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Cancer genome projects have produced multidimensional datasets on thousands of samples.
Yet, depending on the tumor type, 5-50% of samples have no known driving event. We
introduce a semi-supervised method called Learning UnRealized Events (LURE) that uses
a progressive label learning framework and minimum spanning analysis to predict cancer
drivers based on their altered samples sharing a gene expression signature with the samples
of a known event. We demonstrate the utility of the method on the TCGA dataset for which
it produced a high-confidence result relating 53 new to 18 known mutation events including
alterations in the same gene, family, and pathway. We give examples of predicted drivers
involved in TP53, telomere maintenance, and MAPK/RTK signaling pathways. LURE iden-
tifies connections between genes with no known prior relationship, some of which may offer
clues for targeting specific forms of cancer. Code and Supplemental Material are available
on the LURE website https://sysbiowiki.soe.ucsc.edu/lure.
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1. Introduction

Cancer is a genetic disease caused by mutation and selection in somatic cells. Mutations in
normal cells are usually repaired or result in apoptosis. Whereas in cancer cells mutations
accumulate, leading to uncontrolled growth and tumorigenesis. There are two broadly de-
fined types of mutations: drivers and passengers. Tumors contain around 2-5 driver mutations
that cause and accelerate cancer, and about 10-200 passenger mutations which are accidental
byproducts of thwarted DNA repair mechanisms.1 Driver mutations define some characteris-
tics of the tumor and may offer therapeutic targets, yet identifying them amid the myriad of
passengers remains a challenge.

The Cancer Genome Atlas (TCGA) is a publicly accessible dataset of cancer samples from
the National Cancer Institute (NCI).2 TCGA catalogues mutations, mRNA, miRNA, DNA
methylation, copy number variation, and protein expression data for roughly 11,000 patients
across 33 cancer types.2 The identification of driver mutations played a key role in many
TCGA analyses. For example, the TCGA study of papillary thyroid carcinoma identified two
tumor subtypes characterized by different driver mutations. One subtype harbored mutations
in BRAF and the other subtype in RAS genes such as KRAS, NRAS, or HRAS. This study
identified at least one driver mutation in about 95% of the samples, leaving about 5% of the
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samples without known driver mutations.3 Here we present a semi-supervised pattern recog-
nition tool, Learning UnRealized Events (LURE), that finds new drivers sharing molecular
signatures with known drivers.

There are several existing computational tools that try to decipher driver from passenger
mutations.4 EPoC uses network modeling of the transcriptional effects of copy number aberra-
tions to identify driver mutations in glioblastoma (GBM).5 DriverNet employs a probabilistic
model to locate driver mutations using transcriptional networks.6 These methods can predict
novel drivers given a set of SNVs or copy number alterations and the corresponding mRNA
gene expression data. In addition, there are methods that identify modules of driver genes
based on mutual exclusivity in certain tumor types, such as CoMEt7 and MEMo, the latter of
which incorporates prior knowledge such as pathway data into driver gene module discovery.8

In contrast, LURE uses mRNA data to identify mutations in “driver-unknown” samples with
similar expression signatures to known drivers, thereby implicating a novel set of mutations
as possible drivers.

Several studies have built gene expression signatures to identify samples with certain driver
events. For example, studies have identified a TP53 gene expression signature as a reliable
and independent predictor of disease outcome in breast cancer.9,10 In addition, in patients
with epithelial ovarian cancer, a BRCAness gene expression signature is just as predictive of
chemotherapy responsiveness and outcome as mutation status.11 While creating signatures as
prognostic markers to guide treatment is important in a clinical setting, there has been little
work using such gene expression signatures to find related mutational events. LURE identifies
gene expression signatures across the 723 COSMIC cancer genes12 and then uses iterative
semi-supervised learning to discover potentially related events.

2. Method

LURE associates events by finding similar molecular signatures among the samples in which
the events occur. An event here is a particular type of alteration that affects a single gene,
such as a focal deletion, a missense mutation, a truncating mutation, a gene fusion, and so
forth. In this study, mRNA sequencing-based expression data is used to generate signatures,
although other data choices are possible (e.g. microRNA expression or DNA methylation).
LURE finds related events by training a classifier using the samples containing a known
driver mutation (the “bait”). It then applies the classifier to find “target” samples defined as
high-scoring samples lacking bait alterations. In classic machine-learning, the target samples
would be considered false-positives. However, in this case, they offer an opportunity to find
drivers because the comprehensive collection of TCGA mutation calls can be searched to
find other events that significantly coincide with the target samples. Any such event (the
“catch”) is associated with the starting bait and provides a new set of labels for retraining a
more accurate classifier in subsequent rounds. Thus, the approach can be viewed as a specific
kind of semi-supervised learning in which the possible labels are constrained to the event
samples. LURE concomitantly identifies related events, expands the labels, and improves the
classification accuracy using the iterative procedure described next.

LURE’s first step establishes a known driver mutation as the initial bait (Step 0; Fig-
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ure 1A). Next, LURE trains a logistic regression classification model using gene expression
as features and bait mutation status as the label to be predicted (Step 1). The method re-
tains only those baits that yield accurate models determined by cross-validated area under
the precision recall curve (PR AUC). LURE then uses the classification model to score each
sample in the dataset (Figure 1A,B). Despite the inherent bias towards overfitting because
the classifier is applied to samples used for training, some samples without the bait alteration
may still receive a high classifier score, thus producing a sufficiently large set of target samples
to identify and associate new catch events.

To leverage this new information, LURE runs a Sample Set Enrichment Analysis (SSEA)
to test whether the samples of an event are associated with the target samples (Step 2,
Figure 1A). For SSEA, the GSEAPreranked tool13 is used, which performs a Kolmogorov-
Smirnov test to determine if samples with an event significantly sort toward the top of the
list when all non-bait samples are ranked by their classification scores. LURE establishes a
set of “Catch” events as those with significant SSEA association scores (p < 0.05, FDR < .25,
number of events > 3). For each catch event, LURE then combines the positive samples for
both bait and catch events into a new, intermediate bait event and trains a new classifier for
these samples (Return to Step 1; Figure 1A). Cross-validation is run for the new classification
model and the PR AUC results are compared to the initial classifier to ensure the model
improves when including the new positive samples (Student’s t-test, t > 0). In addition,
LURE tests the new classifier against a null model created by adding the same number of
randomly chosen catch samples to the true positives and running cross-validation (Student’s
t-test, p < 0.05). After establishing that the new event both improves the original classifier
and significantly outperforms a random background distribution, the new classifier is rerun
on all samples to search for the next set of catch events (Figure 1A,C). In this manner, LURE
builds an “Event Discovery Tree” (EDT) by connecting catch events to the bait classifiers
that discovered them, and recursively building new classifiers at each node(Figure 1D). The
tree recursion stops when no further events are found by SSEA or the classifier performance
no longer increases.

The above procedure can lead to the association of numerous events at every level of the
EDT. By chance, mutations in passenger events can occur in the target samples, especially
as a result of highly unstable genomes. Our task then is to distinguish such passengers from
true, but as-yet unknown, drivers. To do this, LURE identifies a set of events, where each
event occurs in at least some target samples that contain no other event. Intuitively, these
events may be the sole explanation for driving the signature in the target samples. To make
this concrete, consider the hypothetical scenario in which two events — X and Y — have been
included in the EDT. Further, imagine that several samples have mutations only in event X.
In contrast, no such samples exist for event Y; i.e. Y only occurs in samples that have at least
one other event from the EDT. LURE assumes that X is more likely to be a driver than Y
because X is the only event that can explain the presence of the signature in several samples.

Thus, in the last step (Step 3; Figure 1A), LURE computes a minimal set of events in
the catch that best span the catch samples. To this end, LURE builds a final classification
model from the union of all events in the EDT and uses this model to identify a final set of
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Fig. 1. LURE Method Overview. (A) LURE Method Flowchart. (B) LURE Graph of
Bait Event A. Scores (y-axis) assigned to samples (x-axis) by the logistic regression model trained
to recognize samples harboring event A (triangle). Red line indicates 0.5 score cutoff for positive
predictions. Presence of mutations for each sample are indicated below the barplot (blue, present;
black, absent). Positive samples lacking alterations in the bait event define the set of “Target” samples
(yellow). Events C and E are found by Sample Set Enrichment Analysis (SSEA) to be present in
samples with high classifier scores (green check marks on right). (C) LURE Graph of Combined
Bait Event A:C. Results from a classification model trained to recognize samples with either event
A or C. New event F is found by SSEA to be associated with the A:C classifier. (D) LURE Event
Discovery Tree. Each node represents an event (node label) discovered using the classification
model (triangle) of its parent. The new classification model is trained using samples with the new
event as well as any samples with events along the path to the root of the tree. The blue circles
within each node represent the newest event added to the model. (E) LURE Catch Cover. A
bipartite graph is constructed using all events from the Event Discovery Tree (left nodes) and all
samples found to have scores greater than 0.5 with the final combined classification model as well
as an alteration in one of the catch events (“Catch Samples”, right nodes). If an event is present
in a sample, their nodes are connected in the graph. The set cover algorithm is run to obtain the
minimal set of events that spans all samples. Event F illustrates an example of an event that would
be removed by the algorithm because the samples with event F contain other events that explain the
observed signature. The final event set is retained as the “Catch Cover.”
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samples scoring higher than 0.5. It then takes all events in the EDT that span these high-
scoring samples (Figure 1E) and runs the Vazirani approximation to the set cover algorithm14

as implemented in the RcppGreedySetCover R Package. The set cover algorithm identifies
the minimum set of events, the “Catch Cover,” that collectively occur in all catch samples,
removing events with completely overlapping samples in order to enrich for events that are
uniquely responsible for the expression signature.

More details about LURE and its implementation are available in the Supplemental Meth-
ods section on the LURE website https://sysbiowiki.soe.ucsc.edu/lure.

3. Results

3.1. Datasets

All data were obtained from the TCGA Pan-Cancer Atlas collection.2 These data included
batch-corrected and normalized gene expression data, as well as single nucleotide variant
(SNV) calls determined from the TCGA’s MC3 consensus analysis, and gene-associated copy
number data from GISTIC2.

3.2. Positive Controls for LURE

Isocitrate Dehydrogenase 1 (IDH1) is one of three IDH enzymes, which when mutated causes
hypermethylation and subsequent altered gene expression in gliomas.15 In order to test LURE’s
ability to discover known “catch” events, we created a test set of bait and catch events using
IDH1 missense mutations in the TCGA Lower Grade Glioma (LGG) sample set. Of the 210
LGG samples with an IDH1 missense mutation, we created an initial bait with 150 samples
and three sets of 20 samples as potential catch events. LURE identified all three of the held-
out events in the Catch Cover, as well as the IDH2 missense mutation event. IDH2 is also one
of the three IDH isozymes, and a mutation in IDH2 has the same oncogenic effect as an IDH1
mutation16(Supp. Figure 1A). We also tested a similar method called REVEALER on this
positive control set. We found that REVEALER was unable to identify the hold-out samples
(Supp. Figure 2).

Splicing Factor 3b Subunit 1 (SF3B1) is a well-known splicing factor which is recurrently
mutated in many tumor types, including Uveal Melanoma (UVM).17 Missense mutations in
SF3B1 lead to aberrant splicing and a unique gene expression signature.18 We used SF3B1-
mutated tumors in the TCGA UVM dataset as a positive control. Of the 80 UVM samples, 18
samples have missense mutations in SF3B1. We created an initial bait using 8 SF3B1-mutated
samples and left out two sets of 5 SF3B1-mutated samples for discovery. LURE re-discovered
both withheld sets correctly, collecting all of the SF3B1 missense events in the Catch Cover
(Supp. Figure 1B).

3.3. LURE on the TCGA Pan-Cancer Dataset

In order to look for novel associations among genes already implicated in cancer, we ran
LURE across all tumor types in the TCGA Pan-Cancer Atlas dataset, restricting both baits
and catches to mutation events in the 723 COSMIC genes.2,12 We created bait events for
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missense mutations, truncating mutations, homozygous focal point copy number deletions,
splice site mutations, and gene fusions. We only considered mutations that occurred in at
least 10 samples for a given tumor type. We created tumor type-specific classification models
to avoid any confounding effects due to tissue-specific expression and mutation patterns. By
creating baits for different alteration types in the same gene, as opposed to one bait for any
alteration in a gene, we were able to identify associations between different alteration types
within the same gene as well as infer the functional impact of alterations. For example, α-
thalassemia mental retardation X-linked (ATRX), a gene recurrently mutated in LGG, only
has an oncogenic effect with a loss-of-function mutation — either a truncating mutation or
copy number loss — whereas a missense mutation may not have an oncogenic effect.16

We trained logistic regression models on the resulting 3,053 bait/tumor type combinations.
We also tested both random forest and neural network models and found the logistic regression
model to consistently score higher for the majority of mutations (Supp. Figure 3). Due to the
imbalanced nature of the data, precision and recall, rather than overall accuracy, was used to
measure classifier accuracy to emphasize the ability of a classifier to detect bait samples that
are often highly underrepresented.19

In order to limit the number of putative false positive results, we restricted the number
of bait classifiers by considering only those with PR AUC > 0.5, precision > 0.4, and recall
> 0.75 (Supp. Figure 4). Since the objective of LURE is to identify and reclassify target
samples, we were more lenient with the precision cutoff and placed more restriction on the
recall cutoff. Among the bait classifiers passing these thresholds, the most common bait gene
across all tumor types was againTP53, and the tumor types with the highest number of passing
bait classifiers were Lower Grade Glioma (LGG), Thyroid Carcinoma (THCA), and Prostate
Adenocarcinoma (PRAD) (Supp. Figures 5,6).

After filtering the models, we ran LURE with the 81 remaining classifiers as bait (Supp.
Figures 5,6), using missense mutations, truncating mutations, splice site mutations, gene fu-
sions, focal point copy number amplifications, and homozygous deletions of COSMIC genes as
possible catches. LURE found significant bait-catch associations for 35 of the 81 baits tested.
Adding catches to each initial bait event increased the classifier PR AUC by various amounts
across the different baits (Supp. Figure 7A). Tumor type was evenly distributed among the
baits and SNVs dominated the bait mutation type (Supp. Figure 7D). The most common gene
among the 35 baits was again TP53 (Supp. Figure 7E).

Among the high-confidence results with a final classifier PR AUC > 0.8, 14 of 59 individual
bait-catch associations were between events involving the same gene, such as TP53 truncating,
splice site, and missense mutations, in various tumor types (Figure 2A). There were four
associations within the same gene families, e.g. IDH1/2 or the RAS protein family. In addition,
we identified gene fusion event partners in BRAF and RET that associated with a BRAF
missense mutation in THCA. For 20 of the 59 high confidence bait-catch associations, both
genes were members of the same signaling pathway (excluding pathway gene sets with > 1000

genes).20

When all pan-cancer results are considered together, the resulting bait-catch association
network, or “Event Net,” reveals some pathway-oriented findings which cross multiple tu-

.CC-BY-NC-ND 4.0 International licenseavailable under a
not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (which wasthis version posted August 8, 2019. ; https://doi.org/10.1101/727891doi: bioRxiv preprint 

https://doi.org/10.1101/727891
http://creativecommons.org/licenses/by-nc-nd/4.0/


RNF43_mis

TP53_spl

18Q21.2:SMAD4,DCC:_del

SMAD4_trunc

7P14.3:FKBP9:_amp
NF1_trunc

EGFR_miss

7P11.2:EGFR,ZNF479:_amp

PTEN_miss
1Q32.1:ELF3,MDM4,ELK4,SLC45A3:_amp

9P21.3:MLLT3,CDKN2A:_del

FGFR3_mis

PIK3CA_mis

AKT1_mis

CDH1_spl

CDH1_trunc 1Q31.1:TPR:_amp

1Q31.2:CDC73:_amp

7Q11.21:SBDS:_amp

TP53_trunc

KMT2A_mis

1Q23.3:SDHC,FCGR2B,DDR2,PBX1:_amp

12Q13.2:ERBB3:_amp

RAD21_mis

CNBD1_mis
10P15.1:KLF6:_amp

6P25.3:IRF4:_amp

19P13.2:CD209,MUC16,KEAP1,DNM2,SMARCA4,CALR,LYL1:_amp

TP53_mis

3Q28:TP63:_amp

CTNNA2_mis

8Q24.11:RAD21,EXT1:_amp

KMT2D_mis

12Q14.1:CDK4,LRIG3:_amp

KRAS_mis

BRAF_fus

RNF43_trunc

NRAS_mis

HRAS_mis
BRAF_mis

PTPRK_mis
RET_fus

ALK_mis

BRCA
BLCA
OV
UCEC
THCA
ESCA
STAD
COAD
PAAD
LUSC
LGG

Tumor Type

A

B
EGFR Signaling

TP53/TP63/SMAD4

MAPK/RTK

PI3K/AKT

ARID1A trunc 

ATRX trunc 

BRAF mis 

CTNNB1 mis 

IDH1 mis 

NFE2L2 mis 

NRAS mis 

9P21.3:MLLT3,CDKN2A del 

ACVR2A trunc 

CIC trunc 

EGFR mis 

PTEN trunc

RB1 trunc 

SETD2 trunc 

TMPRSS2 fus 

18Q21.2:SMAD4,DCC del

TP53 mis

TP53 trunc

FGFR2 mis 
FLNA mis 
BRD4 mis 
UBR5 mis 

PRDM1 mis 
1P36.11:MDS2,ARID1A del 

RPL22 trunc 
POLD1 mis 

8Q23.3:CSMD3 amp 
11P15.5:HRAS del 

BRAF fus 
RET fus 

APC trunc
IDH2 mis 

3Q25.31:GMPS amp 
8P11.21:ANK1,KAT6A,IKBKB,HOOK3 amp 

HRAS mis 
KRAS mis 

FGFR3 mis 

7P14.3:FKBP9 amp 
KMT2D trunc 
PTEN trunc 
RNF213 mis 
MUC4 mis 

CIC mis 
FUBP1 trunc 

CIC spl 

NOTCH1 mis 

NF1 trunc 

7P11.2:EGFR,ZNF479 amp 

9P21.3:MLLT3,CDKN2A del 
12Q14.1:CDK4,LRIG3 amp 

1Q32.1:ELF3,MDM4,ELK4,SLC45A3 amp 

PTEN mis 

CTNNB1 mis 

PTEN spl 
SETDB1 mis 

13Q14.2:RB1,CYSLTR2 del 
RB1 spl 

16P13.2:GRIN2A amp 
1Q23.1:PRCC,NTRK1,FCRL4 amp 

1Q21.1:PDE4DIP amp 
PBRM1 trunc 
SLC45A3 fus 

ETV1 fus 
SMAD4 trunc 

TP53 mis 
1Q23.3:SDHC,FCGR2B,DDR2,PBX1 amp 

TP53 trunc 

19P13.2:CD209,MUC16,KEAP1,DNM2,SMARCA4,CALR,LYL
8Q24.11:RAD21,EXT1 amp 

3Q28:TP63 amp

TP53 spl 

FGFR2 mis 
FLNA mis 
BRD4 mis 
UBR5 mis 

PRDM1 mis 
1P36.11:MDS2,ARID1A del 

RPL22 trunc 
POLD1 mis 

8Q23.3:CSMD3 amp 
11P15.5:HRAS del 

BRAF fus 
RET fus 

APC trunc 
IDH2 mis 

3Q25.31:GMPS amp 
8P11.21:ANK1,KAT6A,IKBKB,HOOK3 amp 

HRAS mis 
KRAS mis 

FGFR3 mis 
7P14.3:FKBP9 amp 

KMT2D trunc 
PTEN trunc 
RNF213 mis 
MUC4 mis 

CIC mis 
FUBP1 trunc 

CIC spl 
NOTCH1 mis 

NF1 trunc 

7P11.2:EGFR,ZNF479 amp 

9P21.3:MLLT3,CDKN2A del 
12Q14.1:CDK4,LRIG3 amp 

1Q32.1:ELF3,MDM4,ELK4,SLC45A3 amp 
PTEN mis 

CTNNB1 mis 
PTEN spl 

SETDB1 mis 
13Q14.2:RB1,CYSLTR2 del 

RB1 spl 
16P13.2:GRIN2A amp 

1Q23.1:PRCC,NTRK1,FCRL4 amp 
1Q21.1:PDE4DIP amp 

PBRM1 trunc 
SLC45A3 fus 

ETV1 fus 
SMAD4 trunc 

TP53 mis 
1Q23.3:SDHC,FCGR2B,DDR2,PBX1 amp 

TP53 trunc 

19P13.2:CD209,MUC16,KEAP1,DNM2,SMARCA4,CALR
8Q24.11:RAD21,EXT1 amp 

3Q28:TP63 amp 

TP53 spl 

FGFR2 mis 
FLNA mis 
BRD4 mis 
UBR5 mis

PRDM1 mis 
1P36.11:MDS2,ARID1A del 

RPL22 trunc 
POLD1 mis 

8Q23.3:CSMD3 amp 
11P15.5:HRAS del 

BRAF fus 
RET fus 

APC trunc 
IDH2 mis 

3Q25.31:GMPS amp 
8P11.21:ANK1,KAT6A,IKBKB,HOOK3 amp 

HRAS mis
KRAS mis 

FGFR3 mis 
7P14.3:FKBP9 amp 

KMT2D trunc 
PTEN trunc 
RNF213 mis 
MUC4 mis 

CIC mis 
FUBP1 trunc 

CIC spl 

NOTCH1 mis 

NF1 trunc 

7P11.2:EGFR,ZNF479 amp 

9P21.3:MLLT3,CDKN2A del 
12Q14.1:CDK4,LRIG3 amp 

1Q32.1:ELF3,MDM4,ELK4,SLC45A3 amp 

PTEN mis 

CTNNB1 mis 
PTEN spl 

SETDB1 mis 
13Q14.2:RB1,CYSLTR2 del 

RB1 spl 
16P13.2:GRIN2A amp 

1Q23.1:PRCC,NTRK1,FCRL4 amp
1Q21.1:PDE4DIP amp 

PBRM1 trunc 
SLC45A3 fus 

ETV1 fus 
SMAD4 trunc 

TP53 mis 
1Q23.3:SDHC,FCGR2B,DDR2,PBX1 amp 

TP53 trunc 

19P13.2:CD209,MUC16,KEAP1,DNM2,SMARCA4,CALR,LYL1 amp 

8Q24.11:RAD21,EXT1 amp 
3Q28:TP63 amp 

TP53 spl 

ARID1A trunc 

ATRX trunc 

BRAF mis 

CTNNB1 mis 
IDH1 mis 

NFE2L2 mis 

NRAS mis

9P21.3:MLLT3,CDKN2A del 

ACVR2A trunc 

CIC trunc 

EGFR mis 

PTEN trunc 

RB1 trunc 

SETD2 trunc 

TMPRSS2 fus 

18Q21.2:SMAD4,DCC del

TP53 mis

TP53 trunc

FGFR2 mis 
FLNA mis 
BRD4 mis 
UBR5 mis 

PRDM1 mis 
1P36.11:MDS2,ARID1A del 

RPL22 trunc 
POLD1 mis 

8Q23.3:CSMD3 amp 
11P15.5:HRAS del 

BRAF fus 
RET fus 

APC trunc 
IDH2 mis 

3Q25.31:GMPS amp 
8P11.21:ANK1,KAT6A,IKBKB,HOOK3 amp 

HRAS mis 
KRAS mis 

FGFR3 mis 
7P14.3:FKBP9 amp 

KMT2D trunc 
PTEN trunc 
RNF213 mis 
MUC4 mis 

CIC mis 
FUBP1 trunc 

CIC spl 
NOTCH1 mis 

NF1 trunc 

7P11.2:EGFR,ZNF479 amp 

9P21.3:MLLT3,CDKN2A del 
12Q14.1:CDK4,LRIG3 amp 

1Q32.1:ELF3,MDM4,ELK4,SLC45A3 amp 
PTEN mis 

CTNNB1 mis 
PTEN spl 

SETDB1 mis 
13Q14.2:RB1,CYSLTR2 del 

RB1 spl 
16P13.2:GRIN2A amp 

1Q23.1:PRCC,NTRK1,FCRL4 amp 
1Q21.1:PDE4DIP amp 

PBRM1 trunc 
SLC45A3 fus 

ETV1 fus 
SMAD4 trunc 

TP53 mis 
1Q23.3:SDHC,FCGR2B,DDR2,PBX1 amp 

TP53 trunc 

19P13.2:CD209,MUC16,KEAP1,DNM2,SMARCA4,CALR
8Q24.11:RAD21,EXT1 amp 

3Q28:TP63 amp 

TP53 spl 

FGFR2 mis 
FLNA mis 
BRD4 mis 
UBR5 mis 

PRDM1 mis 
1P36.11:MDS2,ARID1A del 

RPL22 trunc 
POLD1 mis 

8Q23.3:CSMD3 amp 
11P15.5:HRAS del 

BRAF fus 
RET fus 

APC trunc 
IDH2 mis 

3Q25.31:GMPS amp 
8P11.21:ANK1,KAT6A,IKBKB,HOOK3 amp 

HRAS mis 
KRAS mis 

FGFR3 mis 
7P14.3:FKBP9 amp 

KMT2D trunc 
PTEN trunc
RNF213 mis 
MUC4 mis 

CIC mis 
FUBP1 trunc 

CIC spl 

NOTCH1 mis 

NF1 trunc 

7P11.2:EGFR,ZNF479 amp 

9P21.3:MLLT3,CDKN2A del 
12Q14.1:CDK4,LRIG3 amp 

1Q32.1:ELF3,MDM4,ELK4,SLC45A3 amp 

PTEN mis 

CTNNB1 mis 
PTEN spl 

SETDB1 mis 
13Q14.2:RB1,CYSLTR2 del 

RB1 spl 
16P13.2:GRIN2A amp 

1Q23.1:PRCC,NTRK1,FCRL4 amp 
1Q21.1:PDE4DIP amp 

PBRM1 trunc 
SLC45A3 fus 

ETV1 fus 
SMAD4 trunc 

TP53 mis 
1Q23.3:SDHC,FCGR2B,DDR2,PBX1 amp 

TP53 trunc 

19P13.2:CD209,MUC16,KEAP1,DNM2,SMARCA4,CALR,LYL1 amp 

8Q24.11:RAD21,EXT1 amp 
3Q28:TP63 amp 

TP53 spl 

ARID1A_TRUNCATING 

ATRX_TRUNCATING 

BRAF_MISSENSE 

CTNNB1_MISSENSE 

IDH1_MISSENSE 

NFE2L2_MISSENSE 

NRAS_MISSENSE 

9P21.3:MLLT3,CDKN2A:_DEL 

ACVR2A_TRUNCATING 

CIC_TRUNCATING 

EGFR_MISSENSE 

PTEN_TRUNCATING

RB1_TRUNCATING 

SETD2_TRUNCATING 

TMPRSS2_FUSION 

18Q21.2:SMAD4,DCC:_DEL

TP53_MISSENSE

TP53_TRUNCATING

FGFR2_MISSENSE 

FLNA_MISSENSE 

BRD4_MISSENSE 

UBR5_MISSENSE 

PRDM1_MISSENSE 

1P36.11:MDS2,ARID1A:_DEL

RPL22_TRUNCATING 

POLD1_MISSENSE 

8Q23.3:CSMD3:_AMP 

11P15.5:HRAS:_DEL 

BRAF_FUSION 

RET_FUSION 

APC_TRUNCATING 

IDH2_MISSENSE 

3Q25.31:GMPS:_AMP 

8P11.21:ANK1,KAT6A,IKBKB,HOOK3:_AMP 

HRAS_MISSENSE 

KRAS_MISSENSE 

FGFR3_MISSENSE 

7P14.3:FKBP9:_AMP 

KMT2D_TRUNCATING 

PTEN_TRUNCATING 

RNF213_MISSENSE 

MUC4_MISSENSE 

CIC_MISSENSE 

FUBP1_TRUNCATING 

CIC_SPLICE 

NOTCH1_MISSENSE 

NF1_TRUNCATING 

7P11.2:EGFR,ZNF479:_AMP 

9P21.3:MLLT3,CDKN2A:_DEL 

12Q14.1:CDK4,LRIG3:_AMP 

1Q32.1:ELF3,MDM4,ELK4,SLC45A3:_AMP 

PTEN_MISSENSE 

CTNNB1_MISSENSE 

PTEN_SPLICE 

SETDB1_MISSENSE 

13Q14.2:RB1,CYSLTR2:_DEL 

RB1_SPLICE 

16P13.2:GRIN2A:_AMP 

1Q23.1:PRCC,NTRK1,FCRL4:_AMP 

1Q21.1:PDE4DIP:_AMP 

PBRM1_TRUNCATING 

SLC45A3_FUSION 

ETV1_FUSION 

SMAD4_TRUNCATING 

TP53_MISSENSE 

1Q23.3:SDHC,FCGR2B,DDR2,PBX1:_AMP 

TP53_TRUNCATING 

19P13.2:CD209,MUC16,KEAP1,DNM2,SMARCA4,CALR,LYL1:_AMP 

8Q24.11:RAD21,EXT1:_AMP 

3Q28:TP63:_AMP 

TP53_SPLICE 

Catch
PRAD
KIRP
BLCA
UCEC
THCA

ESCA
STAD
PAAD
LGG

same gene
same family
same pathway
other

Tumor Type Association TypeBait Catch

ARID1A_TRUNCATING 

ATRX_TRUNCATING 

BRAF_MISSENSE 

CTNNB1_MISSENSE 

IDH1_MISSENSE 

NFE2L2_MISSENSE 

NRAS_MISSENSE 

9P21.3:MLLT3,CDKN2A:_DEL 

ACVR2A_TRUNCATING 

CIC_TRUNCATING 

EGFR_MISSENSE 

PTEN_TRUNCATING 

RB1_TRUNCATING 

SETD2_TRUNCATING 

TMPRSS2_FUSION 

18Q21.2:SMAD4,DCC:_DEL

TP53_MISSENSE

TP53_TRUNCATING

FGFR2_MISSENSE 

FLNA_MISSENSE 

BRD4_MISSENSE 

UBR5_MISSENSE 

PRDM1_MISSENSE 

1P36.11:MDS2,ARID1A:_DEL 

RPL22_TRUNCATING 

POLD1_MISSENSE 

8Q23.3:CSMD3:_AMP 

11P15.5:HRAS:_DEL 

BRAF_FUSION 

RET_FUSION 

APC_TRUNCATING 

IDH2_MISSENSE 

3Q25.31:GMPS:_AMP 

8P11.21:ANK1,KAT6A,IKBKB,HOOK3:_AMP 

HRAS_MISSENSE 

KRAS_MISSENSE 

FGFR3_MISSENSE 

7P14.3:FKBP9:_AMP 

KMT2D_TRUNCATING

PTEN_TRUNCATING

RNF213_MISSENSE 

MUC4_MISSENSE 

CIC_MISSENSE 

FUBP1_TRUNCATING 

CIC_SPLICE 

NOTCH1_MISSENSE 

NF1_TRUNCATING 

7P11.2:EGFR,ZNF479:_AMP 

9P21.3:MLLT3,CDKN2A:_DEL 

12Q14.1:CDK4,LRIG3:_AMP 

1Q32.1:ELF3,MDM4,ELK4,SLC45A3:_AMP 

PTEN_MISSENSE 

CTNNB1_MISSENSE 

PTEN_SPLICE 

SETDB1_MISSENSE 

13Q14.2:RB1,CYSLTR2:_DEL 

RB1_SPLICE 

16P13.2:GRIN2A:_AMP 

1Q23.1:PRCC,NTRK1,FCRL4:_AMP 

1Q21.1:PDE4DIP:_AMP 

PBRM1_TRUNCATING 

SLC45A3_FUSION 

ETV1_FUSION 

SMAD4_TRUNCATING 

TP53_MISSENSE 

1Q23.3:SDHC,FCGR2B,DDR2,PBX1:_AMP 

TP53_TRUNCATING 

19P13.2:CD209,MUC16,KEAP1,DNM2,SMARCA4,CALR,LYL1:_AMP 

8Q24.11:RAD21,EXT1:_AMP 

3Q28:TP63:_AMP 

TP53_SPLICE 

Bait

Fig. 2. LURE Pan-Cancer Results. (A) High Confidence Bait-Catch Associations.
Sankey diagram shows the high confidence bait-catch associations for the 18 baits with a final clas-
sifier PR AUC > 0.8. Bait gene and mutation type are shown on the left; catch gene and mutation
type on the right. Each horizontal flow connection represents an association between the bait and
catch event found by LURE. The left half of each flow bar is colored by tumor type in which the
association was found. The right half of each flow bar is colored by the association type. (B) LURE
“Event Net” Showing Selected Pathway Associations. Cytoscape21 visualization of a subset
of LURE associations in the TCGA Pan-Cancer dataset grouped by pathway. Each node represents
an event. Directed edges represent an association and the direction of the LURE discovery (bait to
catch). The color of each edge represents the tumor type in which the association was found. Refer
to Supp. Figure 8 for full Cytoscape visualization of all Pan-Cancer results.
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mor types (Supp. Figure 8). In particular, four canonical pathway-oriented findings emerge:
EGFR signaling, TP53/TP63/SMAD4, PI3K, and MAPK/RKT (Figure 2B). LURE identified
interesting associations for PTEN, in particular between PTEN and CTNNB1, a connection
supported by recent research which suggests PTEN plays a role in regulating the subcellular
localization of β-catenin.22 Another striking LURE association is between PTEN and EGFR,
which is consistent with recent findings suggesting that PTEN regulates EGFR signaling.23

These LURE associations for PTEN reveal crosstalk between pathways and provide further
evidence that alterations in PTEN influence EGFR signaling and β-catenin signaling.

3.4. LURE Finds New Drivers of the Alternative Lengthening of
Telomeres Pathway in Sarcomas

Tumor cells must employ Telomere Maintenance Mechanisms (TMMs) to extend their telom-
eres in order to multiply rapidly and avoid senescence.24 To date, there are two known mech-
anisms tumor cells use to avoid telomere erosion: the overexpression of telomerase, an enzyme
with the ability to extend telomeres, and the Alternative Lengthening of Telomeres (ALT)
pathway. The vast majority of tumors overexpress telomerase in some way, whereas a small
portion (10-15%) use ALT.25 ALT-positive (ALT+) samples lengthen telomeres through ho-
mologous recombination, mediated by loss-of-function mutations in the ATRX and DAXX
genes.26 Approximately 80% of tumors with ALT harbor mutations in ATRX or DAXX,27

leaving 20% with no known driver. Using LURE, we sought to identify new driver mutations
of the ALT pathway using gene expression signatures of samples harboring ATRX loss-of-
function mutations. Sarcomas and Lower Grade Gliomas (LGG) have the highest prevalence
of ALT+ samples, and ATRX is recurrently mutated in these diseases. We therefore chose
these tumor types in which to search for new drivers of the ALT pathway.26 We restricted
our gene set to a manually-curated set of genes associated with telomere maintenance derived
from the TelNet database28 and focused on looking for associations with ALT. Since TP53
is commonly mutated in ALT+ samples and TP53 mutations are not known to be sufficient
to cause ALT,29 we excluded TP53 events from the possible catches to identify novel ALT
drivers.

Using ATRX truncating mutations as bait, LURE identified four associated mutations
in sarcomas (Figure 3A). While we would expect ATRX truncating mutations to associate
with an ATRX copy number deletion,30 the deletions found in RB1 and SP100 are novel.
We suggest the expression signature LURE identified in this analysis is classifying ALT+

TMM samples, and the associated alterations are possibly driving the TMM. Previous work
has associated RB1 alterations with long telomeres in the absence of TERT mutations and
ATRX inactivation.31 In addition, mouse models have revealed that the knock-out of Rb-
family proteins causes elongated telomeres.32 LURE also identified SP100 deletions as an
ALT driver, and while SP100 deletions have not been directly reported to be involved in ALT,
overexpression of SP100 in ALT+ cell lines has resulted in suppression of ALT characteristics.33

We therefore suggest that an SP100 deletion may lead to unhindered ALT TMM activity. To
further investigate the subset of LURE-classified ALT+ samples, we performed a survival
analysis and found that the ALT+ samples show a worse prognosis (p = 0.068) (Figure 3B),
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consistent with recent research.34
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Fig. 3. LURE results for the Alternative Lengthening of Telomeres (ALT) in Sarcomas.
(A) LURE ALT Graph Using a known driver for ALT (ATRX truncating mutations) as bait in
Sarcomas (SARC), LURE finds four catch events: copy number deletions of ATRX, RB1, and SP100,
as well as RB1 splice site mutations. (B) LURE ALT Survival Plot Kaplan-Meier survival plot
dividing SARC samples by ALT classification using the final Catch Cover classifier from LURE.
LURE ALT− samples have classification scores < 0.5, ALT+ samples ≥ 0.5.

In LGG, again using ATRX truncating mutations as bait, LURE found similar results
identifying associations with other ATRX alterations such as ATRX deletions, splice site
mutations, and missense mutations (Supp. Figure 9). While ATRX missense mutations are
not generally thought to be ALT drivers, we found that ATRX missense mutations were in
fact associated with truncating mutations, suggesting a loss of function role for some of these
missense mutations.30 Together, these findings implicate new single and combinations of driver
mutations required for the initiation of the ALT telomere maintenance mechanism and could
prove to be therapeutic targets.

3.5. LURE Identifies Associations within the MAPK/RTK Signaling
Pathway

Oncogenic mutations of the HRAS, NRAS, or KRAS genes are frequently found in human
tumors, altering the control of cellular proliferation, differentiation, and survival. Oncogenic
mutations in a number of other upstream or downstream components of the MAPK/RTK
signaling pathway, including membrane receptor tyrosine kinases (RTKs) and cytosolic ki-
nases, have been recently detected in a variety of cancer types.35 Oncogenic RAS mutations
and other mutation events within the MAPK/RTK signaling pathway are often mutually
exclusive, indicating that the deregulation of Ras-dependent signaling is essential for tumori-
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genesis.35 Previous studies have shown that tumor samples harboring Ras protein mutations
have a unique gene expression signature, and Ras-dependent samples can be more accurately
defined by this signature than by mutation status alone.36 Building on this knowledge, we
were able to use LURE not only to train an accurate Ras-dependent classifier, as was done in
Way et al,37 but also to identify new alterations which may be activating the MAPK/RTK
signaling pathway in samples without a Ras protein mutation. We ran LURE using genes
known to be involved in the MAPK/RTK signaling pathway38 as baits. We considered baits
with the following alterations: missense mutations, truncating mutations, homozygous focal
point copy number deletions, splice site mutations, and gene fusions. We did not restrict our
catch set to COSMIC genes as we were looking for genes not previously implicated in cancer.
We ran LURE for the 23 bait event classifiers which scored greater than 0.5. The resulting
Event Net revealed known as well as novel associations (Figure 4A). One interesting associa-
tion found by LURE in Head and Neck Squamous Cell Carcinomas (HNSC) is between HRAS
missense mutations and focal deletions of the 2q23.3 locus (Figure 4B). The samples were al-
most mutually exclusive for these events, with only one sample having both a 2q23.3 deletion
and an HRAS alteration and no samples having alterations in either KRAS or NRAS. Among
the 61 genes in the 2q23.3 locus is CHST11, which has been shown to regulate MAPK/RTK
pathway activity in hepatocellular carcinoma.39 We suggest that in the absence of an HRAS
mutation, MAPK signaling may be activated by a deletion of the 2q23.3 locus in HNSC.
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Fig. 4. LURE RAS/MAPK Signaling Pathway Analysis. (A) LURE “Event Net” Show-
ing Associations with MAPK/RTK signaling pathway genes. Each node represents an event.
Directed edges represent associations and the direction of the LURE discovery (bait to catch). The
color of each edge represents the tumor type in which the association was found. (B) LURE Graph
of HRAS in HNSC. Using HRAS missense mutations as bait in Head and Neck Squamous Cell
Carcinomas (HNSC), LURE found a deletion catch event in the 2q23.3 locus.

4. Discussion

We described the Learning UnRealized Events (LURE) method that leverages the availability
of multi-omic cancer datasets to identify driver events using signatures constructed from other
feature data (in this study, mRNA expression). LURE is related to semi-supervised machine
learning approaches,40 but has a slight shift in emphasis. Rather than focusing on labeling
unknown samples to optimize performance, LURE instead uses the mutual compatibility of
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label sets to form a coherent classifier as an indicator that the label sets themselves are
related. Thus, the accuracy of the classifier is only important to the extent that it produces
a signature that can detect strong associations. LURE takes advantage of the “dark matter”
(false-positives in gene expression-based classifiers) to search for associated events.

LURE outperformed REVEALER, another signature-based method, on the IDH1 posi-
tive control test. REVEALER identifies combinations of genomic alterations correlated with
functional phenotypes, such as the activation or gene dependency of oncogenic pathways or
sensitivity to a drug treatment.41 While the concept of REVEALER is similar to LURE,
LURE provides several notable advantages that may lead its better performance. First, at
every iteration of the method, LURE produces a new classification model that is more accu-
rate than the model from the previous iteration. LURE does this by expanding the training
set to include samples with alterations in the new event, which in turn updates the signature
with potentially new features to aid classification. Second, REVEALER’s predictions rely on
mutually exclusive relationships between new events, and its results are thus limited by the
accuracy of mutation calls. By allowing some overlap between predicted events, LURE can
account for possible mutation call errors and identify modules containing co-mutated events.

Some limitations of this study could be addressed to expand the set of predicted drivers.
First, we used a highly conservative set of parameters to analyze the TCGA dataset in order to
control the set of false positive results and to highlight the most confident connections. These
include the minimum allowed accuracy of the bait classifiers, the cutoff for the SSEA tests,
the allowed overlap between the samples of the events, and restricting the considered catch to
COSMIC genes. To obtain different candidates, one could run a less stringent LURE analysis
to produce many more catch events that could be further filtered using criteria such as the
recurrence of the same catch found in multiple tumor types. Second, we only considered gene
expression data as features for building signatures. Yet multiple other data types are available,
such as DNA methylation, to increase the ability to find associations among events. Third,
the use of SSEA restricts the consideration of catch events to those occurring in at least four
target samples in order to pass the multi-test FDR cutoff. However, it might be worthwhile
to add events to the catch even if they cover only one additional target sample. Methods that
consider sets of mutually exclusive events simultaneously might offer some advantage.

Using signatures to associate events will extend the list of known drivers that may ul-
timately identify targets for precision medicine. LURE identified an intriguing set of new
candidate drivers based on the Pan-Cancer Atlas dataset. Most of the found associations were
between events of the same gene (e.g. TP53), gene family (e.g. IDH, RTK), or biological
pathway (e.g. PI3K). In addition to associating known events across the Pan-Cancer dataset,
LURE identified many events of unknown significance to known pathways such as putative
drivers of telomere maintenance and MAPK/RTK signaling. The collection of these events
provide possible actionable clues for cancer patients. For example, LURE found that deletions
in 2q23.3 in head-and-neck cancers are strongly associated with RTK signaling. Whether such
a focal deletion could be used as a novel biomarker for treating patients with an RTK inhibitor,
such as gefitinib for EGFR, remains to be seen.
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