Abstract
High-throughput molecular analysis of sewage is a promising tool for precision public health. Here, we combine sewer network and demographic data to identify a residential catchment for sampling, and explore the potential of applying untargeted genomics and metabolomics to sewage to collect actionable public health data. We find that wastewater sampled upstream in a residential catchment is representative of the human microbiome and metabolome, and we are able to identify glucuronidated compounds indicative of direct human excretion, which are typically degraded too quickly to be detected at treatment plants. We show that diurnal variations during 24-hour sampling can be leveraged to discriminate between biomarkers in sewage that are associated with human activity from those related to the environmental background. Finally, we putatively annotate a suite of human-associated metabolites, including pharmaceuticals, food metabolites, and biomarkers of human health and activity, suggesting that mining untargeted data derived from residential sewage can expand currently-used biomarkers with direct public health or policy relevance.
Footnotes
Finalize the standard confirmation process via MS2 and clarify the text (abstract and discussion).