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Abstract

Principal component analysis (PCA) is a key tool for understanding population structure
and controlling for population stratification in genome-wide association studies (GWAS). With
the advent of large-scale datasets of genetic variation, there is a need for methods that can
compute principal components (PCs) with scalable computational and memory requirements.
We present ProPCA, a highly scalable method based on a probabilistic generative model, which
computes the top PCs on genetic variation data e�ciently. We applied ProPCA to compute
the top five PCs on genotype data from the UK Biobank, consisting of 488,363 individuals and
146,671 SNPs, in less than thirty minutes. Leveraging the population structure inferred by
ProPCA within the White British individuals in the UK Biobank, we scanned for SNPs that are
not well-explained by the PCs to identify several novel genome-wide signals of recent putative
selection including missense mutations in RPGRIP1L and TLR4.
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Author Summary

Principal component analysis is a commonly used technique for understanding population structure
and genetic variation. With the advent of large-scale datasets that contain the genetic information
of hundreds of thousands of individuals, there is a need for methods that can compute principal
components (PCs) with scalable computational and memory requirements. In this study, we present
ProPCA, a highly scalable statistical method to compute genetic PCs e�ciently. We systematically
evaluate the accuracy and robustness of our method on large-scale simulated data and apply it to
the UK Biobank. Leveraging the population structure inferred by ProPCA within the White British
individuals in the UK Biobank, we identify several novel signals of putative recent selection.

Introduction

Inference of population structure is a key step in population genetic analyses [1] with applications
that include understanding genetic ancestry [2–4] and controlling for confounding in genome-wide
association studies (GWAS) [5]. While several methods have been proposed to infer population
structure (e.g., [6–10]), principal component analysis (PCA) is one of the most widely used [11, 6].
Unfortunately, the naive approach for estimating principal components (PCs) by computing a full
singular value decomposition (SVD) scales quadratically with sample size (for datasets where the
number of SNPs is larger than sample size), resulting in runtimes unsuitable for large data sets.

In light of these challenges, several solutions have been proposed for the e�cient computation
of PCs. One approach taken by two recent scalable implementations (FastPCA [12] and Flash-
PCA2 [13]) takes advantage of the fact that typical applications of PCA in genetics only require
computing a small number of top PCs; e.g. GWAS typically use 5-20 PCs to correct for strat-
ification [14]. An alternative approach for e�cient computation of PCs takes advantage of the
parallel computation infrastructure of the cloud [15]. However, the cost of cloud usage is roughly
proportional to the number of CPU hours used by these algorithms, making them cost-prohibitive.
Finally, these scalable implementations lack a full probabilistic model, making them challenging to
extend to settings with missing genotypes or linkage disequilibrium (LD) between SNPs.

In this work, we describe ProPCA, a scalable method to compute the top PCs on genotype
data. ProPCA is based on a previously proposed probabilistic model [16, 17], of which PCA is a
special case. While PCA treats the PCs and the PC scores as fixed parameters, probabilistic PCA
imposes a prior on the PC scores. This formulation leads to an iterative Expectation Maximization
(EM) algorithm for computing the PCs. ProPCA leverages the structure of genotype data so that
each iteration of the EM algorithm can be computed in time that scales sub-linear in the number
of individuals or SNPs. The EM algorithm requires only a small number of iterations to obtain
accurate estimates of the PCs resulting in a highly scalable algorithm.

In both simulated and real data, ProPCA is able to accurately infer the top PCs while scaling
favorably with increasing sample size. We applied ProPCA to compute the top five PCs on genotype
data from the UK Biobank, consisting of 488,363 individuals and 146,671 SNPs, in less than
thirty minutes. Leveraging the population structure inferred by ProPCA within the White British
individuals in the UK Biobank [18], we scanned for SNPs that are not well-modeled by the top
PCs to identify several novel genome-wide signals of recent positive selection. Our scan recovers
sixteen loci that are highly di↵erentiated across the top five PCs that are likely signals of recent
selection. While these loci include previously reported targets of selection [12], the larger sample
size that we analyze here allows us to identify eleven novel signals including a missense mutation
in RPGRIP1L (p = 2.09⇥ 10�9) and another in TLR4 (p = 7.60⇥ 10�12).
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A number of algorithms that analyze genotype data, including methods for heritability estima-
tion and association testing, can be modeled as iterative procedures where the core computational
operation is similar to that solved by ProPCA. Thus, the algorithm that we employ in this work
can potentially lead to highly scalable algorithms for a broad set of population genetic analyses.

Results

Accuracy We first assessed the accuracy of ProPCA using the simulation framework described
in the Methods. We generated datasets containing 50, 000 SNPs and 10, 000 individuals across q
populations, where q was chosen to be 5 and 10. The populations were simulated with varying
levels of population di↵erentiation that are typical of present-day human populations (values of Fst

ranging from 0.001 to 0.01) and were small enough so that we could compute the full SVD thereby
allowing us to estimate the accuracy of the PCs computed by ProPCA. To measure accuracy, we
computed the mean of explained variances (MEV), a measure of the overlap between the subspaces
spanned by the PCs estimated by ProPCA compared to the PCs computed using a full SVD
(Methods). ProPCA estimates highly accurate PCs (values of MEV close to 1) across the range of
parameters (Table 1).

Runtime We assessed the scalability of ProPCA with increasing sample size (Methods). We
simulated genotypes from five populations containing 100, 000 SNPs and sample sizes varying from
10, 000 to 1, 000, 000 with Fst = 0.10.

We compared the wall-clock time for running ProPCA, the SVD implementation in PLINK
(PLINK SVD [19]), FastPCA [12] and FlashPCA2 [13]. The SVD implementation in PLINK could
not run in reasonable time on datasets exceeding 70, 000 individuals (Figure 1a). While FastPCA,
FlashPCA2 and ProPCA all scale with sample size, ProPCA is about four times faster than Fast-
PCA and twice as fast as FlashPCA2 (Figure 1b) . ProPCA computes PCs in about 30 minutes
even on the largest data containing a million individuals and 100, 000 SNPs.

Since ProPCA, FastPCA, and FlashPCA2 are all based on iterative algorithms, their runtimes
depend on details of convergence criterion. We performed an additional experiment to compare
the runtime of ProPCA and FastPCA (for which we could instrument the source code) for a single
iteration and found ProPCA to be three to four times faster than FastPCA across the range of
sample sizes (Figure S1). Measuring the accuracy of the PCs (MEV) as a function of runtime
(on datasets with a range of Fst containing 50, 000 SNPs and 10, 000 individuals so that we could
compare the estimated PCs to exact PCs), ProPCA attains a given MEV in about half the time
as FastPCA (Figure 2). We were unable to include FlashPCA2 in these comparisons as we were
unable to instrument the source code to control the number of iterations.

Application to real genotype data We applied ProPCA to genotype data from Phase 1 of the
1000 Genomes project [20]. On a dataset of 1092 individuals and 442, 350 SNPs, ProPCA computes
the top five PCs with an MEV of 0.968 producing PCs that are qualitatively indistinguishable from
running a full SVD (Figure S4, Table S1). We also applied ProPCA to genotype data from the UK
Biobank [18] consisting of 488, 363 individuals and 146, 671 SNPs after QC. ProPCA can compute
the top five PCs in about 27 minutes and the resulting PCs reflect population structure within the
UK Biobank, consistent with previous studies [18] (Figure 3a).

Application to scans for selection We developed a statistical test to search for SNPs that
are not well-modeled by the ProPCA model as a means of discovering signals of natural selection
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(Methods).This statistic relies on the observation that a SNP evolving under positive selection is
expected to exhibit di↵erentiation in the frequencies of its alleles that is extreme compared to a
typical SNP that is evolving neutrally [21]. Since deviations from the ProPCA model can occur due
to reasons unrelated to selection, we filtered out SNPs with high rates of missingness, low minor
allele frequency (MAF), and presence in regions of long-range LD [22](Methods). We ran ProPCA
to infer the top five PCs on 276, 736 unrelated White British samples and the UK Biobank SNP
set consisting of 146, 671 SNPs obtained by further removing SNPs in high LD (Figure S5).

The Pearson correlation coe�cient between birth location coordinates and the PC score for
each individual reveals that the estimated PCs capture geographic structure within the UK (Figure
3b, Figure S6, Table S2). We used these PCs to perform a selection scan on a larger set of 516, 140
SNPs and we report SNPs that are genome-wide significant after accounting for the number of
SNPs as well as PCs tested (p-value < 0.05

6⇥516,140 ; we use 6 to account for the additional combined
test statistic that we describe later). We ensured that the selection statistic for each PC was well-
calibrated against a �2

1 distribution (Fig. S7) and genomic inflation (�GC) values for each of the
PCs showed no substantial inflation (Table S3). While our statistic is closely related to a previously
proposed statistic to detect selection on PCs [12], we found that our proposed statistic is better
calibrated (Table S3).

Our scan revealed a total of 59 SNPs that were genome-wide significant (Table S4). Clustering
these signals into 1 Mb windows centered around the most significant SNP for each PC, we obtained
twelve non-overlapping loci that contain putative targets of selection (Figure 4, Table S5). These
twelve loci include five that were previously reported to be signals of selection in the UK with
genome-wide significance: LCT (rs7570971 with p = 8.51⇥ 10�16), TLR1 (rs5743614, p = 5.65⇥
10�25), IRF4 (rs62389423, p = 8.80 ⇥ 10�42), HLA (rs9267817, p = ⇥6.17 ⇥ 10�9), and FUT2

(rs492602, p = 7.02 ⇥ 10�10) [12]. The larger sample size that we analyze here also reveals novel
signals at additional loci. Four of the twelve signals were previously suggested to be signals of
selection but were not genome-wide significant: HERC2 (rs12913832, p = 5.21⇥10�10), RPGRIP1L

(rs61747071, p = 2.09⇥ 10�9), SKI (rs79907870, p = 2.58⇥ 10�9), rs77635680 (p = 2.22⇥ 10�10)
[12] while the remaining three loci: HERC6 (rs112873858, p = 2.68 ⇥ 10�11), rs6670894 (p =
4.98⇥ 10�9), and rs12380860 (p = 8.62⇥ 10�9) appear to be previously unreported (Section S7).

To validate our findings, we utilized birth location coordinates for each individual and assigned
them to geographical regions in the UK as defined in the Nomenclature of Territorial Units for
Statistics level 3 (NUTS3) classification. We performed a test of association between the allele
frequency of the top SNP in each of our novel loci with geographical regions (Table S9) and
confirmed that SNPs identified in our selection scan show di↵erences in allele frequencies across
specific geographical regions (Table S9).

One of the novel genome-wide significant loci is RPGRIP1L. RPGRIP1L is a highly conserved
gene that encodes a protein that localizes at primary cilia and is important in development [23].
Mutations in this gene have been implicated with neurological disorders such as Joubert syndrome
and Meckel syndrome [24], conditions that sometimes also result in additional symptoms such as
eye diseases and kidney disorders [25]. The SNP with the most significant p-value in our scan in
RPGRIP1L, rs61747071, is a missense loss-of-function mutation A229T that has been shown to
lead to photoreceptor loss in ciliopathies [26].

We created an additional variant of our selection statistic which tests for SNPs that are not
well-modeled by a linear combination of the first five PCs by summing the per-PC �2

1 statistics
resulting in a new chi-squared statistic with five degrees of freedom. Combining signals across PCs
has been previously shown to boost power in association testing [27]. We verified that the resulting
combined statistic is also calibrated (Fig S7 and Table S3). Under this combined statistic, we
recover majority of the loci found on each individual PC, but we also discover four additional novel
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loci: AMPH (rs118079376, p = 2.64 ⇥ 10�10), TLR4 (rs4986790, p = 7.60 ⇥ 10�12), rs9856661
(p = 6.46⇥ 10�9), and rs116352364 (p = 5.24⇥ 10�11) (Table S8).

TLR4 is a member of the toll-like receptor family. The TLR gene family is known to play a
fundamental role in pathogen recognition and activation of innate immunity, but TLR4 in particular
is involved with proinflammatory cytokines and has a pro-carcinogenic function [28]. The SNP
with the most significant p-value at our TLR4 locus is rs4986790, a missense D299G mutation
and D259G mutation on two di↵erent transcripts for the TLR4 gene. The D299G mutation is of
particular interest as this mutation is strongly correlated with increased infection by Plasmodium

falciparum, a parasite that causes malaria [29, 30]. Additional details on the signals of selection
can be found in the Supplementary Information (SI Section S7).

Discussion

We have presented, ProPCA, a scalable method for PCA on genotype data that relies on performing
inference in a probabilistic model. Inference in this model consists of an iterative procedure that uses
a fast matrix-vector multiplication algorithm. We have demonstrated its accuracy and e�ciency
across diverse settings. Further, we have demonstrated that ProPCA can accurately estimate
population structure within the UK Biobank dataset and how this structure can be leveraged to
identify targets of recent putative selection.

The algorithm that we employ here to accelerate the EM updates is of independent interest.
Beyond PCA, several algorithms that operate on genotype data perform repeated matrix-vector
multiplication on the matrix of genotypes. For example, association tests and permutation tests,
can be formulated as computing a matrix-vector product where the matrix is the genotype matrix
while the vector consists of phenotype measurements. The idea that SVD computations can lever-
age fast matrix-vector multiplication operations to obtain computational e�ciency is well known
in the numerical linear algebra literature [31]. Indeed, the algorithms [31] implemented in Fast-
PCA [12] as well as FlashPCA2 [13] can also utilize these ideas to gain additional computational
e�ciency. Alternate approaches to improve matrix-vector multiplication in the genetics setting
include approaches that rely on sparsity of the genotype matrix. It is important to note that the
speedup obtained from the Mailman algorithm does not rely explcitly on sparsity and could be ap-
plied even to dense matrices. It would be of interest to contrast these approaches and to investigate
the potential to combine to leverage sparsity as well as the discrete nature of the genotype matrix.

The probabilistic formulation underlying ProPCA allows the algorithm to be generalized in sev-
eral directions. One direction is the application of PCA in the presence of missing data that often
arises when analyzing multiple datasets. We have explored an extension of the ProPCA model to
this setting (SI Section S5). While this approach is promising, a limitation of the use of the Mail-
man algorithm within ProPCA is the requirement of discrete genotypes, which prevents ProPCA
from being directly applied to dosages. Another potential future direction is in modeling linkage
disequilibrium and in incorporating rare variants which have the potential to reveal structure that
is not apparent from the analysis of common SNPs [32, 33]. Current applications of PCA remove
correlated SNPs and singletons though this has been shown to discard information [12]. One pos-
sible way to incorporate LD would leverage the connection between haplotype copying models [34]
and the multivariate normal model of PCA [35], or by a whitening transformation [4]. Further, the
observation model can also be modified to account for the discrete nature of genotypes [3, 36]. A
number of non-linear dimensionality reduction methods have been recently proposed [37, 38]. A
comparison of these methods to ProPCA (in terms of statistical structure that the methods aim to
detect, robustness and ability to handle missing data, as well computational scalability) would be
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of great interest. Finally, leveraging fine-scale population structure inferred from large-scale data
to study recent positive selection in human history is an important direction for future work. The
challenge is to design realistic statistical models of population structure while enabling inference at
scale.

ProPCA is available at https://github.com/sriramlab/ProPCA.

Material and Methods

Principal Components Analysis (PCA) We observe genotypes from n individuals atm SNPs.
The genotype vector for individual i is a length m vector denoted by gi 2 {0, 1, 2}m. The jth

entry of gi denotes the number of minor allele carried by individual i at SNP j. Let G be the
m⇥ n genotype matrix where G = [g1 . . . gn]. Let Y denote the matrix of standardized genotypes
obtained by centering and rescaling each row of the genotype matrix G so that

P
j yi,j = 0 andP

j y
2
i,j = 1 for all i 2 {1, . . . ,m}.

Principal components analysis (PCA) [11] attempts to find a low-dimensional linear transforma-
tion of the data that maximizes the projected variance or, equivalently, minimizes the reconstruction
error. Given the m ⇥ n matrix Y of standardized genotypes and a target dimension k, PCA at-
tempts to find a m⇥ k matrix with orthonormal columns W and n⇥ k matrix Z that minimizes

the reconstruction error: kY � WZT
kF where kAkF =

qP
i,j A

2
i,j is the Frobenius norm of the

matrix A. To solve the PCA problem, we perform a singular-value decomposition (SVD) of the

standardized genotype matrix Y = U⌃V T and set cW = UK , where UK is a m ⇥ k matrix
containing the k columns of U corresponding to the k largest singular vectors of Y .

Probabilistic PCA PCA can be viewed as a limiting case of the probabilistic PCA model [10, 16,
17]. Probabilistic PCA models the observed data yi 2 Rm, i 2 {1 . . . , n} as a linear transformation
of a k-dimensional latent random variable xi (k  m) with additive Gaussian noise. Denoting the
linear transformation by the m⇥ k matrix C, and the (m-dimensional) noise by ✏i (with isotropic
covariance matrix �2Im), the generative model can be written as

yi|xi; ✏i = Cxi + ✏i

xi
iid
⇠ N (0, Ik)

✏i
iid
⇠ N (0,�2Im) (1)

The maximum likelihood estimate of the matrix C in this model has been shown to span the
k-dimensional principal subspace of the data Y = [y1, . . .yn] [39].

EM algorithm for PCA Since probabilistic PCA is a probabilistic model endowed with latent
variables, the EM algorithm presents a natural approach to compute the maximum likelihood
estimates of the model parameters (C,�2) [16, 17]. The EM algorithm for learning the principal
components can be derived as a special case of the EM algorithm for the probabilistic PCA model
where the variance of the observation noise �2 tends to zero leading to these updates:

E-step : X = (CTC)�1CTY (2)

M-step : C = Y XT (XXT )�1 (3)

Here X = [x1 . . .xn] is a k ⇥ n matrix and Y = [y1 . . .yn] is a m ⇥ n matrix. Noting that all
matrix inversions require inverting a k ⇥ k matrix, the computational complexity of the E-step is
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O(k2m+k3+k2m+mnk) while the computational complexity of the M-step is O(k2n+k3+k2n+
mnk). For small k and large m,n, the per-iteration runtime complexity is O(mnk). Thus, the EM
algorithm provides a computationally e�cient estimator of the top k PCs when the number of PCs
to be estimated is small.

Sub-linear time EM The key bottleneck in the EM algorithm is the multiplication of the matrix
Y with matrices E = (CTC)�1CT and M = XT (XXT )�1.

The vectors representing the sample mean and standard deviation of the genotypes at each
SNP are denoted g and s. Assuming no entry in s is zero (we remove SNPs that have no variation
across samples), the matrix of standardized genotypes Y can be written as:

Y = diag(s)�1G� ⇢1Tn

Here diag(x) is an operator that constructs a diagonal matrix with the entries of x along its
diagonals, 1n is a length n vector with each entry equal to one, and ⇢ is a length m vector with

⇢j =
gj
sj
, j 2 {1, . . . ,m}.

The EM updates can be written as:

X = EY = E diag (s)�1G�E⇢1Tn
= eEG�E⇢1Tn (4)

C = Y M = diag(s)�1GM � ⇢1TnM (5)

Here eE can be computed in time O(km) while E⇢1Tn and ⇢1TnM can be computed in time O(nk+
mk).

The key bottleneck in the E-step is the multiplication of the genotype matrix G by each of the k
rows of the matrix eE and in the M-step, multiplication of G by each of the k columns of the matrix
M respectively. Leveraging the fact that each element of the genotype matrix G takes values in
the set {0, 1, 2}, we can improve the complexity of these multiplication operations from O(nmk)
to O( nmk

max(log3 n,log3 m)) by extending the Mailman Algorithm [40]. For additional implementation
details, see SI Section S1.

The Mailman algorithm In the M-step, we need to compute c = Ab for an arbitrary real-
valued vector b and a m ⇥ n matrix A whose entries take values in {0, 1, 2}. We assume that
m = dlog3(n)e. Naive matrix-vector multiplication takes O(dlog3(n)en) time.

The Mailman algorithm decomposes A as A = UnP . Here Un is the m ⇥ r matrix whose
columns containing all r = 3m possible vectors over {0, 1, 2} of length m. We set an entry Pi,j to 1

if column j of A matches column i of Un: A(j) = U (i)
n . The decomposition of any matrix A into Un

and P can be done in O(nm) time. Given this decomposition, the desired product c is computed
in two steps, each of which has O(n) time complexity [40]:

d = Pb, c = Und

The Mailman algorithm provides computational savings in a setting where the cost of computing
the decomposition of A are o↵set by the gains in repeated multiplication involving A.

Similarly, in the E-step, we need to compute fTA in O(dlog3(n)en) time by computing ATf
and computing a decomposition of AT. A drawback of this approach is the need to store both
decompositions that would double the memory requirements of the algorithm. Instead, we propose
a novel variant of the Mailman algorithm that can compute fTA in O(dlog3(n)en) time using the
same decomposition as A (SI Section S2).
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Additional details on e�cient implementation of the EM and Mailman algorithms can be found
in SI Section S1.

Simulations We simulated genotypes at m independent SNPs across n individuals in which a
single ancestral population diverged into q sub-populations with drift proportional to the Fst, a
measure of population di↵erentiation. The allele frequency at SNP fj,0, j 2 {1, . . . ,m} in the

ancestral population was sampled from a uniform distribution such that fj,0
iid
⇠ Unif(0.05, 0.95) .

Allele frequencies in each of the l subpopulations were generated by simulating neutral drift from
the ancestral allele frequency, fj,l ⇠ N (fj,0, fj,0(1 � fj,0)Fst), l 2 {1, . . . , q} and were set to 0 or 1
if they fell outside the interval [0, 1]. The genotypes of an individual in population l at SNP j was
sampled from a Binomial(2, fj,l) distribution.

Benchmarking To compare estimated PCs to reference PCs, we computed the mean of explained
variance (MEV) – a measure of the overlap between the subspaces spanned by the two sets of PCs.
Two di↵erent sets of K principal components each produce a K-dimensional column space. A
metric for the performance of a PCA algorithm against some baseline is to see how much the
column spaces overlap. This is done by projecting the eigenvectors of one subspace onto the
other and finding the mean lengths of the projected eigenvectors. If we have a reference set of
PCs (v1, v2, ..., vk) against which we wish to evaluate the performance of a set of estimated PCs

(u1, u2, ..., uk), MEV = 1
k

Pk
i=1

qPk
j=1 (vi · uj)

2 = 1
k

Pk
i=1 kU

Tvik where U is a matrix whose

column vectors are the PCs which we are testing.
In practice, when attempting to compute the top k PCs, ProPCA was found to converge faster

by computing l PCs for l > k PCs and retaining the top k PCs. We set l = 2k in our experiments.
While ProPCA could be run to convergence, we found that running it for k iterations already gave
accurate results across the range of parameters considered. Our empirical results are consistent
with our theoretical result that the EM algorithm converges exponentially fast in the spectral norm
of the error matrix [31, 41] (SI Section S3).

We compared ProPCA to the current state-of-the-art methods for computing PCs from genotype
data: the SVD implementation in PLINK (PLINK SVD [19]), FastPCA [12] and FlashPCA2 [13].
PLINK SVD refers to an exact computation of PCs using the full Singular Value Decomposition
as implemented in the PLINK package (PLINK SVD). FastPCA [12] is an implementation of the
randomized subspace iteration method [31] while FlashPCA2 [13] is an implementation of the im-
plicitly restarted Arnoldi method [42]. We used default parameters for all methods. All experiments
were performed on a Intel(R) Xeon(R) CPU 2.10GHz server with 128 GB RAM, restricted to a
single core, capped to a maximum runtime of 100 hours and a maximum memory of 64 GB.

Selection scan The White British cohort was identified by the UK Biobank as participants who
self-identified as ’British’ within the broader-level group ’White’ while having similar ancestral
background [18]. For our selection scan, we further filtered the 409, 634 individuals in the White
British subset to obtain an unrelated White British subset by removing individuals with one other
related individual in the data set (individuals with kinship coe�cients greater than 0.0625 (third-
degree relatedness) to any other individual as determined by KING [43]). After removing these
individuals, we obtained an unrelated White British subset containing 276, 736 individuals.

We inferred the top five PCs using ProPCA on all 276, 736 unrelated White British individuals
and a filtered SNP set containing 146, 671 SNPs (UK Biobank SNP set). SNPs in the UK Biobank
SNP set consist of SNPs on the UK Biobank Axiom array from which SNPs were removed if they
have missing rates greater than 1.5%, minor allele frequencies (MAF) less than 1%, or if they were
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in regions of long-range linkage disequilibrium. The remaining SNPs were then pruned for pairwise
r2 less than 0.1 using windows of 1000 base pairs (bp) and a step-size of 80 bp.

We developed a selection statistic to search for SNPs whose variation is not well-explained by the
ProPCA model (closely related to the selection statistic proposed in [12]). Under the probabilistic
PCA model, the normalized genotype matrix is modeled by a low rank approximation and Gaussian
noise, Y = CX+ ✏. Given our low rank approximation of the genotype matrix, Ŷ = CX, we have
the residual : Y � Ŷ = ✏. For a SNP j, the Gaussian noise, ✏j ⇠ N (0,�2In). Projecting this
residual onto a PC results in a univariate Gaussian with zero mean and constant variance across
SNPs. This variance can be estimated as the sample variance �̂2 of the resulting statistics across

SNPs. In summary, we propose the statistic: ((yj�ŷj)Txk)2

�̂2 ⇠ �2
1 for SNP j, given the k-th PC. The

projection of the residual onto a PC allows the signal of selection to be interpreted in the context
of deviations from ancestry captured by the specific PC.

Furthermore, a variant of this statistic, which we call the combined statistic, can be generated
from the selection statistics computed on each individual PC using the observation that the resulting
chi-squared statistics are independent of each other. This allows us to create an additional statistic
by summing the individual PC statistics to create a combined statistic that follows a chi-squared
distribution with additional degrees of freedom for each PC used.

Using the results from the PCA on the UK Biobank SNP set, we performed our selection scan
on a di↵erent set of 516, 140 SNPs. We generated this set of SNPs by removing SNPs that were
multi-allelic, had genotyping rates less than 99%, had minor allele frequencies less than 1%, and
were not in Hardy-Weinberg equilibrium (p < 10�6).

We performed an allele frequency test for each novel SNP using the Nomenclature of Territorial
Units for Statistics level 3 (NUTS3) classification of regions for the UK. The NUTS3 classification
defines non-overlapping borders for each region in the UK, allowing us to uniquely map each
individual to a region in the UK using their birth location coordinates by checking which NUTS3
regions they fell into. For each of our novel loci, we then performed an two-tailed Z-test between
each region’s allele frequency against all other regions. We corrected for multiple testing using the
Bonferroni correction.

Supplemental Data

Supplemental data includes 7 figures and 8 tables. 2 of 8 of the tables can be found in the accom-
panying Excel file.

Acknowledgements

We would like to thank Bogdan Pasaniuc, members of his lab, and other members of the Sankarara-
man lab for advice and comments on this project. This research was conducted using the UK
Biobank Resource under application 33127.

9

.CC-BY-NC-ND 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under 

The copyright holder for this preprint (which was notthis version posted August 8, 2019. ; https://doi.org/10.1101/729202doi: bioRxiv preprint 

https://doi.org/10.1101/729202
http://creativecommons.org/licenses/by-nc-nd/4.0/


References

1. John Novembre and Sohini Ramachandran. Perspectives on human population structure at
the cusp of the sequencing era. Annual review of genomics and human genetics, 12:245–274,
2011.

2. J Novembre, T Johnson, K Bryc, Z Kutalik, AR Boyko, A Auton, A Indap, KS King,
S Bergmann, MR Nelson, M Stephens, and Bustamante CD. Genes mirror geography within
europe. Nature, 456(7219):274, 2008.

3. Wen-Yun Yang, John Novembre, Eleazar Eskin, and Eran Halperin. A model-based approach
for analysis of spatial structure in genetic data. Nature genetics, 44(6):725–731, 2012.
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Figure 1: ProPCA is computationally e�cient: Comparison of runtimes over simulated genotype data
containing 100, 000 SNPs, six subpopulations, Fst = 0.10 and individuals varying from 10, 000 to 1, 000, 00.
We report the mean and standard deviation over ten trials. Figures 1a and 1b display the total runtime
(capped to a maximum of 100 hours and a maximum memory of 64 GB). Figure 1b compares the runtimes
of all algorithms excluding PLINK SVD which could only run successfully up to a sample size of 70, 000.

Figure 2: ProPCA is computationally e�cient relative to FastPCA: We compute the total time
taken to estimate the top five principal components as a function of a measure of accuracy (MEV) for
ProPCA compared to FastPCA. We performed these comparisons on simulated genotype data containing
50, 000 SNPs, 10, 000 individuals, six subpopulations, and Fst 2 {0.001, 0.005, 0.10}. We were unable to
leverage the source code of FlashPCA2 to include in these comparisons.

Figure 3: Principal components uncover population and geographic structure in the UK
Biobank: We used ProPCA to compute PCs on the UK Biobank data. Figure 3a shows the first two
principal components to reveal population structure. Figure 3b shows geographic structure by plotting the
score of 276, 736 unrelated White British individuals on the first principal component on their birth location
coordinates.

Figure 4: Selection scan for the first five principal components in the white British individuals
in the UK Biobank: A Manhattan plot with the � log10 p values associated with the test of selection
displayed for the first five principal components for the unrelated White British subset of the UK Biobank.
The red line represents the Bonferroni adjusted significance level (↵ = 0.05). Significant loci are labeled.
Signals above �log10(p) = 18 were capped at this value for better visualization.

Fst MEV
K = 5 K = 10

0.001 0.987 1.000
0.002 0.999 1.000
0.003 0.999 1.000
0.004 0.999 1.000
0.005 1.000 1.000
0.006 1.000 1.000
0.007 1.000 1.000
0.008 1.000 1.000
0.009 1.000 1.000
0.010 1.000 1.000

Table 1: ProPCA accurately estimates principal components: The principal components computed
by ProPCA are compared to the PCs obtained from a full SVD on a genotype dataset containing 50, 000
SNPs and 10, 000 individuals. Accuracy was measured by the mean of explained variance (MEV) which
measures the overlap between the set of PCs inferred from ProPCA and those from SVD across values of
Fst 2 {0.001, . . . , 0.01}. We report MEV for K = 5 using 5 populations as well as for K = 10 PCs using 10
populations.
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Figure 1: ProPCA is computationally e�cient: Comparison of runtimes over simulated genotype data
containing 100, 000 SNPs, six subpopulations, Fst = 0.10 and individuals varying from 10, 000 to 1, 000, 00.
We report the mean and standard deviation over ten trials. Figures 1a and 1b display the total runtime
(capped to a maximum of 100 hours and a maximum memory of 64 GB). Figure 1b compares the runtimes
of all algorithms excluding PLINK SVD which could only run successfully up to a sample size of 70, 000.
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Figure 2: ProPCA is computationally e�cient relative to FastPCA: We compute the total time
taken to estimate the top five principal components as a function of a measure of accuracy (MEV) for
ProPCA compared to FastPCA. We performed these comparisons on simulated genotype data containing
50, 000 SNPs, 10, 000 individuals, six subpopulations, and Fst 2 {0.001, 0.005, 0.10}. We were unable to
leverage the source code of FlashPCA2 to include in these comparisons.
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Figure 3: Principal components uncover population and geographic structure in the UK
Biobank: We used ProPCA to compute PCs on the UK Biobank data. Figure 3a shows the first two
principal components to reveal population structure. Figure 3b shows geographic structure by plotting the
score of 276, 736 unrelated White British individuals on the first principal component on their birth location
coordinates.
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Figure 4: Selection scan for the first five principal components in the white British individuals
in the UK Biobank: A Manhattan plot with the � log10 p values associated with the test of selection
displayed for the first five principal components for the unrelated White British subset of the UK Biobank.
The red line represents the Bonferroni adjusted significance level (↵ = 0.05). Significant loci are labeled.
Signals above �log10(p) = 18 were capped at this value for better visualization.
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