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Abstract. Background: In the past years, robotic systems have become increasingly popular 28 

in both upper and lower limb rehabilitation. Nevertheless, clinical studies have so far not been 29 

able to confirm superior efficacy of robotic therapy over conventional methods. The 30 

personalization of robot-aided therapy according to the patients’ individual motor deficits has 31 

been suggested as a pivotal step to improve the clinical outcome of such approaches. 32 

Methods: Here, we present a model-based approach to personalize robot-aided rehabilitation 33 

therapy within training sessions. The proposed method combines the information from 34 

different motor performance measures recorded from the robot to continuously estimate 35 

patients’ motor improvement for a series of point-to-point reaching movements in different 36 

directions and comprises a personalization routine to automatically adapt the rehabilitation 37 

training. We engineered our approach using an upper limb exoskeleton and tested it with 38 

seventeen healthy subjects, who underwent a motor-adaptation paradigm, and two subacute 39 

stroke patients, exhibiting different degrees of motor impairment, who participated in a pilot 40 

test. Results: The experiments illustrated the model’s capability to differentiate distinct motor 41 

improvement progressions among subjects and subtasks. The model suggested personalized 42 

training schedules based on motor improvement estimations for each movement in different 43 

directions. Patients’ motor performances were retained when training movements were 44 

reintroduced at a later stage. Conclusions: Our results demonstrated the feasibility of the 45 

proposed model-based approach for the personalization of robot-aided rehabilitation therapy. 46 

The pilot test with two subacute stroke patients further supported our approach, while 47 

providing auspicious results for the applicability in clinical settings.  48 

Trial registration: This study is registered in ClinicalTrials.gov (NCT02770300, registered 30 49 

March 2016, https://clinicaltrials.gov/ct2/show/NCT02770300). 50 

Keywords: Personalized therapy, rehabilitation robotics, stroke rehabilitation,  51 
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1 Background 52 

With the increase of life expectancy, it is estimated that stroke related impairments will be 53 

ranked fourth most important cause of disability in western countries in 2030 [1]. With about 54 

80% of stroke survivors experiencing significant motor impairment [2], stroke rehabilitation 55 

represents a major challenge. Despite early rehabilitative interventions, 55% to 75% of the 56 

patients still suffer from upper limb impairments in the chronic state of the injury [3–5]. The 57 

recovery of reaching and grasping movements is therefore a crucial therapeutic goal in stroke 58 

rehabilitation [6].  59 

Post-stroke rehabilitation usually relies on task-oriented repetitive movements that help 60 

improving motor function and training new control strategies. In this regard, the amount of 61 

goal-directed and challenging practice, rather than daily intensity alone, seems to be the most 62 

effective factor in neurorehabilitation [7]. In the last two decades, robot-aided motor training 63 

has shown potential for the recovery of lost motor abilities in upper limbs after stroke [8–10]. 64 

While providing intense and highly repeatable motor training, robotic devices also offer 65 

means to control and quantify movement performances. Despite this undeniable potential, 66 

controlled clinical trials have so far not been able to confirm whether robotic therapy is more 67 

effective than conventional methods in restoring motor abilities [11, 12]. It has been argued 68 

that this might be related to saturation effects and a lack of automatic methods to promptly 69 

detect them [13]. 70 

The automatic and personalized adaptation of the rehabilitation training has been suggested as 71 

a pivotal step to improve the outcome of robot-aided rehabilitation and the clinical relevance 72 

of such solutions [14]. As a matter of fact, motor learning is known to be maximized when the 73 

difficulty level of the training task matches the patient’s level of ability [15]. Recent advances 74 

in the field of personalized robotic rehabilitation have therefore focused on the design of 75 

customized training protocols, including individualized selection of upper limb movements 76 
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[16]. Different measures have been used to assess the patient’s “status” during training (i.e., 77 

motor performance, engagement, etc.) in order to adjust the proposed tasks accordingly. 78 

Kinematic performance measures, such as movement accuracy, smoothness, speed, inter-joint 79 

coordination, range of motion and stiffness [17–23], game-related statistics [13, 24], measures 80 

of muscle activity [17], or the combination of kinematic and psychophysiological 81 

measurements [25–27] have been among the measures used for the design of patient-tailored 82 

training protocols. However, those approaches either focused on a single performance 83 

measure describing a specific aspect of rehabilitation or used multiple measures but lacked the 84 

ability to meaningfully synthesize the information from all these variables. Integrating this 85 

information into a single measure, yet representative of the patient's multidimensional 86 

rehabilitation response, would provide a straightforward method to track the multifaceted 87 

progress of the patient and trigger task adaptation while enormously simplifying the design of 88 

personalized rehabilitation training.  89 

An interesting approach to address this issue was presented in the work of Panarese et al. [28]. 90 

The authors used a state-space model to merge the information from different kinematic 91 

measures and, in this way, estimated the motor improvement of chronic stroke patients 92 

exercising with a planar robotic device for upper limb rehabilitation. Similar methodologies 93 

have previously allowed to successfully characterize cognitive learning in animals [29, 30]. 94 

The results of Panarese et al. emphasized the potential of extending such approaches to the 95 

context of neurorehabilitation. In their study, the authors showed that the devised model was 96 

capable of mimicking decision rules applied by physical therapists regarding the adaptation of 97 

the task difficulty. In some cases, the model even appeared to be faster than the therapists in 98 

detecting when the patients’ motor performance had reached a plateau and when more 99 

challenging tasks should have been proposed.  100 

In this work, we built on these results to implement a method able to continuously detect 101 
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patient’s motor improvement and adapt the training task for three-dimensional movements 102 

using an upper limb exoskeleton. Indeed, most of the aforementioned adaptive approaches 103 

were restricted to planar workspaces, hindering their applications to functional movements 104 

exploring three-dimensional workspaces, which better resemble those performed during daily 105 

life activities. Evaluating and estimating motor improvement is particularly compelling in 106 

three-dimensional training workspaces, where the visual evaluation of motor performance 107 

becomes more challenging. Under these circumstances, a method able to autonomously 108 

estimate patient training progress, in particular for movements in different directions, could 109 

provide fundamental support to the therapists, enabling them to shift their focus from visual 110 

inspection of the movements performed to other important aspects of training. In this study, 111 

we also aimed at a continuous implementation of the motor improvement estimation and the 112 

personalization routine. Indeed, the immediate task adaptation within training sessions could 113 

not only increase patients’ engagement, but also foster their attention control, possibly leading 114 

to improved reaching performances [31].  115 

In order to enable the use of such methods for clinical applications, it is first necessary to 116 

validate their feasibility and safety under controlled experimental conditions. We, therefore, 117 

devised an experiment to test our approach in a group of healthy subjects. In order to mimic 118 

the motor improvement observed in stroke patients, we applied a visual manipulation to the 119 

training environment. Previous studies on visually manipulated motor tasks showed that most 120 

people could cope with similar manipulations after training [32–36]. Accordingly, we 121 

hypothesized that performances would drop after the introduction of the inverted visual 122 

feedback (i.e., movements would become slower and less smooth), but would then gradually 123 

improve and eventually reach a plateau - with temporal dynamics resembling the ones 124 

occurring in robot-aided rehabilitation of stroke patients [28, 37, 38]. Using this setup, we 125 

tested whether our model was capable of tracking individual motor improvements induced by 126 
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motor adaptation, and whether it was able to personalize the training by identifying 127 

“recovered” (i.e., adapted) movements in real-time. To provide further evidence about the 128 

feasibility and clinical usability of the presented approach, we finally performed a pilot test 129 

with two subacute stroke patients. The test was conducted in the framework of robot-aided 130 

upper-limb rehabilitation training for subacute stroke patients.  131 

2 Results 132 

2.1 Experimental validation with healthy participants  133 

We first experimentally validated our model in a group of 17 healthy participants. Using the 134 

robotic upper limb exoskeleton ALEx [39, 40], we designed a three-dimensional point-to-135 

point reaching task (Fig. 1a-b), a training exercise commonly used in robotic rehabilitation 136 

therapy [41–43]. In order to challenge the subjects and make them adapt to a new motor 137 

control scheme with temporal dynamics similar to those observed in robot-aided rehabilitation 138 

of stroke patients, the visual feedback was manipulated during five inversion blocks B1-5 (Fig. 139 

1c, see Section 5.6.1). Under these circumstances, we tested whether our model was capable 140 

of continuously tracking MI (in this case induced by motor adaptation) and whether our 141 

implementation could personalize the training by identifying adapted movements (i.e., 142 

movements with performance comparable to the non-inverted condition) and by replacing 143 

them with more difficult ones.  144 

Figure 1 around here 145 

2.1.1 Task adaptation at subject level 146 

Despite a general improvement for all participants, the subjects differed considerably in their 147 

adaptation speed, as quantified by the number of new targets introduced during the inversion 148 

blocks B1-5. We identified two groups using a median cut and found that the number of new 149 

targets for fast adapters (n = 9, 7.7±1.2 new targets, mean±std over subjects) and slow 150 
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adapters (n = 8, 2.6±2.0 new targets) was significantly different (p < 0.001).  151 

Interestingly, the two groups already showed differences in performance during the initial 152 

assessment AI,1-3 (Fig. 2a-c). Specifically, the values for MV were significantly higher (p < 153 

0.001) for the slow adapters (0.171±0.041 m/s, mean±sem over subjects) in comparison to the 154 

fast adapters (0.159±0.040 m/s). In contrast, the values for SAL were significantly lower (p < 155 

0.001) for the slow adapters (-3.134±0.715) compared to the fast adapters (-2.807±0.596). For 156 

the rate of SUCC no significant difference (p = 0.06) was found between slow (96.5±1.1 %) 157 

and fast (100±0.0 %) adapters. 158 

Figure 2 around here 159 

As expected, the performance measures worsened for both groups after the introduction of the 160 

visual manipulation. However, the drop was remarkably smaller for the fast adapters: between 161 

the last run of the initial assessment AI,3 and the first run of the inverted block B1, the values 162 

for MV worsened by 0.048 m/s (-29% compared to AI,3) for the fast adapters and by 0.074 163 

m/s (-41%) for slow adapters. The values for SAL worsened by 1.346 (-50%) for the fast 164 

adapters and by 4.802 (-157%) for the slow adapters. The rate of SUCC worsened by 57% for 165 

the fast adapters and 87% for the slow adapters. A two-way ANOVA illustrated the different 166 

impact of the introduced inversion on each group measured by MV (F1,421 = 10.62, p = 0.001), 167 

SAL (F1,421 = 112.31, p < 0.001) and rate of SUCC (F1,421 = 30.38, p < 0.001). 168 

Both groups gradually improved from B1 to B5, although they did not reach their initial motor 169 

performances (i.e., performances during AI,1-3). A comparison between the last run of B5 and 170 

the last run of the initial assessment AI,3 showed that the fast adapters were more successful in 171 

restoring their initial performances: compared to their baseline level, MV was lowered by 172 

0.014 m/s (-9% compared to AI,3) for the fast adapters and by 0.051 m/s (-30%) for slow 173 

adapters). The values for SAL were lowered by 0.581 (-22%) for the fast adapters and by 174 
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0.783 (-25%) for the slow adapters. The rate of SUCC was lowered by 18% for the fast 175 

adapters and by 45% for the slow adapters. During the entire experiment, the fast adapters 176 

outperformed the slow adapters and reached better final values for all performance measures, 177 

(+0.024 m/s for MV, +0.583 for SAL and +31% for rate of SUCC for the fast adapters at the 178 

last run of B5). 179 

These results illustrate that the improvements induced by motor adaptation exhibited subject-180 

specific dynamics, prompting the need for a model capable of differentiating between time 181 

courses of MI at subject level. We observed a coherency between the chosen performance 182 

measures and the adaptation speed quantified by the number of new training targets 183 

introduced. Fast adapters exhibited remarkably better performance compared to the slow 184 

adapters and they were thus introduced to considerably more training targets. 185 

2.1.2 Task adaptation at subtask level 186 

In addition to the ability to differentiate MI for different subjects, we were interested in 187 

assessing whether the model was able to monitor MI at subtask level in a three-dimensional 188 

environment. Therefore, we evaluated which initial training targets were replaced by the 189 

algorithm during the inversion blocks and when this replacement occurred (Fig. 2d). The 190 

insertion of new targets did not start before B3, as in B1-2 the amount of data for each training 191 

target was not sufficient to obtain proper MI estimations (see section 5.1). As hypothesized in 192 

the experimental design, movements towards the off-axis targets (2, 4, 6, 8, 11, 14, 15, 16, 17 193 

and 18, Fig. 1b) seemed to be more difficult: on average, the algorithm replaced these targets 194 

for 13% of the slow adapters and for 77% of the fast adapters. The on-axis targets (1, 3, 5, 7, 195 

10 and 13), instead, were replaced for 38% of the slow adapters and 87% of the fast adapters. 196 

However, we also observed differences within the on-axis targets: on average, targets 3, 5 and 197 

13 were replaced for 13% of the slow adapters and for 74% of the fast adapters, while the 198 

replacement for targets 1, 7 and 10 was achieved by 63% of the slow adapters and by 100% of 199 
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the fast adapters. Following this analysis, we identified the subsets of easy (1, 7 and 10) and 200 

difficult (3, 5, 13 and off-axis) targets. Interestingly, the results suggested that despite the 201 

differences in the overall performance, the subsets of easy and difficult targets appeared to be 202 

similar for both groups. Nevertheless, we observed an earlier replacement of the easy targets 203 

for the fast adapters: 56% of the easy targets were replaced in B3 (4% for slow adapters), 33% 204 

were replaced in B4 (38% for slow adapters), and 11% were replaced in B5 (21% for slow 205 

adapters). In contrast, for the difficult targets, the fast adapters also needed more time to 206 

achieve a replacement (if they were replaced eventually): 26% of the difficult targets were 207 

replaced in B3 (3% for slow adapters), 35% were replaced in B4 (5% for slow adapters) and 208 

14% were replaced in B5 (5% for slow adapters).  209 

To illustrate the behavior of individual participants at subtask level, we present the data of one 210 

exemplary subject from each group for the movements towards the same two targets (Fig. 3). 211 

We selected one target from the subset of the easy (target 10) and one target from the subset 212 

of the difficult (target 13) targets. The examples illustrate the different adaptation rates 213 

observed between subjects and targets. For the easy target, the performance measures for the 214 

fast adapter quickly improved and approached a plateau. The slow adapter, instead, showed 215 

difficulties until the fourth repetition, reflected particularly by SAL and SUCC. Nonetheless, 216 

starting from the fifth repetition, he/she also managed to adapt the movements to the distorted 217 

visual feedback and finally reached the conditions for the target replacement at the twelfth 218 

repetition. The difficult target, instead, appeared to be more challenging for both subjects. For 219 

this target, the fast adapter showed an improvement in all performance measures only after the 220 

tenth repetition and finally reached the conditions for the target replacement after eighteen 221 

repetitions. In contrast, the slow adapter did not manage to satisfy the conditions for a 222 

replacement. Despite a trend of improvement, the motor performance was never sufficient to 223 

trigger a replacement of the target. 224 
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Figure 3 around here 225 

These examples highlight the capability of the model to continuously capture individual time 226 

courses of improvement at subtask level. Furthermore, the results emphasized that the 227 

proposed model could detect saturation in motor performance and trigger actions regarding 228 

task difficulty in a well-timed manner. 229 

2.2 Pilot test 230 

To provide further evidence about the feasibility of the presented approach, we finally 231 

performed a pilot test with two subacute stroke patients, who completed four weeks of 232 

personalized robot-aided training in addition to standard rehabilitation therapy (Fig. 1d, see 233 

Section 5.5 for details). During the training, the set of targets was automatically adapted based 234 

on a continuous evaluation of the MI estimates for each training target.  235 

Based on the initial assessment of their FMA-UE scores, we observed a remarkable difference 236 

in the degree of motor impairment of patient P01 (22 points at AI,2, Fig. 4a) compared to 237 

patient P02 (59 points at AI,2). This difference was reflected by the number of movements 238 

(nMov) performed in the training session, which was notably lower for P01 (31 movements 239 

compared to 69 movements for P02 at AI,2). The different degrees of initial impairment 240 

allowed us to evaluate the feasibility of our approach for two patients exhibiting disparate 241 

initial motor abilities.  242 

Following the training, both patients showed improvements for MV, SAL, and SUCC. When 243 

comparing the values right before (AI,2) and right after (AF,1) the treatment sessions, we 244 

observed that patient P01 improved MV (+0.378 m/s), SAL (+1.60) and rate of SUCC 245 

(+22%). In comparison, improvements for patient P02 were lower for MV (+0.293 m/s), 246 

slightly higher for SAL (+1.77) and remarkably lower for SUCC (+1.6%). The latter can be 247 

explained by the fact that the values for SUCC for patient P02 already started at a very high 248 
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level (98% at AI,2), leaving smaller room for improvement. Interestingly, both patients 249 

managed to retain or even improved their performance in the follow-up assessment (AF,2) four 250 

weeks after completion of the training. The only exception was observed for patient P01, who 251 

slightly worsened in SUCC between AF,1 and AF,2. However, this difference did not appear to 252 

be statistically significant (p = 0.61). Along with the improvements of the performance 253 

measures, we also observed higher FMA-UE scores for both patients following the training. 254 

In that respect, we also observed a lower increase for patient P02 (+3 points) compared to 255 

patient P01 (+8 points) between AI,2 and AF,1. Interestingly, both patients further improved 256 

their FMA-UE scores when assessed in the follow-up session AF,2. Finally, we also observed 257 

an increase in the number of performed movements per session (nMov) for both patients. As 258 

for this measurement, instead, patient P02 (+40 movements at AF,1 and +76 movements at 259 

AF,2 compared to AI,2) improved more than patient P01 (+23 movements at AF,1 and AF,2 260 

compared to AI,2).  261 

Figure 4 around here 262 

Both patients progressed during the rehabilitation training and eventually achieved a 263 

replacement of all eighteen training targets. However, the temporal dynamics of these 264 

replacements appeared to be strongly different for each patient (Fig. 4b). In line with the 265 

lower degree of motor impairments observed from the performance measures and the FMA-266 

UE scores, patient P02 achieved a replacement of all training targets after only two training 267 

sessions. Patient P01, instead, needed considerably more time to achieve the replacement of 268 

all eighteen targets. While some of the initial training targets (i.e. targets 9 and 12) were 269 

already replaced after two treatment sessions, other targets (i.e. targets 1, 7 and 15) needed 270 

more than 4 training sessions to trigger a replacement. It was only after eleven treatment 271 

sessions that all eighteen training targets were presented to patient P01. These observations 272 

emphasized the ability of our model to differentiate between both subject- and subtask-273 
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specific time courses of motor improvement, also in a real clinical setting. The examples 274 

illustrate how the model adapted the training schedules according to the patients’ individual 275 

abilities, granting patient P01 enough time to practice the movements, and at the same time, 276 

responding to the fast recovery of patient P02 by continuously introducing new training 277 

targets.     278 

Upon completion of the full set of training targets (i.e., when all targets had been replaced at 279 

least once), the therapy was carried on by reintroducing all targets and presenting them 280 

alternatingly in the order in which they were replaced. This allowed us assessing whether the 281 

patients’ performance was retained once a training target was reintroduced, so as to validate 282 

that the replacements orchestrated by the algorithm had occurred when the movements 283 

towards the targets had actually recovered. In order to do so, we compared the mean values 284 

for MV, SAL, and SUCC from the last four repetitions of a movement before a target was 285 

replaced by the algorithm with the mean values of the four repetitions of the same movement 286 

after the first reinsertion as a training target (Fig. 4c). Both values are presented relatively to 287 

the mean values obtained from the first initial four repetitions of the movements towards a 288 

training target. The overall analysis for all eighteen targets showed that compared to the initial 289 

movements towards the targets, almost all values for the three performance measures were 290 

higher (MV by +8% for P01 and by +12% for P02, SAL by +3% (+10%) and SUCC by +10% 291 

(+0%)) right before the targets were replaced by the algorithm. Moreover, both patients 292 

retained or even improved their performance for a movement when the corresponding training 293 

target was reintroduced at a later stage. For both patients, we found no significant difference 294 

(p > 0.077) for the values of all three performance measures between the two time points (i.e., 295 

before replacement and after reinsertion). These results illustrate that the algorithm only 296 

replaced training targets when motor performance had stably improved. More importantly, 297 

both patients have retained these improvements when the training targets were reintroduced at 298 
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a later stage, suggesting that the timing of the replacement was appropriate. 299 

3 Discussion 300 

In this study, we presented and validated a model-based approach for the personalization of 301 

robotic rehabilitation training based on motor performance during three-dimensional training 302 

tasks. Capitalizing on the enhanced potential for plasticity in the early stage after the injury 303 

[44, 45], the model was designed to allow estimation of motor improvement (MI) in subacute 304 

stroke patients. A first experimental validation in healthy subjects demonstrated the ability of 305 

our model to capture MI linked to visual motor adaptation. The results were further validated 306 

by a clinical pilot test with two subacute stroke patients, in which motor recovery was tracked 307 

and harnessed by our personalization method. 308 

3.1 Motor improvement model for 3D reaching tasks 309 

One of the pivotal aspects underlying the development of a personalized rehabilitation 310 

training is the definition of performance measures that can correctly capture the different 311 

aspects of motor recovery, as well as their specific dynamics. Three performance measures 312 

were selected based on previous studies [28, 46] and used to devise a state-space model for 313 

MI estimation: movement velocity (MV), spectral arc length (SAL), and robot assistance 314 

dependency (SUCC). In past studies, the selected measures have been shown to correlate with 315 

clinical scores [47] and they have been linked to distinct post-stroke deficits and mechanisms 316 

of recovery [48, 49]. Specifically, the percentage of accomplished tasks was mostly associated 317 

to paresis (i.e., the decreased ability to volitionally modulate motor units activation [50]), 318 

whereas movement speed and smoothness were related to an abnormal muscle tone [48]. We 319 

therefore hypothesized that considering a combination of these measures was necessary to 320 

obtain a comprehensive assessment of the patient’s rehabilitative status. As such, we aimed to 321 

design a model capable of integrating the information coming from these multiple variables 322 
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into a single motor performance measure, that could i) allow a better tracking of the patient’s 323 

rehabilitation progress, and ii) simplify the design of an automatic and personalized training 324 

protocol, therefore possibly enhancing the efficacy of the robot-aided rehabilitation training.  325 

Using the robotic upper limb exoskeleton ALEx [39, 40], we designed a three-dimensional 326 

point-to-point reaching task, a training exercise commonly used in robotic rehabilitation 327 

therapy [41–43]. The movement amplitude was selected to allow the exploration of a 328 

functional workspace, while movement directions were chosen to elicit independent and 329 

synergistic motion of shoulder and elbow, capitalizing on the advantages provided by robotic 330 

exoskeleton devices [51]. Such design not only allowed the users to explore an extensive 331 

workspace, but also provided a way to easily assess their performance for the different regions 332 

of the workspace (i.e., for different subtasks, represented by the movements towards the 333 

different targets). The reaching task was displayed on a screen mounted in front of the 334 

participants and visual feedback was provided by means of a cursor mapping the position of 335 

the exoskeleton’s handle to the screen, an important aspect to avoid compensatory strategies 336 

[13]. The choice of a 2D screen was justified by the typically advanced age of post-stroke 337 

patients, who are usually not familiar and, therefore, often discomforted by 3D immersive 338 

reality. In order to preserve the depth perception, the dimension of the target spheres was 339 

modified in accordance with their position in the 3D space. Preliminary data from a group of 340 

age-matched healthy subjects (see Supplementary) showed that performance measures were 341 

not different for targets on the depth axes, confirming that the depth could be properly 342 

perceived by the users. 343 

3.2 Adaptation to visually manipulated reaching tasks in 3D 344 

We first sought to validate the model’s ability to continuously track MI and dynamically 345 

adjust the training task under controlled conditions. To this end, we presented a motor 346 

adaptation task to a group of seventeen healthy subjects. In order to mimic the motor deficits 347 
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observed in stroke patients, we introduced a manipulation of the visual feedback, by inverting 348 

the directions of the 3D environment. While the physiological mechanisms underlying motor 349 

adaptation and motor recovery are most likely not equivalent, the main objective of this 350 

experimental design was merely to obtain an adaptation curve that resembles post-stroke 351 

motor recovery, on which we could validate the efficacy of our model. Our results indeed 352 

illustrated that motor adaptation in healthy subjects and motor recovery in stroke patients 353 

exhibited similar temporal dynamics. 354 

During the experiments, the MI model tracked when a movement towards a target was 355 

performed efficiently despite the visual perturbation, and subsequently adjusted the training 356 

by replacing this target with a more difficult one from the training queue. Interestingly, we 357 

observed that the number of new training targets inserted strongly differed across participants, 358 

pointing out varying adaptation speeds. This result was not expected a priori, but it emerged 359 

as an unforeseen opportunity to highlight the model’s capability to differentiate individual 360 

motor adaptation rates. Based on the number of new inserted training targets, we divided the 361 

healthy population into two separate clusters: fast and slow adapters. The analysis on the 362 

performance measures showed that the fast adapters learned to cope with the manipulated 363 

environment very quickly, while the slow adapters needed considerably more time to reach 364 

similar performances. Interestingly, the two groups already showed differences in motor 365 

performances during the initial assessment. When the visual feedback was manipulated, the 366 

slow adapters presented a strongly reduced speed and motion smoothness. This was 367 

particularly the case earlier before the use of the adaptive algorithm and we, therefore, believe 368 

that the latter did not have an influence on the participants’ performance. The MI model, 369 

instead, was able to capture these individual performance differences at subtask level and 370 

coherently introduced new training subtasks in a well-timed manner, i.e., targets were 371 

replaced when subjects reached a performance plateau. The advantages of monitoring motor 372 
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improvement at subtask level were supported by additional post-hoc analyses (see 373 

Supplementary material). The analyses illustrated that if motor improvements were estimated 374 

for the reaching task as a whole (i.e., combining the recorded data for movements in all 375 

directions), improvements for individual subtasks would have been obscured by inferior 376 

performances of other, more difficult, subtasks. Moreover, the detection of performance 377 

plateaus would not correspond to the actual performances for any subtask. As a result, some 378 

subtasks would be kept too long, while others would be replaced too soon, potentially leading 379 

to a less efficient training schedule. For instance, the overall MI estimate based on the first 80 380 

repetitions of the slow adapter suggests a performance plateau already after 39 repetitions 381 

(which corresponds to approximately 5 repetitions for each subtask). However, when looking 382 

at the performance measures of this subject for target 13 separately, it is clear that a 383 

replacement of this target after 5 repetitions would have been premature. We therefore believe 384 

that this analysis further supports our approach to specifically consider MI estimation at 385 

subtask level.  386 

As hypothesized in the experimental design, off-axis targets were replaced less often than on-387 

axis targets and they, thus, seemed to be more difficult. However, the results showed that 388 

there were also remarkable performance differences among the on-axis targets. An analysis on 389 

the replaced training targets demonstrated that the subsets of easy (1, 7 and 10) and difficult 390 

(3, 5, 13 and off-axis) targets appeared to be similar for both types of adapters: easy targets 391 

were mostly replaced earlier and more frequently than the difficult ones. It could be that the 392 

medial and proximal movements towards targets 7 and 10 tended to be easier for the 393 

participants. However, since these tendencies were not observed in the patients or the healthy 394 

subjects involved in the preliminary study (see Supplementary material), we presume that the 395 

performance differences for the on-axis targets could be linked to the visually manipulated 396 

environment. Previous studies have investigated visual manipulation in planar reaching 397 
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movements and suggested that the adaptation to such manipulations involves a complex 398 

mixture of implicit and cognitive processes [33, 52]. However, further research would be 399 

necessary to examine these phenomena in three-dimensional reaching movements. As a 400 

matter of fact, existing literature covering this area is still relatively sparse. In this context, it 401 

would be interesting to determine why the reaching movements towards some on-axis targets 402 

appeared to be more challenging in the inverted environment, independent from the individual 403 

adaptation speed of the subjects.  404 

Finally, we would also like to raise the question of psychological implications resulting from 405 

the automated training adaption. From qualitative observations made during the experiments 406 

with the healthy subjects, we noticed that many participants showed increased motivation and 407 

verbalized satisfaction when new training targets were introduced. Motivation is known to be 408 

a crucial factor in rehabilitation and finding ways to maintain and improve it has always been 409 

a matter of interest [53–55]. With regard to this issue, it seems like the automated character of 410 

our approach, enabling dynamic and well-timed task adaptation, may have positive impacts 411 

on training engagement. Transferring this benefit to the rehabilitation program of patients may 412 

promote training motivation and hence potentially improve the clinical outcome of robot-413 

aided rehabilitation trainings. 414 

3.3 Personalization of rehabilitation therapy 415 

The potential of our implementation was finally evaluated in a clinical pilot test with two 416 

subacute stroke patients, who completed four weeks of robot-aided rehabilitation training 417 

following our adaptive approach.  418 

The results obtained from these two patients suggested that in general, the selected 419 

performance measures (MV, SAL and SUCC) appeared to be suitable for the use with the 420 

presented motor improvement model and the temporal dynamics appeared to be coherent with 421 
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the chosen probability models and with results from previous work [49]. We observed 422 

improvements for all three performance measures following the training. Nevertheless, some 423 

tuning of the parameters could be considered to further enhance the efficacy of the motor 424 

improvement model. For instance, we observed that the patient with a lower degree of initial 425 

impairments (P02) barely made use of the robotic assistance provided by the exoskeleton, 426 

leading to almost no variance in the variable SUCC. In this regard, future studies may explore 427 

other performance measures and models, such as the ones proposed by Panarese et al. [28, 428 

49], to achieve a more exhaustive evaluation of the patients’ status.  429 

Based on the devised method, the training of the two patients following the personalized 430 

rehabilitation protocol was continuously monitored and the point-to-point reaching task was 431 

adapted in real-time to match their level of ability. The analysis showed that targets were 432 

indeed replaced by the model at appropriate moments, i.e., when the patients’ performance 433 

had improved and started to saturate. Indeed, it could be argued that a replacement of a 434 

subtask occurring too soon would have led to degraded motor performances in further 435 

evaluations. However, the results demonstrated that motor performances of both patients were 436 

retained when targets were reintroduced, indicating that the estimated recovery was preserved. 437 

Nevertheless, other methods for training scheduling could be introduced to further optimize 438 

the training progression. Indeed, previous work has suggested that effective scheduling of 439 

multitask motor learning should be based on prediction of long-term gains rather than on 440 

current performance changes [56]. Along these lines, we have implemented the time window 441 

of the last four repetitions, which are always taken into account for the evaluation of motor 442 

performance. However, it should be acknowledged that other, more sophisticated, methods to 443 

adapt the schedules may lead to higher gains in rehabilitation and are therefore worth 444 

exploring. For instance, task difficulty could be increased by introducing new subtasks 445 

depending on more complex movements within the same workspace, in order to exploit 446 
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generalization effects [57, 58]. Another possible approach could be a semi-automatic 447 

implementation of the personalization, where the physical therapists remains in charge of the 448 

task adaptation, in order to benefit from their expertise, while in parallel harnessing the real-449 

time MI estimates provided by the model as a decision support. Such solutions could further 450 

improve engagement and enhance the rehabilitative treatment by providing training tasks 451 

specifically adapted to the ability level of the patient.   452 

As a way to measure the clinical outcome of the rehabilitative interventions, the patients 453 

completed the Fugl-Meyer assessment for upper extremities in all initial and final assessment 454 

sessions. When comparing the scores of the patients between the second initial assessment 455 

AI,2 and the first final assessment AF,1, we found that both patient P01 (+8 points) and patient 456 

P02 (+3 points) improved. Considering the scores at the follow-up session, AF,2, four weeks 457 

after completion of the training, this improvement was further sustained for both patients (+12 458 

points for P01 and +6 points for P02). In addition to this gain in FMA-UE scores, the 459 

improvement of motor performance, along with its subsequent retention at target reinsertion, 460 

are promising indications for the usability and efficacy of the presented approach in clinical 461 

settings. Nevertheless, it is also well known that subacute patients often report motor 462 

improvements even with limited training [59]. Therefore, it cannot be presumed that 463 

improvements were merely elicited by the robotic rehabilitation trainings. However, several 464 

pieces of evidence suggested that the period immediately after the lesion, normally 465 

characterized by spontaneous neurological recovery, represents the critical time window in 466 

which the delivery of high dose and intense neurorehabilitation can elicit crucial 467 

improvements in functional tasks [60, 61]. Therefore, more and more robot-aided 468 

rehabilitation trainings should be targeting subacute stroke populations. In this context, our 469 

results illustrate the feasibility of using a personalization method to continuously monitor the 470 

status of both mild and severely impaired post-stroke patients and to automatically adapt their 471 
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motor retraining within practice sessions. The latter might be particularly pivotal in the 472 

context of rehabilitation training for subacute stroke patients. In contrast to chronic patients, 473 

this population often shows potential for quick recovery [49], calling for prompt training 474 

adjustments in order to continuously challenge their neuromuscular system. 475 

Nevertheless, further studies including larger cohorts of participants would be necessary to 476 

draw meaningful conclusions about the clinical relevance of the presented approach. In this 477 

context, it would be particularly interesting to compare the clinical outcomes of the 478 

personalized approach presented in this study with non-adaptive robotic or conventional 479 

rehabilitation trainings. Indeed, previous work has suggested that pseudo-random scheduling 480 

of multiple tasks may be almost as effective as adaptive scheduling approaches [56]. To 481 

demonstrate clinical relevance, it is therefore crucial to assess the efficacy of the presented 482 

approach in large clinical trials, focusing their activity on the comparison of adaptive and non-483 

adaptive schedules. In this context, the results obtained from this work may provide a useful 484 

basis for the design and implementation of such clinical studies. 485 

4 Conclusions 486 

In this work, we presented a model-based approach to personalize robot-aided rehabilitation 487 

therapy within rehabilitation sessions. The feasibility of this approach was validated in 488 

experiments with seventeen healthy subjects and a pilot test with two subacute stroke patients 489 

providing promising results. However, due to the limited sample size, larger studies would be 490 

needed to demonstrate clinical relevance of the presented approach. While we implemented 491 

the proposed method for the use in upper limb rehabilitation of stroke patients, the usage is 492 

certainly not limited to such applications. The presented model can be adapted for the use 493 

with other robotic rehabilitation devices and training tasks, exploiting different performance 494 

measures and/or different observation equations. The real-time functionality and the 495 
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identification of subject-specific abilities at subtask level could enhance robot-aided 496 

rehabilitation training, making it more purposive and efficient for the patients.  497 

5 Methods 498 

Based on the work of Panarese et al. [28], we developed a model to continuously estimate 499 

motor improvement (MI) in three-dimensional workspaces using kinematic performance 500 

measures. We then designed a personalization routine, which automatically adapts the 501 

difficulty of the rehabilitative motor task (i.e., a point-to-point reaching task) based on the MI 502 

estimates. Both the MI model and the personalization routine were integrated in the control 503 

algorithm of an upper-limb exoskeleton and tested with a group of 17 healthy participants. 504 

The presented approach was then tested with two subacute stroke patients.  505 

5.1 Motor improvement model 506 

In order to continuously track patients’ MI at subtask level (i.e., for a series of point-to-point 507 

reaching movements in different directions), we used a state-space model. MI was modelled 508 

as a random walk: 509 

��� � ����� � �� (1) 

where k are the different repetitions for a movement direction and �� are independent 510 

Gaussian random variables with zero mean and variance σ�
�. A set of observation equations 511 

zj,k was defined in order to estimate MI. These equations related MI to continuous 512 

performance measures rj, which were computed from kinematic recordings provided by the 513 

robotic device (see section 5.2 for details on the performance measures). The continuous 514 

variables rj (with � �  1, . . ,  representing the different performance measures) were defined 515 

by the log-linear probability model 516 
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��,� � ������,�� �  �� � ����� � ��,� (2) 

where δ�,� are independent Gaussian random variables with zero mean and variance σ	,

� . The 517 

use of log-linear models allowed capturing rapid increases (or decreases) of the performance 518 

measures during the training, as well as the expected convergence towards subject-specific 519 

upper (or lower) bounds at the end of the training. The suitability of such probability models 520 

for motor performance measures in stroke patients was previously demonstrated [28, 49]. 521 

Similarly, an observation equation for a discrete performance measure nk was defined. The 522 

binary discrete variable nk ∈ {0, 1} was used to track the completion of the exercised subtask, 523 

with 1 meaning that the subtask was performed successfully and 0 meaning failure. The 524 

observation model for nk was assumed to be a Bernoulli probability model: 525 

�����|���  � ��
���1 � ������� (3) 

where pk, the probability of performing the subtask successfully at repetition k, was related to 526 

MIk by a logistic function: 527 

�� �
��������

1 � ��������
 

(4) 

ensuring that pk was constrained in [0, 1]. Furthermore, this formulation guaranteed that pk 528 

would approach 1 with increasing MI.  529 

The model parameters {αj, βj, σδ,j, σ�, pk} were estimated for each individual subject using the 530 

recordings of rj,k and nk (i.e., kinematic recordings from the robotic device, see Section 2.4) 531 

and by applying Bayesian Monte Carlo Markov Chain methods. The estimation of the 532 

parameters resulted in an estimate for MI. In order to ensure accuracy of the model, it was 533 

necessary that the number of recordings of rj,k and nk exceeded the number of parameters. 534 

Based on simulations performed with varying number of data points (see Supplementary 535 

material), the minimum number of data points for MI estimation was set to 8. In order to 536 
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validate the capability of the proposed approach to appropriately capture variable dynamics of 537 

the performance measures, we simulated different rehabilitation scenarios under varying 538 

conditions (see Supplementary material). As we aimed at estimating MI at subtask level, 539 

separate MI models were used for each movement direction of the training exercise. 540 

5.2 Performance measures 541 

Previous studies have shown that mechanisms of post-stroke recovery can be described by 542 

factors related to movement speed, smoothness, and efficiency [28, 47, 49]. Unlike 543 

physiological signals, these kinematic performance measures can be easily recorded and 544 

processed in real-time, promoting their use in clinical settings. In this study, we selected two 545 

continuous performance variables rj for the use with the MI model: i) the mean velocity of a 546 

movement (MV) and ii) the spectral arc length (SAL), a robust and consistent measure of 547 

movement smoothness [46]. SAL is a dimensionless measure quantifying movement 548 

smoothness by negative values, where higher absolute values are related to jerkier 549 

movements. Regarding rehabilitation training, values of SAL close to zero are desirable, as 550 

well as high values of MV. Both measures were computed from the Cartesian coordinates of 551 

the three-dimensional trajectory of the robotic handle (see section D. Robotic exoskeleton and 552 

motor task). The discrete variable nk, instead, was denoted as success (SUCC) and defined 553 

separately for the experiments with the healthy participants and the patients. For the patients, 554 

the value of SUCC was determined by the robotic assistance (i.e., SUCC = 1 if the patient 555 

performed the movement without robotic assistance, SUCC = 0 otherwise). On the other 556 

hand, the healthy participants were expected not to rely on the robotic assistance, although it 557 

was also provided if necessary. This assumption was supported by preliminary experiments 558 

with healthy subjects (see Supplementary). Therefore, in order to have an equivalent discrete 559 

variable for the experiment with healthy subjects, we defined the value of SUCC based on the 560 

execution time (i.e., SUCC = 1 if a healthy participant completed the movement within the 561 
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time threshold tth, SUCC = 0 otherwise). The time threshold tth was set to 4 seconds based on 562 

preliminary experiments with healthy subjects (see Supplementary). 563 

5.3 Personalization routine 564 

Using the model described in the previous section, MI was continuously tracked for each 565 

subtask (i.e., single movement towards target, see Section 5.4) and used to implement a 566 

personalized training routine. At the beginning of the training, we identified the subject-567 

specific difficulty level for each subtask of the training exercise based on an initial assessment 568 

of the performance measures. The subtasks were then ordered by increasing difficulty and the 569 

easiest ones were selected as the initial training set (see section 5.6 for details on the ordering 570 

of the single movements). During the training, a subtask was removed from the set of current 571 

training subtasks when the MI estimates for this movement exceeded a given threshold and 572 

approached a plateau. Specifically, the probability of performing the subtask successfully (pk, 573 

see Section 5.1) had to be greater than 0.5, and the difference between two consecutive MI 574 

values (i.e., between two repetitions of the same subtask) had to be smaller than 5% for at 575 

least four repetitions. Given the observation equation for pk, the former condition (pk > 0.5) 576 

can be equally expressed in terms of the motor improvement: MIk > 0. Once these conditions 577 

were satisfied, the subtask was replaced by a more difficult one from the training queue. The 578 

removed subtask was placed back into the training queue, so that it could be reintroduced at a 579 

later stage. 580 

5.4 Robotic exoskeleton and motor task 581 

We implemented the motor improvement model and the personalization routine in the robotic 582 

upper-limb exoskeleton ALEx [39, 40]. During the experiments, the patient and the healthy 583 

participants were instructed to perform point-to-point reaching movements at their 584 

comfortable speed (Fig. 1a). All reaching movements started from the center of the workspace 585 
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and the goal was to reach one of the eighteen targets distributed over a sphere of 19 cm of 586 

radius (Fig. 1b). Each movement towards a target represented a subtask. This design allowed 587 

exploiting an extensive three-dimensional workspace and provided means to easily identify all 588 

subtasks of the exercise. The sphere was positioned so that its center was aligned with the 589 

acromion of the right arm mid-way between the center of the target panel and the subject’s 590 

acromion. The targets were displayed on a screen mounted in front of the subjects and visual 591 

feedback was provided by means of a cursor mapping the position of the exoskeleton’s handle 592 

to the screen. In order to preserve the depth perception, the dimensions of the target spheres 593 

were modified in accordance with their position in the 3D space. If a subject was unable to 594 

reach a target (i.e., the subject did not move for more than 3 seconds), ALEx activated its 595 

assistance mode to guide the subject towards the target according to a minimum jerk speed 596 

profile [62]. 597 

5.5 Participants 598 

5.5.1 Healthy participants 599 

Seventeen right-handed subjects (eight males, nine females, 25.4 ± 3.3 years old) participated 600 

in the experimental validation of our approach. The participants did not present any evidence 601 

or known history of skeletal and neurological diseases and they exhibited normal ranges of 602 

motion and muscle strength. All participants gave their informed consent to participate in the 603 

study, which had been previously approved by the Commission Cantonale d'Éthique de la 604 

Recherche Genève (CCER, Geneva, Switzerland, 2017-00504). 605 

5.5.2 Subacute stroke patients 606 

Two subacute stroke patients from the inpatient unit of the Hôpitaux Universitaires de Genève 607 

(HUG, Geneva, Switzerland) were included in the study. A summary of the patient 608 

information is reported in Table 1. Both patients suffered from a right hemiplegia with at least 609 

10° of residual motion in shoulder and elbow joints. The patients were enrolled in the study 610 
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within two to eight weeks after the stroke and underwent a therapy following the adaptive 611 

robotic rehabilitation protocol described in section 5.6. The patients received the robot-aided 612 

treatment in addition to a standard non-robotic rehabilitation therapy: each patient received 613 

two sessions of 30 minutes of physical therapy per day, five days per week, as well as five 614 

sessions of 30 minutes of occupational therapy per week, on an inpatient basis, for 8 to 16 615 

weeks. This was followed by an outpatient treatment of 1-4 hours of physical and 616 

occupational therapy per week. All patients gave their informed consent to participate in the 617 

study. This study is registered in ClinicalTrials.gov (NCT02770300) and the experimental 618 

protocols were approved by Swissmedic and Swissethics. 619 

Table 1.  Demographics and information of the stroke patients included in the study 620 

 621 

Patient Gender Age Weight (kg) Height 
(cm) 

Hand 
Dominancy 

Enrolment after 
lesion 

P01 Male 86 66 165 right 3 weeks 

P02 Male 65 81 180 right 2 weeks 

5.6 Experimental protocols 622 

5.6.1 Healthy participants 623 

The healthy participants attended a single experimental session, which comprised seven 624 

blocks of reaching movements (Fig. 1c). Breaks were allowed between the blocks to prevent 625 

fatigue. The session started with an initial assessment block consisting of three runs (AI,1-3). 626 

During each run all 18 targets were presented once and in a randomized order. The purpose of 627 

the assessment block was i) to allow familiarization with the robotic system and the motor 628 

task and ii) to record a baseline for the performance measures. This block was followed by 629 

five blocks B1-5 during which the visual feedback was inverted (i.e., an upward movement was 630 

displayed as downward and vice versa, likewise for left/right and forward/backward 631 

movements). This visual manipulation was introduced to induce motor performances with 632 

temporal dynamics resembling the ones observed in robot-aided rehabilitation of stroke 633 

patients [28, 37, 38]. At the onset of the five inversion blocks, participants were not informed 634 
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about the manipulation of the visual feedback, but they were told that the task difficulty was 635 

changed. Each of the five inversion blocks B1-5 consisted of five runs, each one composed of 636 

eight point-to-point reaching movements for a total of 40 reaching movements per block.  637 

The initial set of training targets for each participant was generated following a semi-638 

randomized procedure: it always contained the six on-axis targets (i.e., targets 1, 3, 5, 7, 10 639 

and 13, see Fig. 1b) and two randomly selected off-axis targets (i.e., targets 2, 4, 6, 8, 11, 14, 640 

15, 16, 17 and 18). The presentation order of the eight initial training targets was randomized. 641 

The remaining ten off-axis targets were placed randomly in the training queue. Previous 642 

studies using planar setups [33, 63] demonstrated that participants showed better performance 643 

for targets lying on the axis perpendicular to the inversion. Although in this study we used a 644 

three-dimensional setup, we also hypothesized that participants would have less difficulty 645 

with the on-axis targets, as they involved inversions in only one dimension (in contrast to 646 

inversions in two dimensions for the off-axis targets).  647 

During the five inversion blocks B1-5, a target was removed from the current set of training 648 

targets if the MI estimates for this subtask satisfied the replacement conditions (see section 649 

5.3). In this case, the target was replaced by the next one in the training queue. The inversion 650 

blocks B1-5 were followed by a final assessment block which was composed of three runs 651 

(AF,1-3) and followed the same procedure as the initial assessment block (i.e., neither visual 652 

manipulation nor personalization were applied). The data acquired during the assessment 653 

blocks (i.e., AI,1-3 and AF,1-3) were not considered for the MI estimation. 654 

5.6.2 Subacute stroke patients 655 

The experimental protocol for the patients consisted of four weeks of robot-aided 656 

rehabilitation therapy (Fig. 1d), with three sessions of 30 minutes per week. The training 657 

comprised the regular point-to-point reaching task (see section 5.4). In order to evaluate the 658 

outcome of their rehabilitation training, the patients completed two assessment sessions 659 
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before (AI,1-2) and after (AF,1-2) the therapy. The initial assessment sessions AI,1-2 were 660 

completed two weeks and one week before the beginning of the therapy. The final assessment 661 

sessions AF,1-2 were completed one week and one month after the end of the therapy. During 662 

the initial and final assessment sessions, all eighteen targets of the point-to-point reaching task 663 

were presented to the patients in a randomized order. The total amount of reaching 664 

movements for each session was determined by the physical therapist while encouraging the 665 

patient to perform as many movements as possible. In addition, the patients were evaluated 666 

using the upper extremity section of the Fugl-Meyer assessment (FMA-UE, [64]). 667 

For the treatment sessions, we first identified the patient-specific difficulty for each of the 18 668 

targets following the initial assessment sessions AI,1-2. Specifically, we analyzed the mean 669 

values of MV, SAL and SUCC for each of the eighteen training targets. The targets were first 670 

ordered by descending (i.e., starting from easier targets) mean values of SUCC (rate of 671 

SUCC). If several targets had equal values for the rate of SUCC, the order amongst them was 672 

determined by their mean values for MV and SAL, while giving both measures equal weight. 673 

The first eight targets of the resulting list were selected as the initial training targets. The 674 

remaining targets were placed in a training queue while conserving the determined order of 675 

difficulty. During the therapy (W1-W4, see Fig. 1), MI was continuously estimated for each 676 

training target separately. The replacement of a training target based on the MI estimates 677 

followed the procedure presented in Section 5.3. The current set of training targets was saved 678 

after the completion of each training session, ensuring continuity between sessions. The total 679 

amount of reaching movements for each session was determined by the physical therapist 680 

while encouraging the patient to perform as many movements as possible. 681 

5.7 Statistical analysis 682 

A two-sample t-test was used to compare the performance differences between two groups 683 

within the healthy population (fast and slow adapters). A two-way ANOVA was used to 684 
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assess the interaction effects of visual manipulation (introduced between A3 and B1) and 685 

adaptation speed (fast and slow adapters) in healthy participants. A paired t-test was used to 686 

compare the performances between different time points for the patients performing the pilot 687 

test. A significance level of 0.05 was used for all analyses. All analyses were performed using 688 

MATLAB (The MathWorks, Natick, Massachusetts). 689 
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Figure captions 894 

Figure 1.  Experimental setup and protocols. (a) Schematic overview of experimental setup. 895 

(b) Design of the three-dimensional point-to-point reaching task. Eighteen targets 896 

(representing the different subtasks) are positioned over a sphere of 19 cm of radius (equally 897 

distributed on the three planes). The empty circle represents the center of the workspace 898 

(starting position). (c) Experimental protocol for healthy participants. Experiments were 899 

completed in a single session and were divided into blocks (one initial assessment block AI,1-3, 900 

five inversion blocks B1-5, one final assessment block AF,1-3). The assessment blocks consisted 901 

of three runs, each composed of 18 reaching movements (one towards each target). The 902 

inversion blocks consisted of five runs, each composed of eight reaching movements. The 903 

training targets for the inversion blocks were automatically selected by the implemented 904 

personalization routine. Breaks were allowed between the blocks to prevent fatigue. (d) 905 

Experimental protocol for the patient. During the initial (AI,1-2) and final (AF,1-2) assessment 906 

sessions, all eighteen targets were presented to the patient. For each treatment session eight 907 

training targets were selected by the implemented personalization routine. The total number of 908 

repetitions performed in each session was determined by the physical therapist.  909 
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Figure 2.  Analysis of performance measures for the experiment with healthy participants. 910 

Average values of mean velocity (MV, panel a), spectral arc length (SAL, panel b) and rate of 911 

SUCC (panel c) for each run (eight reaching movements) of fast (red) and slow (grey) 912 

adapters. Measures were averaged for all targets presented during a run and for all subjects of 913 

a group. Shaded areas depict standard error of the mean (sem). Vertical bars (panel d) depict 914 

the percentage of subjects in each group for which a target was replaced in B3-5 or was not 915 

replaced at all. No targets were replaced in and B1-2 due to lack of data needed for proper 916 

estimation of motor improvement.  917 

Figure 3.  Examples of MI estimates and performance measures at subtask level. Data is 918 

presented for a fast adapter and a slow adapter for the same two targets. Repetitions for each 919 

target are concatenated for all inversion blocks and presented in chronological order. Data for 920 

mean velocity (MV), spectral arc length (SAL) and MI were low-pass filtered for 921 

visualization purposes (raw data shown in light red/grey). Dotted lines depict one of the 922 

necessary conditions (MI > 0) for triggering a target replacement. Green areas indicate the 923 

time span where the model detected a performance plateau and triggered a target replacement. 924 

Estimated model parameters (αj, βj) for each target and subject are presented next to the 925 

corresponding MI curves (a summary and analysis on the model parameters can be found in 926 

the Supplementary material). 927 

Figure 4.  Summary of the results from the pilot test with two subacute stroke patients. (a) 928 

The first three rows show the mean values for mean velocity (MV), spectral arc length (SAL) 929 

and rate of success (SUCC) for each assessment and treatment session. Measures were 930 

averaged for all targets presented during a session, shaded areas depict standard error of the 931 

mean (SEM). The fourth row shows number of movements performed by the patients in each 932 

session.  The fifth row shows the scores on the Fugl-Meyer scale for upper extremities (FMA-933 

UE) for initial (AI,1-2) and final (AF,1-2) assessment sessions. The dotted line indicates the 934 
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maximum achievable score for FMA-UE (66 points). Last column shows changes for all 935 

metrics between the final assessments AF,1-2 and the second initial assessment AI,2. Error bars 936 

depict standard error of the mean (SEM). Statistical significance between values are indicated 937 

by asterisks (*, p < 0.05) or dashes (-, p > 0.05). (b) Summary of the training targets presented 938 

to the patients in each treatment session. Targets are listed by the order as presented to the 939 

patients (first eight targets from the top are the initial training set). (c) Analysis of 940 

performance measures for two different time points (i.e., before replacement and after 941 

reinsertion). The data shows the mean values for MV, SAL and SUCC averaged for all targets 942 

at these time points. Values are compared between the last four movements towards a training 943 

target before its replacement and the first four movements towards the target after it has been 944 

reinserted for training. Values are given relatively to the mean values obtained from the first 945 

four movements towards all targets. Error bars depict standard error of the mean (SEM). 946 

Statistical significance between values are indicated by asterisks (*, p < 0.05) or dashes (-, p > 947 

0.05). 948 
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