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ABSTRACT 

The identification of the potential mechanisms of resistance while tumor cells still respond to therapy 
is critical to develop combination therapies to delay resistance. Cetuximab, an anti-EGFR therapy, is 
the only targeted therapy available for head and neck squamous cell carcinoma (HNSCC). We 
generated the first comprehensive multi-omics, single cell data and bulk in sensitive HNSCC cells to 
identify relevant transcriptional and epigenetic changes that are an immediate response to cetuximab 
in sensitive cells. These changes include genes from two pathways potentially associated with 
resistance: regulation of growth factor receptors by TFAP2A, and epithelial-to-mesenchymal transition 
(EMT) process. Single cell RNA-sequencing demonstrates inter-cell lines heterogeneity, with cell 
specific TFAP2A and VIM expression profiles in cetuximab treated and untreated clones, and an 
independent role of each pathway. RNA-seq and ATAC-seq confirmed the heterogeneity and 
demonstrate that there are global transcriptional and epigenetic changes in sensitive cells treated 
with cetuximab. Lack of TFAP2A reduces HNSCC growth in vitro and this effect is enhanced with 
cetuximab and a stronger effect is observed with JQ1, an inhibitor of other receptor tyrosine kinases. 
Corroborating our scRNA-seq observation, TFAP2A silencing does not affect cell migration, 
supporting the lack of interplay with the EMT pathway. 

Implications: Overall, our study shows that relevant pathways to resistance are altered in vitro only a 
few days of cetuximab therapy initiation. Although heterogeneous, these immediate changes can be 
targeted by a multiple-target drug, JQ1, that in combination with cetuximab in the early stage of 
treatment present better efficacy in controlling tumor growth. 
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INTRODUCTION 

Cancer targeted therapies block specific relevant pathways for tumor progression inhibiting tumor 
growth and providing prolonged survival (1). However, these therapies are not curative since acquired 
resistance develops within a few years of therapy (2). The mechanisms behind tumor evolution from 
responsive to resistant state are not fully understood (3,4) but can involve mutations to the target 
gene, activation of downstream genes or of alternative pathways (5). Studies aiming to characterize 
the mechanisms of resistance have shown an important role of tumor heterogeneity and from cell 
adaptive responses to these therapies as sources of resistance (6). The presence of a multitude of 
cell clones increases the chances of the existence of intrinsic resistant small populations that are 
selected and will keep growing despite the treatment (6). In addition, the sensitive cell clones have 
the ability of activating alternative pathways to overcome the blockade of such essential cell growth 
pathways (7). Investigating the relevant adaptive mechanisms that are potential drivers of resistance 
is critical to introduce early alternative therapies before the phenotype evolves as the dominant 
among the cancer cells. 

Acquired targeted therapeutic resistance is pertinent for neck squamous cell carcinoma (HNSCC). 
Currently, cetuximab is the only FDA approved targeted therapeutic for HNSCC (8) and was selected 
based on pervasive overexpression of EGFR and its associations with outcomes in HNSCC (9,10). 
As with other targeted therapies, virtually all HNSCC patients develop acquired resistance and 
disease control is just temporary limiting its clinical application (11). The near universal emergence of 
resistance and intermediate time rate at which it occurs mark cetuximab treatment in HNSCC as an 
ideal model system to study resistance. Little is known about the immediate transcriptional and 
epigenetic changes induced by cetuximab. Others and we have found that compensatory growth 
factor receptor signaling, regulated by TFAP2A and EMT, both associated with resistance, are altered 
while cells are still sensitive to therapy (12,13). Transcriptional changes to these pathways occur 
while HNSCC cells are still responsive to cetuximab (12,13). Nevertheless, their precise role in 
resistance and timing at which they induce phenotypic changes remains unknown. It is critical to 
isolate the timing and effect of each of these pathways during cetuximab response to delineate their 
subsequent role in resistance. 

Here, we hypothesize that the mechanisms of resistance are up-regulated while HNSCC cells are still 
sensitive to cetuximab and that some of these mechanisms are associated with chromatin remodeling 
induced as an immediate response to therapy. Our previous study showed in vitro up-regulation of 
TFAP2A only one day after cetuximab treatment (12). Since some of its targets are growth factor 
receptors (14,15), it is very probable that this is one of the mechanisms activated by HNSCC cells to 
overcome EGFR blockade and that will induce resistance. Schmitz et al. (13) also demonstrated that 
mechanisms of resistance to cetuximab arise early in the course of HNSCC therapy by detecting 
EMT up-regulation after only two weeks of patients’ treatment. The stimulation of the EMT phenotype 
is a common mechanism of resistance to different cancer therapies, including cetuximab (16–18). 
There is no reference in the literature to a possible interplay between the transcription TFAP2A and 
EMT genes. Since transcriptional factors regulate multiple targets, we also investigate in this study 
this potential interaction. 

To verify our hypothesis, we performed single cell RNA-sequencing (scRNA-seq) to understand how 
different cell lines and each of their clones respond to a short time course cetuximab therapy. Then, 
using bulk RNA-sequencing (RNA-seq) and ATAC-seq we investigated the changes to two relevant 
pathways: TFAP2A and EMT. We verified cell line specific adaptive responses to cetuximab and clear 
disturbances in both pathways. TFAP2A regulates HNSCC growth in vitro and in its absence cells 
proliferate less. A potential interplay with the EMT was not verified, suggesting that TFAP2A does not 
directly regulate this mechanism of resistance. The response to the combination therapy cetuximab + 
JQ1, although heterogeneous, is more efficient to cell growth control than anti-EGFR block alone 
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suggesting that combined therapies blocking multiple growth factors are beneficial at therapy early 
stages. 

 

MATERIAL AND METHODS 

Cell culture and proliferation assay 

UM-SCC-1 (SCC1), UM-SCC-6 (SCC6) and SCC25 cells were cultured in Dulbecco’s Modified 
Eagle’s Medium (DMEM) and Ham’s F12 supplemented with 10% fetal bovine serum and maintained 
at 37°C and 5% carbon dioxide. A total of 25,000 cells were plated in quintuplicate in 6-well plates. 
Cetuximab (Lilly, Indianapolis, IN) was purchased from Johns Hopkins Pharmacy and JQ1 from 
Selleck Chemicals. All cell lines were treated daily with cetuximab (100nM), JQ1 (500nM), the 
combination, or vehicle (PBS+DMSO; mock) for 5 days starting 24 hours after seeding. Proliferation 
was measured using alamarBlue assay (Thermo Scientific), as described by the manufacturer. 
Briefly, 10% sample volume of alamarBlue reagent was added to each well and fluorescence 
(excitation 544nm, emission 590nm) was measured after 4 hours of incubation at 37°C. A media only 
well was used as blank. The treatment and proliferation assays were repeated in 3 independent 
experiments. To calculate the growth rate we used the formula: 

𝐺𝑅 =  2!(!,!)/!(!) −  1 

Where k(0) represents the fluorescence measured for non-treated cells and k(c,t) is the fluorescence 
measured for cetuximab treated cells (19). 

The parental cell lines were authenticated using short tandem repeat (STR) analysis kit 
PowerPlex16HS (Promega, Madison, WI, USA) through the Johns Hopkins University Genetic 
Resources Core Facility. 

Single cell RNA sequencing (scRNA-seq) 

Cetuximab treated and untreated HNSCC cell lines were trypsinized, washed and resuspended in 
PBS. Cell counts and viability were made using Trypan Blue staining (ThermoFisher) in the 
hemacytometer. Single cell RNA labeling, library preparations and sequencing were performed by the 
SKCCC Experimental and Computational Genomics Core using the 10X Genomics Chromium™ 
Single Cell system and Chromium™ Single Cell 3' Library & Gel Bead Kit v2 (10X Genomics, San 
Francisco, CA, USA), following manufacturer’s instructions. An input of 8,700 was used to recover a 
total of 5,000 cells. Sequencing was performed using the HiSeq platform (Illumina, San Diego, CA, 
USA) for 2X100bp sequencing and 50,000 reads per cell. Each sample was sequenced in duplicate. 
Sequences were filtered and aligned using the CellRanger software (10X Genomics). Data 
normalization, pre-processing, dimensionality reduction (method: UMAP), cell clustering (method: 
louvain), differential expression analysis and visualization was performed using Monocle 3 alpha 
(version 2.10.1). 

The scRNA-seq data for the cell lines in this study are available from GEO (GSEXXXX). 

RNA isolation and bulk RNA-seq 

RNA isolation and sequencing were performed for each of the cetuximab and PBS treated cells at the 
Johns Hopkins Medical Institutions Deep Sequencing & Microarray Core Facility. Total RNA was 
isolated from at least 1,000 cells collected on 1ml of QIazol reagent (Qiagen, Hilden, Germany), 
directly from the cell culture plate, following manufacturer’s instructions. The concentration and quality 
were measured at the 2100 Bioanalyzer (Agilent, Santa Clara, CA, USA) system. An RNA Integrity 
Number (RIN) of 7.0 was considered as the minimum threshold. Library preparation was performed 
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using the TrueSeq Stranded Total RNAseq Poly A1 Gold Kit (Illumina), according to manufacturer’s 
recommendations, followed by mRNA enrichment using poly(A) enrichment for ribosomal RNA 
removal. Sequencing was performed using the HiSeq platform (Illumina) for 2X100bp sequencing. 
Transcript abundance from the RNA-seq reads was inferred using Salmon (20). To import the 
transcript abundance from Salmon and export into estimated count matrices we used tximport (21). 
DESeq2 was used for differential expression analysis between cetuximab and PBS groups. 

All RNA-seq data from this study are available from GEO (GSE114375). 

Nuclei isolation and chromatin accessibility analysis of the cetuximab treated cells 

ATAC-seq library preparation was performed as previously described (22). Cetuximab treated cells 
and PBS controls were collected after 5 days of treatment (100,000 cells for each group). Briefly, cells 
were scraped, washed in PBS and lysed. Nuclei tagmentation and adapter ligation by Tn5 was 
performed using the Nextera DNA Sample Preparation kit (Illumina) and followed by purification with 
MinElute PCR Purification kit (QIagen), according to manufacturers’ instructions. Transposed DNA 
fragments were amplified for 5 cycles using the NEBNext Q5 HotStart HiFi PCR Master Mix with 
regular forward and reverse barcoded primers. Additional number of amplification cycles were 
determined by quantitative-PCR using the NEBNext HiFi Master Mix, SYBR Green I (Applied 
Biosystems) and Custom Nextera Primers. The final product was purified with MinElute PCR 
Purification kit (QIagen) and quality checked on 2100 Bioanalyzer (Agilent). Sequencing was 
performed using the HiSeq platform (Illumina) for 2X50 bp sequencing with 50 million reads per 
sample at the Genomic Resources Core Facility. 

Sequences quality was assessed using FastQC (23). After adapters trimming with Trim Galore! 
(version 0.5.0), sequences were aligned with Bowtie2 (version 2.3.2) to the human genome (hg19) 
(24). Duplicated and mitochondrial reads were removed with Picard Tools (version 2.18) (25), while 
unmapped and low quality reads were removed with Samtools (version 1.9) (26). MACS2 was used 
for peaks calling (27). Correlation analysis and differential bound site analysis were performed with 
DiffBind (28). The annotated differential binding sites were filtered for peaks in promoter regions. Low 
quality replicates were excluded, as one of the SCC1 untreated replicates. 

All ATAC-seq data from this study are available from GEO (GSEXXX). 

TFAP2A RNA interference experiments 

Cells were transfected with a pool of four siRNA sequences (ON-TARGETplus Human TFAP2A pool, 
Dharmacon) one day after plating. ON-TARGETplus Non-targeting Pool and ON-TARGETplus GAPD 
Control Pool were used as negative and positive transfection controls, respectively. Briefly, 
transfection was performed in serum-free Opti-MEM (Invitrogen) and RNAiMAX Lipofectamine 
Reagent (Invitrogen). Eight hours after transfection, opti-MEM was replaced with complete medium 
and cells were incubated overnight at 37oC. Treatment with cetuximab, JQ1, the combination or 
vehicle was performed daily for 5 days. Transfection efficiency and level of the endogenous gene 
were monitored by qRT-PCR before and 72h after transfection. Cell proliferation was measured by 
the alamarBlue assay as described above. Each assay was performed in quintuplicate for each cell 
line and treatment. 

qRT-PCR analysis 

Cell lines were lysed directly in the cell culture plate by adding Qiazol reagent (Qiagen) and RNA 
isolation followed manufacturer’s instructions. Reverse transcription of 300ng total RNA was 
performed with qScript Master Mix (Quanta Bioscience), following manufacturer’s protocol. Gene 
expression was determined using TaqMan Universal Master Mix II and TaqMan 20X Gene 
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Expression Assays in a 7900HT equipment (Life Technologies). All assays were quantified in 
triplicate relative to GAPDH using the 2!!!"# method. 

Migration assay 

The migration assays were performed in the Culture-Insert 2 Well 24 (Ibidi GmbH, Klopferspitz, 
Martinsried, Germany). In each insert well 10,000 cells (transfected and not transfected with TFAP2A 
siRNA) were plated and 24hs after plating treated with cetuximab, JQ1, the combination or vehicle. 
Once, cells were confluent the inserts were removed and gap closure was measured under a 
microscope at 0h, 6h, 12h, and 24h. The measurements were made using ImageJ (29) and closure 
was determined as the ratio between the initial area and the measured area at each time point. 
Experiments were performed at least three times. 

 

RESULTS 

 

TFAP2A and EMT expression are heterogeneous among cell lines 

In order to identify potential precursors of acquired cetuximab resistance, sensitive HNSCC models 
were used to interrogate the changes induced before resistance developed. Based on previous work 
demonstrating HNSCC cell lines sensitivity to cetuximab (16,30) and confirmed by proliferation assay  
(Supplementary Figure 1), we chose three sensitive cell lines: SCC1, SCC6 and SCC25. To verify 
inter- and intra-cell heterogeneity and how each of the cell clones respond to cetuximab, we 
performed scRNA-seq. SCC1, SCC6 and SCC25 received cetuximab (treated) or PBS (untreated) 
and after a total of five days of therapy the cells were collected in single cell suspensions (Figure 
1A). 

Based on the whole transcriptomic profile, each cell line cluster completely separate from each other 
(Figure 1B) demonstrating inter-cell line heterogeneity and are a reflect of inter-patient variability. 
When cells were clustered according to the treatment (cetuximab or PBS), we observe a clear 
separation between treated and untreated cells in SCC6 (Figure 1C). For SCC1 and SCC25, some 
treated cells cluster with the untreated (Figure 1C). The clear separation of SCC6 cetuximab and 
PBS groups is probably associated by the fact that, compared to SCC1 and SCC25, this cell line only 
responds to anti-EGFR therapy after three days of treatment while the other cell lines respond almost 
immediately (Supplementary Figure 1). 

To investigate the response of potential mechanisms of resistance, we investigated two pathways 
that were previously described as altered in response to cetuximab while HNSCC cell lines or tumors 
are sensitive to cetuximab (12,13). We investigated if each cell clone expresses TFAP2A and VIM 
concomitantly to verify a possible interplay between the pathways both genes are involved. There is 
also heterogeneity regarding the expression of TFAP2A and VIM. We evaluated the expression of 
TFAP2A and VIM genes in the individual cells (Supplementary Figure 2) and used the individual 
markers expression levels to classify each individual as double negative (TFAP2A-/VIM-), TFAP2A 
positive (TFAP2A+/VIM-), VIM positive (TFAP2A-/VIM+) and double positive (TFAP2A+/VIM+) 
(Figure 1F). SCC1 cells (cetuximab treated and untreated) show high levels of TFAP2A and no 
expression of VIM (Supplementary Figure 2, Figure 1D and E) suggesting no influence of 
cetuximab in these two pathways. SCC6 cells present a definite shift in the expression of VIM with the 
anti-EGFR blockade, with untreated cells presenting down-regulation when compared to the treated 
cells independent of the TFAP2A status (Supplementary Figure 2, Figure 1D and F), which can be 
positive or negative and apparent has no variation as an adaptive response to cetuximab. The 
majority of SCC25 cells are double positive with or without cetuximab therapy. VIM expression 
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changes with EGFR blockade and most of the treated clones are positive to VIM (double positive) or 
negative when untreated (TFAP2A positive) (Supplementary Figure 2, Figure 1D and G). 
Interestingly, a significant proportion of untreated SCC25 cells present the same double positive 
signature as the ones that received cetuximab. In SCC6 and SCC25, there is evidence that 
cetuximab is capable of inducing VIM expression and, corroborating the observation from Schmitz et 
al. (11), that cetuximab induces EMT markers in early on in the course of therapy. 

The scRNAseq analysis demonstrates that the transcriptional changes in response to cetuximab are 
cell type dependent. Those changes are most probably dependent on the initial transcriptional 
background of each cell. The scRNA-seq also suggests that the TFAP2A expression does not directly 
regulate the EMT pathway since changes in VIM are not following changes in the levels of the 
transcription factor. 

 

Cetuximab causes immediate gene expression changes in HNSCC in vitro 

In order to evaluate the timing of the changes in the TFAP2A targets and EMT markers, detected by 
scRNA-seq, and to interrogate each of the pathway genes individually, we performed daily 
measurements using bulk RNA-seq. SCC1, SCC6 and SCC25 were treated with cetuximab or PBS 
for five consecutive days and gene expression was measured daily (Figure 2A). 

Transcriptional changes induced by cetuximab can be detected genome wide almost immediately 
after therapy. Differential expression analysis of all time points indicate that hundreds of genes have 
their transcriptional profile changed as a response to anti-EGFR therapy in all three HNSCC cell lines, 
with some changes occurring only 24h after cetuximab treatment (Supplementary Figure 3A). In 
order to investigate the changes in the activity of TFAP2A transcription factor, we followed the 
expression of its targets identified at the TRANSFAC database (12,13). To analyze the status of the 
EMT pathway, we analyzed the EMT markers using the signature described by Byers et al. that 
predicts resistance to anti-EGFR and anti-PI3K therapies (27). When each cell line was investigated 
separately, the gene set enrichment analysis comparing cetuximab and untreated groups showed 
that among the differentially expressed genes in SCC1, 55 are TFAP2A targets (p=2.2e-04) and 49 
are EMT markers (p=1.1e-04); in SCC6, there 46 genes from each pathway (TFAP2A p=9e-04, EMT 
p=6e-08); and in SCC25, there are 40 TFAP2A targets (p=4.3e-04) and 46 EMT markers (p=2.2e-11) 
(Figure 2B). Although there was no variation in the expression of TFAP2A and VIM in SCC1 at the 
scRNA-seq, there are still significant changes to other markers in both. The cell lines SCC1 and 
SCC25 present immediate (24h) transcriptional changes to the cetuximab (Figure 2C, F, E and H). 
SCC6 transcriptional response to anti-EGFR treatment takes longer and most of the changes are 
noticeable after 96 hours of therapy (Figure 2D and G), which is in agreement with the observed 
behavior of this cell line to the cetuximab therapy (Supplementary Figure 1). 

 

Chromatin changes can be detected early in the course of cetuximab therapy in vitro 

We hypothesized that epigenetic rewiring induced by cetuximab is one of the causes of the adaptive 
transcriptional changes, due to the short time for the development of genomic alterations. To verify 
this hypothesis, we measured global chromatin accessibility by ATAC-seq in cells treated with 
cetuximab and in the untreated controls after five days of therapy (Figure 3A). 

Cetuximab treated cell lines present significant chromatin changes after only five days of therapy 
(Supplementary Figure 3B). Differential bound analysis, to identify the accessible protein-DNA 
binding regions in cetuximab versus untreated groups, show that there are a total of 1,690 binding 
regions, common to SCC1, SCC6 and SCC25, that have their structure changed as a response to 
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five days of therapy. The unsupervised clustering of these regions that are common to all three cell 
lines separate the samples that were treated with cetuximab from the untreated controls 
(Supplementary Figure 3B). These findings suggest that epigenetic rewiring is an early event in 
response to cetuximab and probably involved in the regulation of some transcriptional changes 
observed. 

The differential binding analysis was then performed for each cell line individually to identify specific 
DNA accessibility changes as a response to cetuximab (Figures 3B, C and D). Each of the three cell 
lines, SCC1, SCC6 and SSC25, presents specific chromatin changes that separate the groups of 
treated and untreated replicates. Analyzing each cell line separately, SCC1, SCC6 and SCC25 show 
significant promoters reconfiguration as a response to short time therapy with 1,821, 3,057 and 
11,402 sites remodeled, respectively  (Figures 3B, C and D). 

The gene set enrichment analysis identified genes from the TFAP2A and EMT pathways among the 
promoters that have chromatin structural changes induced by cetuximab. Accessibility to the 
promoter region during cetuximab treatment in the SCC1 cell line was detected in only four gene 
promoters from the TFAP2A pathway and no changes in EMT promoters are present (Figure 3E and 
F). Suggesting that in this cell line chromatin remodeling does not regulate the transcriptional 
changes in these pathways. A total of eleven promoters from the TFAP2A pathway (p=3e-03, Figure 
3E and F) and the same number of EMT gene promoters (p=6e-03, Figure 3E and F) have their 
chromatin structure changed by the anti-EGFR therapy in SCC6. The SCC25 cell line presents, as a 
response to cetuximab, chromatin changes in 31 TFAP2A pathway gene promoters (p=0.028, Figure 
3E and F) and in 21 EMT promoters (p=2e-03, Figure 3E and F). Interestingly, all changes to the 
SCC25 binding sites become less accessible when compared to the untreated controls. The ATAC-
seq findings suggest that even after a short time exposure of HNSCC cells to cetuximab in vitro, 
genes from pathways that are associated with acquired resistance, such as TFAP2A and EMT, 
present remodeling of binding sites that could potentially result in altered transcription factors binding. 
The genes with transcriptional and chromatin alterations in response to short time treatment with 
cetuximab are marked with one (non-accessible after cetuximab) or two stars (accessible after 
cetuximab) in the RNA-seq heatmaps in Figure 2. As would be expected, the correlation between 
accessibility and expression is not true for all genes. Although a few relevant genes, such as AXL 
(Figure 2D), known to be up-regulated in acquired resistance to different targeted agents, presents 
open chromatin at their promoter combined with up-regulation in cetuximab treated cells. This is an 
indication that chromatin remodeling in the early course of treatment is a possible driver of resistance. 
In both analyses, chromatin accessibility and gene expression, it is important to notice that each cell 
line presents their specific changes in response to cetuximab. Since each of the cell lines are derived 
from three independent patients with HNSCC that present inter-tumor heterogeneity these differences 
are expected and most probably represent in vitro the different changes that would be found in 
patients’ samples. 

 

TFAP2A controls HNSCC proliferation in vitro 

The role of TFAP2A in HNSCC is poorly characterized. This transcription factor regulates the 
expression of several growth factor receptors, including EGFR, HER2, TGFBR3, FGFR1, IGFR1 and 
VEGF (12). In order to investigate the role of TFAP2A in HNSCC cell proliferation in vitro, we used 
siRNA assay for gene silencing and measured growth rates of all cell lines. Following transfection, the 
cells were treated with cetuximab for five days, and proliferation was measured daily (Figure 4A). All 
siRNA transfected cell lines present lower growth rates when compared to the parental cell lines 
(Figure 4B, C and D, black full and dashed lines). The effect of TFAP2A is more prominent in SCC1 
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and SCC25 if compared to SCC6. This is probably related to the fact that both cell lines present 
TFAP2A expression in most of the cell clones (Figure 1D). 

Combined with the effects of TFAP2A transient knock-down, we investigated the role of cetuximab 
and JQ1 on cell growth. JQ1 is a bromodomain inhibitor that blocks the transcription of cell growth 
regulators (e.g., c-Myc) and multiple RTKs, and was previously shown to delay acquired cetuximab 
resistance in combination treatment in HNSCC patient derived xenograft models. Cetuximab, JQ1 or 
the combination (combo) was added to cell culture media once cells were transfected with TFAP2A 
siRNA, and proliferation was measured daily (Figure 4A). 
Cetuximab therapy potentiates growth inhibition in the absence of TFAP2A (Figure 4 B, C and D, red 
full and dashed lines) with synergistic effect potency dependent on the cell line. Since SCC1 presents 
very similar TFAP2A expression in treated and untreated cell clones (Figure 1D), which indicates that 
this gene is not altered as a response to cetuximab, the effect gene knockdown with anti-EGFR 
therapy is not as significant as observed in SCC6 and SCC25. A stronger effect on proliferation 
control was observed with JQ1 treatment (Figure 4 B, C and D, blue full and dashed lines), most 
probably due to the silencing of another proliferation factor (c-Myc) and/or RTKs. Interestingly, the 
combination therapy of cetuximab and JQ1 does not provide a strong synergistic effect (Figure 4 B, 
C and D, orange full and dashed lines). 

These results indicate that in HNSCC in vitro, TFAP2A is an essential regulator of cell. The combined 
TFAP2A knock-down with cetuximab and JQ1 therapy presents a stronger effect on slowing cell 
growth and suggests that bromodomain inhibitors are a potential option for combined therapy in 
HNSCC. 

 

TFAP2A loss is associated with an increase in EMT markers expression but not with HNSCC 
migration in vitro 

TFAP2A encodes a transcription factor that regulates the expression of numerous genes, including 
growth factor receptors, and might also be involved in regulating the expression of EMT markers. To 
investigate its role in the EMT pathway, we performed the scratch assay after SCC1, SCC6 and 
SCC25 cells were transfected with TFAP2A siRNA. The cells were seeded in the cell migration 
inserts (Ibidi) and after overnight incubation were transfected with TFAP2A siRNA. Treatment with 
cetuximab, JQ1, combo or vehicle started 24h later. Once confluence was reached (48h after 
transfection) the insert was removed, and gap closure was measured at the moment of removal and 
after 6, 12 and 24 hours (Figure 5A). 

Lack of TFAP2A does not significantly impact SCC1 and SCC6 migration when compared to the 
parental cells (Figure 5B and C, black full and dashed lines). Comparing the SCC1 and SCC6 
parental cells with the transfected clones, the different therapies do not present a significant impact 
on migration (Figure 5B and C) in the absence of TFAP2A. In SCC1, this is expected since VIM 
expression was not detected by scRNA-seq analysis (Figure 1D) and together with the migration 
assay suggests that the EMT pathway is not a relevant adaptive response to cetuximab. The 
observed shift on VIM expression after cetuximab treatment in SCC6 (Figure 1D) shows that an 
adaptive response involves the activation of the EMT process. The lack of migration changes in the 
presence of gene expression shift is probably because the morphological changes require more time 
to occur as compared to expression. Silencing TFAP2A has no effect on the migration capacity of 
SCC25 (Figure 5D, black full and dashed lines). Cetuximab therapy in cells lacking TFAP2A induces 
faster migration when compared to the treated cells with normal levels of the gene (Figure 5D, red 
full and dashed lines). Lack of TFAP2A combined with JQ1 results in slightly less migration when 
compared to non-transfected cells (Figure 5D, blue full and dashed lines). The changes in migration 
are not significant but suggest that in SCC25, cetuximab can induce cell motility while JQ1 has 
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inhibitory activity. This is corroborated by the fact that when combined with JQ1, the anti-EGFR 
therapy does not affect cell motility (Figure 5D, orange full and dashed lines). 

These observations suggest no effect of TFAP2A in cell migration and consequently in the EMT 
process, which corroborates our scRNA-seq observations. The trends in cell migration are apparently 
a combination of therapy (cetuximab or JQ1) with TFAP2A expression, suggesting that the 
transcription factor alone is not enough to alter cell migration. 

 

DISCUSSION 

Using a single cell and bulk multi-omic approach, we investigated the early responses to cetuximab in 
HNSCC in vitro models to identify the gene expression and epigenetic mechanisms that are potential 
drivers of resistance. Treating three HNSCC cell lines for a short time period we were able to 
demonstrate that transcriptional and chromatin rewiring are early events as a response to therapy 
and that they happen globally and include genes previously described to be involved in resistance to 
cetuximab. 
Approximately 90% of HNSCC present high expression of EGFR protein, and cetuximab seemed to 
be a reasonable targeted therapy for these tumors (28). However, just a small fraction of patients 
respond to cetuximab, and virtually all responders develop acquired resistance (29). To prolong 
disease control, it is crucial to identify the changes related to resistance while the tumor is still 
responsive to cetuximab. There are no biomarkers to predict the response and the mechanisms of 
resistance are poorly characterized in HNSCC. In colorectal cancers, EGFR and KRAS mutations are 
a frequent finding in acquired cetuximab resistance but are very rare events in HNSCC suggesting 
that other mechanisms, such as epigenetic changes, drive the transcriptional signatures of resistance 
(30,31). In a recent time course study to investigate mechanisms of acquired cetuximab resistance in 
HNSCC, we found that an essential driver of resistance to anti-EGFR targeted therapies, FGFR1, is 
epigenetically regulated during chronic exposure to cetuximab and provide strong evidence of that 
epigenetic alterations can drive acquired resistance (10). 

In the current study, we investigated three HNSCC cell lines (SCC1, SCC6 and SCC25) and their 
response to cetuximab during a short time period of treatment (five days). We initially performed 
scRNA-seq to identify cell specific transcriptional changes induced by EGFR blockade. Even the 
untreated cells demonstrate specific transcription profiles that prove inter-cell lines heterogeneity. 
This observation is evidence that cell lines can mimic inter-patients heterogeneity. We observed that 
while VIM expression presents a shift after cetuximab therapy in SCC6 and SCC25, it does not have 
the same behavior in SCC1. TFAP2A is not affected by anti-EGFR therapy in any of the HNSCC in 
vitro models. Our scRNA-seq observations are suggestive that there is no interplay between TFAP2A 
and EMT pathways in response to cetuximab. 

We further performed a short time course experiment to measure the transcription changes induced 
by cetuximab in vitro to verify the specific cell changes in the TFAP2A targets and EMT genes. 
Although we did not observe changes in TFAP2A and VIM in SCC1, other genes from these 
pathways are altered only 24h after treatment suggesting that other markers respond with changes in 
expression to cetuximab. Each cell line presents specific changes to genes from the pathways 
interrogated. SCC1 and SCC25 present changes after only 24h of therapy while in SCC6 those 
changes are noticed within 96h of therapy. These results reflect the initial observation in growth rates 
under cetuximab therapy, where SCC6 presents a resistant-like behavior with decreased proliferation 
only after 96h under cetuximab (Supplementary Figure 1) or stable growth with therapy (Figure 4C). 
We have previously observed that anti-EGFR targeted therapy in vitro is capable of inducing 
immediate transcriptional changes in the HaCaT keratinocyte cell line model with constitutive EGFR 
activation (10). Here we corroborate the observation by showing that two HNSCC cell lines also 
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present immediate changes to cetuximab and in pathways relevant for resistance. Altogether, these 
are evidence that adaptive responses to targeted therapies that will result in a resistant signature can 
start early in the course of therapy and with cancer cells still sensitive to the therapy. 

We have previously shown that while SCC25 acquire cetuximab resistance due to chronic exposure 
(32), the transcriptional changes occur a few weeks prior to the promoter hyper- or hypomethylation, 
that are detected when cells are already resistant. Here, we investigated the hypothesis that 
chromatin remodeling occurs prior to methylation, while the cells are still sensitive to the therapy, and 
probably are associated with the transcriptional changes. After only five days of anti-EGFR blockade, 
chromatin structure differs between cetuximab and untreated groups in the three HNSCC cell lines. 
With that we hypothesize that the events resulting in acquired resistance go from chromatin changes 
in the early stages of therapy and reflecting in transcriptional alterations to overcome EGFR inhibition, 
that are finally stabilized by gain or loss of methylation of the relevant resistance signaling drivers. It 
was previously shown in vitro that CDKN2A silencing initially happens through histone modifications 
followed by loss of gene expression, and then by promoter methylation to lock the repressive state 
(33).  Together, both findings suggest that while chromatin rewiring results in gene expression 
changes, this epigenetic state is still reversible and require DNA methylation to be stabilized. It is 
critical to determine the timing in treatment that reversible epigenetic alterations develop to allow 
alternative therapies to be effective. Short term exposure to targeted therapies can induce reversible 
chromatin changes that will lead to resistance, while chronic exposure induces DNA methylation 
changes that are more steady and observed in stable resistant states (34). 

Among the genes going through chromatin remodeling and transcriptional changes in response to 
cetuximab, some are participating in pathways previously associated with acquired resistance, such 
as TFAP2A and EMT. TFAP2A encodes a transcription factor that binds to growth factor receptors 
and is most probably up-regulated to overcome the lack of EGFR activity. One proof of that is our 
previous observation that as a response to anti-EGFR therapy, TFAP2A mRNA level is up-regulated 
with only 24h of therapy in vitro (10). The TFAP2A has dual-function and can play a role as a tumor 
suppressor gene (transcriptional repressor) or oncogene (transcriptional activator) depending on the 
tumor type. Although a previous study showed that in vitro down-regulation of TFAP2A in HNSCC is 
associated with decreased proliferation (35), another study pointed to the same direction as our 
findings. In nasopharyngeal carcinoma, TFAP2A silencing in vitro and in vivo results in slower cancer 
cell proliferation and patients with high tumor levels of the gene present poorer survival (36). TFAP2A 
up-regulation is a feature of other tumor types such as neuroblastoma, pancreatic cancer and acute 
myeloid leukemia (31–33). In our in vitro models, TFAP2A knock-down resulted in slower cell growth 
showing the relevance of this transcription factor to HNSCC proliferation in vitro. This finding together 
with the observation that cetuximab has a synergistic effect is evidence that TFAP2A downstream 
targets could be new therapeutic targets for combination approaches that will prolong disease control. 

The EMT process has also been previously associated with acquired resistance to anti-EGFR 
targeted therapies (7,18,34,35). We found a significant number of EMT gene promoters among those 
undergoing remodeling after five days of therapy in SCC6 and SCC25. Among the EMT genes up-
regulated by EGFR blockade are a few collagenases, that are most probably related to providing 
tumor cells ability to move in the extracellular matrix. One interesting finding is that the gene AXL is 
up-regulated after 96h of cetuximab therapy in SCC6 cells and this is also correlated with a more 
accessible promoter in treated cells. AXL is a receptor tyrosine kinase known to mediate resistance to 
cetuximab and is possibly an alternative mechanism HNSCC cells in vitro are activating to keep 
proliferating in the absence of EGFR (36–38). This observation suggests that early chromatin 
modifications are involved in the development of acquired cetuximab resistance and that they can be 
detected while the tumor is sensitive to cetuximab.  

Since the up-regulation of other RTKs, such as AXL, is a common finding in acquired anti-EGFR 
resistance, we tested a combination treatment to evaluate a possible synergistic effect on controlling 
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cell growth. JQ1 is a bromodomain inhibitor that preferentially binds to BRD4, a protein with high 
affinity for acetylated histone tails, which represses transcription of its targets (39,40). Among these 
target genes are RTKs known to be up-regulated as a resistance mechanism to anti-EGFR therapies 
(41,42). In this scenario, BRD4 inhibition seems a reasonable approach since it acts as a “multi-
targeted” therapy. Also, successful results in delaying acquired cetuximab resistance were shown 
when JQ1 or BRD4 knockdown were used in combination with cetuximab in HNSCC cell models or 
patient derived xenografts (41). In our short time course model, we could not determine the time of 
resistance development but we observed the inhibitory effects of JQ1. JQ1 has stronger effect than 
cetuximab in controlling HNSCC proliferation in vitro and the addition of cetuximab has diverse impact 
in reducing cell growth depending on the cell line with the strongest synergism observed in SCC6 
cells. Although including cetuximab to the JQ1 therapy seems to have little effect on reducing 
proliferation, the combination potentially has great impact on disease control by targeting various 
RTKs at the same time and delays acquired resistance by reducing alternative growth pathways 
tumor cells can use to overcome EGFR inhibition. However, JQ1 is known to have a short half-life 
which reflects in the necessity of elevated doses not well tolerated by cancer patients (43,44). Since 
there are currently other bromodomain inhibitors being evaluated in clinical trials with less toxicity, 
further studies are necessary to identify agents that have a similar effect when combined with 
cetuximab in HNSCC. 

Overall, our study demonstrates that transcriptional and chromatin changes induced by cetuximab 
therapy are early events that can be detected before acquired resistance develops. Here, we focused 
on only two pathways, TFAP2A and EMT, previously described to be involved in resistance to 
cetuximab and other anti-EGFR therapies (10,11), but our findings suggest that other pathways 
involved in resistance should be evaluated in short time course experiments to verify if transcriptional 
shifts and chromatin rewiring are also immediate responses to targeted therapies and that are 
potential drivers of resistance. Also, the use of JQ1 demonstrates that a drug targeting multiple RTKs 
is effective and could be an alternative to overcome resistance and prolong disease control. 

Another major finding is how inter-cell heterogeneity can induce different changes to the same 
mechanisms of resistance to targeted therapies. Although we observe alterations in both TFAP2A 
and EMT pathways, the genes affected are different among cell lines. This is highlighted in the 
scRNA-seq analysis in which the gene expression changes are not the same among the cells. The 
single cell approach also demonstrates that there is no causal relationship between the pathways. 
These inter-cell line heterogeneity mimics patients inter-tumor heterogeneity and complicate the 
decision of which alternative targeted therapies are the most appropriate for each individual case. 
Alternatives like JQ1, that result in the inhibition of multiple drivers of resistance, are promising and 
would allow clinical decisions to be made without submitting patients to the expensive costs of 
genetic and genomic tests. The use of in vitro and in vivo preclinical models would be sufficient to 
identify the relevant pathways and the most proper “multi-targeted” therapies to be used. 
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FIGURES 

 

 

 

Figure 1 – Single cell RNA-sequencing of HNSCC cell lines after cetuximab treatment. SCC1, 
SCC6 and SCC25 cell lines were treated with cetuximab or PBS (untreated controls) for five 
consecutive days after which cells were collected for single cell RNA-seq (scRNA-seq) (A). scRNA-
seq analysis demonstrates that each cell line present a specific gene expression profile (B). In 
response to cetuximab, the SCC6 treated (red) and untread (black) clones separate completely while 
the SCC1 and SCC25 present some overlap in the distribution regarding the transcriptional profile 
(C). Inter-cell heterogeneity is more evident for TFAP2A and VIM mRNA levels (D and E), with SCC1 
presenting high levels of TFAP2A and no expression of VIM. The co-expression analysis (F) shows 
that in SCC1 there is no change in the levels of TFAP2A or VIM in response to cetuximab; SCC6 
treated cells are VIM+ (orange and purple) while untreated are negative (green and blue) with 
different status for TFAP2A expression; and most of the SCC25 cells responding with increase in VIM 
but with some untreated clones presenting the same expression profile for VIM and TFAP2A (purple) 
and with VIM- clones only detected in the untreated group. 
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Figure 2 – Time course gene expression measurement of TFAP2A and EMT markers. SCC1, 
SCC6 and SCC25 cell lines were treated with cetuximab or PBS (untreated controls) for five 
consecutive days and cells were collected daily for bulk RNA-seq (RNA-seq) (A). Among the genes 
differentially expressed among all three cell lines as a response to cetuximab therapy the gene set 
enrichment analysis show significant presence of genes that are TFAP2A targets or that participate in 
the EMT process (B). When analyzed individually, the TFAP2A and EMT differential expressed genes 
are specific in each of the cell lines. SCC1 (C and F) and SCC25 (E and H) present changes as soon 
as 24 hours (1 day) after cetuximab therapy, while in SCC6 (D and G) the changes are only detected 
at 96 hours (4 days) after cells are treated. 
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Figure 3 – Chromatin accessibility profile of HNSCC cell lines treated with cetuximab. ATAC-
seq was performed after SCC1, SCC6 and SCC25 were treated for 5 days with cetuximab and also in 
the untreated (PBS) controls (A). Differential binding analysis show that the promoters accessibility 
changes in response to 5 days of therapy are capable of separating the cetuximab from the PBS 
replicates in all three cell lines (B, C and D). With the exception of SCC1, there are enrichment for 
TFAP2A and EMT promoters among the ATAC-seq peaks in SCC6 and SCC25 (E). The differential 
binding analysis show that SCC25 is the gene with the highest number of genes with chromatin 
changes in response to cetuximab (F) and also identified promoters that are changed in more than 
one cell line (F, underlined). 

  

FIGURE 2

B     SCC1

Score
0 2 4 6 8

Color Key

S
C

C
6P

B
S

1

S
C

C
6P

B
S

3

S
C

C
6P

B
S

2

S
C

C
6C

TX
1

S
C

C
6C

TX
2

S
C

C
6C

TX
3

Treatment
PBS
Cetuximab

C     SCC6

S
C

C
25

C
TX

3

S
C

C
25

C
TX

1

S
C

C
25

C
TX

2

S
C

C
25

P
B

S
3

S
C

C
25

P
B

S
1

S
C

C
25

P
B

S
2

Score
0 2 4 6 8

Color Key

Treatment
PBS
Cetuximab

D     SCC25

EMT TFAP2A

SCC25

SCC6

SCC1

0.028 2e−03

6e−03 3e−03

1.000 0.442

E EMT TFAP2A
SCC1 SCC6 SCC25 SCC1 SCC6 SCC25

CALD1, FN1, AXL, 
COL5A1, ESRP2, 
NAP1L3, DACT1, 

ADAMTS12, 
OLFML2B, 

COL1A1, FAP 

SULF1, CNOT1, 
PRSS8, COL8A1, 
GALNT3, ESRP1, 

F11R, CDH2, 
VCAN, HOOK1, 
CALD1, IRF6, 

GYPC, FAP, VIM, 
OLFML2B, AP1G1, 

MAP7, EMP3, 
COL5A2, ANTXR1 

MT2A, TFAP2A, 
ODC1, IVL

MT2A, ST3GAL5, 
APP, PTGS1, 

TGM1, IVL, EGFR, 
ACACA, COL7A1, 
CTNNAL1, CGB7, 
IGF1R, INHA, MYC   

TGM1, PTGS1, 
ATF2, CTNNAL1, 
IVL, MT2A, TEP1, 

BMP4, ABCA1, 
VCAN, HTT, 

MCAM, IRF6, 
IFNGR1, CGB5, 

ST3GAL5, 
TGFBR3, COL7A1, 

CD82, CHRNA7, 
PPP2R1A, JUN, 
FXR2, RAD51, 

TAF7, MYC, 
HSPB1, GPX4, 

PRKACA, FGFR1, 
CGB8

F

S
C

C
1P

B
S

3

S
C

C
1P

B
S

1

S
C

C
1C

TX
2

S
C

C
1C

TX
3

S
C

C
1C

TX
1

Score
0 2 4 6 8

Color Key

Treatment
PBS
Cetuximab

A    Experimental design

ATAC-seq

Day 0 Day 1 Day 2 Day 3

SCC1 
SCC6 

SCC25

Day 4 Day 6

Cetuximab or PBS

Day 5

Cell 
seeding

n=1,821 n=3,057 n=11,402

.CC-BY-NC-ND 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under 

The copyright holder for this preprint (which was notthis version posted August 8, 2019. ; https://doi.org/10.1101/729384doi: bioRxiv preprint 

https://doi.org/10.1101/729384
http://creativecommons.org/licenses/by-nc-nd/4.0/


Figure 4 – HNSCC in vitro proliferation in the context of TFAP2A expression and cetuximab 
and JQ1 therapies. Functional validation of the role of TFAP2A in HNSCC in vitro was evaluated by 
siRNA gene silencing in SCC1, SCC6 and SCC25. Cells were treated with cetuximab, JQ1, 
combination (combo) or vehicle (mock) for five days and the impact of gene knockdown and therapy 
was determined by measuring proliferation rates (A). Transfected groups (full lines, left) were 
compared to the groups with normal levels of TFAP2A (dashed lines, right - NTC) (B, C and D). In all 
cell lines, TFAP2A knockdown induce lower proliferation rates (black lines) at different levels 
depending on the cell. Cetuximab treatment (red lines) present a synergistic effect but JQ1 (blue 
lines) efficacy is even greater in reducing cell growth. Little effect is noted with the combination 
(orange lines, COMBO) when compared to the effects of JQ1 alone. 
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Figure 5 - HNSCC in vitro migration in the context of TFAP2A expression and cetuximab and 
JQ1 therapies. To further evaluate the interplay between TFAP2A and EMT, cells transfected with 
siRNA against TFAP2A and treated with cetuximab, JQ1, combination (combo) or vehicle (mock) 
were used for a migration assay. Migration was measured for a total of 24 hours immediately after 
insert removal (A). No significant changes in migration was noted when comparing the transfected 
(full lines, left) and non-transfected (dashed lines, right - NTP) SCC1, SCC6 and SCC25 cells and 
different treatment groups (B, C and D). Although migration changes were not observed, there are 
changes in VIM expression as response to siRNA silencing and the different therapies in all three cell 
lines (E, F and G). 
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