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ABSTRACT2

Convolutional neural network (CNN) based methods have outperformed conventional machine3
learning methods in predicting the binding preference of DNA-protein binding. Although studies4
in the past have shown that more convolutional kernels help to achieve better performance,5
visualization of the model can be obscured by the use of many kernels, resulting in overfitting6
and reduced interpretation because the number of motifs in true models is limited. Therefore,7
we aim to arrive at high performance, but with limited kernel numbers, in CNN-based models for8
motif inference.9

We herein present Deepprune, a novel deep learning framework, which prunes the weights10
in the dense layer and fine-tunes iteratively. These two steps enable the training of CNN-based11
models with limited kernel numbers, allowing easy interpretation of the learned model. We12
demonstrate that Deepprune significantly improves motif inference performance for the simulated13
datasets. Furthermore, we show that Deepprune outperforms the baseline with limited kernel14
numbers when inferring DNA-binding sites from ChIP-seq data.15

Keywords: Deep neural networks, Motif inference, Network pruning16

BACKGROUND

Determining how proteins interact with DNA to regulate gene expression is essential for fully understanding17
many biological processes and disease states. Many DNA binding proteins have affinity for specific DNA18
binding sites. ChIP-seq combines chromatin immunoprecipitation(ChIP) with massively parallel DNA19
sequencing to identify DNA binding sites of DNA-associated proteins(Zhang et al., 2008). However,20
DNA sequences directly obtained by experiments typically contain noise and bias. Consequently, many21
computational methods have been developed to predict protein-DNA binding, including conventional22
statistical methods(Badis et al., 2009; Ghandi et al., 2016) and deep learning-based methods(Alipanahi23
et al., 2015; Zhou and Troyanskaya, 2015; Zeng et al., 2016). Convolutional neural networks (CNNs) have24
attracted attention for identifying protein-DNA binding motifs in many studies.(Zhou and Troyanskaya,25
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2015; Alipanahi et al., 2015). Genomic sequences are first encoded in one-hot format; then, a 1-D26
convolution operation with 4 channels is performed on them. For conventional machine learning methods,27
the sequence specificities of a protein are often characterized by position weight matrices (PWM)(Stormo,28
2000). PWM has a direct connection to CNN-based model since the log-likelihood of the resulting PWM29
of each DNA sequence is exactly the sum of a constant and the convolution of the original kernel on30
the same sequence from the view of probability model(Ding et al., 2018). Zeng et al.(Zeng et al., 2016)31
experimented with different structures and hyperparameters and showed that the convolutional layers with32
more kernels could obtain better performance. They also showed that training models with gradient descent33
methods is sensitive to weight initialization, showing, in turn, that training could be obstructed at local34
optimum of loss function. However, the use of too many kernels could introduce too much noise and, thus,35
overfitting, leading to misinterpretation of the model. By visualizing the recovery of the underlying motifs36
in the models, we found that only the several best-recovered motifs, in the sense of information content,37
could be equated to the true motifs, demonstrating that most kernels only act during the process of training38
by increasing generalization ability in order to overcome the local optimum problem(Du et al., 2018). Such39
kernels can be termed auxiliary kernels, and these kernels produce noise and reduce performance at the end40
of training. Neural networks with circular filters(Blum and Kollmann, 2019) can address this problem, but41
performance was only found to significantly improve in the one-kernel CNN-based model. However, since42
some proteins likely bind multiple motifs in the DNA sequence in omics data, the one-kernel CNN-based43
model cannot meet the needs of motif finding. Moreover, its overall performance is lower than expected44
when kernel number is limited(e.g. 16). Luo et al.(Luo et al., 2019) replaced global max pooling with45
expectation pooling, which is shown to increase the robustness for kernel numbers. However, expectation46
pooling only increases model robustness; it does not limit kernel numbers.47

In contrast, neural network pruning can reduce kernel numbers and by doing so, improve inferential48
performance without harming accuracy in the field of computer vision(Han et al., 2015a). Pruning methods49
can be classified into structured and unstructured. The former refers to pruning at the level of channels, or50
even layers, for which the original network structure is still preserved(Li et al., 2016; Changpinyo et al.,51
2017; Hu et al., 2016; He et al., 2017). The latter includes individual weight pruning. Han et al.(Han et al.,52
2015b) developed a method whereby network weights of small magnitude were pruned, and it was very53
successful in highly compressed neural network models(Han et al., 2015a). Unstructured pruning can54
ensure that models will achieve sparse weight matrices which result in compression and acceleration with55
dedicated hardware(Han et al., 2016).56

With evidence that models with only a few kernels can fit the PWM model very well, we propose a57
novel model, termed Deepprune, which utilizes pruning techniques in motif inference. Several assumptions58
underlie the design of Deepprune. First, by its stronger representation and optimization power, we believed59
that starting with training a large and over-parameterized network could provide a model with high60
performance. Second, for the PWM model, which often characterizes sequence specificities, several kernels61
which are viewed as motif detectors are enough for motif inference. Third, the inclusion of too many62
auxiliary kernels leads to misinterpretation of the model. Fourth, auxiliary kernels may produce noise and63
lower performance at the end of training. If the PWM model characterizes sequence specificities and if no64
interaction among different motifs is considered, then Deepprune achieves better performance with fewer65
kernels, markedly exceeding baseline in simulated datasets. In spite of the uncertainty of the true model,66
Deepprune still arrives at better performance with the same kernel numbers in real datasets, which shows67
the superiority of our model. Our model can also find more accurate motifs by model visualization and68
eliminate auxiliary kernels. All coding utilized to implement Deepprune and all the figure reproductions in69
the paper is available at https://github.com/klovbe/Deepprune70
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METHODS

Detecting sequence motifs with CNN71
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Figure 1. The architecture of Deepprune. The first layer is a convolutional layer. The second layer is a
rectified linear units activation function followed by global max pooling. A mask layer is added to prune
the small-magnitude weights. The fourth layer is a dense layer which linearly combines the outputs of all
the kernels. The last layer is a sigmoid activation function which converts the values obtained in the dense
layer to a value between 0 and 1 which corresponds to a probability.

We adopt the simplest model in DeepBind as our basic neural network architecture(Alipanahi et al.,72
2015). The sequences are represented as numerical vectors. Each of the four nuleotides is denoted as73
one of the four one-hot vectors [1, 0, 0, 0], [0, 1, 0, 0], [0, 0, 1, 0], and [0, 0, 0, 1]. Consequently, a sequence74
X = X1, · · · , XL is transformed into a 4×Lmatrix S. We first add a 1-D convolutional layer with rectified75
linear units(ReLU) activation serving as a motif scanner layer(Radford et al., 2015), followed by a global76
max pooling layer. Then we add a mask layer to prune the weights according to some given criterion, which77
will be introduced in the next section. The last layer is a fully connected layer with sigmoid activation the78
output of which is the probability of a sample being positive.79

Formally, if the convolutional kernels are denoted by 4× LF matrices F 1, F 2, · · · , F d, in which LF is80
the length of the kernel, we have81

hpk =

LF∑
i=1

4∑
j=1

Sj,(i+p−1)F
k
ji, k = 1, ...d, (Convolution)

apk = max
(
0, hpk

)
(Activation)

zk = max
{
a1,k, . . . , aL−LF+1,k

}
(Globalmax− pooling)
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uk = zk ·mk(MaskLayer)

p
(
Cmotif |S

)
= σ

(
b+

d∑
k=1

wkuk

)
(DenseLayer),

where wk and w are weights, b is bias and σ(x) denotes the sigmoid function for classification. Compared82
to basic neural network architectures, note that a mask layer is added because we want to mask the kernels83
that have little impact on the performance at the end of training. As a result, mk is set as 0 or 1, and mk = 084
means that the information of the k-th kernel cannot pass through this layer. Because the calculation of85
each kernel is independent in the convolutional layer, the pruned model can be viewed as a CNN-based86
model with fewer kernels. Accordingly, we can prune our network to get an efficient and interpretable87
architecture with limited kernels.88

Deepprune89

In this work, we take iterative pruning on the weights of the dense layer in the CNN-based model and90
drop the learning rate of each pruning step gradually for fine-tuning. First, we utilize 2k × d convolutional91
kernels in our model, i.e., the large, over-parameterized model. Half the number of kernels is pruned each92
time, according to a certain criterion. In other words, the number of values being 1 in the mask layer is93
halved each time. Since weight pruning may lead to decreased performance, we then fine-tune the pruned94
model to regain the lost performance. The above two steps are iterated for k times and then the final model95
is obtained. Deepprune first gives the weights in the architecture an appropriate area from the global view96
and adjusts the weights gradually by iterative pruning and fine-tuning. In this way, we can overcome the97
drawback of easily stopping at the local optima restricted by the local views in the original model with98
limited kernel numbers by the strong ability of representation in our model.99

Three criteria are designed for Deepprune. For weight-based Deepprune, we consider the weight of scores
(i.e., wk) in the dense layer. The weights with small magnitude are pruned as

mk =

{
1 |wk| > median(|wk|)
0 otherwise

in which the median operation takes the median of |wk| corresponding to unpruned weights. However, the
scale problem below is not considered in the first criterion. We know that b+

∑d
k=1wkuk is the input for

the sigmoid activation layer which predicts the label; that is to say wkuk determines the importance of the
k-th kernel. However, the score of the k-th kernel can be multiplied by m if weights in the convolutional
layer are multiplied by m, and then the weight corresponding to this kernel in the dense layer will shrink by
training. As a result, the score uk obtained in the mask layer also counts, and the impact of the score over
samples needs to be considered. For the score-based criterion, the scores with small difference between
positive and negative samples are pruned.

mk =


1 |AV GPuk − AV GNuk| >

median(|AV GPuk − AV GNuk|)
0 otherwise

in which AV GPuk means the average score over positive samples, and AV GNuk means the average
score over negative samples. For the score-and-weight-based criterion, we directly consider wkuk, which
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determines the input for the sigmoid activation layer as

mk =


1 |AV GPuk ∗ wk − AV GNuk ∗ wk| >

median(|AV GPuk ∗ wk − AV GNuk ∗ wk|)
0 otherwise

.

Implementation of the models100

The hyperparameters to train the simulated datasets contain the length of convolutional kernels, learning101
rate, times of pruning k, last pruned kernel number d, number of epochs, training batch size, learning rate102
decay schedule and the optimizer. First, we train the basic model with 2k × d kernel numbers, and we get103
Deepprune models with 2k−1 × d, · · · , d kernel numbers. We also consider the strength of fine-tuning and104
denote the pruned model without fine-tuning from the last pruned model (twice the kernel numbers) as105
Deepprune-inter. To make a comparison, we match our model with baseline, which is the basic model106
utilizing identical kernel number trained directly without pruning.107

For training, we used cross-entropy as a loss function without any weight decay(i.e., L2 regularization108
over the weights), and trained the model utilizing the standard backpropagation algorithm and the Adam109
optimizer(Kingma and Ba, 2014). The area under the ROC (AUC)(Fawcett, 2004; Davis and Goadrich,110
2006) is utilized to assess prediction performance.111

Our model is implemented with Keras for Python(Chollet et al., 2015).112

Table 1. Parameter settings for the simulated datasets
Name Values
Batch size 256
Kernel length 24
Optimizer Adam with initial learning rate 0.01
Learning rate decay schedule drops the learning rate by 1.2 every pruning step
Random seed 0,1,2,3,4,5,6,7,8,100,123,1000,1234,10000,12345,100000,123456,1000000

Datasets113

Simulated datasets114

For simulation, TRANSFAC database was utilized to evaluate the performance of Deepprune(Wingender115
et al., 1996). Each simulated data set includes both negative and positive samples, or sequences. Each116
negative sample consists of independent and identically distributed nucleotides obeying a multinomial117
distribution with the probability of 0.25 for each {A,C, T,G}. Each positive sample was built in the same118
manner as a negative sample except that sequences from certain motifs were inserted at some locations119
randomly. The sequences inserted in the positive samples for the five simulated data sets were listed below:120

• simulated dataset 1,2,3: Each sequence was generated from either the first or the second motif; We121
chose motif for each positive sample randomly with equal probability.122

• simulated dataset 4: Each sequence was generated from one of the four given motifs; other rule is the123
same.124

• simulated dataset 5: Each sequence was generated from one of the eight given motifs; other rule is125
the same.126
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The number of sequences in the training dataset and test dataset is equal. We emphasized because a127
given protein may bind to multiple motifs in the DNA sequence, our simulation datasets were constructed128
reasonably.129

Real datasets130

690 ChIP-seq ENCODE datasets utilized by DeepBind were chosen to be real datasets(Alipanahi et al.,131
2015). Each dataset corresponds to a specific DNA-binding protein. Its positive samples are 101 bp132
DNA sequences confirmed to bind to a given protein experimentally while its negative samples were133
constructed through shuffling dinucleotides in the positive sequences. All the datasets are available at134
http://cnn.csail.mit.edu/.135

RESULTS

Deepprune performs better than the baseline on the simulated data136

In this section, we use the simulated data to compare Deepprune with baseline. Baseline is the simplest137
CNN model with no hidden layers, in other words the architecture of Deepprune, but without the mask138
layer, with batch size = 256, d = 4 and k = 6. All the models in this paper are pruned from the basic139
model with kernels [Table 1]. We chose d = 4 for 101 bp sequences, which can be divided into about 4140
parts of 24 bp. If d < 4, the kernel number may be less than the number of the underlying motifs. Also,141
simulated dataset 5 can show how Deepprune performs when the kernel number is half the number of the142
underlying motifs. Several random seeds are set to evaluate the robustness of the models’ performance for143
the simulated datasets. Weight-based Deepprune is only considered in this section.144

Compared to the baseline model without pruning, we found that Deepprune improved motif inference145
performance on first three simulated datasets from Figure 2. Specifically, as kernel number increases, the146
performance of baseline has a tendency to improve, which is consistent with Zeng et al.(Zeng et al., 2016)147
However, as kernel number decreases, the performance of Deepprune shows a converse tendency such that148
the mean of AUC of Deepprune shows significant improvement as the iteration continues. What’s more,149
variances of AUC of Deepprune are also more robust. When compared with models with the same kernel150
number, Deepprune shows its wonderful ability to limit kernels for accuracy and robustness, showing that151
Deepprune works effectively for motif inference.152

Compared with the baseline, performance improvement was notably evident on the simulated dataset153
4 and 5 with a hard true model, reflecting the excellence of Deepprune in cases with the complex motif154
settings [Figure 3]. Distinctly, the performance of baseline with 4 kernels is close to that of random guess155
on the complex datasets. This result shows that the baseline model with limited kernel numbers does not156
satisfy the need for overcoming the local optimum problem and that it lacks robustness to initialization. To157
our surprise, when the kernel number is half that of the motif number, the performance of Deepprune only158
drops a little, showing that the condition d = 4 is enough. What’s more, fewer kernels helps to improve159
the interpretation of our model. We also find that Deepprune-inter always shows poorer results, no matter160
whether from the mean AUC or the variation of AUC, which demonstrates that fine-tuning is essential in161
Deepprune.162

Comparison of three pruning criteria163

Next, we studied the effects of the three criteria on the performance of Deepprune, as noted previously.164
We selected three simulated datasets to determine the difference of three different rules. If the scores165
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are considered when pruning, then all samples in the training set need to be calculated, which leads to166
substantial calculation.167

Figure 2. Weight-based Deepprune performs much better and is much robuster to different random
initialization than baseline when kernel number is limited in the first three simulated datasets. The x axis
shows the kernel numbers utilized in the model, and the y axis shows the AUCs obtained in testing. As
kernel number decreases, the performance of Deepprune shows a converse tendency compared to baseline;
thus, as iteration continues in an upward gradient, the mean AUC of Deepprune significantly improves.

From Figure 4, when kernel number is high (e.g., 8 and 16), the performance of the three methods is168
nearly identical. Thus, the choice of there pruning methods is not crucial because the restriction to the169
kernel number is loose. However, when the kernel number is extremely limited, weight-based Deepprune170
shows its superiority compared to the other two methods in simulated dataset 1, in which the samples171
are hard to classify because of the information entropy in the true model. It is likely that weight-based172
Deepprune does not depend on samples which may cause randomness. From the case study below, the173
weights in the dense layer have a close magnitude, indicating that the scaling problem of scoring is difficult174
to solve in the smooth training process. Based on this observation, we select weight-based Deepprune as175
default.176

Performance on real datasets177

We test the performance of DeepPrune on read data analysis in this section. CNN parameters are set the178
same as those for the simulated datasets, except the kernel length was changed to 15.179

When the number of kernels is limited (i.e., 4), Deepprune achieves a statistically significant improvement180
in AUC from one-sided Wilcoxon signed-rank test in Figure 6, p=1.02× 10−58, with a better performance181
on 77.10% of the datasets [Table 2]. Nevertheless, its accuracy is lower on 22.90% of the datasets, which182
does not match our expectation. This may be due to the non-convexity of the neural network model where183
local optimum is obtained. So we select the datasets for which our model ’s performance is lower, and184
we initialize the training with several different random seeds.In some of the selected datasets, the mean185
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Figure 3. Weight-based Deepprune performs much better and is much robuster to different random
initialization than baseline when kernel number is limited in the last two complex simulated datasets, even
when kernel number is half the motif number at which time the performance of Deepprune only drops
slightly.

Table 2. Performance of Deepprune on real data
Kernel number Method AUC Precentage improved P-value

4
baseline 0.7785

0.7710 1.02E-58Deepprune 0.8016

8
baseline 0.8169

0.7174 6.44E-38Deepprune 0.8288

16
baseline 0.8432

0.6826 2.63E-21Deepprune 0.8476

32
baseline 0.8602

0.6681 3.25E-15Deepprune 0.8625

64
baseline 0.8728

0.6507 1.20E-15Deepprune 0.8743

128
baseline 0.8809

0.6986 4.41E-26Deepprune 0.8820
256 0.8849

performance of DeepPrune is almost as good as the baseline (see Supplementary Material). However, a186
consistent gap still appears in a small number of datasets in which the baseline shows better performance187
than our method, suggesting that the interaction of motifs is not considered in our architecture. It follows188
that the proposed architecture cannot represent the true model for some proteins in motif inference, which,189
therefore, creates bias for Deepprune.190
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Case study191

We selected several kernels to track the change of their corresponding weights at different pruning stages192
in the dense layer. In this section, we utilized simulated dataset 3 for we only knew the true models in193
simulated datasets. We chose the weights of 4 unpruned kernels and 2 pruned kernels at the end of each194
fine-tuning step. All the weights were collected after fine-tuning. It should be noted that the weights of the195
kernels in the convolutional layer changed during fine-tuning.196

Table 3. Absolute value of weights of several kernels during different pruning stages in the dense layer.
kernel number kernel 1 kernel 2 kernel 3 kernel 4 kernel 5 kernel 6

256 0.9150 0.9019 0.7043 0.8112 0.2192 0.3582
128 0.9462 0.9294 0.7322 0.8344 0.2625 0.4015
64 0.9548 0.9364 0.7305 0.8252 0.2100 0.3750
32 0.9616 0.9403 0.7540 0.8387 0.0000 0.4433
16 0.9836 0.9504 0.8153 0.8589 0.0000 0.4584
8 1.0919 1.0501 0.9620 1.0249 0.0000 0.0000
4 1.2832 1.1979 1.2065 1.2542 0.0000 0.0000

From Table 3, we can see that the magnitude of weights is gained step-by-step for four unpruned kernels,197
indicating that kernels show their importance over a gradual upward gradient. Before pruning, the weights198
of unpruned kernels are scrapped by auxiliary kernels. After pruning auxiliary kernels, the weights of199
unpruned kernels aren’t affected any more, which shows the superiority of Deepprune.200

Figure 4. Three models of Deepprune are compared on the simulated datasets. We show the performance
of Deepprune based on different criteria with 4, 8 and 16 kernels. The performance of three different
criteria is almost identical to that with 8 and 16 kernels during iterative pruning. However, the final model
with 4 kernels shows that weighted-based Deepprune is superior to the other two methods in simulated
dataset 1, but hard to classify owing to high entropy.
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Model visualization201

Now we study the ability of Deepprune to recover the underlying motifs more accurately. As in the last202
section, we utilized simulated dataset 3 because we only knew the true motifs in simulated datasets. The203
sequence logos are generated from kernels the way introduced in Section 10.2 of the DeepBind(Alipanahi204
et al., 2015) Supplementary Materials. The two best-recovered motifs, from the perspective of information205
content, were compared to the true motifs utilized on the simulated data. Their similarity (E-value) were206
also calculated utilizing the Tomtom algorithm(Gupta et al., 2007).207

In Figure 5 the motifs recovered by Deepprune and the baseline were both aligned to the true motifs. We208
clearly found the sequence logos generated by Deepprune were informative and accurate from the E-value.209
The base-recovered motif by the baseline with 4 kernels exhibited very bad performance and the short210
motif in simulated dataset 3 could not be matched by 4 filters. In addition, we found that the motif regions211
could be distinguished from other regions which clearly obey background distribution. Although the length212
of kernels is far beyond that of the true motifs, the extra positions, which are not aligned to the true motifs,213
do not contain any noise, owing to the ability of Deepprune to lessen the impact of auxiliary kernels at the214
end of training.

Figure 5. Motifs recovered by our model (the last two) and by baseline (the first) aligned to the true given
motifs (top row). Utilizing Tomtom algorithm, the E-values of the motifs recovered by Deepprune are
1.35× 10−23, 2.27× 10−7, respectively. At the same time, the ones recovered by baseline are 1.64× 10−2.

215

DISCUSSION

Regularization behind Deepprune216

L0, L1 and L2 regularizations are three significant shrinkage methods for variable selection, and they are217
widely utilized in deep learning(Luo et al., 2019; He et al., 2016; Liu et al., 2017). However, the architecture218
of deep learning is multilayered and complex. Thus, for the same result, all weights in the architecture219
have the same infinite solution, e.g., the scaling problem noted before. L1 and L2 regularization update the220
original loss function by adding differentiable regularization terms, while L0 regularization needs to be221
realized by pruning. Actually, Deepprune adds L0 regularization to the weight in the dense layer instead of222
the entire architecture. Iterative pruning can help avoid wrong pruning for the greedy algorithm compared223
with one-shot pruning, thus showing its superiority in many tasks(Frankle and Carbin, 2018). Although L1224
and L2 penalties have been added to our model, the result shows little difference.225

Deep models are necessary for modeling TF-DNA specificities226

Blum and Kollmann(Blum and Kollmann, 2019) supposed that deep models may be unnecessary for227
modeling TF-DNA specificities because they think that biological sequences are not composed of complex228
hierarchies of patterns as those in images. Deepprune can improve the performance of motif inference on229
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real-world data compared with baseline, even with the same kernel number. However, since the weights are230
pruned iteratively, the performance of Deepprune does not change as what we saw in the simulated datasets.231
If PWM characterizes the specificities of motif inference and motif relationships are the same with those in232
simulated datasets, we will most likely see consistent performance in real-world and simulated datasets.233
In actuality, however, about 23% of datasets have a decrease compared to baseline with 4 kernels. As a234
result, we suspect that the interaction of different motifs and other complex relationships corresponding to235
motif inference need to be considered. Actually we suggest using different architectures to model different236
protein-binding problems. It is clear that adding the hidden layer gives deep learning architectures the ability237
to represent the interaction of different motifs and sequences of recurrent neural network models from238
the viewpoint of natural language processes, allowing various representations with different parameters.239
However, based on the results of our experiment, many biological sequences cannot be modeled very240
well by the simple DeepBind model, making it necessary to create deeper architectures to identify the241
underlying model for some proteins.242

Figure 6. The performance of Deepprune with 4 kernels on real datasets where kernel length = 15.
Deepprune greatly increases the AUC for real datasets. The AUC difference under the baseline (Init) and
Deepprune (Prune) is shown from the x axis. Deepprune is better than baseline on 532 datasets, but worse
than baseline with 158 datasets. This figure clearly shows that Deepprune achieves better performance with
limited kernel number.

Lottery Ticket Hypothesis243

Recently, the lottery ticket hypothesis has attracted attention in the field of deep learning. This hypothesis244
holds that dense, randomly initialized networks contain subnetworks that, when trained in isolation (i.e.,245
utilizing the same initialization), reach test accuracy comparable to the original network in a similar246
number of iterations(Frankle and Carbin, 2018). The subnetworks are called winning tickets. Liu et al.(Liu247
et al., 2018) even suggested that the value of automatically structured pruning algorithms sometimes248
lies in identifying efficient structures and performing implicit architecture search, rather than selecting249
“important” weights, irrespective of the initiation. First, if the architecture of our pruned model is equal250
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to that of baseline, our result in the simulated dataset shows that either weight or initiation also counts251
for the performance of unstructured pruning algorithms. Second, we tried to find our winning tickets by252
following the methods in the original paper. We substituted the fine-tuning step in Deepprune for retraining,253
which resets the remaining parameters to their values before initial training. Experiments on real data with254
winning tickets realize slightly better performance (Mean AUC is 0.8035 with 4 kernels), which shows that255
this hypothesis may be true for Deepprune (see Supplemental Material).256

CONCLUSION

In this study, we proposed a novel deep-learning framework called Deepprune, to improve the performance257
of predicting the binding preference of DNA-protein binding. Deepprune prunes weights of kernels in258
the dense layer and fine-tunes iteratively by adding a mask layer in the architecture of motif inference.259
Deepprune utilizes limited kernel number in the convolutional layer, which shows the efficiency and260
interpretability of our model. In this study, Deepprune is shown to improve model performance compared261
with baseline with the same limited kernel number, both in simulated and real-world datasets. Our method262
improves performance without changing the basic architectures or adding extra parameters at the end of263
training.264

To the best of our knowledge, we are the first to introduce a pruning framework in the field of motif265
inference. Network pruning has been widely applied in the framework of deep learning for its ability to266
reduce storage and computation without affecting accuracy. Although the architecture of motif inference is267
very simple, network pruning is meaningful for the model since the use of fewer kernels can still achieve268
better interpretation as can be seen from model visualization.269

The motif-finding problem remains unsolved. Deep learning is very useful for complex structures and270
large datasets. What’s more, it has greatly improved the state-of-the-art in many areas. Neural networks271
have achieved a lot of success, such as DeepBind and DeepSEA for motif-finding. However, in spite of the272
great achievements, deep learning is blamed due to the lack of interpretability as well(Castelvecchi, 2016;273
Zou et al., 2018). DeepBind shows its superiority compared with conventional machine learning methods,274
which proves that both deep and complex representation of the sequences is essential for motif inference.275
Because the gap between the performance on simulated and real-world datasets, we wonder if this is due to276
the underlying model behind some of the real-world datasets is complex.277

Recently, many studies have investigated the interpretation of neural networks and the underlying278
model behind real-world datasets. They utilize complex models, such as RNN and the model with279
attention mechanism, which comes from the field of natural language processing, to represent the complex280
information of biological sequences(Zuallaert et al., 2018; Luo et al., 2019; Shen et al., 2018; Pan and Shen,281
2018; Pan and Yan, 2017; Li et al., 2019; Pan et al., 2018). Actually, from the diversity of DNA-protein282
binding, we suggest using different architectures to model motif inference for specific proteins. Complex283
network architectures combined with pruning technology can result in approximating the true model of284
motif inference. Since our basic architecture is simple, adding a hidden layer before the dense layer and285
then adding an RNN layer after the convolutional layer, as well as replacing global max pooling with286
expectation pooling, can also be considered, but these topics are outside the scope of the present paper.287
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