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Abstract

The adaptive immune system generates an incredible diversity of antigen receptors for B and T cells
to keep dangerous pathogens at bay. The DNA sequences coding for these receptors arise by a complex
recombination process followed by a series of productivity-based filters, as well as affinity maturation
for B cells, giving considerable diversity to the circulating pool of receptor sequences. Although these
datasets hold considerable promise for medical and public health applications, the complex structure
of the resulting adaptive immune receptor repertoire sequencing (AIRR-seq) datasets makes analysis
difficult. In this paper we introduce sumrep, an R package that efficiently performs a wide variety of
repertoire summaries and comparisons, and show how sumrep can be used to perform model validation.
We find that summaries vary in their ability to differentiate between datasets, although many are able to
distinguish between covariates such as donor, timepoint, and cell type for BCR and TCR repertoires. We
show that deletion and insertion lengths resulting from V(D)J recombination tend to be more discrimi-
native characterizations of a repertoire than summaries that describe the amino acid composition of the
CDR3 region. We also find that state-of-the-art generative models excel at recapitulating gene usage and
recombination statistics in a given experimental repertoire, but struggle to capture many physiochemical
properties of real repertoires.

Introduction

B cells and T cells play critical roles in adaptive immunity through the cooperative identification of, and
response to, antigens. The random rearrangement process of the genes that construct B cell receptors
(BCRs) and T cell receptors (TCRs) allows for the recognition of a highly diverse set of antigen epitopes.
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We refer to the set of B and T cell receptors present in an individual’s immune system as their immune
receptor repertoire; this dynamic repertoire constantly changes over the course of an individual’s lifetime
due to antigen exposure and the effects of aging.

Although immune receptor repertoires are now accessible for scientific research and medical applications
through high-throughput sequencing, it is not necessarily straightforward to gain insight from and to compare
these datasets. Indeed, if these datasets are not processed, they are simply a list of DNA sequences. After
annotation one can compare gene usage [15, 21, 7, 11, 5, 4] and CDR3 sequences. This can be a highly involved
task, and so it is common to simply compare the gene usage frequencies and CDR3 length distributions of
repertoire [23, 17], leaving the full richness of the CDR3 sequence and potentially interesting aspects of the
germline-encoded regions unanalyzed.

An alternative strategy is to transform a repertoire to a more convenient space and compare the trans-
formed quantities according to some metric. For example, several studies reduce a set of nucleotide sequences
to kmer distributions for classification of immunization status or disease exposure [19, 26, 14]. These kmer
distributions can then be compared via a string metric, but still comprise a large space and lose important
positional information. One can perform other dimension reduction techniques such as t-SNE to project
repertoires down to an even smaller space [39], but these projections also discard a lot of information and
can be difficult to interpret biologically.

We wish to facilitate the use of biologically interpretable summary statistics to capture many different
aspects of AIRR-seq data. In addition to enabling comparison of different sequencing datasets, summary
statistics can also be used to compare sequencing datasets to probabilistic models to which they have been
fitted. Namely, one can use a form of model checking that is common in statistics: after fitting a model to
data, one assesses the similarity of the model-generated data to the real data. In this case, we generate a
repertoire of sequences from models and compare this collection to a real-data repertoire of sequences via
summary statistics.

We are motivated to perform such comparison because these probabilistic models are used as part of
inference, and because they are used for inferential tool benchmarking. Such generative models are used
to simulate sequences as a “ground truth” for benchmarking inferential software [31, 12, 20], and thus the
accuracy of such benchmarks depends on the realism of the generated sequences. Simulation tools can also
be used to generate a null distribution used to test for a specific effect, such as natural selection [37].

Currently, there are no unified packages dedicated to the task of calculating and comparing summary
statistics for AIRR-seq datasets. While the Immcantation framework (which includes the shazam and
alakazam R packages) contains many summary functions for AIRR-seq data [13], it does not have gen-
eral functionality for retrieving, comparing, and plotting these summaries. Many summaries of interest
are implemented in one package or another, but differences in functionality and data structures make it
troublesome to compute and compare summaries across packages. Some summaries of interest, such as the
distribution of positional distances between mutations, are not readily implemented in any package.

In this paper, we gather dozens of meaningful summary statistics on repertoires, derive efficient and robust
summary implementations, and identify appropriate comparison methods for each summary. We present
sumrep, an R package that computes these summary distributions for AIRR-seq datasets and performs
repertoire comparisons based on these summaries. We investigate the effectiveness of various summary
statistics in distinguishing between different experimental repertoires as well as between simulated and
experimental data. We show that many summaries differentiate between various covariates by which the
datasets are stratified. Further, we demonstrate how sumrep can be used for model validation through
case studies of two state-of-the-art repertoire simulation tools: IGoR [20] applied to TRB sequences, and
partis [30, 31] applied to IGH sequences.

Results

Implementation

The full sumrep package along with the following analyses can be found at https://github.com/matsengrp/
sumrep. It supports the IGH, IGK, and IGL loci for BCR datasets, and the TRA, TRB, TRD, and TRG
loci for TCR datasets. It is open-source, unit-tested, and extensively documented, and uses default dataset
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Summary statistic Annotations Clustering Phylogeny Implementation

Pairwise distance distribution No No No stringdist [35]
kth nearest neighbor distribution No No No stringdist

GC-content distribution No No No ape [28]
Hotspot motif count distribution No No No Biostrings [27]
Coldspot motif count distribution No No No Biostrings [27]
CDR3 length distribution Yes No No Tool-provided
Joint distribution of germline gene use Yes No No sumrep

Pairwise CDR3 distance distribution Yes No No stringdist

Atchley factor distributions Yes No No HDMD [22]
Kidera factor distributions Yes No No Peptides [22]
Aliphatic index distribution Yes No No Peptides

G.R.A.V.Y. index distribution Yes No No alakazam [13]
Polarity distribution Yes No No alakazam

Charge distribution Yes No No alakazam

Basicity distribution Yes No No alakazam

Acidity distribution Yes No No alakazam

Aromaticity distribution Yes No No alakazam

Bulkiness distribution Yes No No alakazam

Per-gene substitution rate Yes No No Tool-provided + sumrep

Per-gene-per-position substitution rate Yes No No Tool-provided + sumrep

Per-base mutability model Yes No No shazam [13]
Per-base substitution model Yes No No shazam

Positional distance between mutations distribution Yes No No sumrep

Distance from germline to sequence distribution Yes No No stringdist

V gene 3’ deletion length distribution Yes No No Tool-provided
V gene 5’ deletion length distribution Yes No No Tool-provided
D gene 3’ deletion length distribution Yes No No Tool-provided
D gene 5’ deletion length distribution Yes No No Tool-provided
J gene 3’ deletion length distribution Yes No No Tool-provided
J gene 5’ deletion length distribution Yes No No Tool-provided
VD (or VJ) insertion length distribution Yes No No Tool-provided
DJ insertion length distribution Yes No No Tool-provided
VD (or VJ) insertion transition matrix Yes No No sumrep

DJ insertion transition matrix Yes No No sumrep

V/J in-frame percentage Yes No No Tool-provided + sumrep

Cluster size distribution Yes Yes No Custom
Hill numbers (diversity indices) Yes Yes No alakazam

Selection estimates Yes Yes No shazam

Sackin index distribution Yes Yes Yes CollessLike [24]
Colless-like index distribution Yes Yes Yes CollessLike

Cophenetic index distribution Yes Yes Yes CollessLike

Table 1: Currently supported summary statistics grouped by their respective degrees of assumed post-
processing. Annotation denotes whether annotation of the V(D)J germline segment is required, Clustering
denotes whether clonal clustering is required, and Phylogeny denotes whether lineage tree inference is re-
quired.
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fields and definitions that comply with the Adaptive Immune Receptor Repertoire (AIRR) Community
Rearrangement schema [36]. A reproducible installation procedure of sumrep is available using Docker [3].

Table 1 lists the summary statistics currently supported by sumrep, and includes the default assumed
degree of annotation, clustering, and phylogenetic inference for each summary. The first group of statistics
only requires the input or query sequences to be aligned to their inferred germline sequences (e.g. IMGT-
aligned) and constrained to the variable region; this coincides with the presence of the sequence alignment

and germline alignment fields in the AIRR schema. The second group requires standard sequence an-
notations, such as inferred germline ancestor sequences for Ig loci, germline gene assignments, and indel
statistics. The third group requires clonal family cluster assignments. The fourth group requires a inferred
phylogeny for each clonal family of an Ig dataset. sumrep itself does not perform any annotation, clustering,
or phylogenetic inference, but rather assumes such metadata are present in the given dataset; in principle,
one can use any tool which performs these tasks as expected.

sumrep makes it easy to compare summary statistics between two repertoires by equipping each summary
with an appropriate divergence, or measure of dissimilarity, between instances of a summary. For exam-
ple, the getCDR3LengthDistribution function returns a vector of each sequence’s CDR3 length, and the
corresponding compareCDR3LengthDistributions function takes two repertoires and returns a numerical
summary of the dissimilarity between these two length distributions. The comparison method depends on the
summary, which is discussed further in the Methods section. sumrep also includes a compareRepertoires

function which takes two repertoires and returns as many summary comparisons as befit the data.
Figure 1 illustrates the general framework of comparing summary statistics between two repertoires

R1 and R2. A given summary s is applied separately to R1 and R2, which for most summaries yields a
distribution of values (Figure 1a). These two resultant distributions can be compared using a divergence D
that is tailored to the nature of s (Figure 1b). We use Jenson-Shannon (JS) divergence to compare scalar
distributions (e.g. GC content, CDR3 length), which is a symmetrized version of KL-divergence, a weighted
average log-ratio of frequencies widely-used in statistics and machine learning. We use the similarly popular
`1 divergence to compare categorical distributions (e.g. gene call frequencies, amino acid frequencies), which
is a sum of absolute differences of counts.

We have designed sumrep to efficiently approximate computationally intensive summaries. When the
target summary is a distribution, we can gain efficiency by repeatedly subsampling from the distribution
until our estimate has stabilized. The result is an approximation to the full distribution; by introducing slight
levels of noise, we can gain very substantial runtime performance improvements for large datasets. This in
turn allows fast, accurate divergence estimates between dataset summaries. We outline a generic distribution
approximation algorithm as well as a modified version for the nearest neighbor distance distribution in the
Methods section, and conduct extensive empirical validation of these algorithms in Appendices A and B.

sumrep additionally contains a plotting function for each univariate summary distribution. For example,
the getCDR3LengthDistribution comes with a companion plotting function called plotCDR3LengthDistribution.
sumrep also includes a master plotting function, plotUnivariateDistributions, which shows a gridded
figure of all univariate distribution plots relevant to the locus in question which can be computed from the
input dataset. Currently, these plotting functions support frequency polygons and empirical cumulative
distribution functions (ECDFs). Examples of these plots can be found throughout later sections of this
report.

Application of summary statistics to experimental data

To examine the ability of various summary statistics to distinguish among real repertoires, we applied sumrep

to TCR and BCR datasets performed a multidimensional scaling (MDS) analysis of summary divergences.
In particular, we computed divergences of each summary between each pair of repertoires, stratified by
covariates such as individual, timepoint, and cell subset to form a dissimilarity matrix. We then mapped
these dissimilarity matrices to an abstract Cartesian space using MDS.

For TCR repertoires, we used datasets from two individuals and five timepoints post-vaccination, with
two replicate per donor-timepoint value, from [29]. Figure 2 displays plots of the first two coordinates of
each replicate grouped by donor and timepoint. We see that for almost all summaries, these points cluster
according to donor identity, with the CDR3 pairwise distance distribution being the only summary that
does not decisively cluster by donor. Many summaries additionally cluster according to timepoint in the
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s(R1) =
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(a) Most summary statistics s, e.g. GC content, yield
a distribution of values when applied to each of the se-
quences in a given repertoire R.

DGC-content
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 = 0.05

(b) We can compare summary distributions using a sta-
tistical divergence D, which takes two distributions and
outputs a nonnegative scalar.

simulated dataexperimental data

(c) For a given experimental dataset, we use simulator
tools to generate a corresponding set of synthetic se-
quences.
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(d) We can compute many summaries of these repertoires
yielding distributions for comparison.

Figure 1: Cartoon of our summary statistic and divergence framework, and how this can be applied to
validation of repertoire simulators. Steps (a) and (b) can be applied to compare arbitrary datasets, while
(c) and (d) show how sumrep can be used for model comparison.

second dimension, although the tightness of clustering varies by summary, with some summaries (e.g. DJ
insertion length distribution) being tightly clustered by a given donor/timepoint value and some summaries
(e.g. Kidera factor 4) not obviously clustering by donor/timepoint. Moreover, the D gene usage distribution
for each individual splits into two distinct groups which do not correlate with timepoint, though the import
of this is more difficult to assess. Although these patterns would require further exploration in a particular
research context, these sumrep divergences show interesting patterns when TCR datasets are stratified by
covariates.

We performed a similar MDS analysis of summary divergences of BCR repertoires stratified by covariate,
using data from [32]. We computed divergences of each summary between each pair of a collection of datasets
stratified by five pairs of twins as well as B cell classification as memory or naive to form a dissimilarity
matrix. We then mapped these dissimilarity matrices to an abstract Cartesian space using MDS. Figure 3
displays plots of the first two coordinates of each donor grouped by twin pair identity and cell type. We
see that for each summary, points can be separated according to cell subset, with some summaries (e.g. V
gene usage, AA frequencies, acidity) clustering more tightly among cell subset, and others (e.g. GRAVY
index, DJ insertion length) clustering more loosely. In addition, the naive repertoires appear to be more
tightly clustered than the memory repertoires for each summary. Finally, for the gene usage statistics, there
is a strong tendency for twins to have higher similarity than unrelated donors, although this tendency is not
consistently observed for other statistics. For example, points for the amino acid 2mer frequency distribution
divergences tend to have high similarity between twins, but the GRAVY index distribution divergences do
not. Thus, there seem to also be interesting dynamics underlying sumrep divergences when BCR datasets
are stratified by covariates, and the observed patterns merit further investigation.

Ranking summary statistic informativeness

Due to the large number of summary statistics supported by sumrep, many of which are correlated, we sought
an approach to identify a set of maximally-informative statistics that provide complimentary information
to one another. To address this, we employed a lasso multinomial regression treating certain sequence-level
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Figure 2: Plots of summary divergence MDS coordinates for data from Pogorelyy et al, 2018, grouped by
donor and timepoint
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Figure 3: Plots of summary divergence MDS coordinates for data from Rubelt et al, 2016, grouped by twin
pair identity and cell type (memory vs naive).
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summaries as covariates and dataset identity as the response. The basic idea is that this regression method
cuts out all but a few predictor variables to find a smaller collection of informative summary statistics, as a
coefficient is “allowed” to be nonzero only when the lasso deems it a relatively meaningful predictor. As the
regularization parameter λ is decreased, more and more coefficients become nonzero, leading to a natural
ordering of summaries as the order in which their coefficient “branches off” from zero. Then a resultant
maximally-informative set of k summaries is the set of summaries with the k best ranks. We formalize this
approach in the Methods section (Algorithm 3).

One caveat to this approach is that we can only use sequence-level summary statistics as covariates in
order to have a well-defined regression procedure. However, the majority of summaries considered in this
report are applied at the sequence level. Thus, between the subset of informative sequence-level statistics and
the remaining non-sequence-level statistics, we arrive at a considerably smaller set. Besides non-sequence-
level summaries, we also omit Kidera Factors and Atchley factors from our analyses as these sets of statistics
are orthogonal by construction according to particular measures of amino acid composition in their respective
original contexts. This also leads to a much smaller design matrix and a substantially decreased runtime.

Figure 4a displays the results of applying Algorithm 3 to IGoR annotations of TRB sequences from
datasets A4 i107, A4 i194, A5 S9, A5 S10, A5 S15, and A5 S22 from Britanova et al, 2016 [6]. We see that
recombination-based deletion lengths comprise four of the top five summaries, with recombination-based
insertion lengths, CDR3 length, and various physiochemical CDR3 properties scattered over the remaining
positions. There appears to be high variability throughout the range of rankings, with the bottom three
statistics all having a ranking of one for at least one coefficient vector.

Figure 4b displays the results of applying Algorithm 3 to partis annotations of IGH sequences from
donors FV, GMC, and IB at timepoints −8d and −1h from Gupta et al, 2017 [12], downsampled to unique
clonal families to avoid clonal abundance biases and decrease algorithmic runtime. We see that deletion
lengths, insertion lengths, and CDR3 length comprise the top six summaries, with physiochemical CDR3
properties mostly in the bottom half of rankings. In contrast to the TCR result, there appears to be
less overall variability throughout the range of rankings, with variability highest for the moderate ranking
positions and notably lower for the top and bottom positions.

While it’s difficult to say exactly the level of correlation of each summary by the lasso result alone, since
the lasso is a regularized version of least-squares, our intuition is that the nice properties of least-squares
combined with the lasso’s ability to eliminate less relevant coefficients leads to a subset of covariates that
are generally informative. To validate this intuition, we can examine distributions of particularly ranked
summaries applied to a test set of annotated repertoires not used in the model fitting. Figure 5 displays
ECDFs of the the acidity (bottom-ranked), aromaticity (middle-ranked), and V 3’ deletion length (top-
ranked) distributions for the FV, GMC, and IB donors at timepoints +1h, +7d, and +28d following an
influenza vaccination (which differ from the −1h and −8d timepoints used for fitting), where the ranks are
as determined by Figure 4b for partis-annotated IGH repertoires. Visually, we see that the acidity curves
do not vary much among donors or timepoints; the aromaticity curves have slightly more variation but are
still highly similar; and the V 3’ deletion length curves are more distinguished between some donors (e.g.
FV and GMC) as well as some donor-timepoint interactions (e.g. +7d and +28d timepoints for IB). Thus,
there is visual evidence that the lasso scores can identify some degree of informativeness among summaries.

Comparing experimental observations to model simulations

sumrep can be used to validate BCR/TCR generative models, i.e. models from which one can generate
(simulate) data, through the following approach. First, given a collection of AIRR-seq datasets, model
parameters are inferred using the modeling software tool for each repertoire, and then these parameters
are used to generate corresponding simulated datasets (Figure 1c). Next, sumrep is used to compute the
summary statistics listed in Table 1 for each dataset and compare these summaries between each pair
of datasets (Figure 1d). Then, a score is calculated for how well the software’s simulation replicates a
given summary based on how small the divergences of observed/simulated dataset pairs are compared to
divergences between arbitrary observed/observed or simulated/simulated pairs.

Applying this methodology using many datasets should give a clear view of which characteristics the model
captures well, as well as areas for improvement. As described in the introduction, we are motivated to do this
because models are often benchmarked on simulated data, and it is important to understand discrepancies
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(a) Summary informativeness rank boxplots using six IGoR-annotated Britanova (2016) datasets of TRB sequences.
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(b) Summary informativeness rank boxplots using six partis-annotated Gupta (2017) datasets of IGH sequences.

Figure 4: Boxplots of summary rank values taken over each dataset, in order of informativeness, as determined
by the median order in which the summary branches off from the lasso paths in Figure S8, taken over each
of the six paths.
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Figure 5: Empirical cumulative distribution functions for the bottom-, middle-, and top-ranked statistics for
partis-annotated IGH repertoires, as determined by Figure 4b.

between simulated and observed data in order to properly interpret and extrapolate benchmarking results.
We emphasize that validating the model in this way is different than the usual means of benchmarking model
performance: rather than benchmarking the inferential results of the model, we benchmark the model’s ability
to generate realistic sequences.

We illustrate this approach with two case studies: an analysis of IGoR [20] applied to TRB sequences,
and an analysis of partis [30, 31] simulations applied to IGH sequences. Both tools are applied to separate
sets of experimental repertoires, yielding model-based annotations for each repertoire, as well as simulated
datasets from the inferred model parameters for each experimental set. Summary divergences are applied to
each dataset, allowing for scores for each summary to be computed for each tool.

Assessing summary statistic replication for IGoR

We apply the methodology discussed in the previous section to TRB sequences from datasets A4 i107,
A4 i194, A5 S9, A5 S10, A5 S15, and A5 S22 from Britanova et al, 2016 [6]. Although IGoR is typically
applied to non-productive sequences in order to capture the pre-selection recombination process, for this
example application we wished to understand IGoR’s ability to fit the complete repertoire directly without
the need for an additional selection model (e.g. [9]). Thus, we fit the IGoR model with all sequences (which
we expect to be dominated by productive sequences) and restricted the simulation to productive sequences.
Figure 6 contains frequency polygons of each summary distribution for each experimental and simulated
repertoire.

Observation-based summary scores are computed using a log ratio of average divergences (referred to as
LRAD-data, and defined in (8)) for a variety of TRB-relevant summaries (Figure 7a). The LRAD-data score
of a summary will be high when simulations look like their corresponding observations with respect to that
summary, and low when observations look more like other observations than their corresponding simulations.
We exclude summaries based on sequence alignment values (e.g. pairwise distance distributions) since IGoR
does not currently have an option to output the full variable region nucleotide sequences for experimental
reads.

IGoR simulations were able to recapitulate gene usage statistics of an empirical repertoire well, with J
gene usage frequency being the most accurately replicated, followed by various recombination-based indel
statistics. V, D, and joint VDJ gene usage are all also well-replicated, as well as both VD and DJ insertion
matrices. Conversely, the CDR3 length distribution was the least accurately replicated statistic among
rearrangement statistics. The Kidera factors of the CDR3 region were also replicated well, despite CDR3
length being one of the least accurately replicated statistics. Scores for other CDR3-based statistics besides
Kidera factors ranged from mildly good to mildly bad, with the GRAVY index distribution being the best
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Figure 6: Frequency polygon plots of each univariate summary distribution for the IGoR datasets.
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(a) LRAD-data values for each relevant TRB statistic available from IGoR or IgBLAST.
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(b) LRAD-sim values for each relevant TRB statistic available from IGoR or IgBLAST.

Figure 7: Summary scores, denoted as “log(Relative average divergence)” or “LRAD,” for each statistic in
the IGoR model validation experiment. For both cases, a high score indicates a well-replicated statistic by
the simulations with respect to their corresponding experimental repertoires of functional TRB sequences.
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CDR3-based statistic (excluding Kidera factors) and charge distribution being the worst.
We also computed simulation-based summary scores (LRAD-sim, defined in (9)) for the same datasets

and simulations (Figure 7b). The LRAD-sim score of a summary will be high when simulations look like
their corresponding observations with respect to that summary, and low when simulations look more like
other simulations than their corresponding observations. We still saw high scores for gene usage and indel
statistics, although the CDR3 length distribution and various Kidera factor and GRAVY index distributions
had much lower scores. This suggests that while the average IGoR simulation yields Kidera factor and
GRAVY index distributions that look more like the observed repertoire’s distributions than other observed
repertoires do, these simulated repertoires still tend to produce more similar distributions to each other
than to their observed counterparts. In turn, this provides an avenue of future research for TCR generative
models in which certain CDR3aa properties are incorporated and expressed in simulated data.

Assessing summary statistic replication for partis

We applied the same methodology to IGH sequences from Gupta et al, 2017 [12], using datasets corresponding
to the -1h and -8d timepoints for each of the FV, GMC, and IB donors. Figure 8 displays frequency polygons
of each summary distribution for each experimental and simulated repertoire.

Observation-based summary scores were computed using the LRAD-data equation (8) for a variety of
IGH relevant summaries (Figure 9a).

Like IGoR, we see that partis simulations also excelled at replicating gene usage and recombination
statistics, while additionally replicating CDR3 length distributions well. However, partis struggled to reca-
pitulate VD and DJ insertion matrices, which it does not explicitly include in its model. This contrasts with
IGoR which incorporates these insertion matrices during model fitting, and thus recapitulates these matrices
well. The other statistics yielded scores ranging from slightly to very negative, with many mutation-based
summaries like positional distance between mutations and hot and cold spot counts being poorly captured.
The low scores of mutation-based summaries may arise from the decision to select a single representative
from each clonal family, which itself arises from the complications in matching clonal family abundance dis-
tributions of simulations to data. This makes it difficult to identify the exact contributions of these factors
to the summary discrepancies. Nonetheless, this suggests that these sorts of quantities may need to be more
explicitly accounted for in BCR generative models if more realistic simulations are desired.

We also computed simulation-based summary scores (LRAD-sim, defined in (9)) for the same datasets
and simulations (Figure 9b). The scores are highly similar to those seen in Figure 9a, with some summaries
seeing a moderate drop.

Methods

Divergence

We use the Jenson-Shannon (JS) divergence for comparing distributions of scalar quantities, which constitutes
most summaries in sumrep. The Jenson-Shannon divergence of probability distributions P and Q with
densities p(·) and q(·) is a symmetrized Kullbeck-Leiber divergence, defined as

JSD (P || Q) :=
KLD (P ||M) + KLD (Q||M)

2
(1)

where M := (P +Q)/2 and KLD(P ||M) is the usual KL-divergence,

KLD (P1 || P2) := EX∼P1

[
log

(
p1(X)

p2(X)

)]
. (2)

In the case where P and Q are both discrete distributions, this becomes

KLD (P1 || P2) =
∑

i∈supp(P1)

p1(i) log

(
p1(i)

p2(i)

)
(3)
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Figure 8: Frequency polygon plots of each univariate summary distribution for the p f1, p f1 sim, p g1,
and p g1 sim datasets.
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(a) LRAD-data values for each relevant IGH statistic available from partis.
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(b) LRAD-sim values for each relevant IGH statistic available from partis.

Figure 9: Summary scores, denoted as “log(Relative average divergence)” or “LRAD,” for each statistic in
the partis model validation experiment. For both cases, a high score indicates a well-replicated statistic by
the simulations with respect to their corresponding experimental repertoires of productive IGH sequences.
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where supp(P ) is the countable support of distribution P . Because the discrete formulation has computa-
tional benefits over the continuous one, we discretize continuous samples and treat them as discrete data. By

default, we use B = max
(⌈√

min(m,n)
⌉
, 2
)

bins of equal length, where m = |supp(P )| and n = |supp(Q)|,
which is designed to scale with the complexity of m and n simultaneously. We also discard bins which would
lead to an infinite KL divergence for numerical stability.

For counts of categorical data, we instead appeal to the sum of absolute differences, or `1 divergence, for
comparison:

d`1(R1, R2; c,S) =
∑
s∈S
|c(s;R1)− c(s;R2)| . (4)

In words, (4) iterates over each element s in some set S, calculates the count c of s within repertoires R1

and R2 respectively, takes the absolute difference of counts, and appends this to a rolling sum. This metric
is well suited for comparing marginal or joint V/D/J-gene usage distributions. For example, if V, D, and J
represent the germline sets of V, D, and J genes, respectively, define usage u of gene triple (v, d, j) ∈ V×D×J
for repertoire R as

u(R; v, d, j) = # {s ∈ R : sv = v, sd = d, sj = j} , (5)

where e.g. sv = the V gene of s. Then an appropriate divergence for the joint VDJ gene usage for repertoires
R1 and R2 is

d(R1, R2;u,V,D,J ) =
∑
v∈V

∑
d∈D

∑
j∈J
|u(v, d, j;R1)− u(v, d, j;R2)| . (6)

The `1 divergence is also relevant for computing amino acid frequency and 2mer frequency distributions.
Note that we can normalize the counts to become relative frequencies and apply (4) on the resultant scale
which may be better suited to the application, especially when dataset sizes differ notably.

Approximating distributions via subsampling and averaging

Computing full summary distributions over large datasets can be intractable. However, we can compute a
Monte Carlo distribution estimate by repeatedly subsampling and aggregating summary values until conver-
gence. Algorithm 1 formalizes this idea, appending batch samples of d to a rolling approximate distribution
and terminating when successive distribution iterates have a JS divergence smaller than tolerance ε. Note
that continually appending values to a rolling vector is analogous to computing a rolling average, where the
subject of the averaging is an empirical distribution rather than a scalar.

Algorithm 1 Compute automatic approximate distribution
Input: repertoire R, summary s, batch size m, convergence tolerance ε
Output: subsampled approximation to d

R0 ← subsample(R,m)
d0 ← s(R0)
n← 1
error ←∞
while error > ε do:

Rsamp ← subsample(R,m)
dsamp ← s(Rsamp)
dn ← concatenate(dn−1, dsamp)
error ← JSD(dn−1, dn)
n← n+ 1

return dn

An alternative would be to simply compute the distribution on one subsample of the data and use this
as a proxy distribution. The main advantage of Algorithm 1 over such an approach is that it provides a
sense of convergence to the full distribution via the tuning parameter ε, while automatically determining the
size of the necessary subsample. The algorithm can also be tuned according to batch size m, which sumrep
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takes to be 30 by default. We conduct a performance analysis of Algorithm 1 in Appendix A and empirically
demonstrate efficiency gains in a variety of realistic settings without sacrificing much accuracy.

Some summaries induce distributions for which Algorithm 1 is inherently ill-suited. This occurs when
a summary applied to a subset of a dataset does not follow the same distribution as the summary applied
to the full dataset. For example, consider the nearest neighbor distance of a sequence si with respect to a
multiset of sequences R (i.e. elements in R can have multiplicity ≥ 1),

dNN(si, R) := min
s∈R\{si}

d(si, s), (7)

where d(·, ·) is a string metric (e.g. the Levenshtein distance). If we take any subset S of R, then dNN(si, S) ≥
dNN(si, R) ∀i, since R will have the same sequences to iterate over, and possibly more sequences, which can
only result in the same or a smaller minimum.

In this case, we can still obtain an unbiased approximate to the nearest neighbor distance distribution
using the following modification of Algorithm 1. For each iteration, sample a small batch B = (s1, . . . , sb)
of b sequences, and compute dNN of each si to the full repertoire R. Since each batch B computes the
exact nearest neighbor with respect to R, we get the true value of dNN for each s ∈ B. The gain in
efficiency stems from the fact that we only compute this true dNN for a subsample of the sequences of the
full repertoire R. Thus, appending batches to a running distribution until convergence as in Algorithm 1 will
produce increasingly refined, unbiased approximations as the tolerance decreases. Algorithm 2 explicates
this procedure.

Algorithm 2 may yield a high runtime if R is large, the sequences in R are long, or the tolerance is small.
Nonetheless, we empirically demonstrate in Appendix B that in the case of typical BCR sequence reads, even
very small tolerances incur reasonable runtimes, and when R is large, the algorithm is orders of magnitude
faster than computing the full distribution over R.

Algorithm 2 Compute automatic approximate nearest neighbor distance distribution
Input: repertoire R, distance d, batch size m, convergence tolerance ε
Output: subsampled approximation to dNN

d0 ← doBatchStep(R,m)
n← 1
error ←∞
while error > ε do:

dsamp ← doBatchStep(R,m)
dn ← concatenate(dn−1, dsamp)
error ← JSD(dn−1, dn)
n← n+ 1

return dn

function doBatchStep(R,m)
for i = 1, . . . ,m do:

si ← subsample(R, 1)
di ← dNN(si;R)

return (d1, . . . , dm)

Summary statistic informativeness ranking

To quantify the relative informativeness of various summary statistics in distinguishing between different
datasets, we perform a multinomial lasso regression where covariates are sequence-level summaries and the
response is dataset identity. Since `1 multinomial regression outputs a separate coefficient vector β for each
response value, we aggregate by taking medians of each dataset-specific lasso ordering for each summary to
get the final score. This also yields a range of rankings to assess the variation in scores by summary and by
inferential model (e.g. partis, IGoR). In the case of ties, we randomize rankings to avoid alphabetization
biases or other similar artifacts. Detailed pseudocode is provided in Algorithm 3.
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Algorithm 3 Rank summary statistics by informativeness
Input: annotations datasets d1, . . . , dD, sequence-level summaries s(·) = [s1(·), . . . , sS(·)], lasso parameters
λ1, . . . , λΛ

Output: A vector of ranks for the summaries

for d = d1, . . . , dD do:
Xd ← [s(d1), . . . , s(dD)]

X←

Xd1
...

XdD


y←

 rep(1, rows(d1))T

...
rep(D, rows(dD))T


for λ = λ1, . . . , λΛ do:

(βλd1 , . . . ,β
λ
dD )← MultinomialLasso(X,y;λ)

for d = d1, . . . , dD do:
for s = s1, . . . , sS do:

td,s ← min
(

min
{
λ1 ≤ λ ≤ λΛ : βλd,s > 0 ∀t > λ

}
,∞
)

rd = rank(td,s1 , . . . , td,sS )

R = (rd1 , . . . , rdD )
scores = rank (medians1(R), . . . ,mediansS (R))
return scores

This approach only works for sequence-level summaries s ∈ Rn for a dataset d of n = rows(d) sequences

in order to form a well-defined design matrix X ∈ R(
∑D

i=1 rows(di))×S over all datasets d = d1, . . . , dD under
consideration. For example, it is unclear how to incorporate the pairwise distance distribution, which is not
a sequence-level summary, as a covariate, since this summary in general yields a column of a larger length
than the number of sequences. Still, as most summaries considered above can be applied at the sequence
level, this method greatly reduces the number of summaries the user needs to examine.

Model validation of IGoR

We used the -infer subcommand of IGoR to fit custom, dataset-specific models for each experimental
dataset. Since we were interested in many CDR3-based statistics and IGoR does not currently include inferred
CDR3 sequences with rearrangement scenarios, we used IgBLAST to extract CDR3s for each sequence. For
each sequence, we considered only the rearrangement scenario with the highest likelihood as determined
by IGoR. When a list of more than one potential genes was given as the gene call, we considered only the
first gene in the list. Several fields were renamed to match the AIRR specification when the definitions
align without ambiguity. As described in Results, we trained on productive sequences and restricted the
simulation to productive sequences.

We applied IGoR in this way to six datasets of TRB sequences from [6], which studied T cell repertoires
from donors ranging from newborn children to centenarians.

Model validation of partis

We used partis to infer custom generative models for each experimental dataset. We ran the partition

subcommand to incorporate underlying clonal family clustering among sequences during inference, and
then downsampled each observed and simulated dataset so that each clonal family is represented by one
sequence. Since partis returns a list of the top most likely annotations scenarios for each rearrangement
event, we considered only the scenario with the highest model likelihood for each sequence. We denote the
indel reversed seqs field as sequence alignment and naive seq as germline alignment as they satisfy
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these definitions from the AIRR Rearrangement schema. Several other fields are renamed to match the
AIRR specification when the definitions align without ambiguity.

Before running summary comparisons, we randomly downsample to one receptor per clonal family to get
a dataset consisting of unique clonotypes for both the observed and simulated datasets. We do this since
partis simulate draws from distributions over clonal families for each rearrangement event as inferred from
partis partition. While it is possible to simulate multiple leaves for each rearrangement, it is not obvious
how to best synchronize this with the observed clonal family distributions. A more involved analysis would
attempt to mimic the clone size distribution in data as closely as possible, potentially with correlations
between clone size and other rearrangement parameters, and assess sequence-level statistics within each
clonal family. Here we opt to subsample to unique clones and avoid abundance biases altogether.

We applied partis in this way to six datasets of IgH sequences from [12], which studied B cell repertoires
from donors prior to and following an influenza vaccination.

Scoring summary statistic replication by model

We wish to measure how well a given statistic is replicated when a model performs simulations using pa-
rameters inferred from an observed repertoire dataset. One approach is to score the statistic s based on the
average divergence of observations to their simulated counterparts when applying s(·), and the average diver-
gence of observations to other observations when applying s(·). Suppose we have k experimental repertoires
of immune receptor sequences, and let Ri,obs and Ri,sim, 1 ≤ i ≤ k, denote the ith observed and simulated
repertoire, respectively. For a given statistic s, let Ds(R1, R2) be the divergence of repertoires R1 and R2

with respect to s. We can score a simulator’s ability to recapitulate s from the observed repertoire to the
simulated via the following log relative average divergence (LRAD):

LRAD-data(s) := log

 1
1
2k(k−1)

∑k
i=1

∑
j 6=iDs (Ri,obs, Rj,obs)

1
k

∑k
i=1Ds (Ri,obs, Ri,sim)

 . (8)

For a given summary s, LRAD-data will be positive if the simulated repertoires tend to look more like
their experimental counterparts in terms of this summary than experimental repertoires look like other
experimental repertoires, and negative if experimental repertoires tend to look more like other experimental
repertoires than they do their simulated counterparts. In other words, LRAD-data scores how well a simulator
can differentiate s from an experimental repertoire among other repertoires, and recapitulate s into its
simulation. Applying the log to the ratio allows for the magnitudes of scores to be directly comparable (so
that a summary with score a > 0 performs as well as a summary with score −a < 0 performs poorly).

Another related score compares the average divergence of observations to their simulated counterparts,
and the average divergence of simulations to other simulations. Formally, this becomes

LRAD-sim(s) := log

 1
1
2k(k−1)

∑k
i=1

∑
j 6=iDs (Ri,sim, Rj,sim)

1
k

∑k
i=1Ds (Ri,obs, Ri,sim)

 (9)

where the difference from (8) is that the divergences in the numerator are applied to simulated-simulated
dataset pairs rather than observed-observed dataset pairs. LRAD-sim for a given summary will be positive if
simulated repertoires tend to look more like their experimental counterparts in terms of this summary than
simulated repertoires look like other simulated repertoires, and negative if the simulated repertoires tend to
look more alike.

These scores underlie the model validation analyses of partis and IGoR simulations in the Results section,
and comprise the values displayed in Figures 7 and 9. However, this framework can be used to validate any
immune receptor repertoire simulator which outputs the fields compatible with the summaries in Table 1,
or more generally any set of summaries generated by a model-based simulator that is not supported directly
by sumrep.

A feature of our methodology is that we use the same tool to produce simulations that we used to produce
the annotations. To examine the sensitivity of this method, we performed a separate analysis by obtaining
dataset annotations from standalone IgBLAST [38], and comparing these to simulations based on partis
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annotations using IMGT germline databases. We did not perform a similar analysis for IGoR annotations
since IgBLAST was used to infer CDR3s within the IGoR workflow. This is discussed in detail in Appendix
C.

Materials

The raw data for the TCR summary divergence MDS analysis comes from [29], which was postprocessed
into a suitable format for analysis. For each donor-timepoint combination, a single blood draw was split in
replicas at the level of cell mixture.

The raw data for the BCR summary divergence MDS analysis comes from [32]; IgBLAST-preprocessed
data was downloaded from VDJServer in the AIRR format. For quality control, sequences with a run of 3
or more N bases in the raw sequence were discarded.

For the TCR model validation analysis, we use six datasets from [6], corresponding to labels A4 i107,
A4 i194, A5 S9, A5 S10, A5 S15, and A5 S22. For tractability purposes, we chose the six datasets with the
fewest number of sequence reads; the number of reads from these six datasets used in the analysis ranged
from 37,363 sequences to 243,903 sequences. These datasets consist of consensus RNA sequences assembled
using UMIs. Most of these sequences are productive; as previously described, for this example application
we are benchmarking IGoR’s ability to fit complete repertoires rather than only non-productive repertoires.

The data for the BCR model validation analyses originated from samples first sequenced and published in
[18], although we used the Illumina MiSeq data published in [12] for our analyses. These datasets represent
repertoires of three human donors from multiple time points following an influenza vaccination. We use
datasets from time points −1h and −8d for the FV, GMC, and IB donors for the summary informativeness
and partis model validation analyses; the +1h, +7d, and +28d datasets for the FV, GMC, and IB donors for
the summary informativeness validation; and the FV -1h dataset for the approximation routine performance
analyses in appendices 1 and 2.

Conclusions

We have presented a general framework for efficiently summarizing, comparing, and visualizing AIRR-seq
datasets, and applied it to several questions of scientific interest. One can imagine many further applications
of sumrep, as well as promising avenues of research: contrasting repertoires in the context of antigen response
or vaccination design and evaluation may shed some light on which summaries can distinguish between such
covariates; and comparing the summary distributions of naive repertoires from multiple healthy individuals
is likely to aid our understanding of the patterns of variability exhibited by “normal” repertoires, which in
turn may aid the detection of repertoire abnormalities. sumrep could also be used to evaluate the extent to
which artificial lymphocyte repertoires look like natural ones [10].

There are several other packages dedicated to detailed summaries and visualization of immune receptor
repertoires. The tcR [25] and bcRep [2] packages for R include methods for retrieving and comparing
gene usage summaries, computing clonotype diversity indices, and visualizing various repertoire summaries.
VDJtools [34] is a command line tool which performs similar repertoire summarization, comparison, and
visualization tasks for TCR data. Desktop GUI-based programs include ImmunExplorer [33] and Vidjil [8].
Vidjil is also available as a webserver, as is ASAP [1]. Antigen Receptor Galaxy [16] offers online access
to many analysis tools. These tools have a subset of the summary statistics described here, and do not have
the comparative analysis features of sumrep. The IGoR [20] software features an algorithm for summarizing
statistics of the V(D)J rearrangement process; however, its main focus is on learning the basic model for
non-productive T- and B-cell repertoire and it does not provide any built-in methods for comparing inferred
models between datasets.

A natural extension of the model validation in this report would be to assess the performance of many
competing repertoire analysis tools over a larger group of datasets. sumrep can be also used to detect systemic
biases between different library preparation protocols and control for batch effects that can confound meta-
analysis of AIRR-Seq data. Moreover, while many of the summaries are applied to the CDR3 region by
default, it would be interesting to perform separate analyses restricted to different CDRs and framework
regions, as physiochemical characteristics of these regions can differ greatly.
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Finally, although sumrep already supports the AIRR rearrangement schema by default, we plan to
thoroughly integrate sumrep as a downstream analysis tool for any AIRR-compliant software or workflow.
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[23] P Miqueu, M Guillet, N Degauque, JC Doré, JP Soulillou, and S Brouard. Statistical analysis of CDR3
length distributions for the assessment of T and B cell repertoire biases. Mol Immunol, 44(6):1057–1064,
February 2007.

[24] Arnau Mir, Francesc Rossello, and Lucia Rotger. CollessLike: Distribution and Percentile of Sackin,
Cophenetic and Colless-Like Balance Indices of Phylogenetic Trees, 2018. R package version 1.0.

[25] Vadim I Nazarov, Mikhail V Pogorelyy, Ekaterina A Komech, Ivan V Zvyagin, Dmitry A Bolotin,
Mikhail Shugay, Dmitry M Chudakov, Yury B Lebedev, and Ilgar Z Mamedov. tcr: an R package for
T cell receptor repertoire advanced data analysis. BMC Bioinformatics, 16(1):175, May 2015.

22

.CC-BY 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under 

The copyright holder for this preprint (which was notthis version posted August 6, 2019. ; https://doi.org/10.1101/727784doi: bioRxiv preprint 

https://doi.org/10.1101/727784
http://creativecommons.org/licenses/by/4.0/


[26] Jared Ostmeyer, Scott Christley, William H. Rounds, Inimary Toby, Benjamin M. Greenberg, Nancy L.
Monson, and Lindsay G. Cowell. Statistical classifiers for diagnosing disease from immune repertoires:
a case study using multiple sclerosis. BMC Bioinformatics, 18(1):401, Sep 2017.

[27] H. Pagás, P. Aboyoun, R. Gentleman, and S. DebRoy. Biostrings: String objects representing biological
sequences, and matching algorithms, 2017. R package version 2.44.2.

[28] E. Paradis, J. Claude, and K. Strimmer. APE: analyses of phylogenetics and evolution in R lanugage.
Bioinformatics, 20(2):289–290, January 2004.

[29] Mikhail V. Pogorelyy, Anastasia A. Minervina, Maximilian Puelma Touzel, Anastasiia L. Sycheva,
Ekaterina A. Komech, Elena I. Kovalenko, Galina G. Karganova, Evgeniy S. Egorov, Alexander Yu.
Komkov, Dmitriy M. Chudakov, Ilgar Z. Mamedov, Thierry Mora, Aleksandra M. Walczak, and Yuri B.
Lebedev. Precise tracking of vaccine-responding t cell clones reveals convergent and personalized re-
sponse in identical twins. Proceedings of the National Academy of Sciences, 115(50):12704–12709, 2018.

[30] Duncan K. Ralph and Frederick A. Matsen IV. Consistency of VDJ rearrangement and substitution
parameters enables accurate B cell receptor sequence annotation. PLOS Comput. Biol., 12(1), January
2016.

[31] Duncan K. Ralph and Frederick A. Matsen IV. Likelihood-based inference of B cell clonal families.
PLOS Comput. Biol., 12(10), October 2016.

[32] Florian Rubelt, Christopher R. Bolen, Helen M. McGuire, Jason A. Vander Heiden, Daniel Gadala-
Maria, Mikhail Levin, Ghia M. Euskirchen, Murad R. Mamedov, Gary E. Swan, Cornelia L. Dekker,
Lindsay G. Cowell, Steven H. Kleinstein, and Mark M. Davis. Individual heritable differences result in
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(d) Runtime (in log-seconds) for Algorithm 1 by tolerance,
taken over 10 trials.

Figure S1: Performance of Algorithm 1 by tolerance applied to the pairwise distance distribution.

Appendix A: Performance analysis of Algorithm 1

Here, we run Algorithm 1 on the partis-annotated FV -1h dataset (henceforth referred to as p f1), sub-
sampled without replacement to 10,000 sequences for tractability. We compute the pairwise distance distri-
bution of CDR3 sequences for the full subsampled dataset, and approximate distributions with tolerances
ε ∈

{
0.1, 0.001, . . . , 10−7

}
. We replicate this experiment for 10 trials so that the subsampled dataset remains

the same, but a new instance of the subsampling algorithm is run each time. Figure S1a shows a frequency
polygon of each distribution and figure S1b shows their empirical cumulative distribution functions. We see
that the approximate distributions appear to converge to the full distribution as the tolerance gets smaller.
Figure S1c displays the KL-divergence to the true distribution for each tolerance, again indicating conver-
gence to the truth. Figure S1d displays the runtimes and log-runtimes for each tolerance as well as the true
“population” runtime for the full dataset; while the runtime grows exponentially as ε→ 0, the approximation
algorithm is still much faster than computing the full distribution for each considered value of ε.

Next we investigate the effect of dataset size on the performance of Algorithm 1. For sample sizes
n ∈ {exp(6), . . . , exp(10)}, we subsample p f1 without replacement to n sequences and compute the pairwise
distance distribution of CDR3 sequences for the full subsampled dataset as well as those given by tolerances
ε ∈ {0.1, 0.01, ..., 10−5}. We perform this experiment 10 times for each n. Boxplots of the KL-divergence by
log(n) and tolerance over all trials are displayed in Figure S2a. We see no obvious trend in the effect of dataset
size on the KL-divergence for any choice of tolerance for the pairwise distribution. Boxplots of the runtime
(in log-seconds) by log(size) and tolerance are shown in Figure S2b, showing that runtime increases with
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(a) KL-divergence to true pairwise distance distribution
by tolerance and log(size) of dataset, taken over 10 trials
of the algorithm.
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(b) Runtime by tolerance and log(size) of dataset, taken
over 10 trials of the algorithm.
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(c) Efficiency by tolerance and log(size) of dataset, taken
over 10 trials of the algorithm.

Figure S2: Performance of Algorithm 1 by sample size and tolerance applied to the pairwise distance distri-
bution.

sample size for high tolerance, but tends towards a constant runtime by sample size as tolerance decreases.
Boxplots of the log-efficiency by log(size) and tolerance are shown in Figure S2c, where

Efficiency :=
time to compute full distribution

time to compute approximate distribution
. (10)

Here we plot efficiency on a log scale, so that the line y = 0 corresponds to instances when the true
and approximate routines have identical runtimes. Thus, the region y > 0 corresponds to instances when
Algorithm 1 outperforms the computation of the full nearest neighbor distribution. For moderate to large
datasets and reasonable choices of ε, the approximate routine is much more efficient than computing the
full distribution. Efficiency also appears to increase exponentially with dataset size, although decreases
at least exponentially as tolerance decreases. Nonetheless, the accuracy of Algorithm 1 applied to the
pairwise distance distribution is scalable to large datasets while leading to large gains in runtime efficiency
for reasonable choices of ε.

Finally, we investigate the effect of summary statistic on the performance of Algorithm 1. We run the
algorithm for the pairwise distance, GC content, hotspot count, coldspot count, and distance from germline
to sequence distributions on p f1 subsampled without replacement to 10,000 rows. For each summary, we run
the algorithm for tolerances ε ∈ {0.1, . . . , 10−5}. We perform this experiment 10 times for each (summary, ε)
combination. Figures S3a, S3b, and S3c show the KL-divergence to the full dataset distributions, runtimes,
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Figure S3: Performance of Algorithm 1 by summary statistic and tolerance applied to the pairwise distance
distribution.

and efficiencies, respectively, by summary and tolerance over all trials. We see that the KL divergence,
runtime, and efficiency of the approximation routine depends on the summary in question. In particular, the
approximation routine for hotspot and coldspot count distributions does not yield as high of an efficiency for
moderately low tolerance, and struggles to minimize the KL-divergence to the true distribution for higher
tolerances. This is likely due to the fact that the full hotspot and coldspot count distributions is extremely
fast to compute even for large datasets.

These results suggest that convergence and efficiency will vary by summary, and the user should be aware
of this fact when choosing whether to run the approximation routine as well as an appropriate tolerance. By
default, sumrep uses ε = 0.001 for arbitrary summary approximation routines, and retrieves approximate
distributions by default only for getPairwiseDistanceDistribution, getNearestNeighborDistribution,
and getCDR3PairwiseDistanceDistribution.

Appendix B: Performance analysis of Algorithm 2

Here, we assess the modification of the distribution approximation routine for the nearest neighbor distri-
bution. We run Algorithm 2 on p f1 subsampled without replacement to 10,000 sequences for tractability.
We compute the nearest neighbor distribution of CDR3 nt sequences for the full subsampled dataset, and
approximate distributions with tolerances ε ∈

{
0.1, 0.001, . . . , 10−7

}
. We replicate this experiment for 10

trials in the same manner as detailed in Appendix A.
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(c) KL-divergence to true nearest neighbor distance distri-
bution by tolerance, taken over 10 trials of the algorithm.
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(d) Runtime (in seconds) and log-runtime (in log-seconds)
for Algorithm 2 by tolerance, taken over 10 trials.

Figure S4: Performance of Algorithm 2 by tolerance applied to the nearest neighbor distribution of CDR3nt
sequences.

Figure S4a shows a frequency polygon of each distribution, and Figure S4b shows their empirical cu-
mulative distribution functions. Figure S4c shows KL divergences of approximate distributions to the true
distribution which decay as ε → 0. Indeed, these three figures indicate that the approximate distributions
converge to the full distribution as ε → 0. Figure S4d displays boxplots of the runtime in log-seconds for
Algorithm 2 as well as the runtime to compute the full distribution. In this case, we see that the Algorithm 2
becomes slower than computing the full distribution when ε . 10−5.

To assess the effect of sequence lengths on Algorithm 2, we perform the same experiment as above on
pairwise aligned VDJ sequences (via the sequence alignment column rather than inferred CDR3 sequences.
These length distributions are different by about an order of magnitude. We note that the pairwise aligned
VDJ sequences are the default for Algorithm 2 within sumrep, although we anticipate users to examine this
distribution for CDR3s as well as full V(D)J sequences. We run Algorithm 2 on the same subsampled 10,000
sequences of p f1.

Figure S5a shows a frequency polygon of the same distributions, and Figure S5b shows their empiri-
cal cumulative distribution functions. Moreover, Figures S5c and S5d show the KL-divergences to truth
and runtimes, respectively. It seems that the KL divergence to the truth may converge more slowly for
sequence alignment sequences rather than CDR3s, although the approximate procedure seems to outper-
form the full distribution for a slightly larger range of ε values (i.e. until ε nears 10−6).

Next we investigate the effect of dataset size on the performance of Algorithm 2. For sample sizes
n ∈ {exp(6), . . . , exp(10)}, we subsample p f1 without replacement to n sequences and compute the pairwise
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for Algorithm 1 by tolerance, taken over 10 trials.

Figure S5: Performance of Algorithm 2 by tolerance applied to the nearest neighbor distribution of pairwise-
aligned VDJ sequences.
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(a) KL-divergence to true nearest neighbor distribution
by tolerance and log(size) of dataset, taken over 10 trials
of the algorithm.
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(b) Time complexity of the approximate nearest neighbor
distribution by tolerance and log(size) of dataset, taken
over 10 trials of the algorithm.
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(c) KL-divergence to true nearest neighbor distribution by
tolerance and log(size) of dataset, taken over 10 trials of
the algorithm.

Figure S6: Performance of Algorithm 2 by sample size and tolerance applied to the nearest neighbor distri-
bution of CDR3nt sequences.

distance distribution of CDR3 sequences for the full subsampled dataset as well as those given by tolerances
ε ∈ {0.1, ..., 10−5}. We perform this experiment 5 times for each n.

Figures S6a, S6b, and S6c display boxplots of the KL-divergence to truth, runtime, and time efficiency,
respectively. There is not an obvious trend in KL divergence to truth for a given tolerance as sample size
increases, although the variability is higher for high tolerances. As expected, runtime increases as tolerance
decreases, and also increases with the size of the dataset. This is reasonable since each batch iteration of
Algorithm 2 must compute the nearest neighbor distance from each sequence in batch B to the full repertoire
R, which certainly increases in time complexity as R increases.

Next we look at the efficiency relative to computing the full distribution as defined in Equation 10.
Examining the boxplots near y = 0 by log(size), we see that for a dataset of size exp(k), we would need a
tolerance of at least 1

10k−4 . For example, for log(size) = 6, we see that tolerances higher than 0.01 = 1
100 =

1
106−4 would on average yield an efficiency greater than one. This suggests that, for a dataset with n CDR3
sequences, a sensible rule of thumb would be to choose ε > 1

10k−4 = 1
10log(n)−4 . This will of course be more

or less appropriate for a given dataset depending on the nature of the repertoire from which it was sampled.
Finally, we perfrom the same experiment but using sequence alignment sequences for the nearest neigh-

bor distance distribution. Figures S7a, S7b, and S7c display boxplots of the KL-divergence to truth, runtime,
and time efficiency, respectively. There is evidence of a positive trend of the KL-divergence as sample size
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(a) KL-divergence to true nearest neighbor distribution by
tolerance and log(size) of dataset, taken over 10 trials of
the algorithm.
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(b) Time complexity of the approximate nearest neighbor
distribution by tolerance and log(size) of dataset, taken
over 10 trials of the algorithm.
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(c) KL-divergence to true nearest neighbor distribution by
tolerance and log(size) of dataset, taken over 10 trials of
the algorithm.

Figure S7: Performance of Algorithm 2 by sample size and tolerance applied to the nearest neighbor distri-
bution of pairwise-aligned VDJ sequences.
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increases for ε = 0.1, although this trend seems to diminish for each other tolerance. Runtimes increase with
given sample size and tolerance, and are generally higher than they are for CDR3 sequences as expected. It
turns out that the efficiencies follow the same rule of thumb we derived for the CDR3 sequence situation.
In particular, choosing ε > 1

10k−4 = 1
10log(n)−4 will on average lead to an increase in efficiency with respect to

the full distribution for sequence alignment sequences as well as CDR3 sequences. While this may depend
on the dataset in question, we recommend this as a good point of reference for general use.

The user should use these results as well as problem-specific considerations when deciding whether or not
to use Algorithm 2 instead of computing the full distribution, and if so, which tolerance to use. By default,
sumrep retrieves the approximate rather than full nearest neighbor distribution, and uses ε = 10−4 unless
otherwise modified.

Appendix C: Multinomial lasso path plots

Figure S8 displays the lasso path plots which illustrate the coefficient values of each response vector utilized
in Algorithm 3. Figure S8a shows paths for IGoR annotations of six TRB datasets from [6], and Figure S8b
shows paths for partis annotations for six IGH datasets from [18].

Appendix D: Model validation analysis workflows

Figure S9a illustrates the IGoR model validation workflow. We employ IgBLAST to obtain CDR3 sequences
for the observed sequences, which IGoR only outputs for generated sequences. Moreover, because we fit IGoR
models on predominantly productive TRB sequences, we consider only IGoR-generated sequences whose V
and J segments are in-frame.

Figure S9b illustrates the partis model validation workflow as described in the Methods section. We
first run partis partition on each fasta file of IGH sequence reads to obtain annotations for each sequence,
as well as a directory containing model parameters for inference and simulation. We can then run partis

simulate with these model parameters as input to generate a synthetic datset of IGH annotations. We
subsample both the experimental and simulated annotation datasets to unique clones. Then, we compare
each IGH-relevant summary for the two resultant annotations datasets, yielding a divergence value for each
summary.

Appendix E: Comparison of summary scores using IgBLAST annotations

Recall that for the standard partis model validation procedure, partis is used for both inference as well
as simulation. Here we examine the influence of using the same tool for inference and simulation by using
IgBLAST for inference, and comparing the annotations dataset output from IgBLAST to the corresponding
simulations from partis. The workflow for this procedure is displayed in Figure S10, which is essentially
the diagram in Figure S9b with an additional path describing the IgBLAST/Change-O pipeline. Change-O
was used to parse the IgBLAST output, as well as partition the sequences into inferred clonal families [13].

Figure S11a shows the LRAD-data scores by summary when using IgBLAST for annotation and partis

for simulation. Figure S11b shows the difference of each score in Figure 9a and each score in Figure S11a.
Frequency polygons of summary distributions of three pairs of IgBLAST-annotated and partis-simulated
datasets are shown in Figure S12. The plots show a high level of agreement for most summaries, with all but
six of them differing by less than one units, and a strong majority of them close to zero. Where differences
arise, this is likely the result of differences in how partis and IgBLAST perform annotations. For example,
we see that the insertion length distributions highly disagree in scores. This is at least partially attributable
to the star-tree assumption on which partis operates, which is prone to overestimate insertion lengths in an
effort to better estimate the ultimate naive sequence. Indeed, examining the VD insertion length distribution
shows that IgBLAST tends to assign a similar distribution to each dataset, whereas partis leads to more
variable distributions with right skew due to the star-tree assumption. Moreover, if IgBLAST tends to assign a
similar insertion length distribution to every dataset, then this will make it difficult for a simulator designed
to match particular insertion lengths distributions to behave more like the IgBLAST distributions. Thus,
inherent differences in annotation tools will certainly lead to differences in summary scores, regardless of
how accurate either tool is. Hence, it is important to understand that a given annotations-based summary
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(a) Lasso paths for six IGoR-annotated Britanova datasets.
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(b) Lasso paths for six partis-annotated Laserson datasets.

Figure S8: Multinomial lasso paths of summary coefficients by dataset identity.
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(b) Workflow for comparing a given observed repertoire
dataset to an example simulated dataset via partis.

Figure S9: Workflow diagrams for the IGoR and partis model validation analyses.
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Figure S10: Workflow diagram for partis model validation when comparing partis and IgBLAST annota-
tions to partis simulations
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(a) Comparing divergences for IgBLAST annotations and partis simulations based on the same individual observed
repertoires. We use the default germline databases in IgBLAST for consistency.
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(b) Difference in LRAD values when using IgBLAST versus partis for annotations.

Figure S11: Summary scores for each statistic in the partis model validation experiment when comparing
partis simulations to IgBLAST annotations. IMGT IGH germline databases were used during inference for
both tools. In both plots, a high score indicates a well-replicated statistic by the simulations with respect to
their corresponding experimental repertoires of productive IGH sequences. Summaries without a score are
not readily available from AIRR-formatted IgBLAST output.
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should be considered in the context of the tool which provided annotations, and not as a ground-truth
summary of the actual gene usage/indel statistics.
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Figure S12: Summary distribution frequency polygons of partis versus IgBLAST annotations of experimental
datasets from three donors at time point -1h.
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