CO), and Othello, Washington
81	(WA).
82	Triplicate bean plants were grown in each of three (MI, WA, CO), or four (NE) plots,
83	totaling 9 or 12 plants per growing location. Plants were harvested at flowering stage (mid to late
84	July) because we wanted to analyze mature microbial communities and control for potential
85	differences in the microbiome over early plant development.
86	We selected two common bean cultivars with very distinct genotypes: Eclipse [16] of
87	Mesoamerican origin and California Early Light Red Kidney (CELRK), an old kidney bean
88	landrace of Andean origin [17]. Even though we included only two bean genotypes, we selected
89	highly divergent genotypes from far ends of the spectrum of the common bean genetic diversity;
90	these lineages diversified after a biogeographic bottleneck that separated them between Central and
91	South America [19]. We hypothesized that if there was an effect of bean genotype on the root
92	microbiome, it should be measurable when comparing these genotypes from divergent lineages.
93	Both bean genotypes were grown in each growing location, except in Michigan, where CELRK
94	was grown at Saginaw Valley and Eclipse at Montcalm county.
95	Plant roots with attached soil were packed into bags, stored on ice and shipped immediately
96	to Michigan State University for processing. From each sample, root-attached soil was collected by
97	gently shaking the roots and designated as rhizosphere soil; unattached root-zone soil was also

Stopnisek and Shade

98	collected and used as bulk soil. It was expected that the rhizosphere soil contains a subset of
99	microbiome diversity that is recruited from the bulk soil [20] but we note that these soils were not
100	"bulk" in the traditional definition, in that they were collected from the agricultural fields and
101	expected to be proximal to and influenced by the roots of previous crops. Soils were sieved through
102	4 mm sieves to remove any plant debris and larger soil minerals before soil physical-chemical
103	analysis. Soil analysis was done at the Michigan State Soil Plant and Nutrient Laboratory on root-
104	zone soil samples pooled by plant genotype and plot (see Supporting Text for details).
105	We designed a second temporal study to assess the dynamics of the core taxa over plant
106	development. The two bean genotypes, CELRK and Eclipse, were grown at the same two sites in
107	Michigan, U.S., Montcalm county and Saginaw Valley, in the summer of 2018. Plants root systems
108	were harvested at 5 growth stages, including stage 1: V2 (appearance of second trifoliate), stage 2:
109	V5 (appearance of fifth trifoliate), stage 3: flowering, stage 4: pod filling, and stage 5:
110	senescence/drying). At each sampling time, roots were collected and transported on ice to the
111	laboratory for immediate processing. Rhizosphere soil was collected by gently shaking roots, as
112	described above. Any remaining, tightly-attached soil was designated as rhizoplane soil, and was
113	collected by first vortexing roots in 1x phosphate buffer solution (PBS) for 4 min and finally
114	removing the supernatant after centrifugation for 10 min at 8000 g and 4°C. Collected soil was
115	immediately frozen in liquid nitrogen and stored at -80°C.
116	
117	Microbiome sequencing and analysis

There were 31 rhizosphere (attached to the root and pooled by plot) and 8 root-zone/bulk (one pooled sample per growing location and plant genotype) soil samples sequenced for microbiome analysis from the biogeography study, and 125 rhizosphere and 127 rhizoplane soil (individual plants) samples sequenced from the plant development study. DNA extractions,

Stopnisek and Shade

122	including negative controls, were performed as per standard soil protocols (see Supporting Text for
123	details). 16S rRNA gene amplicon and ITS amplicon sequencing was performed at the Michigan
124	State Genomics Core Research Support Facility. We processed the 16S rRNA gene amplicons
125	using an open-reference clustering first against the SILVA v128 database [21, 22]. First, raw reads
126	were merged, quality filtered, dereplicated, and clustered into 97% identity operational taxonomic
127	units (OTUs) using the UPARSE pipeline (version 11, [23]). Reads not matching to the SILVA
128	database were used for de-novo clustering at 97% sequence identity. Reference picked and de-novo
129	reads were combined before taxonomy was assigned [21]. Taxonomic annotations for 16S rRNA
130	gene OTU representative sequences were assigned in the QIIME 1.19 environment [24] using
131	SILVA database [22]. ITS OTU representative sequences were taxonomically annotated using the
132	CONSTAX tool [25] with the UNITE database version 7.2 [26]. OTUs with unassigned taxonomy
133	at the domain level and OTUs annotated as mitochondria or chloroplasts were removed.
134	Contaminant OTUs were removed using decontam package in R [27]. Additionally, we performed
135	zero-radios OTU analysis (aka ZOTUs that are clustered at 100% sequence identity) for reads
136	detected within the core OTUs. In short, first we subset all reads that were included within the core
137	OTUs and processed them through the UNOISE3 pipeline [28] to create ZOTUs. Then we
138	determined each ZOTU's affiliation to their originating core OTU by matching the read identities
139	between ZOTU and OTU clusters using a customized code (see GitHub repository).
140	Statistical analysis, including abundance-occupancy analysis to detect a core microbiome
141	[29], and data visualization were performed in R (see Supporting Text). The co-occurrence network
142	and global network properties were calculated using the Molecular Ecological Network Analysis
143	Pipeline (MENAP) [30] and visualized with Cytoscape v.3.5.1 [31]. Comparative analyses with
144	published datasets from Pérez-Jaramillo et al. [15] (BioProject ID PRJEB26084). was performed
145	by downloading study raw reads from NCBI and processing as per our data pipeline to analyze

Stopnisek and Shade

146	both sets identically. An expanded description of all ecological statistics, MENAP parameters, and
147	our combined core microbiome analysis with public data are provided in Supporting Text.
148	
149	Data and code availability
150	The raw sequence data are deposited in the NCBI Sequence Read Archive (BioProject ID
151	PRJNA524532). All read processing steps, bioinformatic workflows, R code, and custom scripts
152	are available on GitHub
153	(https://github.com/ShadeLab/PAPER_Stopnisek_2019_BeanBiogeography).
154	
155	Results
156	Sequencing summary and microbial diversity across growing regions
157	There were 31,255 to 506,166 and 22,716 to 252,810 reads per sample for 16S rRNA and
158	ITS biogeography datasets, respectively. We rarefied samples to 31,255 reads for 16S rRNA gene
159	amplicons and to 22,716 for ITS. With these thresholds, we achieved richness asymptotes for both
160	datasets, suggesting that sequencing efforts were sufficient to capture comparative dynamics and
161	diversity (Fig. S1). The total richness observed at this rarefaction depth was 1,505 fungal and
162	23,872 bacterial and archaeal OTUs.
163	As reported in other rhizosphere studies, the total fungal diversity was lower than bacterial
164	/archaeal diversity in the rhizosphere of the common bean [32–34]. Richness varied by growing
165	location (ANOVA, F value=12.4, p-value<0.0001 and F value=13.1, p-value<0.0001 for 16S
166	rRNA and ITS data, respectively, Fig. S2) but was highest at the Montcalm Research Farm
167	(Michigan, US) for both, bacteria/archaea and fungi. An analysis of community beta diversity
168	revealed strong biogeographic patterns in community structure explained by location, soil pH and
169	fertilization, in agreement with other literature [35–38] (Fig. S3, see Supplemental Text).

Stopnisek and Shade

170	However, an influence of plant genotype was either weak or not detected, which we partially
171	attribute to plant growth in field conditions, following observations made in other plant species
172	grown under field conditions [35, 36, 39] (Fig. S2BD, see Supplemental Text).
173	The common bean rhizosphere microbiome included the major expected lineages for both
174	bacteria and fungi (Fig. S4AB), in agreement with other plant rhizosphere studies [40-45].
175	Together with previous studies, these data provide more evidence that root-associated microbial
176	taxa are phylogenetically and potentially functionally conserved [46]. Proteobacteria,
177	Acidobacteria, Bacteroidetes, and Actinobacteria collectively comprised on average 73.5% of the
178	bacteria/archaeal community, Ascomycota dominated the fungal community with a mean total
179	relative abundance of 53% with notable sample-to-sample variance (range from 16.5% to 84.5%).
180	
181	A core rhizosphere microbiome is detected across U.S. bean growing regions
182	We noticed a large number of OTUs that were shared among all growing locations them for
183	the bacterial/archaeal communities (2,173 taxa, mean 31.5%, range 29.5% to 34.7%). There was a
184	smaller but notable overlap for the fungal communities (70 taxa or mean 4.5%, range from 0.9% to
185	17.9%; Fig. S4CD). These data suggested that, despite measured edaphic differences across
186	growing locations and strong biogeographic signal, the common bean rhizosphere recruited many
187	similar taxa that could be functionally important for the bean. Therefore, we explored abundance-
188	occupancy distributions of taxa ([47, 48] and references therein) to infer the core bean microbiome
189	of taxa with an occupancy of 1 (i.e., found in all soil samples, all plots and across all growing
190	locations; Fig. 1AB). Among bacteria and archaea, 258 phylogenetically diverse taxa were
191	cosmopolitan in the dataset (Fig. 1C), including numerous and abundant Proteobacteria (117
192	OTUs) with a dominant taxon classified as Arthrobacter sp. (FM209319.1.1474, mean relative
193	abundance of 1.43%). The bacterial/archaeal core also contained taxa of interest for potential plant

Stopnisek and Shade

benefits (e.g. *Sphingomonas, Rhizobium, Bacillus, Streptomyces*), as well as some genera that can
be associated with disease (e.g. *Ralstonia*). There were 13 taxa in the fungal core (Fig. 1D), and
these were largely composed of Ascomycota (10 OTUs), with dominating taxon OTU823 from the *Phaeosphaeriaceae* family (mean relative abundance 10.1%). Notably, taxa that were unique to
either bean genotype were relatively rare and inconsistently detected (Fig. 1, orange and black
points). Together, these results suggest that common bean consistently recruits particular
microbiome taxa.

201 Next we wanted to investigate if the prioritized core taxa are indeed selected by the plant environment or assembled through neutral processes by applying the Sloan neutral model [49, 50]. 202 203 The neutral expectation of abundance-occupancy distributions is that very abundant taxa will have 204 high occupancy, while rare taxa will have low [48–51]. Taxa that deviate from the neutral 205 expectation are more strongly influenced by deterministic factors, like environmental conditions, 206 than by stochastic factors, like drift and dispersal. The neutral model fit of the abundance-207 occupancy distribution (solid line, Fig. 1AB) identified several taxa that had frequencies either 208 above or below the 95% confidence intervals of the model (dashed lines). Specifically, 13.7% of 209 the bacterial/archaeal and 30.4% of fungal taxa, deviated from the neutral expectation (Table S3). 210 One hundred and seventy-one core taxa were predicted above the neutral model partition; these 211 deterministically-selected taxa are prime candidates for follow-up studies of interactions with the 212 host plant. Overall, the bacteria/archaea community had better fit to the neutral expectation than 213 fungal (R² of 0.74 and 0.34, and migration rates (m) of 0.301 and 0.003, respectively), suggesting 214 that dispersal was relatively less limiting for the bacteria/archaea than for the fungi. This finding 215 agrees with other work suggesting that fungi are more sensitive to local climate or more dispersal 216 limited than bacteria [52–55].

217

Stopnisek and Shade

218 *A core rhizosphere microbiome is detected for common bean grown on different continents*

219 We wanted to better understand if these U.S. core taxa were associated with the bean 220 rhizosphere across a larger geographical scale, which would suggest the potential for selective plant 221 recruitment and cosmopolitan distribution of core taxa. Therefore, we compared our U.S. data to a 222 recently published study of rhizosphere bacteria and archaea from common beans grown in 223 Colombian agricultural soil [14]. The Colombian study offered a key contrast because it included 224 eight divergent bean lineages, including wild (n=2), landrace (n=1), and cultivated genotypes 225 (n=5), grown in soil from a different continent that has starkly different climate and management 226 from the U.S. growing regions. To enable direct comparison, we re-analyzed raw reads and 227 compared the datasets by matching to either the same taxon identifiers when clustered to SILVA 228 database, or 100% identity by BLAST to *de novo* clustered reads (see Materials and Methods). 229 Surprisingly, 39.6% (3,359 OTUs) of rhizosphere taxa from the Colombian-grown beans were also 230 shared with the U.S. dataset (Fig. 2). Both datasets included taxa that were highly represented in 231 the other: 62% of U.S. core (159 out of 258) were found also in Colombia, and 51% of Colombian 232 core (433 out of 848) were shared with the U.S. (Fig. 2A). Core taxa were again defined stringently 233 with an occupancy of 1, and 48 taxa were found across all samples, inclusive of both datasets. We 234 refer to this as the "global" core to distinguish the subset from the larger group of core taxa 235 inclusive to the US only (though note that this descriptor is for simplicity and that this does not 236 include global representation of bean root samples on Earth). These global core taxa were 237 composed of many Proteobacteria, with *Rhizobiales* showing the most consistent relative 238 abundance between the studies (Fig. 2B, e.g. 0.187% and 0.138% in Colombia and U.S. dataset, 239 respectively). Notably, none of this global core taxa were universally detected in very high 240 abundance, and all but two OTUs (a U.S. Arthrobacter sp. and a Colombian Austrofundulus 241 limnaeus with mean relative abundances of 1.43% and 1.01%, respectively) would be classified as

Stopnisek and Shade

242	rare by a typical mean relative abundance threshold below 1%, hinting to a potential role of rare
243	taxa in providing key functions. A similar observation was made with rhizosphere microbiota of 19
244	herbaceous plant species, in which taxa of low abundance were among those significantly enriched
245	in the rhizosphere as compared to the bulk soil [56]. Notably, only 48% of these global core taxa
246	have genus classification, suggesting that most of them are under-described in their functional
247	potential and interactions with plants (Table S4).
248	We also analyzed reads associated with the global core taxa with the UNOISE3 pipeline
249	[28] to generate predicted biological sequences (zero-radius OTUs – ZOTUs with100% sequence
250	identity) and provide the maximal possible biological resolution. We found that the global core
251	taxa consisted of 422 ZOTUs, and that there was a range of 2 to 35 ZOTUs identified within each
252	OTU (Fig. S5). With one exception (HQ597858.1.1508), all of core OTUs (clustered at 97%
253	sequence identity) contained at least one ZOTU that also had an occupancy of 1. In addition, all of
254	the ZOTUs with an occupancy of 1 were also the most abundant ZOTUs within each OTU (Fig.
255	S5). This result suggests that the same members constitute the core even with increased taxonomic
256	resolution.
257	A recent study considered the effect of the common bean domestication history on the root
258	microbiome and identified a core set of microbial taxa that are consistently present with these
259	diverse bean genotypes, including bacterial taxa recruited from agricultural and natural soil from
260	Colombia [15]. This core also had high representation of Proteobacteria, Acidobacteria,
261	Actinobacteria and Verrucomicrobia, similar to those observed in the present study. We also re-
262	analyzed these data and show that 46 (out of 48) of the global core taxa identified here have
263	occupancy>0.9 across all three included studies (the present study, Pérez-Jaramillo et al. [14] and
264	Pérez-Jaramillo et al. [15]). Forty-two of these taxa had the highest possible occupancy of 1, but

265 only within rhizosphere samples from agricultural soils (Table S4). When incorporating data from

Stopnisek and Shade

266	beans grown in forest soils, the average occupancy decreases to 0.77 (median 0.75 , min = 0.53).
267	However, 14 taxa still had an occupancy of 1 when including beans grown in forest soils (Table
268	S4).
269	In summary, these results show that common bean can associate with a core set of
270	rhizosphere microbiome members at taxon and ecotype levels, across diverse bean genotypes and
271	across continents. Additionally, these core taxa are likely enriched by the host in managed soils, as
272	suggested by their higher occupancy in agroecosystems.
273	
274	Core taxa are enriched in the rhizoplane and are consistently detected across bean development
275	To identify the common bean core taxa over space (a biogeographic core) we sampled
276	plants across growing locations at the same growth stage (flowering) and focused on the
277	rhizosphere compartment. However, the question remained whether these core taxa are detected
278	beyond that particular plant development stage. To answer this question, we conducted a field
279	experiment to assess the core taxa over time in plant development stage. In the next growing season
280	(2018), we used the same divergent bean genotypes grown at both Michigan, U.S, locations
281	(Montcalm and Saginaw Valley; see Material and Methods). We harvested root systems at 5
282	different plant development stages including flowering stage. We investigated the relative
283	abundance of the global core taxa and the U.Sspecific core taxa in both rhizosphere (soil that
284	could be removed from the root after shaking, n=125 samples) and rhizoplane (soil adhered to the
285	root tissue and removed via vortex in buffer, n=127 samples) compartments to determine their
286	ability to closely associate with the plant tissue. The range of the rhizosphere sequencing depth was
287	7,905-78,436 reads per sample, and for the rhizoplane it was 32-189,433 reads per sample. We
288	rarefied to 15,000 reads per samples (i.e. samples reaching richness asymptote), resulting in loss of

Stopnisek and Shade

289	3 rhizosphere and 7 rhizoplane samples for a final dataset of 122 rhizosphere and 120 rhizoplane
290	samples. The total richness observed was 36,022 bacterial and archaeal OTUs.
291	From this development time series, we found that all 48 global core taxa were detected a
292	year later on these two Michigan farms. The collective relative abundances of the global core taxa
293	were significantly higher in the rhizoplane as compared to the rhizosphere irrespective of the plant
294	development stage, bean genotype and growing location (Fig. 3A). Interestingly, the remaining US
295	core taxa that were found exclusively in the U.S. dataset at an occupancy of 1 were equally
296	abundant in the rhizosphere and rhizoplane at both Michigan growing locations (Fig. 3A).
297	We next asked whether there were enrichments of particular core taxa by plant development
298	stage, root compartment, or growing location (Fig. 3B). On balance, almost all core taxa showed
299	some growth stage preference, but these trends were specific to each growing location and root
300	compartment. Despite these nuances, all core taxa were consistently found with high occupancy
301	inclusive of the plant development series (Fig. S6).
302	Together these results suggest that these core taxa are selected by the plant early in the
303	development stage and maintained. Enrichment of the core taxa in the rhizoplane further supports
304	the hypothesis that these core taxa engage closely with the host plant.
305	
306	Core taxa are not hub or connector taxa in an inter-domain microbiome network
307	Network analysis has been proposed to be a useful method to identify important members
308	of the plant microbiome with beneficial traits [57–59]. Hub taxa, identified by their high
309	connectivity with many members of the community, are regarded as the most important part of the
310	community and influence network structure and community stability [60, 61]. We applied this
311	method to ask if any of the core taxa that we identified using abundance-occupancy were also key
312	for co-occurrence network structure. Additionally, we were interested in identifying fungal-

Stopnisek and Shade

313	bacterial co-occurrences because of reports of their potential benefits for the plant [62, 63]. To
314	explore these patterns we applied the molecular ecology network analysis pipeline (MENAP)
315	which constructs ecological association network through random matrix theory (RMT) [30]. We
316	merged rarified 16S and ITS rhizosphere datasets, filtered the datasets to include taxa with
317	occupancy greater than or equal to 50%, and considered only interactions significant at p -
318	value<0.05 and RMT threshold of 0.88. The resulting network included 572 taxa (nodes) and 1,857
319	statistically significant co-occurrences (edges) structured among 52 modules. Most of the modules
320	were relatively small, with only six including more than 10 nodes (Fig. 4). The network was scale-
321	free (i.e. characteristics of the network are independent of the size of the network) and had small-
322	world characteristics (i.e. highly clustered) as indicated by the node degree distribution fitting to
323	the power law model ($R^2 = 0.993$), and also had significant deviation of the modularity, length and
324	clustering coefficients from those calculated from random network (i.e. same number of nodes and
325	edges), respectively (Table S5).
326	The topological role of each taxon within the network was determined by the relationship
327	between their within-module (Zi) and among-module (Pi) connectivity scores as described in [64].
328	Based on this, the majority of taxa were peripheral (potentially, specialists; 563 nodes) (Fig. 4A).
329	There were also 3 connectors and 6 module hubs, but no network hubs. Indeed, in agreement with
330	the beta-diversity analysis (Fig. S3, Supporting Materials), there was a strong geographic signal in
331	the largest four modules, and these were comprised mostly of bacterial-bacterial (rather than
332	bacterial-fungal or fungal-fungal) hypothesized interactions (Fig. 4B). We note that cross-domain
333	edges constituted only a small fraction of all co-occurrences (n=168; bacteria-fungi=156, archaea-
334	bacteria=6 and archaea-fungi=6).
335	The analysis identified 26 co-occurrences between core taxa. However, we were surprised
226	

to find that only two bacterial core and no fungal core taxa were also classified as network hubs

Stopnisek and Shade

337	(taxa that connect to many other taxa within a modules) or connectors (taxa that connect across
338	modules). As exceptions, core Chitinophagaceae taxon FR749720.1.1492 was a module hub node
339	and a Nitrobacter sp. GDHX01215817.4.1477 was a connector. Our results, inclusive of a dataset
340	of divergent plant genotypes and broad biogeography, suggest that while hub and connector taxa
341	may be important for the maintenance of the root microbiome, these taxa are not consistently
342	detected in the common bean rhizosphere and, by deduction, could not be of universal importance
343	for the host plant. Our study cannot speak to the potential for functional redundancy among hub or
344	connector taxa, which could ultimately suggest a functional core among phylogenetically diverse
345	taxa [65]. Taken together, these results suggest that core taxa likely are important for the plant,
346	while hub and connector taxa are important for the integrity of the soil microbial community and its
2.47	recompany to the local environment
347	responses to the local environment.
347 348	responses to the local environment.
	Discussion
348	
348 349	Discussion
348 349 350	Discussion Numerous studies have aimed to detect core microbiome members for various plants and
348349350351	Discussion Numerous studies have aimed to detect core microbiome members for various plants and animals (see references within [29, 66]). Because methods are inconsistent across studies and
 348 349 350 351 352 	Discussion Numerous studies have aimed to detect core microbiome members for various plants and animals (see references within [29, 66]). Because methods are inconsistent across studies and because the parameters used to define a core are often arbitrary, there is some question as to how
 348 349 350 351 352 353 	Discussion Numerous studies have aimed to detect core microbiome members for various plants and animals (see references within [29, 66]). Because methods are inconsistent across studies and because the parameters used to define a core are often arbitrary, there is some question as to how robust or useful such studies may be. For these reasons, it has become easy to overlook new studies
 348 349 350 351 352 353 354 	Discussion Numerous studies have aimed to detect core microbiome members for various plants and animals (see references within [29, 66]). Because methods are inconsistent across studies and because the parameters used to define a core are often arbitrary, there is some question as to how robust or useful such studies may be. For these reasons, it has become easy to overlook new studies that claim to have discovered a core microbiome for their system. If every study or design results in
 348 349 350 351 352 353 354 355 	Discussion Numerous studies have aimed to detect core microbiome members for various plants and animals (see references within [29, 66]). Because methods are inconsistent across studies and because the parameters used to define a core are often arbitrary, there is some question as to how robust or useful such studies may be. For these reasons, it has become easy to overlook new studies that claim to have discovered a core microbiome for their system. If every study or design results in a different core microbiome, how can the research build to move forward?

359 and also across datasets collected by different research groups. Furthermore, core members were

360 enriched in the rhizoplane, and not just the rhizosphere. These multiple and consistent lines of

Stopnisek and Shade

361	evidence provide strong support that these taxa likely engage with the plant and also demonstrate
362	the robustness of the abundance-occupancy method to discover core members.
363	A majority of the 48 core bacterial taxa among these common bean rhizospheres are under-
364	described or largely unknown, as only 23 out of 48 have a genus-level classification. But, due to
365	their ubiquitous association with the bean over space and time, we hypothesize that these taxa
366	provide functions that are crucial for common bean health and should be targeted for microbiome
367	management of in support of common bean productivity and wellness. To test this hypothesis
368	further research is needed, but plant-beneficial traits have been previously reported for members of
369	the genera that we identified as part of the bean core microbiome. For example, members
370	belonging to the genera Mesorhizobium and Rhizobium are known symbiotic nitrogen fixers of
371	legumes [67, 68], Ramlibacter sp. have the ability to promote P mobilization [69], and Variibacter,
372	Novosphingobium and Sphingomonas sp. harbor many specialized genes indicating their
373	relationship with plant hosts [70–72].
374	Discovering these core taxa is a first step in a rich line of inquiry to understand host
375	engagement with them. The next steps are to understand functions associated with these taxa and to
376	determine how they contribute to plant health and productivity under different growth conditions,
377	such as drought or with particular management strategies [39, 73]. These steps will include
378	cultivation dependent and independent approaches aimed to enrich and isolate core members,
379	assemble or bin genomes from isolates and metagenomes, annotate functional genes on both
380	chromosomes and plasmids, link functions and activities through transcript or metabolome
381	analyses, and perform experiments with constructed communities of core members to test
382	hypotheses about microbiome engagement with and benefits to the plant.

Stopnisek and Shade

383	To conclude, this work provides robust approaches and general insights for prioritizing core
384	microbiome members, and that also advance goals in plant-microbiome management and microbe-
385	improved crops by providing insights into core member identities and dynamics.
386	
387	
388	Acknowledgments
389	This work was supported by the Plant Resilience Institute at Michigan State University. We
390	are grateful to Dr. James Kelly, Dr. Phillip Miklas, Dr. James J. Heitholt, Dr. Carlos Urrea Florez,
391	Dr. Mark A. Brick, Dr. Juan M. Osorno, Dr. Thomas H Smith and other supporting staff at the
392	research extension farms for their partnership in this study. We would also like to thank the
393	Michigan State Genomics Core Research and Technology Support Facility and the Institute for
394	Cyber-Enabled Research High Performance Computing Center for excellent support and service.
395	AS acknowledge support from Michigan State AgBioResearch (Hatch).
396	
397	Competing Interests
398	The authors declare no conflict of interest.
399	
400	Author contributions
401	N.S. and A.S. designed research, analyzed data and wrote the paper; and N.S. performed research.
402	
403	Supporting Text, Figures, and Tables accompany this manuscript.
404	

Stopnisek and Shade

405 **References**

- Dessaux Y, Grandclément C, Faure D. Engineering the Rhizosphere. *Trends Plant Sci* 2016;
 21: 266–278.
- 4082.Gopal M, Gupta A. Microbiome Selection Could Spur Next-Generation Plant Breeding
- 409 Strategies. Front Microbiol 2016; 7: 1971.
- 410 3. Compant S, Samad A, Faist H, Sessitsch A. A review on the plant microbiome: Ecology,
- 411 functions, and emerging trends in microbial application. *J Adv Res* 2019; **19**: 29–37.
- 412 4. Wille L, Messmer MM, Studer B, Hohmann P. Insights to plant-microbe interactions
- 413 provide opportunities to improve resistance breeding against root diseases in grain legumes.
- 414 *Plant Cell Environ* 2019; **42**: 20–40.
- 415 5. Busby PE, Soman C, Wagner MR, Friesen ML, Kremer J, Bennett A, et al. Research
- 416 priorities for harnessing plant microbiomes in sustainable agriculture. *PLOS Biol* 2017; 15:
 417 e2001793.
- 418 6. Kroll S, Agler MT, Kemen E. Genomic dissection of host-microbe and microbe-microbe
 419 interactions for advanced plant breeding. *Curr Opin Plant Biol* 2017; **36**: 71–78.
- 420 7. Broughton WJ, Hernández G, Blair M, Beebe S, Gepts P, Vanderleyden J. Beans (Phaseolus
 421 spp.) model food legumes. *Plant Soil* 2003; 252: 55–128.
- 422 8. Schmutz J, McClean PE, Mamidi S, Wu GA, Cannon SB, Grimwood J, et al. A reference
- 423 genome for common bean and genome-wide analysis of dual domestications. *Nat Genet*424 2014; **46**: 707–713.
- 425 9. Rendón-Anaya M, Montero-Vargas JM, Saburido-Álvarez S, Vlasova A, Capella-Gutierrez
- 426 S, Ordaz-Ortiz JJ, et al. Genomic history of the origin and domestication of common bean
 427 unveils its closest sister species. *Genome Biol* 2017; 18: 60.
- 428 10. Bitocchi E, Rau D, Bellucci E, Rodriguez M, Murgia ML, Gioia T, et al. Beans (Phaseolus

Stopnisek and Shade

429		ssp.) as a Model for Understanding Crop Evolution. Front Plant Sci 2017; 8: 722.
430	11.	Bitocchi E, Nanni L, Bellucci E, Rossi M, Giardini A, Zeuli PS, et al. Mesoamerican origin
431		of the common bean (Phaseolus vulgaris L.) is revealed by sequence data. Proc Natl Acad
432		<i>Sci</i> 2012; 109 : 788–796.
433	12.	Kwak M, Gepts P. Structure of genetic diversity in the two major gene pools of common
434		bean (Phaseolus vulgaris L., Fabaceae). Theor Appl Genet 2009; 118: 979–992.
435	13.	Bitocchi E, Bellucci E, Giardini A, Rau D, Rodriguez M, Biagetti E, et al. Molecular
436		analysis of the parallel domestication of the common bean (Phaseolus vulgaris) in
437		Mesoamerica and the Andes. New Phytol 2013; 197: 300-313.
438	14.	Perez-Jaramillo JE, Carrion VJ, Bosse M, Ferrao LF V, de Hollander M, Garcia AAF, et al.
439		Linking rhizosphere microbiome composition of wild and domesticated Phaseolus vulgaris
440		to genotypic and root phenotypic traits. ISME J 2017.
441	15.	Pérez-Jaramillo JE, de Hollander M, Ramírez CA, Mendes R, Raaijmakers JM, Carrión VJ.
442		Deciphering rhizosphere microbiome assembly of wild and modern common bean
443		(Phaseolus vulgaris) in native and agricultural soils from Colombia. <i>Microbiome</i> 2019; 7:
444		114.
445	16.	NDSU Agriculture. Eclipse Black Bean. 2004. Fargo.
446	17.	McClean P, Myers J. Pedigrees of dry bean cultivars, lines and PIs. Annu Rep Bean Improv
447		<i>Coop</i> 1990; 33 : 23–25.
448	18.	USDA. United States Department of Agriculture National Agricultural Statistics Service
449		Crop Production 2016 Summary. 2017.
450	19.	Cichy KA, Porch TG, Beaver JS, Cregan P, Fourie D, Glahn RP, et al. A Diversity Panel for
451		Andean Bean Improvement. Crop Sci 2015; 55: 2149.
452	20.	Sasse J, Martinoia E, Northen T. Feed Your Friends: Do Plant Exudates Shape the Root

Stopnisek and Shade

- 453 Microbiome? *Trends Plant Sci* 2017.
- 454 21. Rideout JR, He Y, Navas-Molina JA, Walters WA, Ursell LK, Gibbons SM, et al.
- 455 Subsampled open-reference clustering creates consistent, comprehensive OTU definitions
- and scales to billions of sequences. *PeerJ* 2014; **2**: e545.
- 457 22. Quast C, Pruesse E, Yilmaz P, Gerken J, Schweer T, Yarza P, et al. The SILVA ribosomal
- 458 RNA gene database project: improved data processing and web-based tools. *Nucleic Acids*459 *Res* 2013; **41**: D590-6.
- 460 23. Edgar RC. UPARSE: highly accurate OTU sequences from microbial amplicon reads. *Nat*461 *Methods* 2013; 10: 996–998.
- 462 24. Caporaso JG, Kuczynski J, Stombaugh J, Bittinger K, Bushman FD, Costello EK, et al.
- 463 QIIME allows analysis of high-throughput community sequencing data. *Nat Methods* 2010;
 464 7: 335–336.
- 465 25. Gdanetz K, Benucci GMN, Vande Pol N, Bonito G. CONSTAX: a tool for improved
- 466 taxonomic resolution of environmental fungal ITS sequences. *BMC Bioinformatics* 2017;
- **4**67 **18**: 538.
- 468 26. UNITE Community. UNITE USEARCH/UTAX release. 2017.
- 469 27. Davis NM, Proctor DiM, Holmes SP, Relman DA, Callahan BJ. Simple statistical
- 470 identification and removal of contaminant sequences in marker-gene and metagenomics
 471 data. *Microbiome* 2018; 6: 226.
- 472 28. Edgar RC. UNOISE2: improved error-correction for Illumina 16S and ITS amplicon
 473 sequencing. *bioRxiv* 2016; 081257.
- 474 29. Shade A, Stopnisek N. Abundance-occupancy distributions to prioritize plant core
 475 microbiome membership. *Curr Opin Microbiol* 2019; **49**: 50–58.
- 476 30. Deng Y, Jiang Y-H, Yang Y, He Z, Luo F, Zhou J. Molecular ecological network analyses.

Stopnisek and Shade

- 477 *BMC Bioinformatics* 2012; **13**: 113.
- 478 31. Shannon P, Markiel A, Ozier O, Baliga NS, Wang JT, Ramage D, et al. Cytoscape: A
- 479 Software Environment for Integrated Models of Biomolecular Interaction Networks.
- 480 *Genome Res* 2003; **13**: 2498–2504.
- 481 32. Singer E, Bonnette J, Kenaley SC, Woyke T, Juenger TE. Plant compartment and genetic
- 482 variation drive microbiome composition in switchgrass roots. *Environ Microbiol Rep* 2019;
 483 11: 185–195.
- 484 33. Coleman-Derr D, Desgarennes D, Fonseca-Garcia C, Gross S, Clingenpeel S, Woyke T, et
- 485 al. Plant compartment and biogeography affect microbiome composition in cultivated and
 486 native *Agave* species. *New Phytol* 2016; **209**: 798–811.
- 487 34. De Souza RSC, Okura VK, Armanhi JSL, Jorrín B, Lozano N, Da Silva MJ, et al. Unlocking
 488 the bacterial and fungal communities assemblages of sugarcane microbiome. *Sci Rep* 2016;
 489 6: 1–15.
- 490 35. Walters WA, Jin Z, Youngblut N, Wallace JG, Sutter J, Zhang W, et al. Large-scale
- 491 replicated field study of maize rhizosphere identifies heritable microbes. *Proc Natl Acad Sci*492 USA 2018; 115: 7368–7373.
- 493 36. Wagner MR, Lundberg DS, del Rio TG, Tringe SG, Dangl JL, Mitchell-Olds T. Host

494 genotype and age shape the leaf and root microbiomes of a wild perennial plant. *Nat*495 *Commun* 2016; 7: 12151.

- 496 37. Xu J, Zhang Y, Zhang P, Trivedi P, Riera N, Wang Y, et al. The structure and function of
 497 the global citrus rhizosphere microbiome. *Nat Commun* 2018; **9**: 4894.
- 498 38. Edwards J, Johnson C, Santos-Medellín C, Lurie E, Podishetty NK, Bhatnagar S, et al.
- 499 Structure, variation, and assembly of the root-associated microbiomes of rice. *Proc Natl*
- 500 *Acad Sci U S A* 2015; **112**: E911-20.

Stopnisek and Shade

- 501 39. Edwards JA, Santos-Medellín CM, Liechty ZS, Nguyen B, Lurie E, Eason S, et al.
- 502 Compositional shifts in root-associated bacterial and archaeal microbiota track the plant life
- 503 cycle in field-grown rice. *PLOS Biol* 2018; **16**: e2003862.
- 504 40. Fitzpatrick CR, Copeland J, Wang PW, Guttman DS, Kotanen PM, Johnson MTJ. Assembly
- and ecological function of the root microbiome across angiosperm plant species. *Proc Natl Acad Sci U S A* 2018; **115**: E1157–E1165.
- Hamonts K, Trivedi P, Garg A, Janitz C, Grinyer J, Holford P, et al. Field study reveals core
 plant microbiota and relative importance of their drivers. *Environ Microbiol* 2018; 20: 124–
 140.
- 510 42. Gomes EA, De Sousa SM, Oliveira CA. Root-Associated Microbiome of Maize Genotypes
- 511 with Contrasting Phosphorus Use Efficiency. 2018; **2**: 129.
- 512 43. Estendorfer J, Stempfhuber B, Haury P, Vestergaard G, Rillig MC, Joshi J, et al. The
- 513 Influence of Land Use Intensity on the Plant-Associated Microbiome of Dactylis glomerata
- 514 L. Front Plant Sci 2017; 8: 930.
- 515 44. Leff JW, Lynch RC, Kane NC, Fierer N. Plant domestication and the assembly of bacterial
- 516 and fungal communities associated with strains of the common sunflower, Helianthus
- 517 annuus. New Phytol 2017; **214**: 412–423.
- 518 45. Lundberg DS, Lebeis SL, Herrera Paredes S, Yourstone S, Gehring J, Malfatti S, et al.
- 519 Defining the core Arabidopsis thaliana root microbiome. *Nature* 2012; **488**.
- 520 46. Levy A, Salas Gonzalez I, Mittelviefhaus M, Clingenpeel S, Herrera Paredes S, Miao J, et al.
 521 Genomic features of bacterial adaptation to plants. *Nat Genet* 2018; **50**: 138–150.
- 522 47. Grady KL, Sorensen JW, Stopnisek N, Guittar J, Shade A. Assembly and seasonality of core
 523 phyllosphere microbiota on perennial biofuel crops. *Nat Commun* 2019; 10: 4135.
- 524 48. Shade A, Dunn RR, Blowes SA, Keil P, Bohannan BJM, Herrmann M, et al. Macroecology

Stopnisek and Shade

525		to Unite All Life, Large and Small. Trends Ecol Evol 2018; 33: 731–744.
526	49.	Woodcock S, Van Der Gast CJ, Bell T, Lunn M, Curtis TP, Head IM, et al. Neutral
527		assembly of bacterial communities. FEMS Microbiol Ecol 2007; 62: 171-180.
528	50.	Burns AR, Stephens WZ, Stagaman K, Wong S, Rawls JF, Guillemin K, et al. Contribution
529		of neutral processes to the assembly of gut microbial communities in the zebrafish over host
530		development. ISME J 2016; 10: 655–664.
531	51.	Gaston KJ, Blackburn TM, Greenwood JJD, Gregory RD, Quinn RM, Lawton JH.
532		Abundance-occupancy relationships. J Appl Ecol 2000; 37: 39–59.
533	52.	Martiny JBH, Eisen JA, Penn K, Allison SD, Horner-Devine MC. Drivers of bacterial beta-
534		diversity depend on spatial scale. Proc Natl Acad Sci USA 2011; 108: 7850-4.
535	53.	Gumiere T, Durrer A, Bohannan BJM, Andreote FD. Biogeographical patterns in fungal
536		communities from soils cultivated with sugarcane. J Biogeogr 2016; 43: 2016–2026.
537	54.	Talbot JM, Bruns TD, Taylor JW, Smith DP, Branco S, Glassman SI, et al. Endemism and
538		functional convergence across the North American soil mycobiome. Proc Natl Acad Sci
539		2014; 111 : 6341–6346.
540	55.	Tedersoo L, Bahram M, Põlme S, Kõljalg U, Yorou NS, Wijesundera R, et al. Global
541		diversity and geography of soil fungi. Science (80-) 2014; 346.
542	56.	Dawson W, Hör J, Egert M, van Kleunen M, Pester M. A Small Number of Low-abundance
543		Bacteria Dominate Plant Species-specific Responses during Rhizosphere Colonization.
544		<i>Front Microbiol</i> 2017; 8 : 975.
545	57.	Agler MT, Ruhe J, Kroll S, Morhenn C, Kim S-T, Weigel D, et al. Microbial Hub Taxa Link
546		Host and Abiotic Factors to Plant Microbiome Variation. PLOS Biol 2016; 14: e1002352.
547	58.	Trivedi P, Delgado-Baquerizo M, Trivedi C, Hamonts K, Anderson IC, Singh BK. Keystone
548		microbial taxa regulate the invasion of a fungal pathogen in agro-ecosystems. Soil Biol

Stopnisek and Shade

549		<i>Biochem</i> 2017; 111 : 10–14.
550	59.	Shi S, Nuccio EE, Shi ZJ, He Z, Zhou J, Firestone MK. The interconnected rhizosphere:
551		High network complexity dominates rhizosphere assemblages. <i>Ecol Lett</i> 2016; 19 : 926–936.
552	60.	Carlström CI, Field CM, Bortfeld-Miller M, Müller B, Sunagawa S, Vorholt JA. Synthetic
553		microbiota reveal priority effects and keystone strains in the Arabidopsis phyllosphere. Nat
554		<i>Ecol Evol</i> 2019; 3 : 1445–1454.
555	61.	Toju H, Peay KG, Yamamichi M, Narisawa K, Hiruma K, Naito K, et al. Core microbiomes
556		for sustainable agroecosystems. Nat Plants 2018; 4: 247-257.
557	62.	Durán P, Thiergart T, Garrido-Oter R, Agler M, Kemen E, Schulze-Lefert P, et al. Microbial
558		Interkingdom Interactions in Roots Promote Arabidopsis Survival. Cell 2018; 175: 973-
559		983.e14.
560	63.	Wagg C, Schlaeppi K, Banerjee S, Kuramae EE, van der Heijden MGA. Fungal-bacterial
561		diversity and microbiome complexity predict ecosystem functioning. Nat Commun 2019; 10:
562		1–10.
563	64.	Guimerà R, Nunes Amaral LA. Functional cartography of complex metabolic networks.
564		<i>Nature</i> 2005; 433 : 895–900.
565	65.	Lemanceau P, Blouin M, Muller D, Moënne-Loccoz Y. Let the Core Microbiota Be
566		Functional. Trends Plant Sci. 2017. Elsevier Ltd., 22: 583-595
567	66.	Risely A. Applying the core microbiome to understand host-microbe systems. J Anim Ecol
568		2020.
569	67.	Andrews M, Andrews ME, Andrews M, Andrews ME. Specificity in Legume-Rhizobia
570		Symbioses. Int J Mol Sci 2017; 18: 705.
571	68.	Wang Q, Liu J, Zhu H. Genetic and molecular mechanisms underlying symbiotic specificity
572		in legume-rhizobium interactions. Front Plant Sci . 2018. Frontiers Media S.A., 9

Stopnisek and Shade

573	69	Skouri-Panet F.	Benzerara K	Cosmidis L	Férard C	Caumes G	De Luca G	et al. In vitro
515	0_{1}	DROull I unot I	, Donzorara ix,	Cosiniais 3	, i ciulu \mathcal{O}_{i}		, De Luca O	, or an mi vitto

- and in silico evidence of phosphatase diversity in the biomineralizing bacterium Ramlibacter
- 575 tataouinensis. *Front Microbiol* 2018; **8**: 2592.
- 576 70. Lee JS, Lee KC, Kim KK, Lee B. Complete genome sequence of the Variibacter
- 577 gotjawalensis GJW-30T from soil of lava forest, Gotjawal. *J Biotechnol* 2016; **218**: 64–65.
- 578 71. Khan AL, Waqas M, Kang SM, Al-Harrasi A, Hussain J, Al-Rawahi A, et al. Bacterial
- 579 endophyte Sphingomonas sp. LK11 produces gibberellins and IAA and promotes tomato
- 580 plant growth. *J Microbiol* 2014; **52**: 689–695.
- 581 72. Aylward FO, McDonald BR, Adams SM, Valenzuela A, Schmidt RA, Goodwin LA, et al.
- 582 Comparison of 26 sphingomonad genomes reveals diverse environmental adaptations and
 583 biodegradative capabilities. *Appl Environ Microbiol* 2013; **79**: 3724–33.
- 584 73. Xu L, Naylor D, Dong Z, Simmons T, Pierroz G, Hixson KK, et al. Drought delays
- 585 development of the sorghum root microbiome and enriches for monoderm bacteria. *Proc*
- 586 *Natl Acad Sci* 2018; **115**: E4284–E4293.

587

Stopnisek and Shade

589 Figure Legends

590	Fig. 1: Abundance-occupancy distributions were used to identify core members of the rhizosphere
591	microbiome for bacteria/archaea (A) and fungi (B). Taxa exclusive to a genotype are indicated in
592	orange (CELRK) or black (Eclipse), and taxa shared across both genotypes are white. The solid
593	line represents the fit of the neutral model, and the dashed line is 95% confidence around the model
594	prediction. Taxa with an occupancy of 1 (i.e., detected in all samples) were considered members of
595	the core. Relative abundance of these taxa is represented as boxplots, grouped by order and number
596	of taxa therein (C, D). Panels C and D are color-coded by phyla level.
597	
598	Fig. 2: A global core rhizosphere microbiome. There were 3361 shared bacterial/archaeal taxa
599	across U.S. and Colombia rhizosphere samples, suggesting highly similar recruitment across
600	continental scales. Forty-eight taxa were detected in all samples of both datasets, as depicted by the
601	Venn diagram (A), and included many Proteobacteria (B). Relative abundance of the 48 U.S
602	Colombia core taxa is represented as boxplots (left panel), grouped by order and dataset
603	(Colombia/U.S.). Number of taxa per order is represented as bars (right panel). Labels on the y-axis
604	and bars are color-coded by phylum level.
605	
606	Fig. 3: Relative abundance of core taxa in the root system of the common bean during plant
607	development by root compartment and growing location. The combined relative abundance of 48
608	core taxa is significantly higher in the rhizoplane (green) compared to the rhizosphere (orange) and
609	does not show plant development dependence (A – upper panel). The combined relative abundance

- 610 of remaining core taxa specific to the U.S. (n=210), tend to be high throughout the plant
- 611 development but are equally abundant in both compartments (A lower panel). Stars above box
- 612 plots represent statistical significances as determined by Wilcoxon test (**** ≤ 0.0001 , *** \leq

Stopnisek and Shade

613	0.001, ** \leq 0.01, * \leq 0.05). Z-score normalized relative abundance of the 48 core taxa across plant
614	development, compartments and growing location (B). Taxa on the y-axis are arranged by their
615	classification at the phylum level.
616	

- 617 **Fig. 4**: Network co-occurrence analysis shows that core rhizosphere microbiome members are
- 618 predominantly classified as peripheral taxa that are weakly connected, and generally clustering by
- 619 the growing location. The network depicts only clusters of modules that were connected by more
- 620 than 6 nodes (A). Nodes shape is representing domain associations (archaeal, bacterial or fungal)
- 621 and node size is proportional to its total number of connecting edges (A). The four largest modules
- 622 are generally reflective of community biogeography and distinguished by color (A). The within-
- 623 (Zi) and among- (Pi) module connectivity plot was used to identify module (Pi<0.62, Zi>0.2.5) or
- 624 network hub taxa (Pi>0.62, Zi>2.5), as well as connector (Pi>0.62, Zi<2.5) and peripheral taxa (B).
- 625 The density plots surrounding the Zi-Pi plot represent core (green) and non-core taxa (black) (B).
- 626 The relative abundances of taxa within each module is represented in box plots (C).
- 627

628 Supporting Figure legends

629 Fig. S1: Sequencing depth and rarefaction curves for 16S rRNA (A,B) and ITS (C, D) dataset from

630 samples collected in 2017. The red splitted line represents the rarefaction threshold. Note that we

- 631 submitted amplicons for sequencing from the 2017 sampling effort twice which resulted in the
- 632 sample to sample variation in read depth (rhizosphere 16S rRNA samples sequenced first followed
- 633 by the ITS amplicons with addition of the root-associated samples).

Stopnisek and Shade

635	Fig. S2: Alpha diversity indices for the 16S RNA (A, B) and ITS (C, D) datasets. Represented are
636	rich-ness, Shannon and Pielou indices measured by growing location (A, C) and bean genotype (B,
637	D). For statistical comparison of the pairs we used ANOVA (A, C) or Wilcoxon test (B, D).
638	
639	Fig. S3: Growing location drives bacterial/archaeal (A) and fungal (B) microbiome structure of the
640	common bean rhizosphere. The principal coordinate analysis (PCoA) is based on Bray-Curtis
641	distances. Growing location is indicated by color and plant genotype is indicated by shape shapes
642	(diamond=CELRK, circle=Eclipse, square=root zone soil). The strength of statistically significant
643	(p-value < 0.01) explanatory variables are shown as the length of fitted vectors.
644	
645	Fig S4: Community composition (A, C) and number of shared taxa between sites represent as Venn
646	diagrams (B, D). The 16S rRNA dataset is represented in the top panels (A, B) and ITS in the lower
647	panels (C, D). The bar charts are colored based on the phylum association (phyla represented by
648	relative abundance < .05 are grouped and labelled as other). For Venn diagrams, samples were
649	grouped by the growing location and root zone samples were removed.
650	
651	Fig. S5: Analysis of ZOTUs represented by each identified core OTU. 48 core OTUs were
652	represented by as few as 4 ZOTUs and by up to 35 ZOTUs. For every OTU we found at least one
653	ZOTU with occupancy = 1 and all of them, except of 2 ZOTUs, had also the highest relative
654	abundance among them. Points are color coded by their presence, red representing those with
655	occupancy < 1 and blue for ZOTUs with occupancy of 1. The OTUs on the x-axis are ordered
656	alphabetically.
(57	

657

Stopnisek and Shade

658	Fig. S6: Occupancy of core OTUs in the development study. Occupancy is represented by color
659	and size.

660

- **Fig. S7**: Comparison of relative abundance of the 48 core OTUs between the DNA isolation
- 662 methods used in the development study (G=Griffith, P=PowerSoil). Statistical difference,
- determined by Wilcoxon test, is represented as star symbol (*<0.05, **<0.01, ***<0.001). The
- 664 pints are color coded by sample they derived from.

665

666 Fig. S8: The effect of isolation method on alpha and beta diversity. For alpha diversity richness,

667 Shannon and Pielou indices are presented (A). For the principal coordinates analysis, Bray-Curtis

distance matrix was used. Symbols are colored by samples. Wilcoxon test was used to determine

669 statistical differences between isolation methods for the alpha diversity metrices (*<0.05).

670 PERMANOVA was used to determine the effect of isolation method on community structure.

- 671
- 672

Stopnisek and Shade

673 Tables

- 674 **Table 1**: Description of geographical, managemental and soil properties of the common bean
- 675 growing locations included in the study.

Sample same	Growing location	Elevation	Bean genotype	Weather (T, precipitation)*	Rotation history	Fertilization (per acre)	Irrigation	рН	Nitrogen (%)	Organic matter (%)
SVREC	Saginaw Valley Research and Extension Center, MI, US	190 m	CELRK	24.5°C, 5.7 mm	Common bean, wheat, maize	Synthetic (400lbs of 15N-5 P-13K)	None	7.7 (± 0.1)	0.13 (± 0.00)	2.33 (± 0.06)
MRC	Montcalm Research Center, MI, US	280 m	Eclipse	24°C, 7.4 mm	Common bean, maize, potato	Synthetic (2001bs of 19N-0P-19K)	Yes	5.9 (± 0.4)	0.10 (± 0.01)	2.13 (± 0.06)
NE	Scottsbluff, NE, US	1200 m	CELRK and Eclipse	27°C, 2.18 mm	Common bean, maize, common bean	None	Yes	7.9 (± 0.1)	0.07 (± 0.01)	1.39 (± 0.18)
СО	ARDEC, Fort Collins, CO, US	1536 m	CELRK and Eclipse	31°C, 1.4 mm **	Common bean, maize, barley	Organic (220lbs urea (2016), 3 tons manure (2015))	Yes	8.1 (± 0.2)	0.11 (± 0.00)	1.7 (± 0.15)
WA	WSU, Othello, WA, US	320 m	CELRK and Eclipse	26.3°C, 0.2 mm	Common bean, maize, wheat	Synthetic (40lbs N/20lbs P/10lbs ZN2O5)	Yes	6.1 (± 0.4)	0.08 (± 0.01)	1.78 (± 0.10)

- 676 * Temperature (as max air temperature) and precipitation are averaged for the period between May
- 677 1^{st} and July $31^{st} 2017$.
- 678 ** Data available only for the period between Jun 28th and Jul 31st 2017.
- 679
- 680 Supporting Table legends
- 681 Table S1: PERMANOVA results for the 16S rRNA and ITS data. Highly correlated or/and
- 682 statistically significant values are highlighted in bold.

- **Table S2**: 20 differentially abundant OTUs between the two plant genotypes as identified by using
- 685 DESeq2 (Love et al. 2014).

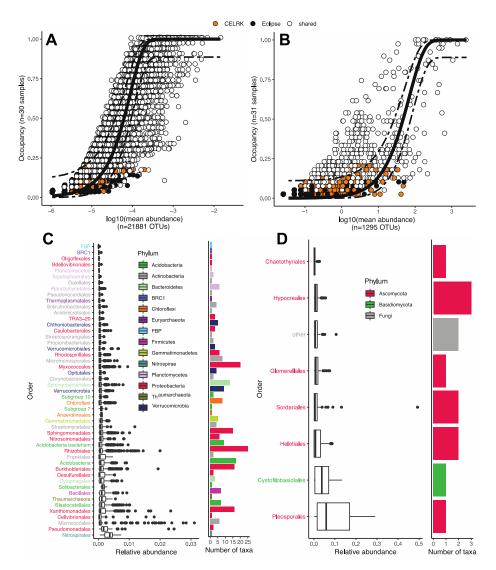
Stopnisek and Shade

6

Table S3: Sloan neutral model summary.

Table S4: List of 48 core taxa and their taxonomic classification.

- **Table S5**: Occupancy of core OTUs in agricultural, natural (forest) soils or when combined.
- 692 Results are based on the re-analysis of the data from the Pérez-Jaramillo et al. 2019. OTUs with
- 693 occupancy of 1 in both soils are highlighted in orange. Additional to the number we used green
- 694 gradient shading to represents the occupancy of each OTU.


Table S6: Summary of network properties of actual and random network.

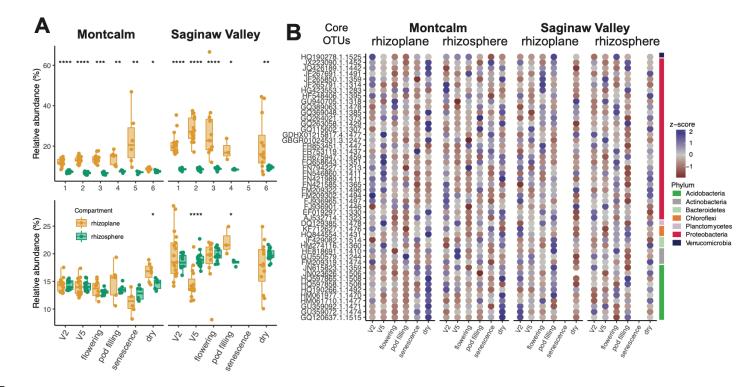
Stopnisek and Shade

699 Figures

707

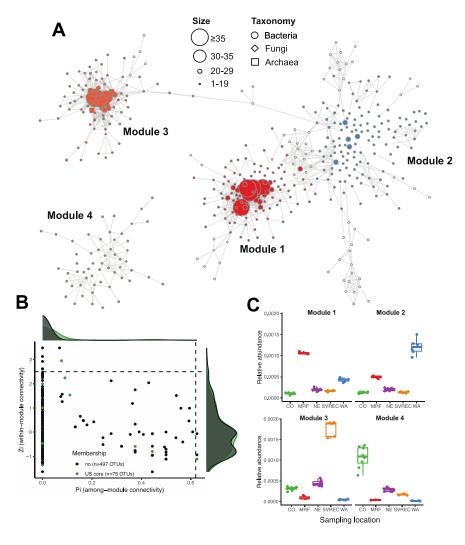
Fig. 1: Abundance-occupancy distributions were used to identify core members of the rhizosphere microbiome for bacteria/archaea (A) and fungi (B). Taxa exclusive to a genotype are indicated in orange (CELRK) or black (Eclipse), and taxa shared across both genotypes are white. The solid line represents the fit of the neutral model, and the dashed line is 95% confidence around the model prediction. Taxa with an occupancy of 1 (i.e., detected in all samples) were considered members of the core. Relative abundance of these taxa is represented as boxplots, grouped by order and number of taxa therein (C, D). Panels C and D are color-coded by phyla level.

Stopnisek and Shade


- 708 Fig. 2: A global core rhizosphere microbiome. There were 3361 shared bacterial/archaeal taxa
- across U.S. and Colombia rhizosphere samples, suggesting highly similar recruitment across
- 710 continental scales. Forty-eight taxa were detected in all samples of both datasets, as depicted by the
- 711 Venn diagram (A), and included many Proteobacteria (B). Relative abundance of the 48 U.S.-
- 712 Colombia core taxa is represented as boxplots (left panel), grouped by order and dataset
- 713 (Colombia/U.S.). Number of taxa per order is represented as bars (right panel). Labels on the y-axis
- and bars are color-coded by phylum level.

715

Stopnisek and Shade


717	Fig. 3: Relative abundance of core taxa in the root system of the common bean during plant
718	development by root compartment and growing location. The combined relative abundance of 48
719	core taxa is significantly higher in the rhizoplane (green) compared to the rhizosphere (orange) and
720	does not show plant development dependence (A – upper panel). The combined relative abundance
721	of remaining core taxa specific to the U.S. (n=210), tend to be high throughout the plant
722	development but are equally abundant in both compartments (A - lower panel). Stars above box
723	plots represent statistical significances as determined by Wilcoxon test (**** \leq 0.0001, *** \leq
724	0.001, ** \leq 0.01, * \leq 0.05). Z-score normalized relative abundance of the 48 core taxa across plant
725	development, compartments and growing location (B). Taxa on the y-axis are arranged by their
726	classification at the phylum level.

Stopnisek and Shade

728	Fig. 4: Network co-occurrence analysis shows that core rhizosphere microbiome members are
729	predominantly classified as peripheral taxa that are weakly connected, and generally clustering by
730	the growing location. The network depicts only clusters of modules that were connected by more
731	than 6 nodes (A). Nodes shape is representing domain associations (archaeal, bacterial or fungal)
732	and node size is proportional to its total number of connecting edges (A). The four largest modules
733	are generally reflective of community biogeography and distinguished by color (A). The within-
734	(Zi) and among- (Pi) module connectivity plot was used to identify module (Pi<0.62, Zi>0.2.5) or
735	network hub taxa (Pi>0.62, Zi>2.5), as well as connector (Pi>0.62, Zi<2.5) and peripheral taxa (B).
736	The density plots surrounding the Zi-Pi plot represent core (green) and non-core taxa (black) (B).

737 The relative abundances of taxa within each module is represented in box plots (C).

