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Abstract 17 

 The cell type composition of heterogeneous tissue samples can be a critical variable in both 18 

clinical and laboratory settings. However, current experimental methods of cell type quantification (e.g. 19 

cell flow cytometry) are costly, time consuming, and can introduce bias. Computational approaches 20 

that infer cell type abundance from expression data offer an alternate solution. While these methods 21 

have gained popularity, most are limited to predicting hematopoietic cell types and do not produce 22 

accurate predictions for stromal cell types. Many of these methods are also limited to particular 23 

platforms, whether RNA-seq or specific microarrays. We present the Gene Expression Deconvolution 24 

Interactive Tool (GEDIT), a tool that overcomes these limitations, compares favorably with existing 25 

methods, and provides superior versatility. Using both simulated and experimental data, we 26 
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extensively evaluate the performance of GEDIT and demonstrate that it returns robust results under a 27 

wide variety of conditions. These conditions include a variety of platforms (microarray and RNA-seq), 28 

tissue types (blood and stromal), and species (human and mouse). Finally, we provide reference data 29 

from eight sources spanning a wide variety of stromal and hematopoietic types in both human and 30 

mouse. This reference database allows the user to obtain estimates for a wide variety of tissue 31 

samples without having to provide their own data. GEDIT also accepts user submitted reference data, 32 

thus allowing the estimation of any cell type or subtype, provided that reference data is available. 33 

 34 

Author Summary 35 

 The Gene Expression Deconvolution Interactive Tool (GEDIT) is a robust and accurate tool 36 

that uses gene expression data to estimate cell type abundances. Extensive testing on a variety of 37 

tissue types and technological platforms demonstrates that GEDIT provides greater versatility than 38 

other cell type deconvolution tools. GEDIT utilizes reference data describing the expression profile of 39 

purified cell types, and we provide in the software package a library of reference matrices from various 40 

sources. GEDIT is also flexible and allows the user to supply custom reference matrices. A GUI 41 

interface for GEDIT is available at http://webtools.mcdb.ucla.edu/, and source code and reference 42 

matrices are available at https://github.com/BNadel/GEDIT. 43 

 44 

Introduction 45 

 Cell type composition is an important variable in biological and medical research. In laboratory 46 

experiments, cell sample heterogeneity can act as a confounding variable. Observed changes in gene 47 

expression may result from changes in the abundance of underlying cell populations, rather than 48 

changes in expression of any particular cell type [1]. In clinical applications, the cell type composition 49 

of tissue biopsies can inform treatment. For example, in cancer, the number and type of infiltrating 50 

immune cells has been shown to correlate highly with prognosis ([2], [3], [4]). Moreover, patients with 51 

a large number of infiltrating T cells are more likely to respond positively to immunotherapy [5]. 52 
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 53 

 For many years, cell flow cytometry via FACS sorting has been the standard method of cell 54 

type quantification. More recently, single cell RNA-seq methods such as 10x Chromium, Drop-Seq, 55 

and Seq-Well have become available [6],[7]. However, both approaches suffer from significant 56 

limitations. FACS sorting is cumbersome and expensive, and some sample types require hours of 57 

highly skilled labor to generate data. Similarly, single cell RNA-seq methods remain expensive for 58 

large sample studies. Additionally, cell types such as neurons, myocytes, and adipocytes are difficult 59 

for these technologies to capture due to cell size and morphology. 60 

 61 

Both FACS sorting and single cell methods have the potential to introduce bias, as these 62 

technologies require that tissue samples be dissociated into single cell suspensions. Many stromal cell 63 

types are tightly connected to one another in extracellular matrices. The procedures necessary to 64 

create single cell suspensions can damage some cells, while others remain in larger clusters that are 65 

not captured or sequenced. Consequently, subtle differences in sample preparation can produce 66 

dramatically different results [8,9]. While FACS sorting and single cell methods can produce pure 67 

samples of each cell type, the observed cell counts may not accurately represent the cell type 68 

abundances in the original sample. Tools like SCDC and MuSiC utilize single cell reference data to 69 

perform bulk deconvolution, but require that multi-subject single cell data be available for all the cell 70 

types of interest, which is not always the case [10,11]. 71 

 72 

During the past several years, digital means of cell type quantification, often referred to as cell 73 

type deconvolution or decomposition, have become a popular complement to FACS sorting and single 74 

cell approaches. However, these methods are still developing, and often suffer from limitations. For 75 

example, tools MCP-Counter and xCell allow for deconvolution of a set of predefined cell types, but do 76 

not support the inclusion of additional cell types or subtypes in a user friendly manner [12,13]. 77 

CIBERSORT is slow to run on large datasets, particularly if signature genes are not specified, and 78 

provides reference data only for hematopoietic cell types [14]. 79 
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 80 

 To overcome some of the limitations of existing cell abundance estimation tools, we present 81 

the Gene Expression Deconvolution Interactive Tool (GEDIT). GEDIT utilizes gene expression data to 82 

accurately predict cell type composition of tissue samples. We have assembled a library of reference 83 

data from 11 distinct sources and use these data to generate thousands of synthetic mixtures. In order 84 

to produce optimal results, these synthetic mixtures are used to test and refine the approaches and 85 

parameters used by GEDIT. We compare the performance of GEDIT relative to other tools using three 86 

sets of mixtures containing known cell type proportions: 12 in vitro mixtures of immune cells 87 

sequenced on microarrays, six RNA-seq samples collected from ovarian cancer ascites, and eight 88 

RNA-seq samples collected from blood. We also use GEDIT to deconvolute two sets of human tissue 89 

samples: 21 skin samples from patients with skin diseases, and 17,382 samples of varied tissues from 90 

the GTEx database. Lastly, we apply GEDIT to the Mouse Body Atlas, a collection of samples 91 

collected from various mouse tissues and cell types. We find that GEDIT compares favorably to other 92 

cell type deconvolution tools and is effective across a broad range of datasets and conditions. 93 

 94 

Results 95 

Reference Data 96 

 97 

 Reference data profiling the expression of purified cell types is a requirement for reference-98 

based deconvolution. Methods that do not directly require reference data, such as non-negative matrix 99 

factorization, still require knowledge of expression profiles or marker genes in order to infer the identity 100 

of the predicted components. For this study, we have assembled or downloaded a set of 11 reference 101 

matrices, each containing the expression profiles of eight to 29 cell types (Table 1). These data 102 

sources span multiple platforms, including bulk RNA-seq, microarray, and single-cell RNA-seq. 103 

Complete details on the sources and assembly of these matrices are described in the methods [14–104 

24]. 105 
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Matrix 

Specie

s Reference Platform 

# of 

Cell 

Types Cell Types 

Human Skin Signatures  Human (Swindell et al. 2013) 

Multi-

Microarray 21 Immune 

Human Body Atlas Human (Su et al. 2004) 

Affymetrix 

U133A/GNF1

H 13 Immune 

Human Primary Cell Atlas  Human (Mabbott et al. 2013) 

Affymetrix 

U133 Plus 2.0 26 Immune and Stromal 

BLUEPRINT*  Human (Martens and Stunnenberg 2013) Bulk RNA-Seq 8 Immune 

ENCODE*  Human (ENCODE Project Consortium 2004) Bulk RNA-Seq 29 Mostly Stromal 

LM22  Human (Newman et al. 2015) 

Affymetrix 

Microarray 22 Immune 

10x Single Cell Dataset*   Human (Zheng et al. 2017)  

Single Cell 

RNA-Seq 9 Immune 

ImmunoStates Human (Vallania et. al., 2018) 

Multi-

Microarray 20 Immune 

Tabula Muris Mouse (The Tabula Muris Consortium, 2018) 

Single Cell 

RNA-seq 12 Immune and Stromal 

Mouse Body Atlas Mouse (Lattin et al, 2008) 

Affymetrix 

Mouse 

Genome 430 

2.0 Array 20 Immune and Stromal 

ImmGen Mouse (Heng et al, 2008) 

Affymetrix 

Gene 1.0 ST 137 

Immune with many 

subtypes 

 106 

Table 1. Library of Reference Data. Asterisk denotes matrices assembled from source data as part of 107 
this project. All matrices are compatible with GEDIT and available on the GitHub repository 108 
(https://github.com/BNadel/GEDIT).  109 
 110 

GEDIT Algorithm 111 

 112 

 GEDIT requires as input two matrices of expression values. The first is expression data is 113 

collected from the mixtures that will be deconvoluted; each column represents one mixture, and each 114 

row corresponds to a gene. The second matrix contains reference data, with each column 115 

representing a purified reference profile and each row corresponding to a gene. In a multi-step 116 

process, GEDIT utilizes the reference profiles to predict the cell type proportions of each submitted 117 

mixture (Figure 1). 118 

 119 

Figure 1. The GEDIT pipeline. The input matrices are quantile normalized then reduced to matrices 120 
containing only signature genes. Next, a row-scaling step serves to control for the dominating effect of 121 
highly expressed genes. Lastly, linear regression is performed, and predictions of cell type 122 
abundances are reported to the user. 123 
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 124 
 125 
 126 
 127 
 128 
 129 
 130 
 131 
 132 
 133 
Input Description Allowed Values Default Value 

RefMat Matrix of purified cell types 

N by M matrix; N is number of 

genes, M is number of cell types NA 

MixMat 

Matrix of mixtures to be 

deconvoluted 

N by P matrix; N is number of 

genes, P is number of mixtures  NA 

SigMeth 

Method of signature gene 

selection 

Entropy, MeanRat, MeanDiff, 

ZScore, fsRat, fsDiff Entropy 

NumSigs 

Average number of signature 

genes per cell type [1, 10,000] 50 

MinSigs  

Minimum number of signatures 

per cell type [1,NumSigs] =NumSigs 

RowScale Extent of per-row normalization [0.0,1.0] 0 

 134 
 135 

Table 2. GEDIT inputs include two matrices and four parameter settings. RefMat is an expression 136 
matrix documenting the expression profiles of each cell type to be estimated. MixMat is an expression 137 
matrix documenting expression values for each sample to be deconvoluted. SigMeth determines the 138 
method by which signature genes are selected. NumSigs determines the total number of signature 139 
genes, whereas MinSigs sets the minimum number of signature genes for each cell type. RowScale 140 
refers to the extent to which expression vectors are transformed to lessen the dominating effect of 141 
highly expressed genes, with a value of 0.0 representing the most extreme transformation. Default 142 
values were determined by evaluating performance on a set of synthetic mixtures (Figure 2). 143 
 144 

Parameter Tuning 145 

We generated a large number of synthetic mixtures in silico to test the efficacy of GEDIT and 146 

to assess how accuracy varies as a function of four parameter choices (SigMeth, NumSigs, MinSigs, 147 

RowScale, described in Table 2). We produced a total of 10,000 simulated mixtures of known 148 

proportions using data from four reference matrices: BLUEPRINT, The Human Primary Cell Atlas, 10x 149 

Single Cell, and Skin Signatures. We then ran GEDIT on these simulated mixtures and evaluated its 150 

performance while varying four parameter settings (Figure 2) and other design choices. For this 151 

reason, these synthetic mixtures were not used to evaluate the performance of GEDIT relative to other 152 

tools. Instead, separate datasets were used for that purpose, as described in the section 153 
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“Performance Comparison to Other Deconvolution Tools”. Based on these results, we selected default 154 

values for each parameter (SigMeth = Entropy, NumSigs = 50, MinSigs = 50, RowScale = 0.0). Full 155 

details on the generation of these simulations are described in the supplementary materials. 156 

Figure 2. Effect of GEDIT parameter choices on accuracy of predictions in simulated experiments. 157 
10,000 simulated mixtures were generated, each using one of four reference matrices, with either four, 158 
five, six, or ten cell types being simulated. Deconvolution was performed using a separate expression 159 
matrix than the one used to generate the mixtures. When not otherwise noted, we use the following 160 
parameters: signature selection method = entropy; number of signatures = 50; row scaling = 0.0; and 161 
number of fixed genes = number of signatures. 162 
 163 

Preprocessing and Quantile Normalization 164 

The first step in the GEDIT pipeline is to render the two matrices comparable. This is done by 165 

first excluding all genes that are not shared between the two matrices. Genes that have no detected 166 

expression in any reference cell type are also excluded, as they contain no useful information for 167 

deconvolution. Both matrices are then quantile normalized, such that each column follows the same 168 

distribution as every other; this target distribution is the starting distribution of the entire reference 169 

matrix. 170 

 171 

Signature Gene Selection 172 

GEDIT next identifies signature genes. Gene expression experiments can simultaneously 173 

measure tens of thousands of genes, but many of these genes are uninformative for deconvolution. 174 

Specifically, genes with similar expression levels across all cell types are of little use, as observed 175 

expression values in the mixtures offer no insight into cell frequencies. Genes that are highly 176 

expressed in a subset of cell types are more informative, and we refer to these as signature genes. By 177 

using only signature genes, rather than the entire expression matrix, the problem of deconvolution 178 

becomes more tractable and less computationally intensive. Moreover, identification of signature 179 

genes can be valuable to researchers for other applications (e.g. cell type assignment for scRNA-seq 180 

data). 181 

 In order to identify the best signature genes in a given reference matrix, GEDIT calculates a 182 

signature score for each gene. By default, this score is computed using the concept of information 183 
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entropy. Information entropy quantifies the amount of information in a probability distribution, with 184 

highly uniform distributions having the highest entropy. The expression vector for each gene (i.e. the 185 

set of expression values across all cell types in the reference) is divided by its sum, such that the 186 

entries can be interpreted as probabilities. Information entropy is then calculated according to its 187 

mathematical definition (see Methods), and genes with the lowest entropy are selected as signature 188 

genes. Entropy is minimized when expression is detected only in a single cell type and maximized 189 

when expression values are equal across all cell types. Thus, by selecting genes with low entropy, we 190 

favor genes that are expressed in a cell type specific manner. By default, 50 signature genes are 191 

selected for each cell type in the reference matrix. We chose 50 signature genes, and entropy as our 192 

scoring method, because it returned optimal results when run on 10,000 synthetic mixtures (see 193 

Figure 2a,b). 194 

 We also evaluated the effect of accepting more signature genes for some cell types than 195 

others, depending on how many genes have low entropy. In this scheme, on average 50 signature 196 

genes are used per cell type. However, a fourth parameter is used, which specifies the minimum 197 

number of signature genes per cell type. After these have been selected, remaining signature genes 198 

are added based only on lowest entropy, regardless of cell type of maximal expression. We found that 199 

this parameter had minimal effect on accuracy, when applied to synthetic mixtures (Figure 2c). 200 

Therefore, this option is not used by default, though it can be specified by the user. 201 

 202 

Row Scaling and Linear Regression 203 

 One complication in the application of linear regression to gene expression data is the 204 

drastically different scale at which some genes are expressed. For example, CD14 and THEMIS 205 

(Figure 3) have both been identified as signature genes: CD14 for monocytes and THEMIS for CD4+ 206 

T cells. However, CD14 is expressed at much higher levels in most cell types and will have a larger 207 

impact on the estimation of cell type composition, relative to THEMIS. In other words, the possible 208 

penalty resulting from a poor fit of CD14 is much larger than the penalty from a poor fit of THEMIS. 209 

 210 
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Figure 3. The “row scaling” transformation, as implemented by GEDIT. CD14 and THEMIS are two 211 
examples of signature genes with drastically different magnitudes of expression. CD14 is a signature 212 
gene for monocytes, and THEMIS for CD4+ T cells. The original expression vectors are transformed, 213 
such that all values fall between 0.0 and 1.0, equalizing the effect of genes with varying magnitudes of 214 
expression. 215 
 216 

 In order to equalize the effect of each signature gene on the linear regression, we implement a 217 

transformation that we term row scaling. Specifically, the range of all observed values for a particular 218 

gene (including reference cell types and samples) is adjusted such that the maximum value is 1.0 and 219 

the minimum value is 0.0. As a result, all genes have a comparable influence on the calculation of the 220 

linear regression solution, regardless of overall magnitude of expression. This transformation can be 221 

modulated by adjusting the row scaling parameter. By default, the value of this parameter is 0.0, and 222 

the transformation is applied as described above. Values between 0.0 and 1.0 are also allowed, which 223 

reduces the extent of the transformation (see Methods for details). Linear regression is then performed 224 

in R using the glmnet package, as described in the methods. 225 

 226 

Performance Comparison to Other Deconvolution Tools 227 

 In order to assess the performance of GEDIT relative to other tools, we perform an experiment 228 

comparing GEDIT to 4 other deconvolution tools on datasets of known cell-type content 229 

(CIBERSORT, DeconRNASeq, dtangle and xCell; [13,14,25,26]). Non-deconvolution tools like MCP-230 

counter, SAVANT, and the DCQ algorithm are excluded from this study because they do not predict 231 

cell type fractions [12,27,28].Tools that require single cell data, such as MuSiC and CPM, are also 232 

excluded, as this study is limited to tools that operate on bulk expression data [11,29]. See Table 3 for 233 

a summary of current bulk deconvolution methods. 234 

     Reference Data Provided with Tool 

Tool Publication Custom Reference Approach Output 

Number of 

Datasets Cell Types Species 

GEDIT Nadel et. al., 2020 Yes Deconvolution 

Predicted 

Fractions 11 

Immune 

and Stromal 

Human, 

Mouse 

CIBERSORT Newman et. al., 2015 Yes Deconvolution 

Predicted 

Fractions 1 Immune Human 

xCell Aran et. al., 2017 No Marker Genes 

Predicted 

Fractions 5 

Immune 

and Stromal Human 

dtangle Hunt et. al., 2018 

Yes, if marker 

genes specified Deconvolution 

Predicted 

Fractions 0 N/A N/A 

DeconRNASeq Gong et. al., 2013 Yes Deconvolution Predicted 0 N/A N/A 
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Fractions 

DCQ/ImmQuant 

Altboum et. al., 2014; 

Frishberg et. al., 2016 Yes Deconvolution Scores 3 Immune 

Human, 

Mouse 

CIBERSORT 

(absolute mode) Newman et. al., 2015 Yes Deconvolution Scores 1 Immune Human 

SaVant Lopez et. al., 2017 

Yes, if marker 

genes specified Marker Genes Scores 12 

Immune 

and Stromal 

Human, 

Mouse 

MCP-Counter Becht et. al., 2016 No Marker Genes Scores N/A 

Immune 

and Stromal Human 

 235 

Table 3. High level characteristics of current cell type estimation tools. Some tools accept custom 236 
references, which allows the tool to estimate the abundance of cell types not present in the default 237 
reference. Tools listed here take one of two approaches: they either perform deconvolution (most 238 
commonly regression) or calculate a score based on intensity of marker gene expression. Depending 239 
on the tool, the output can be interpreted as fractions corresponding to the abundance of each cell 240 
type, or as scores for each cell type that cannot necessarily be compared in an inter-cellular manner. 241 
 242 

 To perform this study, we utilize three datasets for which cell type fractions have been 243 

estimated using orthogonal methods. Two of these datasets were used in a recent benchmarking 244 

study [30]. Both are profiled using RNA-seq, and represent samples collected either from human 245 

cancer ascites or human blood [31,32]. In both cases, cell type fractions have been evaluated by 246 

FACS sorting. The final dataset was prepared in vitro and consists of six cell types that were 247 

physically mixed together (in known proportions) to prepare 12 mixtures. These mixtures were then 248 

profiled using an Illumina HT12 BeadChip microarray. Adding to the previous benchmarking study, we 249 

also explore the effect of using four separate reference datasets: The Human Primary Cell Atlas, 250 

LM22, ImmunoStates, and a reference constructed from BLUEPRINT data. For each dataset, all tools 251 

(except xCell) were run four times, each time using a different reference matrix. 252 

The optimal choice of reference matrix varies greatly depending on the exact combination of tool, 253 

dataset, and cell type. While using LM22 often produces the most accurate results, there are  many 254 

exceptions. For instance, DeconRNASeq and GEDIT produce their best results for the blood dataset 255 

when using the BLUEPRINT reference. For the ascites data, several tools prefer ImmunoStates as the 256 

optimal reference choice. The best choice of reference is highly dependent on the nature of the input 257 

data and on the tool being used. In practice, researchers may wish to perform deconvolution multiple 258 

times--in each case using a separate reference matrix--and compare results for consistency. 259 

 260 
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Compared to the other tools, GEDIT produces robust and consistently accurate results 261 

(Figures 4,5). For many tools, the quality of predictions varies greatly depending on the cell type, 262 

dataset, or choice of reference matrix. When results are averaged across the four possible reference 263 

choices, GEDIT produces the minimum error and maximum correlation for all three datasets. This 264 

result suggests that GEDIT is a strong choice when researchers are using novel references matrices 265 

that have not been curated or tested. 266 

 267 
Figure 4. Performance of five deconvolution tools when applied to a set of 26 physical samples from 268 
three sources. Actual cell type fractions are either known due to controlled cell mixing (Cell Mix) or 269 
estimated by FACS sorting (Ascites and Blood). In each instance, we calculate the correlation 270 
between actual cell type fractions and those predicted by deconvolution; deeper blues represent 271 
higher correlations. We test four different reference datasets for each tool, and averaged correlations 272 
across these 5 cases are shown in boxes. We calculate correlations for each cell type (right 5 273 
columns), for each of the 3 mixtures (middle 3 columns), and for all predictions regardless of cell type 274 
or data source.  275 
 276 

Figure 5. Distribution of errors, calculated as the difference between predicted and actual cell type 277 
fractions. Each point on the graph represents the percentage of predictions (y-axis) that are accurate 278 
within a particular error range (x-axis). 279 
 280 

 We also perform 2 additional comparisons between GEDIT and other deconvolution tools. 281 

Firstly, we create 100 simulated mixtures of pancreatic cells (alpha, beta, gamma, delta) using single 282 

cell data from a recent single cell experiment (details in supplementary materials). We evaluate the 283 

accuracy of each tool when used to predict the cell type content of these synthetic mixtures, and 284 

GEDIT provides the lowest overall error (Supplementary Figure 3). 285 

 Lastly, we perform an evaluation of runtime required for each tool. We randomly select batches 286 

of 100, 200, 500, 1000, and 2000 samples from the GTEx database, and measure CPU time required 287 

to deconvolute these batches for each tool. The runtime of GEDIT, dtangle, and DeconRNASeq 288 

scales well with growing input size, taking at most 20 minutes on average (Supplementary Figure 4). 289 

Skin Expression Data 290 

 291 

 We further validate GEDIT by using it to deconvolute a set of skin biopsies from humans with a 292 

variety of skin diseases [13]. The exact cell type composition of these samples is unknown, but we 293 
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have reasonable expectations based on skin and disease biology. For example, macrophages are 294 

known to be abundant in granulomas of leprosy legions, and Steven-Johnson Syndrome produces 295 

blisters that fill with large numbers of monocytes [33,34]. We find that, in all cases, predictions made 296 

by GEDIT conform well with these biological expectations. Keratinocytes are highly predicted in most 297 

cases, as one would expect with skin samples (Figure 6). Deviations from this pattern correspond with 298 

disease biology. Monocytes are highly predicted in Stevens-Johnson syndrome, as are macrophages 299 

in the three leprosy samples, and T cells in the Mycosis Fungoides (T cell lymphoma) sample. 300 

 301 
 302 
 303 
 304 
Figure 6. GEDIT predictions for 21 samples of various skin diseases. GEDIT correctly identifies 305 
keratinocytes and subcutaneous adipose as the most common cell. Deviations from this pattern 306 
correspond to disease biology. SJS represents blister fluid from Steven Johnson Syndrome, and is 307 
predominantly immune cells. LL and RR represent two forms of leprosy, which result in large numbers 308 
of macrophages. MF is a T Cell Lymphoma. 309 
 310 

Application of GEDIT to Mouse Data 311 

 GEDIT can be used to decompose data from any organism for which reference data is 312 

available. Here, we demonstrate the efficacy of GEDIT when applied to the Mouse Body Atlas, a 313 

collection of tissue and cell type samples collected from mice [23]. As reference data, we assembled a 314 

matrix of 12 cell types using single cell data from the Tabula Muris [20]. GEDIT correctly infers the 315 

identity of purified cell types, including six samples that consist of either pure NK cells, B cells, T cells, 316 

or granulocytes (Figure 7). An entry for macrophages is not available in the reference used, but most 317 

macrophage samples are identified as monocytes, which is the most similar cell type present in the 318 

reference matrix. For more complex tissues, GEDIT predicts cell type fractions that correspond to the 319 

biology of the samples. Hepatocytes are predicted to be highly prevalent in the liver sample (84%) and 320 

are not predicted in any other sample (less than 5% in all cases). Similar patterns hold for 321 

keratinocytes in the epidermis, epithelial cells in two intestinal samples and cardiac muscle cells in 322 

heart and muscle samples. 323 

 324 
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 325 

 326 

Figure 7. GEDIT predictions on 30 samples collected from various mouse tissues and cell types 327 

(mouse body atlas [23]). Predictions largely conform with tissue and cell biology. 328 

 329 

Deconvolution of GTEx Database 330 

 To assess the use of GEDIT across very large datasets, we applied the tool to 17,382 GTEx 331 

RNA-seq samples collected from various tissues. However, no single reference contained all relevant 332 

cell types. For example, none of the available references contain both myocytes and adipocytes 333 

(Supplementary Figure 1). Therefore, we predicted proportions three times using three separate 334 

references (BlueCode, Human Primary Cell Atlas, Skin Signatures). We then combined these outputs 335 

by taking their median value. This allowed us to produce predictions spanning a larger number of cell 336 

types than are present in any one reference matrix (Figure 8).  337 

 338 

Figure 8. GEDIT cell type predictions when applied to 17,382 samples from the GTEx database. Here, 339 

predictions have been averaged for each tissue of origin. 340 

 341 

These predictions largely conform to biological expectations. For example, immune cells are 342 

predicted to have high abundance in blood and spleen, adipocytes in adipose tissue, Shwann cells in 343 

nerve and heart, and keratinocytes in skin. Each of these patterns matches expectations of which cell 344 

types should be present in these tissues. Neither cardiac myocytes nor smooth muscle are highly 345 

abundant in GTEx muscle samples. This is likely because the GTEx samples are collected from 346 

skeletal muscle, which is known to have an expression profile that is distinct from that of cardiac and 347 

smooth muscle. 348 

 349 

GEDIT Availability 350 

 GEDIT can be run online at http://webtools.mcdb.ucla.edu/. Source code, associated data, and 351 
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relevant files are available on GitHub at https://github.com/BNadel/GEDIT. We provide access to the 352 

tool, a set of varied reference data, and two sample mixture matrices. The website automatically 353 

produces a heatmap of predicted proportions for the user, as well as a .tsv file. The user also has 354 

access to the parameter choices of GEDIT (signature gene selection method, number of signature 355 

genes, row scaling).  356 

 357 

Methods 358 

GEDIT Algorithm 359 

Signature Gene Selection 360 

 361 

During signature gene selection, we automatically exclude genes with zero detected 362 

expression in half or more of cell types. Observed expression values of exactly zero are often the 363 

result of either technical artefacts or resolution issues. Using such genes as signatures can result in 364 

inaccurate and highly unstable results, particularly when working with scRNA-seq derived data. As an 365 

additional safeguard, we treat all remaining expression values of zero as the lowest observed non-366 

zero value in the matrix. Implementing this change has minimal effect on most genes but prevents 367 

genes with resolution issues from achieving artificially high scores. We consider this transformation 368 

valid, since values of zero generally do not represent zero expression, but rather an expression level 369 

below the detection limit of the technology used. 370 

 371 

For any given gene, a scoring method takes as input the vector of the expression values 372 

across all reference cell types, and outputs a score. A gene is considered a potential signature gene in 373 

cell type X if it is expressed more highly in X than any other cell type. For each cell type, we keep only 374 

the N genes with the highest scores, where N is the NumSigs parameter. 375 

 376 

Information entropy (H) is calculated using the following formula: 377 
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 378 

� �  � ∑�
� ��� � 	��
 �  (1) 379 

 380 

 where pi is the probability of the ith observation. To apply this to expression values, we convert 381 

the vector of expression values into a vector of probabilities by dividing by its sum. In an equal mixture 382 

of each cell type, the ith probability can be interpreted as the fraction of transcripts originating from the 383 

ith cell type. 384 

 385 

 386 

Row Scaling 387 

 388 

During this step, we apply a transformation on the expression values for each gene. Each gene 389 

has measured expression in N purified cell types and M samples. Each of these values, Xold, is 390 

transformed according to the following formula: 391 

 392 

X��� �  	X��� � Min
/	Max � Min
  �  Max
    (2) 393 

 394 

 Where Min is the minimum of all M + N original values, Max is the maximum of those values, 395 

and p is a tunable parameter with natural range p ∈ [0.0,1.0]. This procedure  produces values 396 

between the range of 0.0 and Maxp. 397 

Linear Regression: 398 

 399 

Non-negative linear regression was performed using the glmnet package in R. The glmnet 400 

function is used with lower.limits=0, alpha=0, lambda=0, intercept=FALSE. These settings perform a 401 

linear regression where all coefficients are non-negative, and with no regularization and no intercept 402 

term. 403 
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 404 

Reference Data 405 

BLUEPRINT Reference Dataset 406 

35 gene counts files were downloaded from the BLUEPRINT database, all collected from 407 

venous blood [18]. This included entries for CD14-positive, CD16-negative classical monocytes (5 408 

samples), CD38-negative naive B cells (1), CD4-positive, alpha-beta T cell (8), central memory CD4-409 

positive, alpha-beta T cell (2), cytotoxic CD56-dim natural killer cell (2), macrophage (4), mature 410 

neutrophil (10), and memory B Cell (1). When two or more transcripts appeared for a single gene, the 411 

transcript with the highest average expression was selected and others were excluded. Genes with no 412 

detected expression in any sample were also excluded, and then each sample was quantile 413 

normalized. Samples generally clustered by cell type, but we excluded one CD4-positive alpha-beta T 414 

cell. Replicates for each cell type were then collapsed into a single entry by taking the median value 415 

for each gene. 416 

 417 

ENCODE Reference Dataset 418 

106 transcript quantification files were downloaded from the ENCODE database [19]. These 419 

included all RNA-seq experiments collected from adult primary cells, excluding four with warnings. 420 

Warnings indicated that three samples suffered from low replicate concordance and one sample from 421 

low read depth, and these samples were excluded. All samples were processed by the Gingeras Lab 422 

at Cold Spring Harbor and mapped to GRCH38.  423 

The samples were quantile normalized and clustered. In cases where multiple transcripts were 424 

measured for a single gene, the expression of that gene was calculated as the sum of all transcripts.  425 

At this time, 18 additional samples were excluded as they did not cluster with their replicates. Based 426 

on sample descriptions and data clustering, we found that the remaining 88 samples represented 28 427 

unique cell types. We produced an expression profile for each cell type by merging all samples of that 428 

cell type via median average. For example, a cluster of 19 samples were labelled as endothelial cells 429 
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(collected from various body locations) and were merged into a single entry termed canonical 430 

endothelial cells. This dataset spans a wide range of stromal cell types (e.g. smooth muscle, 431 

fibroblast, epithelial), but contains only a single entry for blood cells, which are labelled mononuclear 432 

cells. 433 

We also combined the ENCODE and BLUEPRINT reference matrices into a single reference 434 

matrix, which we call BlueCode. We combined, then quantile normalized, the columns of both 435 

matrices. Possible batch effects in this combined matrix have not been fully evaluated. 436 

 437 

10x Reference Dataset 438 

 We obtained single cell expression data for nine varieties of immune cells from the 10x website 439 

[20]. This included at least 2446 cells for each cell type, and at least 7566 cells for all cells other than 440 

CD14 monocytes. For each cell type, expression values for all cells were mean averaged to form an 441 

expression profile. 442 

 443 

Tabula Muris Reference Dataset 444 

 We downloaded from the Tabula Muris single cell data for 12 clusters of mouse cell types. For 445 

each cluster, we averaged all cells of that cluster to produce a reference profile for the corresponding 446 

cell type. 447 

Other Reference Datasets 448 

 Other datasets used in this project were obtained from their corresponding publications or 449 

GEO repositories. This includes a reference matrix of human skin signatures, the Human Body Atlas, 450 

the Human Primary Cell Atlas, LM22, ImmunoStates, the Mouse Body Atlas, and ImmGen [14–451 

17,21,23,24].  452 

 453 

Skin Diseases Data 454 

 We obtained expression data from 21 skin biopsies, collected from human patients with a 455 

variety of skin diseases. These data originally came from a wide range of sources and platforms, and 456 
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were compiled into a single dataset by previous work [35].  457 

 458 

GTEx Data 459 

GTExX data for 17,382 samples were obtained from the GTExX database 460 

(https://gtexportal.org/). We ran GEDIT on all samples three times, each time using a different 461 

reference matrix (BlueCode, the Human Primary Cell Atlas, and Skin Signatures). For each cell type, 462 

we calculated our initial estimate as the median estimate across the three sets of predictions (or fewer, 463 

if that cell type is missing from one to two of the reference matrices). Lastly, for each sample we 464 

divided the vector of predictions by its sum, such that the final predictions sum to 100%. 465 

 466 

Multi-Tool Performance Evaluation 467 

In Vitro Immune Cell Mixture 468 

 Combinations of six immune cells (Neutrophils, Monocytes, Natural Killer Cells, B cells, and 469 

CD4 and CD8 T Cells) were mixed together and sequenced using an affymetrix array. Whole blood 470 

from healthy human donors was supplied with informed consent through a sample sharing agreement 471 

with the UCLA/CFAR Virology Core Lab (grant number 5P30 AI028697). CD4+ T cells, CD8+ T cells, 472 

B cells, and NK cells were isolated using Stem Cell Technologies (Vancouver, BC, Canada) 473 

RosetteSep negative selection. Neutrophils were positively selected through the EasySep approach, 474 

according to the manufacturer’s specifications. Cells were then counted by hemocytometer and added 475 

at defined percentages to a total cell count of two million cells to create six different mixtures. 476 

Subsequently cells were processed for RNA isolation by AllPrep DNA/RNA. Illumina HT12 BeadChip 477 

microarray was performed by the UCLA Neuroscience Genomics Core. Data was normalized by 478 

quantile normalization through R ‘normalize.quantiles’ function (R Core Team, 2013). 479 

 480 

RNA-seq Mixtures Used for Tool Evaluation 481 

 We also obtained two datasets used in a recent benchmarking study [30]. The first dataset is 482 
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composed of three RNA-seq samples, each with two technical replicates that represent biopsies of 483 

ovarian cancer ascites [32]. The second dataset is composed of RNA-seq collected from the blood of 484 

healthy individuals, some of whom recently received an influenza vaccine [31]. These data were 485 

downloaded from the GitHub for the benchmarking paper, which also contained FACS estimates for 486 

six cell types for the ascites data (B cells, dendritic cells, NK cells, T cells, macrophages, neutrophils) 487 

and five cell types for the blood data (B cells, dendritic cells, T cells, monocytes, natural killer cells). 488 

However, since dendritic cells were never present at more than 3.5% abundance, we did not evaluate 489 

performance for this cell type. 490 

 491 

Tools 492 

We installed and ran GEDIT, CIBERSORT, DeconRNASeq and dtangle on the hoffman2 493 

computational cluster at UCLA. xCell was run using the online interface at https://xcell.ucsf.edu/. The 494 

default choice for genes signatures (xCell =64) was used. The RNA-seq option was selected for the 2 495 

RNA-seq datasets (blood and ascites), but not for the in vitro dataset, which was sequenced on 496 

microarray. 497 

xCell produces 67 output scores, seven of which were used in this study. These were the 498 

entries labelled “B-Cells”, “Macrophages”, “Monocytes”, “NK cells”, “Neutrophils”, “CD4+ T cells” and 499 

“CD8+ T Cells”. As suggested by the xCell authors, the outputs for CD4 and CD8 T cell subtypes were 500 

summed to produce a final output for total T cells. 501 

  502 

Reference Data 503 

We evaluated the performance of the four reference-based tools (GEDIT, CIBERSORT, 504 

DeconRNASeq and dtangle) using each of four choices of reference matrix (LM22, ImmunoStates, 505 

BLUEPRINT, and the Human Primary Cell Atlas).The BLUEPRINT and Human Primary Cell Atlas 506 

reference matrices differ from ImmunoStates and LM22 in that they contain tens of thousands of 507 

genes, many of which should not be considered signature genes. This contrasts to ImmunoStates and 508 

LM22; each reference matrix contains fewer than 600 genes, which have been specifically identified 509 
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as signature genes by previous work [14,21]. We include both forms of reference matrices in order to 510 

evaluate the input requirements of the tools studied.  511 

 Depending on the choice of reference matrix, reference-based tools often produce multiple 512 

outputs for some cell types, each representing a cell sub-type. This includes B cells (naïve and 513 

memory), Monocytes (CD14 and CD16), NK cells (resting and active) and T cells (many subtypes 514 

including varieties of CD4 and CD8). In each case, the outputs for each sub-type were summed in 515 

order to produce a total score for each greater cell type.  516 

 517 

Discussion: 518 

GEDIT is an expression-based cell type quantification tool that offers unprecedented flexibility 519 

and accuracy in a wide variety of contexts. Using both simulated and experimental data, we 520 

demonstrate that GEDIT produces high-quality predictions for multiple platforms, species, and a 521 

diverse range of cell types, outperforming other tools in many cases. We include in the software 522 

package a comprehensive library of reference data, which facilitates application of GEDIT to a wide 523 

range of tissue types in both human and mouse. GEDIT can also accept reference data supplied by 524 

the user, which can be derived from bulk RNA-seq, scRNA-seq, or microarray experiments. GEDIT 525 

represents a competitive addition to the suite of existing tissue decomposition tools while maintaining 526 

flexibility and performance robustness. 527 

As part of this project, we perform a study in which we compare the performance of several 528 

deconvolution tools using multiple metrics. Unlike previous evaluation studies, we explore the effect of 529 

reference choice by running tools multiple times with reference data from different sources. Choice of 530 

optimal reference has a large impact on the accuracy of many tools, but GEDIT provides robust 531 

performance and accurate estimates for many possible reference choices. While all efforts were taken 532 

to perform this comparison in an unbiased manner, the authors note that development of the tool was 533 

still underway when the first comparisons were made. All code and inputs used to reproduce this study 534 

are included in the github (https://github.com/BNadel/GEDIT), with the exception of CIBERSORT 535 
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code, which is limited by copyright. 536 

The high performance of GEDIT is due to two key innovations. Firstly, signature gene selection 537 

by information entropy serves to select genes that are the most informative for deconvolution. 538 

Secondly, the row scaling step, which aims to equally weight all signature genes into the final 539 

estimate, even those with comparatively low expression. In addition, the flexibility of GEDIT and the 540 

diverse set of reference matrices we provide allows GEDIT to be easily applied in a wide range of 541 

circumstances. 542 

The output of GEDIT represents the fraction of mRNA originating from each cell type. This is 543 

an effective measure of the transcriptional contribution of each cell type in a mixture. However, in 544 

cases where some cell types consistently produce more or less mRNA per cell, this measure may not 545 

represent cell counts. Data capturing the average mRNA content per cell is becoming more widely 546 

available in the form of single cell experiments and could in principle be used to convert our fractions 547 

into cell counts. 548 

When extensively applied to several large public datasets, GEDIT produces predicted cell type 549 

fractions that conform with biological expectations. When used to decompose skin biopsies, 550 

keratinocytes are found to be the most abundant cell type. Variations in the abundance of other cell 551 

types conform to expected immune responses across diseases. Similarly, cell type predictions of 552 

GTEx samples are concordant with our expectations of the dominant cell types across tissues. 553 

Schwann cells, keratinocytes, adipose cells, and immune cells are found to be most abundant in 554 

nerve, skin, adipose tissue, and blood, respectively. 555 

 Single cell RNA-seq is an emerging approach to study the composition of cell types within a 556 

sample. Due to biases associated with the capture of different cell types, these methods are not 557 

always capable of accurately quantifying cell type populations [8]. However, the pure reference 558 

profiles produced by existing methods can be used by GEDIT to generate accurate estimates of cell 559 

type populations. Thus, GEDIT circumvents some of the biases associated with the preparation of 560 

samples for both scRNA-seq and FACS. GEDIT is freely available, and therefore an extremely 561 

economical option for researchers, particularly those who profile expression data for other purposes. 562 
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GEDIT produces accurate results when tested on mixtures of human immune cells. Compared 563 

to other tools, GEDIT produces the lowest error in majority of scenarios in the studied mixtures. 564 

GEDIT provides increased flexibility over previously developed tools, as we provide a set of reference 565 

matrices for varied cell types for both mouse and human datasets. 566 

 GEDIT provides unique advantages to researchers, especially in terms of cell type, species 567 

and platform flexibility, and constitutes a useful addition to the existing set of tools for tissue 568 

decomposition. Our efficient decomposition methodology has been extensively optimized and we find 569 

that it performs robustly across a broad range of tissues in both mouse and human datasets.  Our 570 

future work will extend reference matrices to facilitate application of GEDIT on varied bulk gene 571 

expression datasets. 572 

Availability of Source Code and Requirements 573 

, Project name: GEDIT 574 

, Project Home Page: https://github.com/BNadel/GEDIT 575 

, Programming Languages: Python 2.0, R 576 

, Other requirements: numpy, glmnet 577 

, Operating Systems: Linux 578 

, License: MIT 579 

Availability of Data and Materials 580 

 All data used in this paper are freely available on GitHub 581 

(https://github.com/purebrawn/GEDIT), as well as their original sources. Code for DeconRNASeq was 582 

obtained as an R package from the CRAN repository. Code for CIBERSORT was obtained by 583 

requesting it via the web portal (https://cibersort.stanford.edu/download.php), and code for dtangle 584 

from the project’s GitHub page (https://github.com/gjhunt/dtangle). 585 

 Reference data is also available from their original sources. Most datasets can be found on 586 

project website pages or from public databases. These include BLUEPRINT (http://www.blueprint-587 

epigenome.eu/), ENCODE (https://www.encodeproject.org), the Human Primary Cell Atlas 588 
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(http://biogps.org/dataset/BDS_00013/primary-cell-atlas/), LM22 589 

(http://cibersort.stanford.edu/%20or%20GEO:GSE65136), 10x Genomics 590 

(https://support.10xgenomics.com/single-cell-gene-expression/datasets), Tabula Muris (https://tabula-591 

muris.ds.czbiohub.org/), the Mouse Body Atlas (GEO:GSE10246), and ImmGen 592 

(http://www.immgen.org/Databrowser19/DatabrowserPage.html). Some reference matrices were 593 

obtained as supplementary files from the publications listed in Table 1. 594 

 Expression values for the blood and ascites RNA-seq datasets were obtained from the GitHub 595 

repository https://github.com/grst/immune_deconvolution_benchmark, and are also available at at 596 

https://figshare.com/s/711d3fb2bd3288c8483a and GEO: GSE64655). The in vitro mixture of immune 597 

cells was prepared by our lab, and available on our GitHub page. 598 
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Cell Type Monocytes Neutrophils B Cells NK Cells CD4+ T cells Macrophages

CD14 338.4 163.9 18.9 16.9 19.2 105.9

THEMIS 9.7 11.6 8.4 13.2 52.0 8.7

Mixture 1 Mixture 2

22.3 95.0

50.3 20.3

Cell Type Monocytes Neutrophils B Cells NK Cells CD4+ T cells Macrophages

CD14 1.0 .46 .01 0.0 .01 .28

THEMIS .03 .07 0.0 .11 1.0 .01
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● Each column of the reference matrix and 
mixture matrix are quantile normalized

● Target distribution is starting distribution of 
entire reference matrix

● Signature score is calculated for each gene 
(default method is negative information entropy

● For each cell type, a number of genes (NumSigs) 
with the highest scores are selected

● Expression range of each gene is adjusted to 
the range 0 to 1.

● Can be modified with the RowScale parameter

● Non-negative linear regression with no 
regularization

● Coefficients for each cell type refer to predicted 
fraction
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