1 Direct detection of mRNA expression in microbial cells by fluorescence *in situ*

2	hybridization using RNase H-assisted rolling circle amplification
3	
4	Hirokazu Takahashi ^{1, +,} *, Kyohei Horio ^{2, +} , Setsu Kato ^{1,2} , Toshiro Kobori ³ , Kenshi
5	Watanabe ^{1,2} , Tsunehiro Aki ^{1,2} , Yutaka Nakashimada ^{1,2} & Yoshiko Okamura ^{1,2,} *
6	
7	¹ Graduate School of Integrated Sciences for Life, Hiroshima University,
8	² Graduate School of Advanced Sciences of Matter, Hiroshima University,
9	Higashihiroshima, Hiroshima, 739-8530, Japan
10	³ Division of Food Biotechnology, Food Research Institute, National Agriculture and
11	Food Research Organization, Tsukuba, Ibaraki, 305-8642, Japan
12	
13	⁺ These authors contributed equally to this work.
14	
15	*To whom correspondence should be addressed: Hirokazu Takahashi, Email:
16	ziphiro@hiroshima-u.ac.jp; Yoshiko Okamura, Email: okamuray@hiroshima-u.ac.jp

17 ABSTRACT

18	Meta-analyses using next generation sequencing is a powerful strategy for studying
19	microbiota; however, it cannot clarify the role of individual microbes within microbiota.
20	To know which cell expresses what gene is important for elucidation of the individual
21	cell's function in microbiota. In this report, we developed novel fluorescence in situ
22	hybridization (FISH) procedure using RNase-H-assisted rolling circle amplification to
23	visualize mRNA of interest in microbial cells without reverse transcription. Our results
24	show that this method is applicable to both gram-negative and gram-positive microbes
25	without any noise from DNA, and it is possible to visualize the target mRNA expression
26	directly at the single-cell level. Therefore, our procedure, when combined with data of
27	meta-analyses, can help to understand the role of individual microbes in the microbiota.
28	

29

30 Introduction

- 31 Microbiota consists of several bacterial species, including non-cultivable microbes, via
- 32 interactions such as nutrients and growth promoting substance. One of the goals of
- 33 microbiology is to understand the impact of microbiota on the environment, animals
- 34 including human to marine sponges, and plants including rhizosphere. Thus,
- 35 meta-analyses such as metagenomics and metatranscriptomics using next generation
- 36 sequencing (NGS) are powerful strategies for studying microbiota. In particular,
- 37 high-throughput transcriptome sequencing (RNA-seq) data that contain amount and
- 38 type of expressed mRNA are an important for understanding the behavior of the

39 microbiota¹.

- 40 Meanwhile, RNA-seq data cannot clarify the role of individual microbes because
- 41 complete reference genome of individual microbes is often not available even when

42 metagenomic analysis is performed simultaneously. To clarify the role of individual

- 43 microbes, single cell genome sequencing of individual microbes in the microbiota has
- 44 been a trend in recent years ^{2,3}, however high cost restrict many researchers from
- 45 performing these analysis.. Therefore, fluorescence *in situ* hybridization (FISH) of
- 46 mRNA is an important method for understanding 'who is doing what?' in the
- 47 microbiota with low cost.
- 48 However, compared with the oligo-FISH for 16S rRNA, which is commonly used
- 49 in microbiology ⁴, mRNA is difficult to visualize by FISH, because the mRNA of
- 50 interest in a cell has an extremely low copy number compared to the rRNA. In fact,
- 51 several high-sensitivity FISH methods for mRNA detection have been developed using
- 52 enzymatic signal amplification such as catalyzed reporter deposition-FISH
- 53 (CARD–FISH)⁵ and its derivative methods (e.g. two pass tyramide signal amplification

54	FISH 6 and double CARD–FISH 7). However, these methods cannot compare mRNA
55	expression level because the signal for these methods diffuses over the entire cell.
56	Although single-molecule FISH (smFISH) can detect a single mRNA molecule ⁸
57	even in microbial cells ⁹ , this procedure is much expensive than the other FISH method
58	because it needs nearly 50 different detection probes carrying the same fluorophore
59	against one transcript of interest to increase detection sensitivity ¹⁰ . In addition,
60	RNA-seq data without a reference genome, especially from microbiota, are fragmented,
61	and the mRNA sequence of interest is often too short when designing nearly 50
62	detection probes.
63	A click-amplifying FISH method, termed ClampFISH, was recently developed to
64	amplify the fluorescence signal ¹¹ . However, this method is time-consuming and
65	confounded by background noise presumably due to nonspecific hybridization of the

66	probe. Most current	ly available FISH met	hods, including RN	Ascope 12 and RollFISH 13 ,
----	---------------------	-----------------------	--------------------	---------------------------------------

- 67 rely on simple hybridization of oligonucleotide probes to mRNA sequences. Therefore,
- 68 these methods cannot clearly distinguish between fluorescent signals originating from
- 69 mRNA and genomic DNA, especially in microbes. The prokaryotic mRNA is an
- 70 unspliced RNA; thus, the oligonucleotide probes cannot be set at the exon-exon junction
- 71 to distinguish between genomic DNA and mRNA, which commonly used in
- 72 reverse-transcription (RT)-PCR for detection of eukaryotic mRNA.
- 73 FISH using rolling circle amplification (RCA), which uses complementary DNA
- 74 (cDNA) generated from mRNA by RT, has a potential to detect a single mRNA
- 75 molecule in a eukaryotic cell ¹⁴. This method makes it possible to distinguish between
- 76 mRNA and genomic DNA with high probability, because it is difficult to initiate RCA
- reaction using the genomic DNA as a primer. The RCA product (RCP) contains a hyper

78 tandem-repeat of a DNA sequence complementary to a padlock	probe (PLP)	. The RCP
---	---------	------	-----------

- 79 eventually becomes a platform on which a sufficient amount of the detection probe can
- 80 hybridize. Therefore, single fluorescent probe for detection allows this method to be
- 81 available at approximately 50-fold lower cost per gene as compared with the
- 82 conventional smFISH. However, for the detection of microbial mRNA, the exonuclease
- 83 treatment of cDNA to produce initiation point of RCA reaction will be difficult to
- 84 optimize for each individual mRNA considering the operon structure, especially using
- 85 the fragmented sequence data from RNA-seq. For these reasons, a cost-effective and
- 86 user-friendly FISH method that detects only the target mRNA in a microbial cell is
- 87 needed.
- 88 Recently, we developed RNase H-assisted RCA (RHa-RCA)¹⁵. The PLP used in
- this procedure can be set without full-length sequence information of target RNA;

- 90 therefore, PLP can be set even with a fragmented mRNA sequence such as RNA-seq
- 91 data. In addition, this procedure can detect only RNA. Here we demonstrate a novel
- 92 FISH method based on RHa-RCA for the visualization of mRNA expression level in
- 93 microbial cells at a single-cell level.

94 Results and Discussion

- 95 Figure 1 shows the scheme and workflow for our method of visualization of expressing
- 96 mRNAs of interest in microbial cells. After cell fixation and permeabilization,
- 97 RHa-RCA–FISH consists of five reaction steps (Fig. 1A): (i) PLP hybridization to a
- 98 sequence of interest in the target mRNA molecule; (ii) circularization of hybridized PLP
- 99 by SplintR ligase; (iii) producing nick site in the hybridized mRNA by RNase H; (iv)
- 100 RCA using phi29 DNA polymerase to create RCP from the nick site; and (v) finally,
- 101 detection probe hybridization to visualize RCP.

Using this method, it is possible to complete all steps except fluorescence

103	microscopic observations in approximately 8 h (Fig. 1B). Typically, we perform up to
104	step (iv) on the first day and then store the samples at 4°C, as RCPs are stable at this
105	temperature. On the following day, step (v) and microscopy were performed.
106	At first, we have tested whether RHa-RCA–FISH detects mRNAs of green
107	fluorescent protein (GFP) expressed in Escherichia coli cell. E. coli BL21(DE3)
108	transformed with a plasmid carrying GFP gene (pET-AcGFP) ¹⁶ was cultured by

- 109 inducing GFP expression through the addition of isopropyl- β -d-thiogalactopyranoside
- 110 (IPTG), whereas the *E. coli* without the addition of IPTG were maintained as negative
- 111 control (non-induced cell). The non-induced cells were cultured with 2% glucose to
- 112 inhibit leaky expression of GFP mRNA. The GFP expression was confirmed by
- 113 fluorescence microscopy using the harvested cells 2 h after the addition of IPTG

114 (Supplementary Fig. 1). Considering that mRNA expression was observed before

115 protein expression, the cells harvested 1 hour after addition of IPTG were used for

116 RHa-RCA–FISH.

- 117 No fluorescent signal was observed in non-induced cells, even though the cells
- 118 were also transformed by pET-AcGFP (Fig. 2A). In contrast, fluorescent signals were
- 119 clearly observed in GFP-induced cells (Fig. 2B). This result clearly shows that
- 120 RHa-RCA-FISH specifically detected GFP mRNA molecules and not the GFP DNA in
- 121 the vector. In addition, the fluorescence signals formed spot-like shapes (Fig. 2C), as
- 122 observed in microbial cells using smFISH ^{9,10}. Unfortunately, bacterial cells are too
- small to distinguish each RCP, so it was impossible to determine the exact number of
- 124 spots in the constrained space of these cells. To count the exact number of spots in a

125 microbial cell, the use of super-resolution microscopy such as Stochastic Optical

- 126 Reconstruction Microscopy (STORM) is required ¹⁷.
- 127 Because *E. coli* is a gram-negative bacteria, the utility of RHa-RCA–FISH in
- 128 microbiota will be limited if this method cannot be performed using the same protocol
- 129 for gram-positive bacteria, which have a thick peptide glycan coat. Therefore, next we
- 130 investigated whether RHa-RCA-FISH is applicable to Brevibacillus choshinensis as
- 131 control of gram-positive bacteria.
- 132 Using *B. choshinensis* harboring a plasmid carrying the DsRed gene under control
- 133 of the native P2 promoter, we observed fluorescence from the DsRed protein starting at
- 134 12 h after the start of the culture. The fluorescence of DsRed gradually increased,
- reaching a maximum at 72 h (**Fig. 3, upper images**).

136	On the other hand,	the fluorescent	signal from Ds	sRed mRNA by	RHa-RCA-FISH

- 137 was first observed 12 h after culture initiation, reaching a maximum at 24 h and then
- decreasing (Fig. 3, middle images). These results indicate that RHa-RCA–FISH can be
- 139 performed following the same protocol even for gram-positive bacteria.
- 140 Interestingly, the signal in *B. choshinensis* varied greatly between individual cells
- 141 (Fig. 3, middle images), while the fluorescent signals from GFP mRNA in *E. coli*
- showed minimal variation between cells (Fig. 2B). The reason the DsRed mRNA
- 143 expression level varied between individual cells may be that mRNA expression from the
- 144 P2 promoter occurs during cell wall synthesis ¹⁸, which varies with the cell cycle stage.
- 145 In addition, it was likely that the number of signals could be counted in cells with low
- 146 mRNA abundance (Fig. 3, lower images). These results indicate that RHa-RCA-FISH
- 147 have a potential to compare the amount of mRNA expression at the single-cell level.

148 Finally, we performed our protocol for simultaneous detection of both GFP and

- 149 DsRed mRNA in suspension containing E. coli and B. choshinensis cells. As a result,
- 150 red fluorescence (Alexa -568) and green fluorescence (Alexa -488) were observed from
- separate cells (Fig. 4). Although both the strains have similar cell shapes that cannot be
- 152 discriminated under the microscopy we were able to distinguish between the two strains
- based on the species-specific fluorescence from labelled probes. This result indicates
- that RHa-RCA–FISH can simultaneously detect multiple specific mRNAs, even in
- 155 microbiota containing both gram-positive and gram-negative bacteria.
- 156 Here we report that our method for *in situ* analysis of mRNA expression level in
- 157 both gram-positive and gram-negative bacteria has potential to detect differences in
- amount of the mRNA between individual microbial cells without background noise
- 159 from genomic or plasmid DNA. In this report, we performed RHa-RCA-FISH using

160 both gram-positive and gram-negative bacteria in liquid culture; thus, the samples used

- 161 for RHa-RCA-FISH contain almost no impurities other than bacterial cells. In contrast,
- 162 the samples that many researchers want to study, such as feces, soil, and symbiont,
- 163 contain impurities other than bacterial cells. However, we believe that RHa-RCA-FISH
- 164 can be perform for samples containing impurities because oligo-FISH for 16S rRNA has
- 165 been performed on many samples including feces ¹⁹, soil ²⁰ and symbiont ²¹. However, it
- 166 is important to examine the method of fixing and permeabilization according to the state
- 167 of the sample to be observed.
- 168 In this report, we have demonstrated that RHa-RCA–FISH will be able to
- 169 compare the amount of mRNA expression in rod-shaped bacterial cells. However,
- 170 whether the expression levels of mRNA can be compared greatly depends on the
- 171 physical size and shape of the microbial cells. It is difficult to compare the expression

172 level in the cells of small cocci with a commonly used fluorescence microscope. The

- 173 FISH signal and the cells were almost the same size, therefore, the mRNA expression
- 174 level was not revealed in *Streptococcus thermophilus*, which used for fermentation of
- 175 yogurt (data not shown). Thus, we believe that super-resolution microscopes such as
- 176 STORM ¹⁷ will become essential in microbiology.
- 177 We used RNase H to digest RNA/DNA-hybrid but not DNA/DNA-hybrid
- 178 molecules, therefore, our method can clearly distinguish between mRNA and DNA
- even prokaryotic mRNA remains unspliced. In addition, because the PLP used in this
- 180 method can be set anywhere in the mRNA sequence 15 , the PLP can be set even in the
- 181 RNA-seq data which may contain short sequence. Thus, we believe that our method for
- 182 visualizing RNA molecules directly within cells could help understand the role of
- individual microbes in the microbiota when combined with the data of meta-analyses.

185 Material and methods

186 Padlock probe and detection probe

- 187 Each PLP position is shown in **Supplementary Figs. 3–4**. The PLP and detection probe
- 188 sequences are shown in **Supplementary Table 1**. All PLP and PCR primers were
- 189 purchased from Eurofins genomics (Ebersberg, Germany). Alexa labeled detection
- 190 probes were purchased from Japan Bio Services Co., LTD. (Asaka, Saitama, Japan).

191 Expression of GFP mRNA in E. coli

- 192 The E. coli strain BL21 (DE3) (Novagen, Merck Millipore, Darmstadt, Germany)
- 193 carrying pET-AcGFP was grown in LB medium (1% tryptone, 0.5% yeast extract, 1.0%
- 194 NaCl, and 50 μ g/mL ampicillin) for 14–16 h at 30°C with shaking. The cultures were
- diluted 1:1000 in fresh LB medium and incubated at 30°C with shaking. Growth was
- 196 monitored by the measurement of the optical density at 660 nm (OD₆₆₀). When the

- 197 OD₆₆₀ was approximately 0.6, GFP expression was induced by the addition of IPTG
- 198 (final concentration, 0.5 mM). The GFP-induced cells for RHa-RCA-FISH were
- 199 harvested 1 h after IPTG addition. GFP-induced and non-induced cells were collected in
- 200 1.5 mL tubes by centrifugation at $10,000 \times g$ for 2 min at 4°C. Cells were immediately
- 201 suspended in saturated ammonium sulfate (SAS) solution to inhibit RNase activity and
- store at 4°C before use. This treatment would keep the total RNA in the cells stable
- 203 without degradation for at least 2 weeks (Supplementary Fig. 2).
- 204 Construction of expression vector for *B. choshinensis* and *in vitro* transcription
- 205 The coding sequence of DsRed was isolated from the pDsRed-monomer vector
- 206 (Clontech/TaKaRa Bio, Ohtsu, Shiga, Japan) by digestion with the appropriate
- 207 restriction enzymes. The resulting fragment was cell-free cloned into pNI-His (Takara
- Bio) for expression in B. choshinensis cells as pNI-DsRed or pET-21d (Novagen) for in

209 *vitro* transcription as pET-DsRed. Detailed procedures for cell-free cloning are

210 described in the Supplementary Material and Methods.

- 211 Expression of DsRed in *B. choshinensis*
- 212 The B. choshinensis strain HPD31-SP3 (Takara Bio) carrying pNI-DsRed was grown in
- 213 2SYF medium (20.0 g/L fructose, 40.0 g/L Phytone Peptone (Becton, Dickinson, and
- 214 Co., Franklin Lakes, NJ), 5.0 g/L Ehrlich bonito extract (Kyokuto Pharmaceutical
- 215 Co.LTD, Tokyo, Japan), and 0.15 g/L CaCl₂·2H₂O) containing 50 μ g/mL neomycin for
- 216 12, 24, 48, or 72 h at 30°C with shaking. DsRed protein expression was confirmed by
- 217 fluorescence microscopy. The cells were harvested in 1.5 mL microcentrifuge tubes by
- 218 centrifugation at $10,000 \times g$ for 2 min at 4°C. Cells were suspended in SAS and stored
- 219 at 4° C before use.

220 Cell fixation and permeabilization

221 The stored cells in SAS solution (600 µL) were transferred to a 1.5 mL tube and

222 centrifuged at $20,000 \times g$ for 1 min at 4°C to remove the SAS solution. The cell pellet

- 223 was resuspended in 300 µL of 4% paraformaldehyde and incubated at room temperature
- for 15 min to fix the cells. After centrifugation, the cell pellet was resuspended with
- 225 300 µL of 70% ethanol and incubated at room temperature for 60 min to dehydrate the
- cells. After centrifugation under the same conditions to remove 70% EtOH, the cell
- 227 pellet was resuspended with 262.5 μ L of 1× TE buffer. Then, 37.5 μ L of lysozyme
- solution (200 µg/mL in 50% glycerol) was added to the cell suspension solution and
- incubated at room temperature for 10 min to digest the cell wall. After centrifugation at
- same conditions to remove the lysozyme solution, the cells were washed twice with
- 231 300 μ L of 1× phosphate-buffered saline (PBS). After centrifugation, the cells were

resuspended with $14 \,\mu\text{L}$ of μDW and transferred to 0.2 mL of PCR tube to prepare the

233 RCA reaction.

234 FISH using RHa-RCA

- 235 The cells were mixed with 20 pmol of PLP in a buffer containing 20 mM Tris-acetate
- (pH 7.5), 10 mM magnesium acetate (MgAc), and 50 mM potassium glutamate (KGlu)
- 237 in a final volume of 20 $\mu L.$ The PLP was hybridized by incubation at 95°C for 1 min,
- slowly cooling to 30°C over 30 min, and incubation for 10 min at 30°C. To the cells
- was added 10 µL of ligation mixture (20 mM Tris-acetate [pH 7.5], 10 mM MgAc,
- 240 1.2 mM ATP, 50 mM KGlu, 10 mM dithiothreitol, and 25 units of SplintR ligase (New
- 241 England BioLabs, Ipswich, MA)), followed by incubation at 37°C for 10 min to seal the
- 242 PLP. In our previous report ¹⁵, the ligase was inactivated by heating, but this step was
- 243 omitted in this study to shorten the reaction time and simplify the procedure. The

244	detection sensitivity was not affected (data not shown). The RHa-RCA reaction was
245	started by mixing 30 μL of the ligated mixture with 20 μL of a reaction mixture
246	containing 20 mM Tris-acetate (pH 7.5), 10 mM MgAc, 80 mM ammonium sulfate,
247	10 mM KGlu, 2.0 mM deoxynucleoside triphosphate, 0.004 units of pyrophosphatase
248	(New England BioLabs), 0.06 units of RNase H (BioAcademia, Osaka, Japan), and
249	500 ng of DNA-free phi29 DNA polymerase (Kanto Chemical, Tokyo, Japan). The
250	mixture was incubated at 30°C for 2 h followed by enzyme inactivation at 65°C for
251	10 min.
252	The RCA reaction mixture containing the cells was transferred to a 1.5 mL tube.
253	After centrifugation at 20,000 × g for 1 min at 4°C, the cells were washed with 1× PBS
254	at room temperature, suspended in $2\times$ saline sodium citrate, and transferred to a 1.5 mL
255	black tube. After addition of the Alexa-labeled oligonucleotide, the cell suspension was

256 incubated at 37°C for 3 h to hybridize the oligonucleotide to RCP. After centrifugation

- 257 at $20,000 \times g$ for 1 min at 4°C, the cells were washed twice with 1× PBS at 37°C for
- 258 15 min. The cells were suspended in 1× PBS and stored at 4°C in 1.5 mL black tubes
- 259 before observation by microscopy.
- 260 RCA and hybridization were performed in bench-top cleanroom ²² to prevent
- 261 contamination that could cause nonspecific hybridization..

262 Imaging and analysis

- A drop of cell suspension hybridized with the detection probe was placed on 1%
- agarose pads containing $1 \times PBS$. Images of each sample were taken on a fluorescence
- 265 microscope (Nikon ECLIPSE E600 for *E. coli* and Nikon ECLIPSE Ti2-E for
- 266 B. choshinensis, Tokyo, Japan) equipped with a phase-contrast objective CFI PlanApo
- 267 DM 100×(Nikon) and an ORCA-Flash4.0 V3 camera (Hamamatsu Co., Shizuoka,

268 Japan). Typically, the RHa-RCA–FISH, GFP, and DsRed fluorescence images were

- taken using an exposure time of 100 msec. The images were analyzed using ImageJ
- software (NIH).

271

273 REFERENCES

274

274	1	Jansson, J. K., Neufeld, J. D., Moran, M. A. & Gilbert, J. A. Omics for
275		understanding microbial functional dynamics. Environ Microbiol 14, 1-3 (2012).
276	2	Mason, O. U. et al. Metagenome, metatranscriptome and single-cell sequencing
277		reveal microbial response to Deepwater Horizon oil spill. ISME J 6, 1715-1727
278		(2012).
279	3	Bowers, R. M. et al. Minimum information about a single amplified genome
280		(MISAG) and a metagenome-assembled genome (MIMAG) of bacteria and
281		archaea. Nat Biotechnol 35, 725-731 (2017).
282	4	Amann, R. & Fuchs, B. M. Single-cell identification in microbial communities
283		by improved fluorescence <i>in situ</i> hybridization techniques. <i>Nat Rev Microbiol</i> 6 ,
284		339-348 (2008).
285	5	Schonhuber, W., Fuchs, B., Juretschko, S. & Amann, R. Improved sensitivity of
286		whole-cell hybridization by the combination of horseradish peroxidase-labeled
287		oligonucleotides and tyramide signal amplification. Appl Environ Microbiol 63,
288		3268-3273 (1997).
289	6	Kubota, K. et al. Evaluation of enzymatic cell treatments for application of
290		CARD-FISH to methanogens. J Microbiol Methods 72, 54-59 (2008).
291	7	Neuenschwander, S. M., Salcher, M. M. & Pernthaler, J. Fluorescence in situ
292		hybridization and sequential catalyzed reporter deposition (2C-FISH) for the
293		flow cytometric sorting of freshwater ultramicrobacteria. Front Microbiol 6, 247
294		(2015).

8 Raj, A., van den Bogaard, P., Rifkin, S. A., van Oudenaarden, A. & Tyagi, S.

- Imaging individual mRNA molecules using multiple singly labeled probes. *Nat Methods* 5, 877-879 (2008).
- So, L. H. *et al.* General properties of transcriptional time series in Escherichia
 coli. *Nat Genet* 43, 554-560 (2011).
- 300 10 Skinner, S. O., Sepulveda, L. A., Xu, H. & Golding, I. Measuring mRNA copy
 301 number in individual Escherichia coli cells using single-molecule fluorescent *in*
- 302 *situ* hybridization. *Nat Protoc* **8**, 1100-1113 (2013).
- Rouhanifard, S. H. *et al.* ClampFISH detects individual nucleic acid molecules
 using click chemistry-based amplification. *Nat Biotechnol* (2018).
- 305 12 Wang, F. *et al.* RNAscope: a novel *in situ* RNA analysis platform for
- 306 formalin-fixed, paraffin-embedded tissues. *J Mol Diagn* 14, 22-29 (2012).
- 307 13 Wu, C. et al. RollFISH achieves robust quantification of single-molecule RNA
- 308 biomarkers in paraffin-embedded tumor tissue samples. *Communications*309 *Biology* 1, 209 (2018).
- Larsson, C. *et al. In situ* genotyping individual DNA molecules by target-primed
 rolling-circle amplification of padlock probes. *Nat. Methods* 1, 227-232 (2004).
- Takahashi, H. *et al.* RNase H-assisted RNA-primed rolling circle amplification
 for targeted RNA sequence detection. *Sci Rep* 8, 7770 (2018).
- **314**16Takahashi, H., Matsumoto, A., Sugiyama, S. & Kobori, T. Direct detection of
- 315 green fluorescent protein messenger RNA expressed in Escherichia coli by
- 316 rolling circle amplification. *Anal Biochem* **401**, 242-249 (2010).
- 317 17 Moffitt, J. R., Pandey, S., Boettiger, A. N., Wang, S. & Zhuang, X. Spatial
- 318 organization shapes the turnover of a bacterial transcriptome. *Elife* **5** (2016).

319	18	Adachi, T.,	Yamagata, H.,	Tsukagoshi.	N. & Udaka.	S. Multi	iple and tandem	lv

- arranged promoters of the cell wall protein gene operon in Bacillus brevis 47. J
- 321 *Bacteriol* 171, 1010-1016 (1989).
- 322 19 Franks, A. H. *et al.* Variations of bacterial populations in human feces measured
- 323 by fluorescent *in situ* hybridization with group-specific 16S rRNA-targeted
- 324 oligonucleotide probes. *Appl Environ Microbiol* **64**, 3336-3345 (1998).
- 325 20 Christensen, H., Hansen, M. & Sorensen, J. Counting and size classification of

active soil bacteria by fluorescence *in situ* hybridization with an rRNA

327 oligonucleotide probe. *Appl Environ Microbiol* **65**, 1753-1761 (1999).

328 21 Pernthaler, A. & Amann, R. Simultaneous fluorescence *in situ* hybridization of

329 mRNA and rRNA in environmental bacteria. *Appl Environ Microbiol* 70,

- **330** 5426-5433 (2004).
- 331 22 Takahashi, H. *et al.* Development of a bench-top extra-cleanroom for DNA
 332 amplification. *Biotechniques* 61, 42-46 (2016).

333

335 Acknowledgments

336 We thank the members of the Okamura lab for helpful discussions. This study w	was
---	-----

- 337 supported in part by the Step-Up Support Program for KAKENHI (Grant-in-Aid for
- 338 Scientific Research) of Hiroshima University and Adaptable and Seamless Technology
- transfer program through target-driven R&D (A-STEP) of JST [No. AS2311331E].

340 Contributions

- 341 H. T, T. K, Y. N, and Y. O conceived of this study and designed the experiments. K. H
- 342 performed nearly all of the experiments. K. H and S. K collected and analyzed the FISH
- 343 images. T. K and Y. O obtained the necessary financial support. H. T, K. H, and Y. O
- 344 prepared the initial draft of the manuscript. T. K, S. K, T. A, K. W, and Y. N revised the
- 345 manuscript. All authors contributed to and have approved the final manuscript.
- **346** Competing interests

347 Hiroshima University has filed patent applications related to the technology described in

- 348 this work to the Japan Patent Office. H. Takahashi, T. Aki, Y. Nakashimada, and Y.
- 349 Okamura. are listed as inventors on the patents. No one received personal or
- 350 institutional revenue associated with the patent applications. The JST as the funder had
- 351 no role in the study design, data collection and analysis, decision to publish, or
- 352 preparation of the manuscript. K. Horio, S. Kato, K. Watanabe, and T. Kobori declare
- 353 no potential conflict of interests.

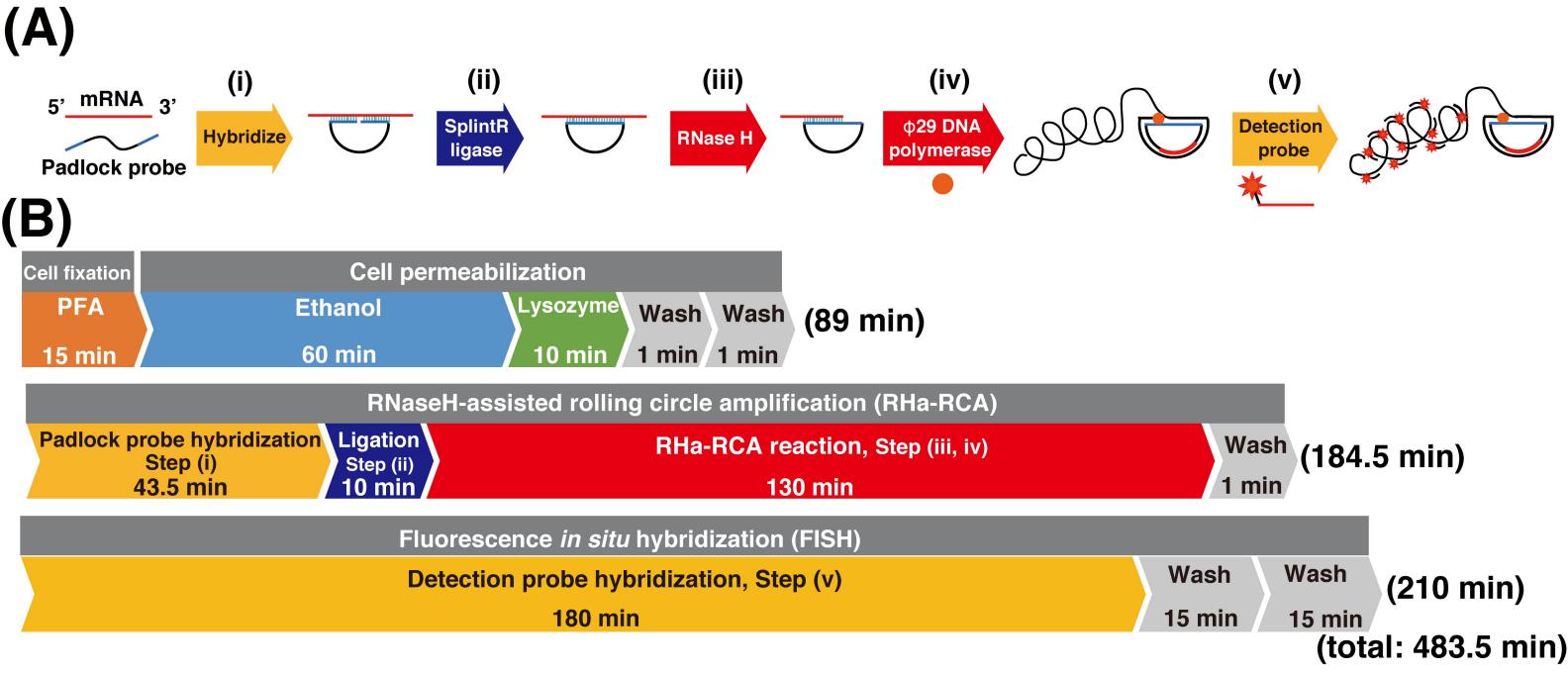
355 Figure legends

356	Figure 1.	Sheme and	workflow	for vis	ualization	of mRN.	A in 1	nicrobial	cells.	by I	RNase
-----	-----------	-----------	----------	---------	------------	---------	--------	-----------	--------	------	-------

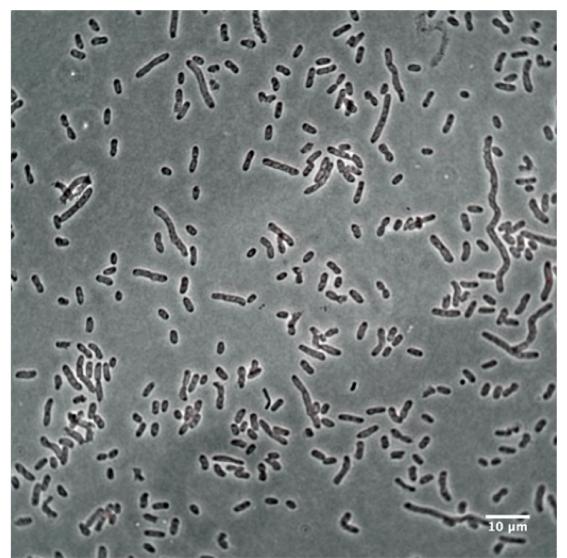
- 357 H-assisted RNA-primed rolling circle amplification (RHa-RCA–FISH). (A) Schematic
- 358 representation of RHa-RCA-FISH procedure. (B) Workflow of the procedure and
- 359 required time for *in situ* visualization of mRNA expression.

360

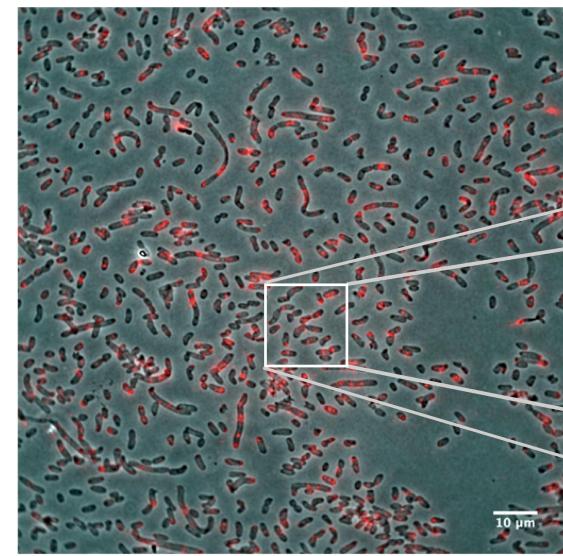
- 361 Figure 2. FISH detection of GFP mRNA in E. coli cells. (A) Detection of GFP mRNA
- in non-induced E. coli cells carrying a GFP expression vector and (B) in GFP-induced
- 363 cells. Scale bar, 10 μm. (C) Magnified image of box in (B). Scale bar, 5 μm. An overlay
- 364 of the phase contrast (grayscale) and Alexa-568 labeled probes (red) targeting the RCP
- 365 from GFP mRNA is shown.
- 366
- 367 Figure 3. FISH detection of DsRed mRNA in *B. choshinensis* as a Gram-positive

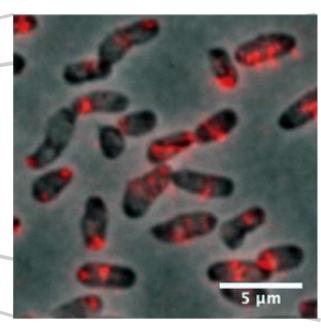

368 bacterium.

369 Upper images show fluorescence of DsRed protein expressed in *B. choshinensis*; middle

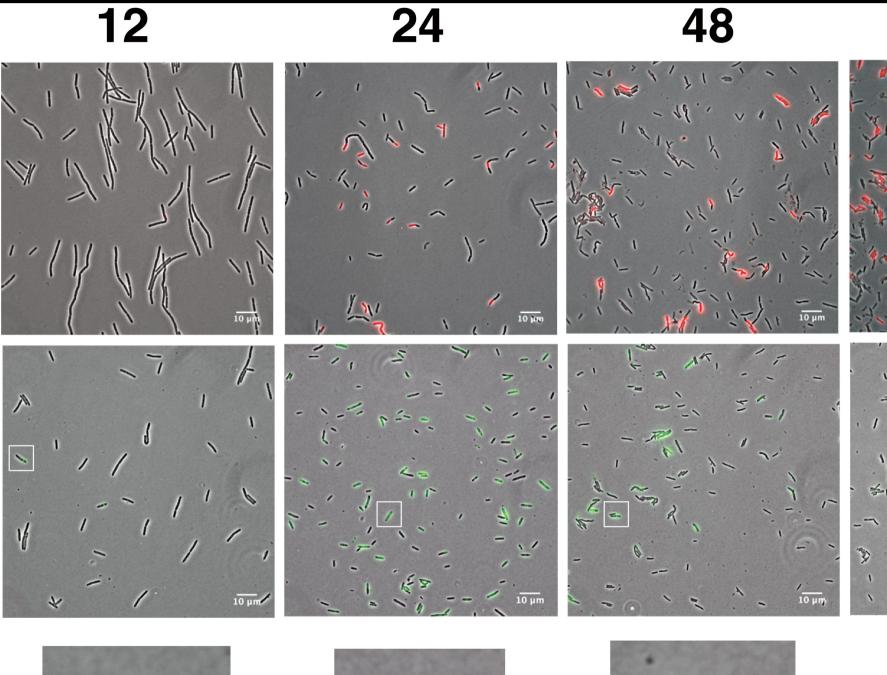

- images show the signal of detection probes using FISH; lower images show the
- 371 magnified image of the square box in middle images. The cells in the upper and middle
- images are not from the same sample because the protein is denatured by the FISH
- 373 procedure. Overlays of the phase contrast (grayscale), DeRed protein (red), and
- 374 Alexa-488 labeled probes (green) targeting the RCP from DsRed mRNA are shown.
- 375 Scale bar, $10 \,\mu$ m.
- 376

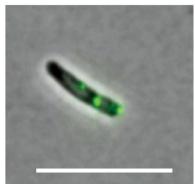
377 Figure 4. Simultaneous detection of GFP and DsRed mRNA in a mixture of *E. coli* and

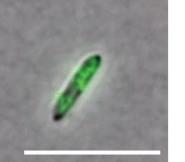

- 378 *B. choshinensis* cells.
- 379 An overlay of the phase contrast (grayscale) and Alexa-568 labeled probes (red)
- targeting the RCP from GFP mRNA and Alexa-488 labeled probes (green) targeting the
- 381 RCP from DsRed mRNA are shown. Scale bar, $10 \mu m$.

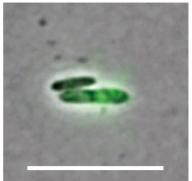

(A) non-induced cells

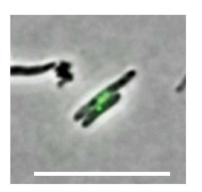
(B) GFP induced cells



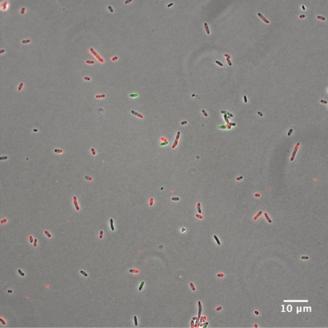

Cultivation time (hours)


DsRed


Alexa-488 (Wide angle)



Alexa-488 (Magnified)



10 µn

