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 27 

Abstract 28 

 The cell type composition of heterogeneous tissue samples can be a critical variable in both 29 

clinical and laboratory settings. However, current experimental methods of cell type quantification (e.g. 30 

cell flow cytometry) are costly, time consuming and can introduce bias. Computational approaches 31 

that infer cell type abundance from expression data offer an alternate solution. While these methods 32 

have gained popularity, most are limited to predicting hematopoietic cell types and do not produce 33 

accurate predictions for stromal cell types. Many are also limited to particular platforms, whether RNA-34 

Seq or specific microarray models. To overcome these limitations, we present the Gene Expression 35 

Deconvolution Interactive Tool, or GEDIT. Using simulated and experimental data, we demonstrate 36 

that GEDIT produces accurate results for both stromal and hematopoietic cell types. Moreover, GEDIT 37 

is capable of producing inputs using RNA-Seq data, microarray data, or a combination of the two. 38 

Finally, we provide reference data from 7 sources spanning a wide variety of stromal and 39 

hematopoietic types. GEDIT also accepts user submitted reference data, thus allowing deconvolution 40 

of any cell type, provided that accurate reference data is available. 41 

 42 

Author Summary 43 

 The Gene Expression Deconvolution Interactive Tool (GEDIT) is a software tool that uses gene 44 

expression data to estimate cell type abundances. The tool accepts expression data collected from 45 

blood or tissue samples and sequenced using either RNA-Seq or microarray technology. GEDIT also 46 

requires reference data describing the expression profile of purified cell types. Several reference 47 

matrices are provided with this publication and on the tool’s website (webtools.mcdb.ucla.edu), and 48 

the user also has the option to supply their own. The tool then applies a linear regression to predict 49 

which cell types are present in the tissue sample, and in what proportions. GEDIT applies several 50 

novel techniques and outperforms other tools on test data. 51 

 52 
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Introduction 53 

 54 

 Cell type composition is an important variable in both biology and medicine. In laboratory 55 

experiments, cell sample heterogeneity can act as a confounding variable. Observed changes in gene 56 

expression may be the result of changes in the abundance of underlying cell populations, rather than 57 

changes in expression of any particular cell type [1]. In clinical applications, the cell type composition 58 

of tissue biopsies can inform treatment. For example, in cancer the number and type of infiltrating 59 

immune cells can correlate highly with prognosis [2, 3, 4]. Moreover, it has been shown that patients 60 

with a large number of infiltrating T cells are more likely to respond positively to immunotherapy [5]. 61 

 62 

 For many years, cell flow cytometry via FACS sorting has been the standard method of cell 63 

type quantification. More recently, single cell RNA-Seq methods such as 10x Chromium, Drop-Seq, 64 

and Seq-Well have become available [6,7]. However, these methods suffer from significant limitations. 65 

FACS sorting is extremely slow, with some samples requiring hours of highly skilled labor. Similarly, 66 

single cell RNA-Seq methods remain expensive for studies with large sample sizes. Moreover, some 67 

cell types, such as neurons, myocytes, and adipocytes, are difficult for these technologies to capture 68 

because of cell size and morphology. 69 

 70 

Moreover, both FACS sorting and single cell methods can introduce biases, as these 71 

technologies require that samples be dissociated into single cell suspensions. Many stromal cell types 72 

are tightly connected to one another in extracellular matrices, and the procedures necessary to 73 

separate those cells can damage some, while others remain in clumps that are not sequenced. 74 

Consequently, subtle differences in sample preparation can produce dramatically different results (8).  75 

While it is possible to obtain pure samples of each cell type in this way, the observed cell counts may 76 

no longer represent the biology of the original sample. The recent Cell Population Mapping tool utilizes 77 

single cell reference data to perform bulk deconvolution, but requires that single cell data be available, 78 
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which is not always the case [9]. 79 

 80 

In recent years, digital means of cell type quantification, termed cell type deconvolution, have 81 

become popular. However, they remain approximate and are often limited to use on particular cell 82 

types or platforms. ImmQuant can estimate cell type fractions for immune cells, if supplied with the 83 

proper signature gene lists [10]. xCell can produce estimates for the 64 cell types supported by the 84 

tool, but does not allow the inclusion of additional cell types [11]. CIBERSORT is designed specifically 85 

for hematopoietic cell types sequenced using the HGU133A platform, and is not recommended for 86 

application to RNA-Seq or stromal data [12]. CIBERSORTX provides greater versatility but is slow to 87 

run compared to other tools [13]. 88 

 89 

 To overcome some of the limitations of existing tools we present the Gene Expression 90 

Deconvolution Interactive Tool (GEDIT). GEDIT utilizes gene expression data to accurately predict cell 91 

type composition of tissue samples. We have assembled a library of reference data from 7 distinct 92 

sources and used these data to generate thousands of synthetic mixtures. We then used these 93 

synthetic mixtures to test and refine the approaches and parameters used by GEDIT, in order to 94 

produce optimal results. Next, we run both GEDIT and competing tools on an in vitro mixture of 95 

immune cells and compare performance. Lastly, we use GEDIT to deconvolute two examples of 96 

human tissue samples: 21 skin samples from patients with skin diseases, and 17,382 samples of 97 

varied tissues from the GTEX database. The GEDIT tool is included in Supplementary File 1, and also 98 

available online at http://webtools.mcdb.ucla.edu/. 99 

 100 

Results 101 

Reference Data 102 

 103 

 Reference data profiling the expression of purified cell types is a requirement for reference-104 
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based deconvolution. Methods that do not directly require reference data, such as non-negative matrix 105 

factorization, still require knowledge of expression profiles or marker genes in order to infer the identity 106 

of the predicted components. For the current study, we have assembled or downloaded a set of 8 107 

reference matrices, each containing the expression of 8-29 human cell types (Table 1). These data 108 

sources span multiple platforms, including bulk RNA-Seq, microarray, and single-cell RNA-Seq. 109 

Several of these matrices are novelly assembled from public sources as part of this study, and are 110 

included in Supplementary File 2. Complete details on the sources and assembly of these matrices 111 

are described in the methods [12,14–20]. 112 

 113 

 114 

Matrix Platform # of Cell Types Cell Types 
Included 

Human Skin Signatures 
[14] 

Affymetrix Genome Plus 2.0/ Illumina 
Human HT-12 V3.0 

21 Immune 

Human Body Atlas [15] Affymetrix U133A/GNF1H 13 Immune 

Human Primary Cell 
Atlas [16] 

Affymetrix U133 Plus 2.0 26 Immune and 
stromal  

BLUEPRINT* [17] RNA-Seq 8 Immune 

ENCODE* [18] RNA-Seq 29 Stromal, limited 
immune 

BlueCode [17,18]* RNA-Seq 35 Stromal and 
immune 

LM22 [12] Affymetrix Microarray 22 Immune, with 
subtypes 

10x Single Cell Dataset* 
[19] 

RNA-Seq 9 Immune 

ImmunoStates [20] Multi-Microarray 20 Immune, with 
subtypes 

 115 

Table 1. Library of Reference Data assembled or obtained for GEDIT. Asterisk denotes matrices 116 
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novelly assembled as part of this publication. BlueCode represents the combined ENCODE and 117 

BLUEPRINT matrices. 118 

 119 

Synthetic Mixture Generation 120 

 121 

 To evaluate the accuracy of GEDIT, we first apply the tool to synthetic mixtures for which the 122 

true cell type fractions are known. In order to meaningfully evaluate the performance of deconvolution, 123 

we used one matrix to produce mixtures and another to serve as the reference. The deconvolution of 124 

synthetic mixtures using only a single matrix (to both generate the mixtures and serve as a reference) 125 

is a trivial problem. In this context, the linear regression will always return the exact (or nearly exact) 126 

input proportions. Moreover, this is a poor simulation of real-world data, as in reality the expression 127 

profile of any given cell type will vary to some extent between experiments. Moreover, cross-platform 128 

effects cannot be simulated using a single matrix. 129 

 Using distinct reference and mixture-generating matrices requires that we match cell types 130 

between the two matrices. Matching cell types across references is a non-trivial problem, as 131 

equivalent cell types may be labelled differently, and identically labelled cell types may represent cells 132 

in substantially different states or contexts. To address this problem, we defined the following 133 

procedure for identifying pairs of equivalent cell types between two reference matrices: 134 

 135 

1. Joint quantile normalize the matrices, then log transform them 136 

2. Calculate the Pearson correlations between each cell in the first matrix and each cell in the 137 

second matrix 138 

3. Pair cell types that are more highly correlated with each other than with any other cell type in 139 

the reference 140 

4. Manually exclude cell pairings with mismatching descriptions 141 

 142 

 Using this procedure, we identified 5 pairings of reference matrices that can be used for the 143 
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generation of synthetic mixtures (Table 2). Since simulations can be performed in both directions, this 144 

represents 10 possible choices of a mixture generating matrix and a reference matrix. The exact 145 

matrices used to generate synthetic mixtures are available in Supplementary File 3. 146 

  147 

 Matrix1 Matrix2 Number of 
Cell Types 

Platforms 

BLUEPRINT Human Primary Cell Atlas 5 RNA-Seq to Affymetrix U133 
Microarray 

BLUEPRINT 10x Single Cell 4 Bulk RNA-Seq to SC RNA-Seq 

BLUEPRINT Skin Signatures 6 RNA-Seq to Affymetrix/Illumina 
HT-12 Microarray 

Human Primary Cell Atlas Skin Signatures 10 Affymetrix U133 Microarray to 
Affymetrix/Illumina HT-12 
Microarray 

10x Single Cell Skin Signatures 4 SC RNA-Seq to 
Affymetrix/Illumina HT-12 
Microarray 

 148 

Table 2. Pairs of reference matrices used to generate synthetic mixtures. For each pair of reference 149 

matrices, 4-10 cell types were considered equivalent for the purpose of synthetic testing. For example, 150 

“mature neutrophils” in BLUEPRINT and “neutrophils” in the Human Primary Cell Atlas were 151 

considered equivalent. 152 

For each of these 10 pairs of matrices, 1,000 cell type proportions were generated randomly. 153 

Specifically, a cell type was selected at random and assigned a weight between 0 and 1.0 (randomly 154 

sampled from the uniform distribution). Next, one of the remaining cell types is randomly selected and 155 

assigned a weight between 0.0 and the remaining weight (1.0 minus the sum of weights already 156 

assigned). This is repeated until the final cell type, which is assigned all remaining weight. The final 157 

simulated expression profile is produced by summing the expression profiles of each cell type, 158 
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multiplied by the simulated weight. We believe this procedure produces biologically accurate mixtures, 159 

as they are composed primarily of a small number of cell types, with many other cell types present at 160 

low levels. 161 

 162 

GEDIT Pipeline 163 

 164 

 GEDIT requires as input two matrices of expression values. The first is expression data 165 

collected from a tissue sample; each column represents one mixture, and each row corresponds to a 166 

gene. The second matrix contains the reference data, with each column representing a purified 167 

reference profile and each row corresponds to a gene. In a multi-step process, GEDIT utilizes the 168 

reference profiles to predict the cell type proportions of each mixture (Fig 1). 169 

 170 

Fig 1. The GEDIT pipeline. The input matrices are quantile normalized then reduced to matrices 171 

containing only signature genes. After a row scaling step, which serves to control for the dominating 172 

effect of highly expressed genes, linear regression is performed and predictions of cell type 173 

abundances are reported to the user. 174 

 175 

 In order to assess the effects of GEDIT’s 4 parameter settings, which are described in detail 176 

below, we generated thousands of synthetic mixtures in silico. We then ran GEDIT on the simulated 177 

data described above while varying our 4 parameter settings (Table 3). 178 

 179 

Input Description Allowed Values Default Value 

RefMat Matrix of purified cell types N by M matrix; One row per 
gene, one column per cell 
types 

NA 
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MixMat Matrix of mixtures to be 
deconvoluted 

N by P matrix; One row per 
gene, one column per sample  

NA 

SigMeth Method of signature gene 
selection 

Entropy, MeanRat, MeanDiff, 
ZScore, fsRat, fsDiff 

Entropy 

NumSigs Average number of signature 
genes per cell type 

[1, 10,000] 50 

MinSigs  Minimum number of signatures 
per cell type 

[1, NumSigs] =NumSigs 

RowScale Extent of per-row normalization [0.0,1.0] 0.0 

 180 

Table 3. GEDIT inputs include two matrices and four parameter settings. 181 

Preprocessing and Quantile Normalization 182 

The first step in the GEDIT pipeline is to render the two matrices comparable. This is done by 183 

including only genes present in both matrices and discarding all others. Genes with zero detected 184 

expression in all cell types as they contain no useful information for deconvolution. Each column of 185 

both matrices are then quantile normalized, such that they follow the same distribution; the target 186 

distribution is the starting distribution of the entire reference matrix. 187 

 188 

Signature Gene Selection (SigMeth) 189 

 Starting with the normalized reference matrix, GEDIT identifies signature genes. Gene 190 

expression experiments can measure tens of thousands of genes simultaneously, but many of these 191 

genes are not informative for deconvolution. Specifically, genes with similar expression levels across 192 

all cell types are of little use, as observed expression values in the mixtures offer no insight into cell 193 
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frequencies. Genes that are highly expressed in a subset of cell types (and lowly expressed in the 194 

rest) are more informative. By using only such signature genes, rather than the entire expression 195 

matrix, the problem of deconvolution becomes more tractable and less computationally intensive. 196 

Moreover, identification of signature genes can be valuable to researchers for other applications (e.g. 197 

scRNA-Seq cell type assignments). 198 

 We have implemented and tested a total of 6 signature gene scoring algorithms. For a each 199 

gene, these algorithms produce a signature score, using as input the vector of expression values 200 

across all cell types. Each gene is a candidate signature gene for the cell type in which it is most 201 

highly expressed, and for each cell type the NumSigs genes with the highest scores are accepted as 202 

signature genes. NumSigs is a tunable parameter with a default value of 50. 203 

One scoring approach is to compare the highest observed expression value to the mean of all 204 

other expression values. This comparison can be performed by division or subtraction (MeanDiff and 205 

MeanRat). Alternately, these same comparisons can be made between the highest observed 206 

expression value, and the second highest observed value (fsDiff and fsRat). The ZScore method is 207 

calculated the same way as MeanDiff, except that it is divided by the variance of the expression 208 

vector. 209 

 A final scoring method is the calculation of information entropy. Information entropy quantifies 210 

the amount of information in a probability distribution, with highly uniform distributions having the 211 

highest entropy. Entropy is minimized when expression is detected only in a single cell type and 212 

maximized when equal expression values are measured across all cell types. Thus, by ranking genes 213 

by negative entropy, genes with expression specific to a small subset of cell types will have high 214 

scores. 215 

When run on 10,000 simulated mixtures, the entropy produced the lowest maximum, mean, 216 

and upper quartile error (Fig 2A).  We therefore use entropy as the default setting but allow the user to 217 

select others. Unlike the other 5 selection methods tested, using entropy has the potential to select 218 

genes that are highly expressed in 2 or more cell types, and lowly expressed in the rest. While these 219 

genes are not unique to a single cell type, they can still offer valuable information for deconvolution. 220 
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 221 

Fig 2. Effect of GEDIT parameter choices on accuracy of predictions in simulated experiments. 10,000 222 

simulations mixtures were generated, each using one of four reference matrices, with either four, five, 223 

six, or ten cell types being simulated. Deconvolution was performed using a separate reference matrix. 224 

When not otherwise noted, parameters used were: signature selection method = entropy; number of 225 

signatures = 50, row scaling = 0.0; number of fixed genes = number of signatures. 226 

 227 

Number of Signature Genes (NumSigs, MinSigs) 228 

 229 

GEDIT’s second parameter is the number of signature genes that are selected per cell type. 230 

On simulated data, any number of signature genes between 40 and 200 produce near-optimal results 231 

(Fig 2B). 232 

We provide an option that allows more signature genes to be selected for some cell types than 233 

others. In this scheme, both an average and a minimum number of signature genes are specified by 234 

the user (NumSigs and MinSigs, respectively). For each of N cell types present in the reference, 235 

MinSigs genes are selected that are maximally expressed in that cell type. However, across all cell 236 

types a total of N*NumSigs genes are selected, and the remaining N*(NumSigs-MinSigs) genes are 237 

those with the highest score, regardless of the cell type in which they are maximally expressed. 238 

On simulated data, we found that adjusting the MinSigs parameter had minimal effect on 239 

predictions (Fig 2C), and by default GEDIT sets MinSigs equal to NumSigs. 240 

 241 

Row Scaling (RowScale) 242 

 243 

 One complication in the application of linear regression to gene expression data is the 244 

drastically different scale at which some genes are expressed. Take, for example, the two genes 245 

CD14 and THEMIS (Table 4). These have both been identified as strong signature genes: CD14 for 246 

monocytes and THEMIS for CD4+ T cells. However, CD14 is expressed at much higher levels in most 247 
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cell types. This is problematic because genes like CD14 will have a much larger impact on the 248 

estimation of cell type composition, compared to genes like THEMIS. That is, the possible penalty 249 

resulting from a poor fit of CD14 is much larger than the penalty from a poor fit of THEMIS. 250 

 251 

Cell Type Monocytes Neutrophils B Cells NK Cells CD4+ T cells Macrophages 

CD14 338.4 163.9 18.9 16.9 19.2 105.9 

THEMIS 9.7 11.6 8.4 13.2 52.0 8.7 

 252 

Table 4. Example of two signature genes with drastically different magnitudes of expression. CD14 is 253 

a signature gene for monocytes, and THEMIS for CD4+ T cells. The row scaling transformation 254 

applied by GEDIT serves to lessen the dominating effect of highly expressed genes. 255 

 256 

 In order to equalize the effect of each signature gene on the linear regression, we implement a 257 

transformation we term row scaling. The extent of row scaling is controlled by the row scaling 258 

parameter, with allowed values between 0.0 and 1.0. At 1.0 a gene with 10x higher expression will 259 

have 10x the influence (same as if no row scaling were performed). At a value of 0.0, all genes have 260 

equal influence. In simulated experiments, a row scaling value of 0.0 produced the lowest mean error, 261 

substantially improving accuracy (Fig 2D). Values outside the natural range of 0.0 to 1.0 produce high 262 

error, as well (data not shown). 263 

 264 

Comparison to Other Tools 265 

 To evaluate the performance of GEDIT on real data, and compare its results to those of other 266 

tools, we generated expression data from 12 in vitro mixtures of 6 immune cells using an Affymetrix 267 

array. We then selected 6 contemporary deconvolution tools (Table 4), ran the tools on our 12 268 

mixtures and quantified their error. This represents an independent method of evaluating GEDIT and 269 

the other tools in the study. 270 
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 271 

Tool Compatible with 
Outside Reference 

Supported 
Platforms 

Local Version 
Available 

Supported 
Cell Types 

GEDIT Yes RNA-Seq, 
microarray 

Yes Immune and 
Stromal 

CIBERSORT Yes Microarray Upon request Immune 

xCell No RNA-Seq, 
microarray 

No Immune and 
Stromal 

ImmQuant Yes RNA-Seq, 
microarray 

Yes Immune 

dtangle Yes RNA-Seq, 
microarray 

Yes Immune and 
Stromal 

CIBERSORTX Yes RNA-Seq, 
microarray 

Upon request Immune and 
Stromal 

 272 

Table 4. High level characteristics of 6 current deconvolution tools. All tools were used to estimate cell 273 

type fractions of 12 mixtures of immune cells, and their accuracy compared. 274 

 275 

All tools in the study, except for xCell, require that the user submit a reference matrix. We ran 276 

each of these tools 4 times using 4 choices of reference matrix: The Human Primary Cell Atlas, LM22, 277 

ImmunoStates, and a reference constructed from BLUEPRINT data. 278 

 Unlike the other 4 tools, the outputs of xCell do not necessarily sum to 1.0 (in these cases, the 279 

total instead ranges from .9 to 2.8). Thus, for each sample we normalized the output vector by dividing 280 

each output by the sum of all outputs, such that predictions do sum to 1.0. Both the default output and 281 

normalized output were evaluated, with the renormalized output having notably lower error. 282 

 For each of the 4 tools that require a reference matrix, using the LM22 reference matrix yielded 283 

the most accurate overall results. Using BLUEPRINT, the only RNA-Seq reference, generally yielded 284 

high error. This may be due to issues associated with cross-platform analysis. Dtangle failed to run on 285 

BLUEPRINT altogether, producing either all zero values or a combination of zero and non-numeric 286 
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values, depending on whether the input data was normalized before using the tool. 287 

 In terms of average error across all cell types, the most accurate predictions were produced by 288 

GEDIT, using the LM22 reference matrix (Fig 3). These predictions were also the most accurate for 4 289 

of the 6 cell types in the study, with the exceptions being CD4 and CD8 T Cells. For all cell types, 290 

there is a strong positive correlation between the GEDIT predicted proportion and the true proportion 291 

(Fig 4) 292 

 293 

Fig 3. Average absolute error between true fractions and predicted fractions of an in vitro mixture of 294 

immune cells. We report results for each combination of tool, cell type, and reference matrix (xCell, 295 

which does not use a reference). For xCell the default output was taken, as well as the normalized 296 

output, where predictions were divided by the sum across all 6 cell types, such that predictions sum to 297 

1.0. Dtangle failed to run when using BLUEPRINT as the reference. 298 

 299 

Fig 4. Predicted vs actual proportions of current deconvolution tools when run on an in vitro mixture of 300 

6 immune cells sequenced on an Illumina HT12 BeadChip microarray. For each tool, we use the 301 

reference matrix that minimizes total error on this dataset. 302 

 303 

 Dtangle produced inaccurate estimates for many cell types in the study. When using the LM22 304 

matrix, the tool did not detect B cells, NK cells, or neutrophils in any samples, despite these being 305 

present in proportions of up to .194, .89, and .395 respectively. However, when using the LM22 matrix, 306 

dtangle produced by far the best estimates for CD8 T cells. The accuracy of these CD8 T cell 307 

predictions was highly dependent on the reference used, with the quality of predictions sharply 308 

declining when using either the Human Primary Cell Atlas or ImmunoStates. 309 

 All tools performed well on monocytes relative to the other cell types in the study. Error was 310 

also low for B Cells and Neutrophils, but these cell types were not as rigorously tested by this study, 311 

as each mixture contained no more than 20% or 40% of these cells, respectively. By contrast, most 312 

tools struggled to correctly predict CD4 and CD8 T Cells. This demonstrates the difficulty of 313 
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distinguishing highly similar cell types. 314 

 315 

Skin Expression Data 316 

 317 

 We also used GEDIT to analyze a set of skin biopsies from patients with various skin diseases. 318 

The predicted cell types are consistent with skin biology; in most samples, keratinocytes are the most 319 

highly predicted followed by subcutaneous adipose (Fig 5). Deviations from this pattern correspond to 320 

disease biology. Monocytes are highly predicted in Stevens-Johnson syndrome, a sample collected 321 

from blister fluid. Macrophages are known to be abundant in granulomas of leprosy lesions and are 322 

predicted to be abundant in the 3 leprosy samples. T cells are most abundant in the T Cell Lymphoma 323 

sample. 324 

Fig 5. GEDIT predictions when run on 21 samples of various skin diseases. GEDIT identifies 325 

keratinocytes and subcutaneous adipose as the most common cell types. Deviations from this pattern 326 

correspond to disease biology. The Steven Johnson Syndrome sample was collected from blister fluid 327 

and is predominantly immune cells. L-Leprosy and Leprosy Reversal Reaction are known to result in 328 

large numbers of macrophages, and macrophages are predicted to be highly abundant in these 329 

samples. Mycosis Fungoides is a T Cell Lymphoma and thus the high numbers of predicted T Cells 330 

conform to biological expectation. 331 

GTEX 332 

 We also applied GEDIT to 17,382 GTEX RNA-Seq samples collected from various tissues. 333 

However, no single reference contained all cell types we wished to predict. For example, none of the 334 

available references contains both myocytes and adipocytes, (Supplementary Fig 1). Therefore, we 335 

took a novel approach in which we predicted proportions 3 times using 3 separate references 336 

(BlueCode, Human Primary Cell Atlas, Skin Signatures). We then combined these outputs by taking 337 

their median value. This allowed us  to produce predictions spanning a larger number of cell types 338 

than present in any one reference matrix (Fig 6).  339 

 340 
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Fig 6. GEDIT cell type predictions when applied to 17,382 samples from the GTEX database. Here, 341 

predictions have been averaged for each tissue of origin. 342 

 343 

Supplementary Fig 1. Cell types present in the 3 reference matrices used to predict cell type fractions 344 

of GTEX samples. The Skin Signatures matrix contains entries for both lymphatic and vascular 345 

endothelial cells. 346 

 347 

These predictions conform to biological expectations. For example, immune cells are predicted 348 

at high abundance in blood and spleen, adipocytes are highly predicted in adipose tissue, Schwann 349 

cells in nerve and heart, and keratinocytes in skin. All these patterns match expectations of which cell 350 

types are be present in these tissues. Neither cardiac myocytes nor smooth muscle are highly 351 

predicted in GTEX muscle samples. This is likely because the GTEX samples are collected from 352 

skeletal muscle, which is known to have an expression profile that is distinct from that of cardiac and 353 

smooth muscle. 354 

 355 

Online Tool 356 

 GEDIT is available online at http://webtools.mcdb.ucla.edu/. We provide access to the tool, as 357 

well as an array of reference data and two sample mixture matrices. The website automatically 358 

produces a heatmap of predicted proportions for the user, as well as a .tsv file. The user also has 359 

access to the 4 parameters of GEDIT, and may adjust them as desired (signature gene selection 360 

method, number of signature genes, row scaling). 361 

 362 

Methods 363 

Reference Data Assembly 364 

35 gene counts files were downloaded from the BLUEPRINT database, all collected from 365 

venous blood [17]. This included entries for CD14-positive, CD16-negative classical monocytes (5 366 
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samples), CD38 negative naive B cells (1), CD4-positive, alpha-beta T cell (8), central memory CD4-367 

positive, alpha-beta T cell (2), cytotoxic CD56-dim natural killer cell (2), macrophage (4), mature 368 

neutrophil (10), and memory B Cell (1). When two or more transcripts appeared for a single gene, the 369 

transcript with the highest average expression was selected, and others excluded. Genes with no 370 

detected expression in any sample were also excluded, and then each sample was quantile 371 

normalized. Samples generally clustered by cell type, though one sample of CD4-positive, alpha-beta 372 

T cells did not, and was excluded. Replicates for each cell type were then collapsed into a single entry 373 

by taking the median value for each gene. 374 

106 transcript quantification files were downloaded from the ENCODE database [18]. These 375 

included all total RNA-Seq experiments collected from adult primary cells, excluding 4 with warnings 376 

(3 low replicate concordance, 1 low read depth). All samples were processed by the Thomas Gingeras 377 

lab at Cold Spring Harbor and mapped to GRCH38. The samples were quantile normalized, then 378 

clustered, and 18 samples were excluded as they did not cluster with their replicates. The remaining 379 

88 samples were merged (via median) in accordance with clustering and sample descriptions, 380 

resulting in reference profiles for 28 cell types. For example, 19 samples labelled as endothelial cells, 381 

collected from various body locations, formed a cluster and were merged into a single entry we termed 382 

canonical endothelial cells. Where multiple transcripts were measured for a single gene, the 383 

expression of that gene was calculated as the sum of those transcripts. This dataset spans a wide 384 

range of stromal cell types (smooth muscle, fibroblast, epithelial, etc..), but contains only a single entry 385 

for blood cells, labelled mononuclear cells. 386 

We also combined the ENCODE and BLUEPRINT reference matrices into a single reference 387 

matrix, which we call BlueCode. This was done by combining the columns of both matrices, then 388 

quantile normalizing them. This combined reference spans both blood cell types and a wide range of 389 

stromal cell types. Possible batch effects in this combined matrix have not been fully evaluated. 390 

 We obtained single cell expression data for 9 varieties of immune cells from the 10x website 391 

[19]. This included at least 2446 cells for each cell type, and at least 7566 cells for all cells other than 392 

CD14 monocytes. For each cell type, expression values for all cells were mean averaged to form an 393 
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expression profile. 394 

 395 

Signature Gene Selection 396 

 397 

During signature gene selection, we automatically exclude genes with zero detected 398 

expression in half or more of cell types. Further, we treat all remaining expression values of zero as 399 

the lowest observed non-zero value in the matrix. Implementing this change has minimal effect on 400 

most genes, but helps to reduce the scores of very lowly expressed genes. Such lowly expressed 401 

genes are highly susceptible to noise, and generally poor signature genes. Moreover, including zeros 402 

can result in unusually high signatures or in mathematical errors, such as dividing by zero or taking the 403 

log of zero. We consider this transformation valid, since values of zero generally do not mean zero 404 

expression, but rather an expression level below the detection limit of the technology used. 405 

 406 

For any given gene, a scoring method takes as input the vector of the expression values 407 

across all reference cell types, and outputs a score. A gene is considered a potential signature gene in 408 

cell type X if it is expressed more highly in X than any other cell type. For each cell type, we keep only 409 

the N genes with the highest scores, where N is the NumSigs parameter. 410 

 411 

Information entropy (H) is calculated using the following formula: 412 

 413 

𝐻 =  − ∑[𝑝𝑖 ∗  𝑙𝑜𝑔2(𝑝𝑖)]  (1) 414 

 415 

 where pi is the probability of the ith observation. To apply this to expression values, we convert 416 

the vector of expression values into a vector of probabilities by dividing by its sum. In a mixture 417 

consisting of equal fractions of each cell type, pi can be interpreted as the probability an observed 418 

read came from the ith cell type. 419 

 420 
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Row Scaling 421 

 422 

During this step, we apply a transformation on the expression values for each gene. Each gene 423 

has measured expression in N purified cell types and M samples. Each of these values, Xold, is 424 

transformed according to the following formula: 425 

 426 

𝑋𝑛𝑒𝑤 =  (𝑋𝑜𝑙𝑑 − 𝑀𝑖𝑛)/(𝑀𝑎𝑥 − 𝑀𝑖𝑛)  ∗  𝑀𝑎𝑥𝑝    (2) 427 

 428 

 Where Min is the minimum of the M + N original values, Max is the maximum of those values, 429 

and p is a tunable parameter with natural range p ∈ [0.0,1.0]. This procedure  produces values 430 

between the range of 0.0 and Maxp. 431 

 432 

Linear Regression: 433 

 434 

Non-negative linear regression was performed using the glmnet package in R. The glmnet 435 

function is used with lower.limits=0, alpha=0, lambda=0, intercept=FALSE. 436 

 437 

In Vitro Immune Cell Mixture 438 

 Combinations of 6 immune cells Neutrophils, Monocytes, Natural Killer Cells, B cells, and CD4 439 

and CD8 T Cells were mixed together and sequenced using an Affymetrix array. Whole blood from 440 

healthy human donors was supplied with informed consent through a sample sharing agreement with 441 

the UCLA/CFAR Virology Core Lab (grant number 5P30 AI028697). CD4+ T cells, CD8+ T cells, B 442 

cells, and NK cells were isolated using Stem Cell Technologies (Vancouver, BC, Canada) RosetteSep 443 

negative selection, while neutrophils were positively selected through EasySep approach, according to 444 

manufacturer’s specifications. Cells were then counted by hemocytometer and added at defined 445 

percentages to a total cell count of two million cells to create six different mixtures. Subsequently cells 446 

were processed for RNA isolation by AllPrep DNA/RNA. Illumina HT12 BeadChip microarray was 447 
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performed by the UCLA Neuroscience Genomics Core. Data was normalized by quantile 448 

normalization through R ‘normalize.quantiles’ function (R Core Team, 2013). 449 

 450 

Comparison to Other Deconvolution Tools 451 

 452 

 We deconvolved our in vitro mixture of immune cells using 5 tools (GEDIT, CIBERSORT , 453 

CIBERSORTX, xCell, and dtangle) [2,11,12,21] and 4 reference matrices (BLUEPRINT, Human 454 

Primary Cell Atlas, LM22, ImmunoStates; [12,16,17,20]. Cell types other than the 6 present in the 455 

mixture were excluded from the reference matrices before used as input to each tool. The LM22 456 

reference contains 2 types of B cells (naive and memory), 2 types of Natural Killer Cells (active, 457 

resting) and 4 types of CD4 T Cells. After running each tool, the predictions for these cell types were 458 

summed to produce a final prediction for B cells, NK cells, and CD4 T cells, respectively. Similarly, the 459 

ImmunoStates reference contains 2 types of NK cells (bright and dim) and 2 types of B Cells (memory 460 

and naive); predictions for these cell subtypes were summed to produce final predictions for NK cells 461 

and B cells, respectively. 462 

 463 

 xCell produces 67 output scores, 13 of which were used in this study. These were the entries 464 

labelled “B-Cells”, “Monocytes”, “NK cells”, “Neutrophils”, 5 subtypes of CD4 T cells, and 4 subtypes of 465 

CD8 T Cells. The outputs for CD4 and CD8 subtypes were summed to produce a final output. These 466 

outputs did not sum to 1.0, with that sum instead ranging from 0.9 to 2.8. Thus, we normalized each 467 

sample, dividing each output by the sum of all outputs, such that predictions do sum to 1.0. When 468 

comparing to other tools, both the default output and normalized output were evaluated. 469 

  470 

GTEX Data 471 

 472 

 GTEX data for 17,382 samples were obtained from the GTEX database 473 

(https://gtexportal.org/). We ran GEDIT on all samples 3 times, each time using a different reference 474 
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matrix (BlueCode, the Human Primary Cell Atlas, and Skin Signatures). For each cell type, we 475 

calculated our initial estimate as the median estimate across the 3 sets of predictions (or fewer, if that 476 

cell type is missing from 1-2 of the reference matrices). Lastly, for each sample we divided the vector 477 

of predictions by its sum, such that the final predictions sum to 100%. 478 

 479 

Conclusion: 480 

The Gene Expression Deconvolution Interactive Tool offers a new option for cell type 481 

quantification. GEDIT produces accurate results in both simulated and in vitro mixtures, outcompeting 482 

other contemporary tools. Moreover, GEDIT offers flexibility because it can be applied to any cell type, 483 

provided the proper reference data. GEDIT also accepts data generated from microarray, bulk RNA-484 

Seq, or scRNA-Seq, and supports cross-platform compatibility. Lastly, we present with our tool a 485 

comprehensive library of reference matrices. This includes data assembled from 8 distinct sources, 486 

spanning a wide range of cell types and platforms. Some of these have been previously published, 487 

while others were novelly assembled. 488 

We extensively tested GEDIT on several large public datasets. When applied to skin biopsies, 489 

keratinocytes are found to be the most abundant cell type, as expected. However, variations in the 490 

abundance of other cell types conform to expected immune responses across diseases. Similarly, cell 491 

type predictions of GTEX samples are concordant with our expectations of the dominant cell types 492 

across tissues. Schwann cells, keratinocytes, adipose cells and immune cells are found to be most 493 

abundant in nerve, skin, adipose tissue, and blood, respectively. 494 

Compared to other tools, GEDIT produces accurate results when tested on mixtures of human 495 

immune cells. GEDIT produced the lowest error both overall and for 5 of the 6 cell types in the 496 

mixtures. Moreover, GEDIT provides increased flexibility over these other tools, in that it can be 497 

applied to a greater number of cell types and platforms. 498 

 While single cell RNA-Seq is an emerging approach, these methods are not always capable of 499 

accurately quantifying cell type populations, due to biases associated with the capture of different cell 500 
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types. However, the pure reference profiles they produce can be used by GEDIT to produce accurate 501 

estimates of cell type populations. This approach circumvents some of the biases associated with the 502 

preparation of samples for both scRNA-Seq and FACS. Moreover, it is more economical, particularly 503 

when researchers have already collected bulk RNA-Seq data for other purposes. 504 
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Acknowledgments 506 

 We acknowledge the Biomedical Big Data Grant (5T32LM012424-03) for supporting Brian 507 

Nadel during this research. We also acknowledge the Bruins in Genomics Program for supporting 508 

Hannah Waddel and Misha Khan during the summer of 2017, when they contributed to this work. 509 

Special thanks to Erin Nadel for assistance with figure preparation. 510 

 511 

References 512 

1.  Bolen CR, Uduman M, Kleinstein SH. Cell subset prediction for blood genomic studies. BMC 513 
Bioinformatics. 2011 Jun 24;12:258. 514 

2.  Gentles AJ, Newman AM, Liu CL, Bratman SV, Feng W, Kim D, et al. The prognostic landscape 515 
of genes and infiltrating immune cells across human cancers. Nat Med. 2015 Aug;21(8):938–45. 516 

3.  Li B, Severson E, Pignon J-C, Zhao H, Li T, Novak J, et al. Comprehensive analyses of tumor 517 
immunity: implications for cancer immunotherapy. Genome Biol. 2016 Aug 22;17(1):174. 518 

4.  Fridman WH, Pagès F, Sautès-Fridman C, Galon J. The immune contexture in human tumours: 519 
impact on clinical outcome. Nat Rev Cancer. 2012 Mar 15;12(4):298–306. 520 

5.  Şenbabaoğlu Y, Gejman RS, Winer AG, Liu M, Van Allen EM, de Velasco G, et al. Tumor 521 
immune microenvironment characterization in clear cell renal cell carcinoma identifies prognostic 522 
and immunotherapeutically relevant messenger RNA signatures. Genome Biol. 2016 Nov 523 
17;17(1):231. 524 

6.  Gierahn TM, Wadsworth MH, Hughes TK, Bryson BD, Butler A, Satija R, et al. Seq-Well: portable, 525 
low-cost RNA sequencing of single cells at high throughput [Internet]. Vol. 14, Nature Methods. 526 
2017. p. 395–8. Available from: http://dx.doi.org/10.1038/nmeth.4179 527 

7.  Macosko EZ, Basu A, Satija R, Nemesh J, Shekhar K, Goldman M, et al. Highly Parallel Genome-528 
wide Expression Profiling of Individual Cells Using Nanoliter Droplets. Cell. 2015 May 529 
21;161(5):1202–14. 530 

8.  Hines WC, Su Y, Kuhn I, Polyak K, Bissell MJ. Sorting out the FACS: a devil in the details. Cell 531 
Rep. 2014 Mar 13;6(5):779–81. 532 

9.  Frishberg A, Peshes-Yaloz N, Cohn O, Rosentul D, Steuerman Y, Valadarsky L, et al. Cell 533 

.CC-BY-NC-ND 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under 

The copyright holder for this preprint (which was notthis version posted August 13, 2019. ; https://doi.org/10.1101/728493doi: bioRxiv preprint 

http://paperpile.com/b/SfElAE/AsXE
http://paperpile.com/b/SfElAE/AsXE
http://paperpile.com/b/SfElAE/AsXE
http://paperpile.com/b/SfElAE/AsXE
http://paperpile.com/b/SfElAE/7Gm1
http://paperpile.com/b/SfElAE/7Gm1
http://paperpile.com/b/SfElAE/7Gm1
http://paperpile.com/b/SfElAE/7Gm1
http://paperpile.com/b/SfElAE/vZ5O
http://paperpile.com/b/SfElAE/vZ5O
http://paperpile.com/b/SfElAE/vZ5O
http://paperpile.com/b/SfElAE/vZ5O
http://paperpile.com/b/SfElAE/EY9y
http://paperpile.com/b/SfElAE/EY9y
http://paperpile.com/b/SfElAE/EY9y
http://paperpile.com/b/SfElAE/EY9y
http://paperpile.com/b/SfElAE/WTro
http://paperpile.com/b/SfElAE/WTro
http://paperpile.com/b/SfElAE/WTro
http://paperpile.com/b/SfElAE/WTro
http://paperpile.com/b/SfElAE/WTro
http://paperpile.com/b/SfElAE/WTro
http://paperpile.com/b/SfElAE/WTro
http://paperpile.com/b/SfElAE/WTro
http://paperpile.com/b/SfElAE/okO0
http://paperpile.com/b/SfElAE/okO0
http://paperpile.com/b/SfElAE/okO0
http://paperpile.com/b/SfElAE/okO0
http://paperpile.com/b/SfElAE/okO0
http://paperpile.com/b/SfElAE/okO0
http://dx.doi.org/10.1038/nmeth.4179
http://dx.doi.org/10.1038/nmeth.4179
http://paperpile.com/b/SfElAE/3pCE
http://paperpile.com/b/SfElAE/3pCE
http://paperpile.com/b/SfElAE/3pCE
http://paperpile.com/b/SfElAE/3pCE
http://paperpile.com/b/SfElAE/3pCE
http://paperpile.com/b/SfElAE/3pCE
http://paperpile.com/b/SfElAE/pIeu
http://paperpile.com/b/SfElAE/pIeu
http://paperpile.com/b/SfElAE/pIeu
http://paperpile.com/b/SfElAE/pIeu
http://paperpile.com/b/SfElAE/IHvg
http://paperpile.com/b/SfElAE/IHvg
http://paperpile.com/b/SfElAE/IHvg
https://doi.org/10.1101/728493
http://creativecommons.org/licenses/by-nc-nd/4.0/


 

composition analysis of bulk genomics using single-cell data. Nat Methods. 2019 Apr;16(4):327–534 
32. 535 

10.  Frishberg A, Brodt A, Steuerman Y, Gat-Viks I. ImmQuant: a user-friendly tool for inferring 536 
immune cell-type composition from gene-expression data. Bioinformatics. 2016 Dec 537 
15;32(24):3842–3. 538 

11.  Aran D, Hu Z, Butte AJ. xCell: digitally portraying the tissue cellular heterogeneity landscape. 539 
Genome Biol. 2017 Nov 15;18(1):220. 540 

12.  Newman AM, Liu CL, Green MR, Gentles AJ, Feng W, Xu Y, et al. Robust enumeration of cell 541 
subsets from tissue expression profiles. Nat Methods. 2015 May;12(5):453–7. 542 

13.  Newman AM, Steen CB, Liu CL, Gentles AJ, Chaudhuri AA, Scherer F, et al. Determining cell 543 
type abundance and expression from bulk tissues with digital cytometry. Nat Biotechnol [Internet]. 544 
2019 May 6; Available from: http://dx.doi.org/10.1038/s41587-019-0114-2 545 

14.  Swindell WR, Johnston A, Voorhees JJ, Elder JT, Gudjonsson JE. Dissecting the psoriasis 546 
transcriptome: inflammatory- and cytokine-driven gene expression in lesions from 163 patients. 547 
BMC Genomics. 2013 Aug 1;14:527. 548 

15.  Su AI, Wiltshire T, Batalov S, Lapp H, Ching KA, Block D, et al. A gene atlas of the mouse and 549 
human protein-encoding transcriptomes. Proc Natl Acad Sci U S A. 2004 Apr 20;101(16):6062–7. 550 

16.  Mabbott NA, Baillie JK, Brown H, Freeman TC, Hume DA. An expression atlas of human primary 551 
cells: inference of gene function from coexpression networks. BMC Genomics. 2013 Sep 552 
20;14:632. 553 

17.  Martens JHA, Stunnenberg HG. BLUEPRINT: mapping human blood cell epigenomes. 554 
Haematologica. 2013 Oct;98(10):1487–9. 555 

18.  ENCODE Project Consortium. The ENCODE (ENCyclopedia Of DNA Elements) Project. Science. 556 
2004 Oct 22;306(5696):636–40. 557 

19.  Zheng GXY, Terry JM, Belgrader P, Ryvkin P, Bent ZW, Wilson R, et al. Massively parallel digital 558 
transcriptional profiling of single cells. Nat Commun. 2017 Jan 16;8:14049. 559 

20.  Vallania F, Tam A, Lofgren S, Schaffert S, Azad TD, Bongen E, et al. Leveraging heterogeneity 560 
across multiple datasets increases cell-mixture deconvolution accuracy and reduces biological 561 
and technical biases. Nat Commun. 2018 Nov 9;9(1):4735. 562 

21.  Hunt GJ, Freytag S, Bahlo M, Gagnon-Bartsch JA. dtangle: accurate and robust cell type 563 
deconvolution. Bioinformatics [Internet]. 2018 Nov 8 [cited 2019 Jan 17]; Available from: 564 
https://academic.oup.com/bioinformatics/advance-article-565 
abstract/doi/10.1093/bioinformatics/bty926/5165376 566 

 567 

Supplementary File 1. Local version of GEDIT tool. 568 

Supplementary File 2. Novel reference matrices assembled as part of this publication. 569 

Supplementary File 3. Pairs of matrices used to generate synthetic mixtures. 570 

Supplementary Figure 1. Cell Types present in reference matrices used for GTEX data. 571 

.CC-BY-NC-ND 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under 

The copyright holder for this preprint (which was notthis version posted August 13, 2019. ; https://doi.org/10.1101/728493doi: bioRxiv preprint 

http://paperpile.com/b/SfElAE/IHvg
http://paperpile.com/b/SfElAE/IHvg
http://paperpile.com/b/SfElAE/IHvg
http://paperpile.com/b/SfElAE/IHvg
http://paperpile.com/b/SfElAE/nXO9
http://paperpile.com/b/SfElAE/nXO9
http://paperpile.com/b/SfElAE/nXO9
http://paperpile.com/b/SfElAE/nXO9
http://paperpile.com/b/SfElAE/nXO9
http://paperpile.com/b/SfElAE/nXO9
http://paperpile.com/b/SfElAE/sNke
http://paperpile.com/b/SfElAE/sNke
http://paperpile.com/b/SfElAE/sNke
http://paperpile.com/b/SfElAE/sNke
http://paperpile.com/b/SfElAE/5fal
http://paperpile.com/b/SfElAE/5fal
http://paperpile.com/b/SfElAE/5fal
http://paperpile.com/b/SfElAE/5fal
http://paperpile.com/b/SfElAE/K3ES
http://paperpile.com/b/SfElAE/K3ES
http://paperpile.com/b/SfElAE/K3ES
http://paperpile.com/b/SfElAE/K3ES
http://paperpile.com/b/SfElAE/K3ES
http://paperpile.com/b/SfElAE/K3ES
http://dx.doi.org/10.1038/s41587-019-0114-2
http://dx.doi.org/10.1038/s41587-019-0114-2
http://paperpile.com/b/SfElAE/nigW
http://paperpile.com/b/SfElAE/nigW
http://paperpile.com/b/SfElAE/nigW
http://paperpile.com/b/SfElAE/nigW
http://paperpile.com/b/SfElAE/nigW
http://paperpile.com/b/SfElAE/nigW
http://paperpile.com/b/SfElAE/hp61
http://paperpile.com/b/SfElAE/hp61
http://paperpile.com/b/SfElAE/hp61
http://paperpile.com/b/SfElAE/hp61
http://paperpile.com/b/SfElAE/B9Ct
http://paperpile.com/b/SfElAE/B9Ct
http://paperpile.com/b/SfElAE/B9Ct
http://paperpile.com/b/SfElAE/B9Ct
http://paperpile.com/b/SfElAE/B9Ct
http://paperpile.com/b/SfElAE/B9Ct
http://paperpile.com/b/SfElAE/6fLm
http://paperpile.com/b/SfElAE/6fLm
http://paperpile.com/b/SfElAE/6fLm
http://paperpile.com/b/SfElAE/6fLm
http://paperpile.com/b/SfElAE/mX0J
http://paperpile.com/b/SfElAE/mX0J
http://paperpile.com/b/SfElAE/mX0J
http://paperpile.com/b/SfElAE/mX0J
http://paperpile.com/b/SfElAE/nSax
http://paperpile.com/b/SfElAE/nSax
http://paperpile.com/b/SfElAE/nSax
http://paperpile.com/b/SfElAE/nSax
http://paperpile.com/b/SfElAE/kaG3
http://paperpile.com/b/SfElAE/kaG3
http://paperpile.com/b/SfElAE/kaG3
http://paperpile.com/b/SfElAE/kaG3
http://paperpile.com/b/SfElAE/kaG3
http://paperpile.com/b/SfElAE/kaG3
http://paperpile.com/b/SfElAE/6A3X
http://paperpile.com/b/SfElAE/6A3X
http://paperpile.com/b/SfElAE/6A3X
http://paperpile.com/b/SfElAE/6A3X
https://academic.oup.com/bioinformatics/advance-article-abstract/doi/10.1093/bioinformatics/bty926/5165376
https://academic.oup.com/bioinformatics/advance-article-abstract/doi/10.1093/bioinformatics/bty926/5165376
https://academic.oup.com/bioinformatics/advance-article-abstract/doi/10.1093/bioinformatics/bty926/5165376
https://academic.oup.com/bioinformatics/advance-article-abstract/doi/10.1093/bioinformatics/bty926/5165376
https://doi.org/10.1101/728493
http://creativecommons.org/licenses/by-nc-nd/4.0/


.CC-BY-NC-ND 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under 

The copyright holder for this preprint (which was notthis version posted August 13, 2019. ; https://doi.org/10.1101/728493doi: bioRxiv preprint 

https://doi.org/10.1101/728493
http://creativecommons.org/licenses/by-nc-nd/4.0/


.CC-BY-NC-ND 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under 

The copyright holder for this preprint (which was notthis version posted August 13, 2019. ; https://doi.org/10.1101/728493doi: bioRxiv preprint 

https://doi.org/10.1101/728493
http://creativecommons.org/licenses/by-nc-nd/4.0/


.CC-BY-NC-ND 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under 

The copyright holder for this preprint (which was notthis version posted August 13, 2019. ; https://doi.org/10.1101/728493doi: bioRxiv preprint 

https://doi.org/10.1101/728493
http://creativecommons.org/licenses/by-nc-nd/4.0/


.CC-BY-NC-ND 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under 

The copyright holder for this preprint (which was notthis version posted August 13, 2019. ; https://doi.org/10.1101/728493doi: bioRxiv preprint 

https://doi.org/10.1101/728493
http://creativecommons.org/licenses/by-nc-nd/4.0/


.CC-BY-NC-ND 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under 

The copyright holder for this preprint (which was notthis version posted August 13, 2019. ; https://doi.org/10.1101/728493doi: bioRxiv preprint 

https://doi.org/10.1101/728493
http://creativecommons.org/licenses/by-nc-nd/4.0/


.CC-BY-NC-ND 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under 

The copyright holder for this preprint (which was notthis version posted August 13, 2019. ; https://doi.org/10.1101/728493doi: bioRxiv preprint 

https://doi.org/10.1101/728493
http://creativecommons.org/licenses/by-nc-nd/4.0/


.CC-BY-NC-ND 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under 

The copyright holder for this preprint (which was notthis version posted August 13, 2019. ; https://doi.org/10.1101/728493doi: bioRxiv preprint 

https://doi.org/10.1101/728493
http://creativecommons.org/licenses/by-nc-nd/4.0/

