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Abstract  7 

Significant evidence supports the view that dopamine shapes reward-learning by 8 
encoding prediction errors. However, it is unknown whether dopamine decision-signals are 9 
tailored to the functional specialization of target regions. Here, we report a novel set of wave-like 10 
spatiotemporal activity-patterns in dopamine axons across the dorsal striatum. These waves 11 
switch between different activational motifs and organize dopamine transients into localized 12 
clusters within functionally related striatal subregions. These specific motifs are associated with 13 
distinct task contexts: At reward delivery, dopamine signals rapidly resynchronize into 14 
propagating waves with opponent directions depending on instrumental task contingencies. 15 
Moreover, dopamine dynamics during reward pursuit signal the extent to which mice have 16 
instrumental control, and interact with reward waves to predict future behavioral adjustments. 17 
Our results are consistent with a computational architecture in which striatal dopamine signals 18 
are sculpted by inference about instrumental controllability, and provide evidence for a 19 
spatiotemporally “vectorized” role of dopamine in credit assignment.  20 

 21 
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Main text 23 

 Dopamine supports reward learning and motivational activation, but details about what 24 
decision variables are encoded, and how they are delivered to postsynaptic targets, continue to 25 
be refined1-3. The dopamine-reward prediction error (RPE) hypothesis emphasizes that 26 
dopamine conveys deviations from reward expectation in reinforcement learning (RL) theory4. 27 
This formulation generally treats dopamine as a “global” spatio-temporally uniform signal, a view 28 
based on two key findings. First, extensively divergent dopamine axons5,6 provide an 29 
architecture for broadcast-like communication. Second, dopamine cell spikes measured in the 30 
midbrain are highly synchronized7,8, putatively implementing a redundant population code9-11 for 31 
RPEs12. These observations form the basis for an influential view13,14 of what dopamine 32 
communicates and how it is delivered: scalar RPEs that are uniformly delivered to all recipient 33 
subregions. The notion of uniform encoding also extends to alternative accounts for dopamine’s 34 
role in motivation2 by relaying scalar value signals15 .  35 

A key limitation of this global view is that scalar (or, spatio-temporally uniform) decision 36 
variables are neither computationally advantageous, nor reflected in forebrain dopamine 37 
dynamics. Postsynaptic striatal subregions are functionally specialized16,17, receiving distinct 38 
cortical and thalamic afferents18,19, and express unique compliments of biomarkers20. 39 
Accordingly, rewards21, their motivated pursuit15,22 and predictive stimuli23 produce vastly 40 
different dopamine time courses across the dorsal-ventral and medial-lateral axes of the 41 
striatum. While these observations indicate regional heterogeneity, the extent to which 42 
dopamine inputs reflect the computational requirements of postsynaptic areas remains elusive. 43 
For example, there is some theoretical motivation24,25 and empirical support26,27 for delivery of 44 
vector-valued RPEs that depend on a target region’s computational specialty. Nonetheless, we 45 
currently lack a clear understanding of organizing principles for striatal dopamine activity, and 46 
what normative computational functions may be served by such heterogeneity. 47 

Related striatal subregions get correlated dopamine input 48 

We set out to characterize the spatio-temporal organizational rules of dopamine activity 49 
across the dorsal striatum. Standard methods for dopamine measurement typically survey small 50 
territories (10s – 100s of micrometers) and are ill-suited to probing large-scale organization. To 51 
overcome these limitations, we injected cre-dependent GCAMP6f into the midbrain of DAT-cre 52 
mice, and imaged dopamine axons through a 7mm2 chronic imaging window over the dorsal 53 
striatum (DS)28 (Fig. 1a). This approach provided optical access to 60-80% of the dorsal surface 54 
of the mouse striatum, with a view of dorsomedial (DMS), dorsolateral (DLS) and partial access 55 
to the posterior-tail (TS) region of the striatum (Fig. 1b). We imaged the activity of dopamine 56 
axons at multiple levels of resolution with one or two photon microscopy.  57 
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 58 
 59 
Figure 1: Dorsal striatal dopamine activity is spatiotemporally asynchronous and 60 
clusters into contiguous territories.  61 
a, Schematic of methods for imaging dopamine axons over dorsal striatum. GCaMP6 was injected 62 
into midbrain of DAT-cre mice. Cortex overlying dorsal striatum was aspirated, together with 63 
insertion of 3 mm diameter imaging cannula, and activity was imaged in head-restrained mice. b, 64 
Top-down field of view. c, Average delta f/F from two regions (top) that exhibit decorrelated activity 65 
(bottom). d, Activity of several ROIs from the same session as c, time series are sorted such that 66 
medial areas are top ROIs, and lateral regions are represented at the bottom. e, Correlation matrix 67 
across ROIs for different 5sec epochs (highlighted in bottom of d), showing patterns of 68 
correlations that evolve in time. For example, middle shows global correlation, whereas left and 69 
right panels show instances of antagonistic activity patterns in top and bottom set of ROIs. f, 70 
Results from spatial correlation from seed pixels, evaluating the Pearson’s correlation of with all 71 
other regions. Top panel shows medial seed pixels that are highly correlated with nearby regions, 72 
and show graded decrease in correlation for distant regions. Same analysis was repeated for a 73 
set of pixels in central striatum (middle) and lateral seed pixels (bottom). g, Quantification of 74 
sessions-wide correlation between each pair of pixels as a function of distance, separated by 75 
medio-lateral (orange) and anterio-posterior distances. (n= 8 mice, p<0.001 wilcoxon signed-rank 76 
test for difference of ML vs AP slopes) 77 
h, Paiwise correlation matrix using hierarchical clustering summarizes similarity of dopamine 78 
activity. i, Top, anatomical projection of pixels that share similarity at the highest cluster limit of 79 
two outlining medial and lateral subregions of the dorsal striatum. Increasing the cluster threshold 80 
to 20 (bottom) revealed smaller, but anatomically contiguous regions of the striatum. 81 
-------------------------------------------------------------------------------------------------------------------------------  82 
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Using a head-fixed preparation, we began by focusing on spontaneous activation of 83 
dopamine axons in mice resting on a wheel in a dark chamber without external stimuli. To first 84 
test if dopamine axons were globally activated, we compared fluorescence signals in DS 85 
regions-of-interest (ROIs) (Fig. 1c). While ROIs were sometimes globally synchronized28, we 86 
observed decorrelated patterns across striatal subregions that evolved across time (Fig. 87 
1c,d,e). These patterns of activation were observed across multiple anatomical scales (see 88 
Extended Data Fig. 1 for micron-scale organization), indicating that dopamine afferents can 89 
become recruited asynchronously. 90 

   To examine how activity is spatially coordinated, we computed the Pearson’s correlation 91 
between pixels’ fluorescence as a function of anatomical distance. Dopamine axons showed 92 
strong local correlations that gradually decreased with distance (Fig. 1f,g), comparable to the 93 
organization of striatal spiny-neuron activity29. Strikingly however, this distance-dependent falloff 94 
was selective to the medio-lateral axis, and was not present on the anterio-posterior axis (Fig. 95 
1g), suggesting an organization rule that promoted selective mediolateral decorrelation. 96 

   To further examine the topographical organization of dopamine signals, we leveraged 97 
standard cluster analyses (Fig. 1h). In every dataset (n = 31 sessions, 8 mice), the highest 98 
cluster threshold identified two contiguous subregions outlining well-established30,31 DS 99 
subregions; medial (DMS) and lateral (DLS) striatum (Fig. 1i top). Further increasing cluster 100 
limits progressively (Extended Data Fig. 2) revealed smaller subdomains of DS (Fig. 1i 101 
bottom), resembling striatal sub-clusters previously identified based on glutamatergic input 102 
patterns18. These areas had similar clustering patterns across days and animals (Extended 103 
Data Fig. 3), with 25-30 optimal clusters identified in our field of view (Extended Data Fig. 4). 104 
Shuffling the pixelwise temporal or spatial indices produced random clusters (Extended Data 105 
Fig. 4), indicating a critical dependence on the underlying spatio-temporal activity pattern. 106 
Together, these results provide evidence for regional coordination of dopamine transmission 107 
and provided an initial basis for evaluating whether these signals are modulated by the 108 
underlying subregion’s computational specialty. 109 

Wave-like patterns coordinate dopamine activity 110 

What spatiotemporal patterns produce systematically decorrelated dopamine signals? 111 
We noticed that full-field fluorescence exhibited complex but spatially and temporally continuous 112 
trajectories throughout the striatum, similar to travelling waves described in other cortical and 113 
subcortical brain regions32-35 (Fig. 2a,b, Supplementary Video 1). To quantify these complex 114 
trajectories, we used optic flow algorithms36 to compute frame-by-frame flow fields (see 115 
methods for details; Supplementary Video 2). 116 

 117 
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 118 
 119 
Figure 2: Wave-like spatiotemporally continuous sequences of dopamine-axon activation 120 
switch between motifs.  121 
a, Top row shows individual frames for different epochs of a transient as dopamine axon activity 122 
emerges and extinguishes in DS. Bottom row displays the corresponding flow vector fields 123 
computed for each pixel. Notice the divergence of vector fields during the rise phase of 124 
fluorescence, and convergent vectors during fall phase. b, Average fluorescence (green) across 125 
the entire field of view lasting ~300ms sampled at 40Hz, and corresponding, flow magnitude in 126 
the fluorescence signal (red). c, Flow trajectory of fluorescence for 5 frames during the onset (left, 127 
red lines), or offset (left, blue lines) phase of the wave from b. Each line shows the pattern of flow 128 
from individually seeded pixels. d, Heatmap quantifying how divergent the vector fields are at 129 
each pixel during onset or offset of activity (left and right respectively). A positive value indicates 130 
that diverging pattern of flow at each pixel indicating that fluorescence is entering the striatum 131 
from those locations. Conversely, negative values are sink regions with converging flow vectors. 132 
e, Peak-normalized projection of the flow vector divergence for the onset (top) or offset (bottom) 133 
of all transients in one session (n=1516 events). Note that a repeated configuration of pixels serve 134 
as sinks and sources. f, Distribution of propagation velocity (n=8 mice, 1625 +/- 213 events per 135 
mouse). Error bar denotes SEM.g, Distribution of interwave intervals for the same data f. h, Top, 136 
quiver plot summarizing the direction and magnitude of waves in a single session, and distribution 137 
of angle of wave propagation for each animal, bottom (n=8 mice, all p < 0.001, Omnibus test for 138 
angular uniformity). i, Left, vector fields (yellow) superimposed onto source pixels (white) for 139 
waves that are sourced at the midline and propagate bidirectionally outward. Right, corresponding 140 
fluorescence time course in ROIs on a medio-lateral gradient of the striatum (inset). j, Same 141 
format as i, for lateral source and medial flow or, k, medial source and laterally flowing wave. 142 
------------------------------------------------------------------------------------------------------------------------------  143 
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The onset of activity in GCaMP fluorescence originated from clustered “source” 144 
locations, and rapidly migrated to other regions (Fig. 2c,d, left). By contrast, activity terminated 145 
as a result of flow toward “sink” locations (Fig. 2c,d, right). A repeated configuration of pixels 146 
had a high probability of serving as sinks and sources (Fig. 2e, Extended Data Fig. 5), 147 
indicating that local rules may dictate the initiation and termination of dopamine activity. 148 

   Dopamine waves entered the dorsal striatum with exponentially decaying inter-wave-149 
intervals (Fig. 2g) and propagate with a range of velocities (median = 3.8 mm/s, interquartile 150 
range = 2.5, Fig. 2f). The overall direction of flow is bimodally distributed, with a biased medial-151 
lateral propagation axis (Fig. 2h, all p < 0.001, Omnibus test for angular uniformity). 152 

 153 

We next sought to determine if the collection of complex trajectories were made up of 154 
simpler, repeated sequences that may influence the time course of dopamine arriving at 155 
different parts of the striatum. Indeed, the combination of initiation loci and flow direction gave 156 
rise to motif waves that were scaled by propagation velocity and extent of striatum covered. We 157 
focused our attention on three motifs that produced most of the dopamine transients (Extended 158 
Data Fig. 5).  159 

First, source pixels clustered at the juncture of DMS and DLS (Fig. 2i) initiated 160 
dopamine activity that rapidly spread bilaterally outward (Type-1, “Center-Out” or CO wave, Fig. 161 
2i, left). These waves radiate across the stratum with the fastest velocities, arriving at all 162 
subregions with almost zero lag (Fig. 2i, right). Second, source pixels in lateral DLS initiated a 163 
wave that propagates medially (Type-2, “latero-medial” or LM wave). LM waves advanced 164 
across the striatum relatively slowly and delivered dopamine transients to DMS that were 165 
delayed relative to DLS in proportion to propagation speed (Fig. 2j right). Third, a medially 166 
sourced wave propagated laterally (Type-3, “medio-lateral” or ML wave, Fig. 2k, left), 167 
terminating in DLS. ML waves activate dopamine axons in the medial striatum first and recruit 168 
lateral regions with substantial delay (Fig. 2k, right). Together, these results demonstrate that 169 
wave-like patterns are a fundamental organizational principle of dopamine axonal activity, 170 
prescribing how activity initiates, propagates and terminates across DS. 171 

Rewards evoke directional dopamine waves  172 

What is the functional role of dopamine waves in adaptive behavior? We set out to 173 
determine the computational significance of wave-like trajectories in the context of the well-174 
studied role of striatal dopamine in instrumental behavior. The dorsal striatum exhibits graded 175 
behavioral specialty, with the DMS orchestrating goal-directed behaviors involving action-176 
outcome contingencies, and the DLS implicated in stimulus-response behaviors30,31,37. 177 
Inactivation or manipulation of dopamine in DMS degrades goal-directed planning and action 178 
due to an inability to learn whether rewards are under instrumental control38,39. 179 

We thus designed two operant tasks intended to manipulate action-outcome 180 
contingencies, and asked whether dopamine dynamics carry information about the degree of 181 
instrumental controllability (Fig. 3a,b,c). First, in an ‘instrumental’ task, rewards were contingent 182 
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on mice running on a wheel to traverse linearized distance, with the progress to reward 183 
indicated by an auditory tone that escalated in frequency (Fig. 3b,d). On each trial, the distance 184 
that was needed to run for tone transitions (and ultimately, reward) was randomly selected from 185 
a uniform distribution (50-150 cm, Fig. 3c, left). Thus, while the mouse was in control of tone 186 
transitions, the specific contingencies varied across trials. A second ‘pavlovian’ task was 187 
administered in separate sessions. The task structure was identical except tone-transitions 188 
occurred after fixed durations within a trial (randomly drawn, 4-8 sec, Fig. 3c right), and 189 
progress to reward was unrelated to running. Trained mice exhibited anticipatory lick trajectories 190 
that increased with ascending tone frequency in both tasks (Fig. 3e,f), indicating that mice used 191 
these tones to update their online judgment of progress to reward. Analysis of run bouts 192 
(Extended Data Fig. 6) revealed that mice invested goal-directed effort to receive rewards 193 
selectively in the instrumental task. 194 

As in spontaneous conditions reported above, dopamine waves were ubiquitous during 195 
task-performance. Notably, reward delivery immediately resynchronized irregular patterns into 196 
smooth waves (Fig. 3g,h) that had opponent directions depending on task conditions. 197 
Specifically, completion of a trial in the instrumental task triggered ML waves (Fig. 3i,k bottom, 198 
Supplementary video 3), whereas rewards in the pavlovian task promoted LM waves (Fig. 3j,k 199 
top, Supplementary video 4, p<0.001 Watson-Wilson test for equality of mean directions in 200 
two tasks, n=6 mice for instrumental task, n=8 mice for pavlovian task).  201 

These patterns evolved dynamically with learning: Reward-waves were initially irregular 202 
in naive animals but became progressively smooth and directional with experience in task (Fig. 203 
3l, Supplementary video 5). The dynamic sculpting of the spatiotemporal patterns by training 204 
and task demands ruled out explanations related to the intrinsic anatomy or biophysics of 205 
dopamine axons that would constrain the array of observed activation patterns. Thus, we 206 
conclude that dopamine waves carry behaviorally relevant decision signals and set out to 207 
formalize their precise contribution. In particular, the continuous propagation of dopamine 208 
across the striatum both in space and time motivated a revision of standard “temporal-209 
difference” models wherein a single reward-value influences learning about earlier events that 210 
are predictive of rewards. We reasoned that these views could be expanded to include 211 
“spatiotemporal differences” in which waves carry additional, graded information about structural 212 
sub-circuits that are most likely to be responsible for rewards. 213 
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 214 
 215 
Figure 3: Reward delivery promotes directional waves that depend on instrumental 216 
requirement of task. 217 
a, Schematic of test chamber. b, Changes in tone frequency for short, medium and long trials 218 
tiling fraction of trial complete. c, In the instrumental task (left), tone transitions are linked to 219 
rotation of the wheel, and change in tone frequency. The total distance to travel on each trial is 220 
drawn from a uniform distribution of 50-150 centimeters. In pavlovian task (right), the passage of 221 
time escalated tones, and the duration to wait was also drawn form a uniform distribution of 4-8 222 
seconds. d, Example trials in the instrumental task. When the mouse traverses linearized distance 223 
rapidly, the tones also escalate quickly, but if the mouse pauses running, auditory tones signal 224 
the completed fraction of distance. e, Example licking behavior in pavlovian, sorted by delay to 225 
reward. Mice increase lickrate in anticipation of reward. f, These anticipatory licks were not 226 
influenced by distance to run, or duration to wait, but increased in proportion to progress to reward 227 
signaled by tones (two-way ANOVA effect of tones F(8,683) = 3.32), p = 0.001 and effect of 4 228 
duration bins F(3,683)=0.48, p = 0.7 in pavlovian sessions. For instrumental sessions, effect of 229 
tones F(8,359) = 8.41, p<0.001 and influence of four distance bins F(3,359) = 0.13, p=0.9). g, 230 
Alignment of trial-by-trial wave velocity across the striatum. Rewards consistently resynchronized 231 
dopamine axons into wave in the instrumental task (n=123 trials), but also in the pavlovian task h 232 
(111 trials). i, Top, example flow vectors (black arrows) and source locations (contour plot 233 
representing source regions) across pixels for a single trial. Bottom, peak-normalized 234 
fluorescence time course across trials produced by mediolateral waves on the medio-lateral 235 
gradient of the striatum. j, Same format as i for pavlovian session. k, Mean flow vectors for reward 236 
epoch (0-1s post reward) for each trial in pavlovian and instrumental sessions shown in h and i. 237 
l, Flow trajectory of fluorescence in response to reward as mice gained experience with the task. 238 
Top, Naive mice had irregular responses in the first two days of reward exposure, and at bottom, 239 
the same mice exhibit smooth waves after 3 weeks of learning reward contingency. See 240 
supplementary video 5 for responses plotted. 241 
------------------------------------------------------------------------------------------------------------------------------  242 
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Dopamine waves implement spatio-temporal credit assignment 243 

Our functional interpretation of dopamine dynamics is that the opponent wave 244 
trajectories at reward are relevant for spatiotemporal credit assignment. The key inference the 245 
animal must make is whether it is in control of the reward-predictive tone transitions, and 246 
moreover, which specific contingency applies in the current trial (i.e., distance to run to advance 247 
tones). Thus, for mice to preferentially run in the instrumental task (and persist running for long-248 
distance trials), the extent of instrumental controllability should guide reward-evoked dopamine 249 
to favor  the DMS (i.e. strengthen action-outcome learning). Trial by-trial controllability is partly 250 
ambiguous in the task because contingencies were stochastic (drawn from uniform 251 
distributions), and mice natively run to varying levels. Nonetheless, we reasoned that task 252 
contingencies could still be inferred within trials based on the extent that tone transitions are 253 
congruent with locomotion, and dopamine signals can be informed by such congruency.   254 

To formalize this notion, we constructed a multi-agent mixture of experts (MoE) model, 255 
extending earlier hierarchically nested corticostriatal circuit models of learning and decision 256 
making 24,25 (Fig. 4a, Extended Data Fig. 7, see Methods for details). At the highest layer (level 257 
1) is an expert, putatively corresponding to DMS, that computes the online evidence for action-258 
outcome contingencies and thus task controllability (Fig. 4a). Sub-experts within that area (level 259 
2) represent specific contingencies (e.g., distance needed to run is short, medium or long) 260 
based on previous exposure to the tone transition distributions, learned as a semi-markov 261 
decision process via temporal difference learning40. Sub-expert prediction errors (PEs; level 3) 262 
occur at tone transitions and are used to compute evidence for (or against) the accuracy of each 263 
sub-expert’s prediction. This formulation allows an agent to flexibly adapt behavior based on 264 
task contingencies (Extended Data Fig. 7) 24,25 and expands the RL account of dopamine to 265 
allow both RPE and value signals to be informed by their inferred causal contributions41-44.  266 

This architecture makes novel predictions at multiple levels which can potentially tie 267 
together the separable roles of dopamine during reward pursuit (performance) and learning. 268 
First, when reward waves initiate in the DMS (i.e. ML waves in the instrumental task), that 269 
region will receive the most credit, and hence mice will be faster to initiate running on the next 270 
trial and will persist in doing so until rewards are obtained. Second, the reward wave dynamics 271 
should be informed by a trace of which circuit (“expert”) was most responsible for the reward 272 
(i.e., which circuit’s predictions were most valuable). We posited that DA dynamics during the 273 
tone transitions (anticipatory epoch) could provide such a responsibility signal; that is, the sub-274 
circuit that best predicts the action-outcome contingencies will exhibit increases in dopamine. 275 
These levels of dopamine can facilitate mice’s motoric output to be guided most-strongly by that 276 
subexpert, while also signaling the degree to which it is responsible for future rewards. We thus 277 
hypothesized that DA dynamics during anticipation would impact how reward-waves circulate 278 
among striatal subregions and the behavioral expression of running in future trials. Finally, at 279 
the most fine-grained level, our model predicts that RPEs should occur at tone transitions to 280 
inform the extent of instrumental controllability. In the remaining sections we unpack and test 281 
each of these predictions. 282 
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The first prediction is that dopamine waves experienced at reward outcome reflects a 283 
measure of credit assignment across the striatal experts. ML waves deliver dopamine first to 284 
medial subregions (Fig. 2i,j, 3i,j), and these DMS-biased signals would selectively strengthen 285 
corticostriatal representations for action-outcome contingencies that compete for instrumental 286 
control in future trials. As such, we predicted that stronger ML waves at reward would enhance 287 
instrumental learning that will drive future running. Indeed, we found a significant correlation 288 
between the trial-by-trial magnitude of reward wave and latency to start running on the next trial 289 
(n=6 mice, mean r = -0.32, p = 0.0019 two-sided t-test on correlation coefficients). Furthermore, 290 
these wave magnitudes predicted the velocity even late in the next trial, 10.2 ±1.4 seconds after 291 
the reward response (Fig. 4c). The influence of these waves in future-trial behavioral 292 
adjustments indicated that they are used for learning functions. Further, these effects were 293 
selective to instrumental sessions, indicating that DMS sourced ML waves promote learning 294 
about instrumental contingency that is employed for future reward pursuit. 295 

Anticipatory dopamine ramps provide eligibility for credit assignment  296 

If reward-waves reflect credit assignment, what determines which subregion should 297 
receive the credit? Canonical accounts in RL invoke dopamine RPEs that have graded effects 298 
on learning depending on “eligibility” signaled by recent MSN activity45,46. As noted above, we 299 
considered the possibility that local dopamine dynamics during the anticipation epoch 300 
themselves signal a coarser measure of eligibility in terms of which subregion was responsible. 301 
This trace would be in proportion to the value of the underlying subregion’s predictions, 302 
providing a tag for a subregion’s credit.  303 

We thus focused on the activity of dopamine axons during the anticipatory period as 304 
mice drew closer to reward. In the instrumental task, we observed a buildup of activity in the 305 
DMS (Fig. 4d,f), ramping in proportion to the progress to reward15,47. Strikingly, the opposite 306 
profile was observed in the pavlovian condition (Fig. 4e,f), with decreasing ramps even as the 307 
mouse continued to increase licking in anticipation of rewards. These findings do not support 308 
extant models of DA ramps in accumbens or midbrain, where they have been linked to value 309 
functions or RPEs15,48-50, none of which predict opposite profiles across the two tasks.  310 

Instead, we posited that anticipatory dopamine dynamics in the DMS reflects the 311 
evidence of agency or controllability, and that subregions within might differentially represent 312 
distinct controllable transition functions (which vary from trial to trial). Escalating tones in our 313 
tasks provide information about online action-outcome contingency. For example, if tone 314 
transitions consistently follow locomotion (as in Fig. 3d), they signal evidence for control. The 315 
opposite inference can be made in the pavlovian task when tone transitions diverge from 316 
locomotion. Respectively increasing or decreasing ramps in the instrumental and pavlovian 317 
tasks accumulate in MoE ‘distance’ expert-weights as controllability is confirmed (or 318 
contradicted) with each tone transition (Fig. 4a, right, Extended Data Fig. 7).  319 

Thus, according to our model, DA ramps do not reflect a monolithic value function, but 320 
rather the value of the underlying sub-region’s agentic predictions for reward pursuit, as a 321 
marker of that region’s responsibility. Consequently, we argue here that the computational 322 
function of dopamine waves at reward-outcome is to assign spatio-temporal credit by delivering 323 
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dopamine to striatal subregions with different latencies as a function of their graded 324 
responsibility signals. This proposal is also motivated by theory and observations that 325 
dopamine-mediated plasticity at striatal synapses is strongly attenuated with delayed dopamine 326 
release45,46.   327 

This credit assignment interpretation makes additional testable predictions at both 328 
physiological and behavioral levels. If dopamine ramps during reward anticipation hold 329 
persistent information about a sub-region’s prediction accuracy, they should modify the impact 330 
of dopamine bursts at reward to focus preferentially on the sub-region with the highest 331 
accuracy. As such, striatal areas that ramp with the steepest slopes during anticipation (highest 332 
eligibility) should receive a reward response soonest (largest credit, Fig. 4g). Indeed, 333 
anticipatory ramp slopes across pixels were significantly correlated with the fastest latency to 334 
peak fluorescence following reward for both tasks (Fig. 4h,i). 335 

Second, if DMS ramps signal responsibility for learning about instrumental control, then 336 
trial-by-trial DMS ramp slopes should also modulate the impact of reward waves on next-trial 337 
velocity. Indeed, we found that the impact of ML waves on future velocity in the instrumental 338 
task (Fig. 4c) were dependent on the level of DMS ramps in the previous trial. When DMS 339 
ramps were steep, reward waves strongly predicted speeded velocity in subsequent trials; this 340 
effect was absent when ramps were weak (Fig. 4k, p = 0.016 Wilcoxon signed-rank test, n=6 341 
mice). Together these results suggest that anticipatory dopamine ramps provide a tag for how 342 
midbrain driven reward-credit circulate across the striatum to deliver a reinforcement signal for 343 
future performance. 344 

 345 
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 346 
 347 
Figure 4: Anticipatory epoch dopamine dynamics reflect inferred controllability, trial-348 
specific task statistics, and modulate reward responses in line with a mixture of striatal 349 
experts.   350 
a, Schematic of hierarchical mixture of experts model as a framework for interpreting functional 351 
relevance of dopamine dynamics applied to escalating tone tasks. At the lowest level, individual 352 
states (representing auditory tones) induce reward prediction errors if they misalign with learned 353 
contingencies. These prediction errors are accumulated within trials to provide evidence for or 354 

.CC-BY-NC-ND 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under 

The copyright holder for this preprint (which was notthis version posted August 13, 2019. ; https://doi.org/10.1101/729640doi: bioRxiv preprint 

https://doi.org/10.1101/729640
http://creativecommons.org/licenses/by-nc-nd/4.0/


13 

against “sub-experts” specialized to represent local task contingencies (e.g. short, medium or long 355 
durations/distances). At the highest level, instrumental or Pavlovian “experts” computes the 356 
overall (weighted across sub-experts) evidence for instrumental task requirements, used to infer 357 
controllability of the value function. These distance expert responsibility weights accumulate 358 
within and across trials in the Instrumental task and decline in the Pavlovian task, and are used 359 
to adjust model velocities.  b, Proposed implementation of hierarchical task signals in striatal 360 
dopamine activity. Widefield and 2-photon imaging at the micron level was used to test sub-361 
region-specific computations in dopamine terminals. c, Multiple regression predicting future 362 
running speed of mice in the late phase of the next trial as a function of trial-by-trial wave 363 
propagation-velocity (in 1 second bins) surrounding the reward from the previous trial. Reward-364 
induced wave velocity predicted future running speed in instrumental (blue) but not Pavlovian 365 
(pink) sessions.  Regression coefficients significantly different from zero (blue, asterix p=0.005, 366 
two-tailed t-test). Error bars are S.E.M. d, Anticipatory and reward response in the medial and 367 
lateral DS in a representative instrumental session. White points indicate start of trial. e, same 368 
format as d for pavlovian session. f, Aggregate ramping profile during anticipatory epoch for the 369 
DMS. Mean activity for each session was z-scored and averaged across mice. Activity in DMS 370 
but not DLS showed task-dependent ramping profiles in line with inferred controllability. Shaded 371 
regions represent S.E.M. g, Schematic for testing whether anticipatory epochs ramp slope is 372 
related to the latency to peak dopamine in the outcome epoch. h, Results of the relationship from 373 
two representative sessions, each from instrumental and pavlovian condition. For both tasks, 374 
ramp slope was inversely related to subsequent latency to peak reward response. i, j summarize 375 
the distribution of correlation coefficients across sessions. k, Multiple regression as in c for 376 
instrumental sessions. In each session, trial-by-trial ramp slope was median split into low-ramp 377 
or high-ramp trials. Across trials, steeper DMS ramps magnified the impact of reward waves on 378 
subsequent trial running speed, in line with credit assignment. I, Anticipatory epoch ramps in a 379 
sample instrumental (top) and pavlovian (bottom) sessions were expressed to varying extent on 380 
the medio-lateral axis. ROIs were drawn with fixed distance from the edge of the field of view and 381 
illustrated by inset. m, Quantification of ramp slope across sessions. Error bars represent S.E.M. 382 
n, Local subregions within the dorsal striatum respond to distinct distance contingencies during 383 
reward pursuit, reminiscent of sub-expert dynamics. Contingency specialization map in an 384 
example session with color indicating the average distance that produces the steepest ramp 385 
slopes for each pixel. o, Example time course of anticipatory ramps in two example subregions 386 
for their respective preferred (high ramp trials), and non-preferred (low ramp trials). See Extended 387 
Data Fig. 7c for similar pattern of activation in model simulations.   388 
------------------------------------------------------------------------------------------------------------------------------ 389 

  390 

.CC-BY-NC-ND 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under 

The copyright holder for this preprint (which was notthis version posted August 13, 2019. ; https://doi.org/10.1101/729640doi: bioRxiv preprint 

https://doi.org/10.1101/729640
http://creativecommons.org/licenses/by-nc-nd/4.0/


14 

Thus far, we have focused on the coarsest division of labor related to the highest level in 391 
our model (controllability, level 1), but the agent’s ability to infer control depends on underlying 392 
sub-experts that learn distinct action-outcome contingencies (level 2, Fig. 4a,b). Such a 393 
hierarchical scheme implies that striatal subregions should also differentially ramp for different 394 
distance contingencies (Fig. 4a). Overall, we observed that DS dopamine ramps are expressed 395 
in a gradient across both tasks, with the strongest ramps in the most medial portions (Fig. 4l,m). 396 
These results are in line with previous work on progressive instrumental specialization of DS on 397 
the mediolateral axis51. Moreover, contiguous territories within the DS exhibit varying ramp 398 
profiles for different distance conditions (Fig. 4n, Extended Data Fig. 8), with each area 399 
expressing the steepest dopamine ramps in preferred set of trials with related distance 400 
requirements (Fig. 4o). On a trial-by-trial basis, we further observed a significant rank 401 
correlation between each pixel’s ramp slope and latency to peak response during reward (mean 402 
r = -0.13, spearman’s correlation p<0.001 for all instrumental sessions). These results indicate 403 
that the heterogeneously expressed anticipatory ramp gradients across the striatum modulate 404 
the spread of reward waves, further strengthening the relationship between eligibility and credit 405 
assignment. These findings further support our interpretation that is motivated by MoE account 406 
by demonstrating that DMS consists of smaller sub-regions that learn, and express predictions 407 
for a variety of potential instrumental contingencies.  408 

These findings led us to ask whether waves organized the response of dopamine axons 409 
on the micron scale, and functionally, how evidence for instrumental controllability accumulated 410 
in single axon segments. The ramp-like responses we observed at the coarser scale using 411 
widefield, one-photon imaging may emerge from trial-by-trial ramps within individual axons, or 412 
from a weighted distribution of sharply tuned activation patterns. To directly address these 413 
questions, we used 2-photon imaging in two mice to examine the behavior of individual axons in 414 
the DMS (Fig. 5a).  415 
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 416 
 417 
Figure 5: Single dopamine axons show wave-like reward dynamics, tone-specific 418 
transients, and distance-dependent ramping during instrumental anticipation. 419 
a, Schematic of  imaged region (top), and example field of view of dopamine axons in DMS.  b, 420 
Sequence of frames showing how individual dopamine axons respond to reward. Time relative to 421 
solenoid click is shown below each frame. Note the activation of leftmost fibers first, then 422 
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progressive activation of more lateral axons. c, Average time course of reward response from 423 
rectangular ROIs equally distributed along the ML axis. d, Activity of dopamine segments that 424 
respond to tone transitions during anticipation. The activity in each trial is shown as percent trial 425 
complete instead of alignment in time. Top, heatmap shows the trial-by-trial responses (106 total 426 
trials) of groups of pixels in the 2-photon field of view that respond transiently at specific fraction 427 
of trial completed. The responses of nine different types are concatenated. Bottom, average delta 428 
f/F for each type. E, Transient response-peaks are not tuned to time or distance run within trial. 429 
Each time series is aligned to trial-start and binned into 3 distances: short (50-80cm, dark blue), 430 
medium (80-120cm), and long (120-150cm, light blue). Note that the peak location of response 431 
arrives at different distances in each trial. By contrast, when aligned to % trial complete, in f, the 432 
peak response arrives with fixed delay from tone transitions (illustrated at the top for both panels) 433 
for all distance contingencies. The transient responses for each tone had larger amplitudes for 434 
shorter trials (ie when rewards are predicted to occur sooner, in line with state-dependent reward 435 
prediction errors within the lowest level of MoE). g, Individual axon segments highlighted to 436 
demonstrate example ramp-like trajectories. h, Some axon segments ramped downward across 437 
all distance trajectories when aligned to distance travelled or fraction of trial completed as in i. j, 438 
An axon segment that progressively ramps upward only in short distance trials. k, same alignment 439 
as i. l, pixelwise map of ramp slope during anticipation. 440 
------------------------------------------------------------------------------------------------------------------------------  441 
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Similar to our observations at the macro scale, reward delivery recruited dopamine 442 
axons in a spatial sequence that was directional (Fig. 5b,c), demonstrating that wave-like 443 
activation patterns also organize individual axon lattices on the micron scale.  444 

The activity in individual dopamine axons were also modulated during the anticipation 445 
epoch. Strikingly, segments of axons transiently responded to auditory tone transition, tiling the 446 
full sequence of escalating tones (Fig. 5d). The timing of these responses was not affected by 447 
distance travelled (Fig. 5e), but reliably responded to changes in tone frequency across a 448 
variety of distance contingencies (Fig. 5f). The systematic tuning of these axons to tone-449 
transitions are consistent with PEs at the lowest level of our model (Fig. 4a, Extended Data 450 
Fig. 7) that are used to update the online evidence of predictions within each sub-expert. Each 451 
tone is represented as a unique state within a sub-expert’s semi-markov process, and PEs arise 452 
at tone transitions when they misalign with the predicted distance (or dwell time) until state 453 
change. Furthermore, the model predicts larger PEs for state transitions indicative of rewards 454 
that will arrive when the distance to run is shorter, due to temporal discounting (Extended Data 455 
Fig. 7). Supporting this prediction, we observed that tone responses were largest in trials that 456 
had shorter distance contingencies, and progressively decreased in amplitude for longer trials 457 
(Fig.5e,f, mean r = -0.33, and -0.14 n=2 mice; see Extended Data Fig. 9). These PE-like 458 
responses were distributed throughout the 2-photon field of view, with equivalent fractions of 459 
pixels selectively tuned to each tone transition (Extended Data Fig. 9).  460 

We also noted that contiguous segments of axon lattices had single trial ramps that were 461 
either upward (Fig. 5h,i) or downward (Fig. 5j,k) as mice get closer to reward. Instead of tuning 462 
to tone-transitions reported above, these dopamine ramps were selectively expressed for 463 
different contingencies, ramping to varying extents depending on the required distance in 464 
separate trials. Together these results provide evidence for two, simultaneous classes of nearby 465 
dopamine axon segments (Extended Data Fig. 9) used for sub-expert computations: transient 466 
PE signals that respond to state transitions, and ramping segments that accumulate evidence 467 
for controllability as predicted by a sub-expert. 468 

Discussion  469 

Our report of dopamine waves provides the earliest evidence for a foundational 470 
organizational principle of dopamine axons that correlate activity within functionally related 471 
striatal boundaries. In the cortex, travelling waves have been described to facilitate (or 472 
constrain) computations that are topographically organized52-54. Similarly, we interpret the 473 
computational significance of dopamine waves as orchestrating dopamine release to striatal 474 
subregions that exhibit a graded functional specialization on the medio-lateral axis29,51,55. Thus, 475 
waves are a natural candidate for solving the spatiotemporal credit assignment problem when 476 
multiple, topographically organized striatal actors/sub-experts compete to guide action selection 477 
across multiple levels of abstraction24,25,56 . We used a very simple task to manipulate reward 478 
and sensory statistics, requiring mice to resolve ambiguity about instrumental contingency by 479 
comparing predicted and actual tone transitions. Consistent with the MoE account, wave 480 
directions during reward were sensitive to controllability of task structure, and -- only in the 481 
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controllable task -- dopamine waves were related to future behavioral adjustment on a trial-by-482 
trial basis. 483 

We also describe anticipatory epoch ramping dynamics that appear to signal the value of 484 
a subregion’s prediction about reward contingency. These dynamics may serve a dual purpose. 485 
First, they could promote online behavioral flexibility (e.g., optimize reward-rate and minimize 486 
energetic costs) according to the predictions of the most accurate subregions during reward 487 
pursuit. Second, these activity patterns would also signal which subregion was most responsible 488 
for behavioral output and hence provide a low dimensional tag for responsibility (akin to an 489 
eligibility trace in RL57), which would then allow for reward-driven RPEs to preferentially credit 490 
the appropriate subregion and the eligible MSNs within it.  While the two functions are not 491 
mutually exclusive, our data provide strong support for the second interpretation: On a trial-by-492 
trial basis, the degree of ramping across regions was related to the latency to reward peak 493 
elicited by the wave, and the combination of ramp slope and wave magnitude was predictive of 494 
subsequent-trial behavioral adjustments. These findings accord with views that dopamine 495 
signals can have different functions during reward pursuit and outcome, which can be gated by 496 
local microcircuit elements that regulate plasticity windows 3,58-61. Moreover, we also interpret 497 
transient and localized RPEs during reward pursuit as facilitating inference about the current 498 
task state (i.e., determining credit), whereas RPEs during reward itself facilitates reinforcement 499 
learning; a dual operation that can also be gated43,61-63. Put together, the synthesis of our data 500 
and computational simulations imply that dopamine signals are spatio-temporally vectorized 501 
during both epochs, tailored to underlying region’s computational specialty.  502 

Although the dorsal striatal dopamine dynamics support the computations of the 503 
Distance expert in the MoE, one limitation of our study is that we did not identify or assess the 504 
dopamine dynamics with properties of the ‘Time’ expert. Many studies investigating RPEs 505 
involve classical conditioning in which temporal representations are evident in the midbrain64-66. 506 
Models and data have suggested that ramping signals related to timing may be present in other 507 
regions upstream of the DA system67-69 .  Another limitation is that we did not deduce the origin 508 
of dopamine waves, which may be inherited from sequential firing of midbrain dopamine cells 509 
that have a topographical projection pattern70. To date, such dynamics have not been reported 510 
in the literature, potentially because limited studies investigated the activity of a large population 511 
dopamine neurons simultaneously71. Another likely mechanism may involve local sculpting of 512 
dopamine release within the striatum. Wave-like patterns have been reported in neocortex34,72 513 
and striatal cholinergic interneurons73, both of which can potently regulate dopamine axon 514 
activity74-76. Moreover, dopamine waves at reward outcome may also be a consequence of the 515 
interaction between primed excitability of dopamine axons during the anticipatory epoch and 516 
midbrain-sourced synchronous reward bursts. The combination of these two patterns may 517 
produce sequential activation that propagates across the striatum in proportion to expressed 518 
ramp during anticipation. 519 

-----------------------------------------------------------------------------------------   520 

.CC-BY-NC-ND 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under 

The copyright holder for this preprint (which was notthis version posted August 13, 2019. ; https://doi.org/10.1101/729640doi: bioRxiv preprint 

https://doi.org/10.1101/729640
http://creativecommons.org/licenses/by-nc-nd/4.0/


19 

Methods 521 

Animals and Surgery. All procedures were conducted in accordance with the guidelines of the 522 
NIH and approved by Brown University Institutional Animal Care and Use Committee. We used 523 
17 DAT-cre mice (9 females, 8 males; Jax Labs # 020080) that were maintained on reversed 524 
12hr cycle and all behavioral training and testing was performed during the dark phase. To 525 
achieve selective expression of GCaMP6f in dopamine cells, we followed standard surgical 526 
procedures for stereotaxic injection of cre-dependent virus. Briefly, mice were anesthetized with 527 
isoflurane (2% induction and maintained at 0.75-1.25% in 1 liter/min oxygen). To attain 528 
widespread infection of dopamine cells throughout the midbrain, we drilled two burr holes above 529 
the midbrain (-3.2mm AP, 0.4mm and 1.0mm ML relative to bregma) and injected 0.1-0.2μL of 530 
AAV-syn-Flex-GCaMP6f at two depths per burr hole (3.8 and 4.2 mm relative to brain surface). 531 
We next secured a metal head post to the skull and implanted an imaging cannula over the 532 
ipsilateral dorsal striatum. The cannula is a custom fabricated stainless-steel cylinder 533 
(Microgroup; 3mm diameter and 2.5-3mm height) with a 3mm coverslip (CS-3R, Warner 534 
Instruments) glued at the bottom with optical adhesive (Norad Optical #71). To insert the 535 
cannula into the brain, a 3mm diameter craniotomy was first drilled over the striatum (at bregma, 536 
centered on 2.0mm ML), and then gently removed the dura and slowly aspirated the overlying 537 
cortex until white colossal fibers were clearly visible (~0.8-1.2mm from brain surface). These 538 
fibers were also gently aspirated layer by layer until the underlying dorsal striatal tissue was 539 
uniformly exposed. A sterile imaging cannula was progressively lowered until the coverslip 540 
contacted striatal tissue uniformly. Dental cement was applied to secure implant to the skull and 541 
mice received a single dose of slow-release buprenorphine and allowed to recover for 1-2 542 
weeks with post-operative care. 543 
 544 
Behavioral Training. After full recovery from surgery, mice underwent 2-3 days of habituation 545 
in operant chambers outfitted with a 3D printed wheel (15 cm diameter), audio speakers and a 546 
solenoid-gated liquid reward dispenser. Following acclamation, mice were water-restricted, 547 
receiving 1ml/day in addition to water earned during task performance. We used custom 548 
LabVIEW scripts to control operant boxes during training and testing in behavioral tasks. In the 549 
first stage of training, mice received non-contingent rewards that were delivered randomly (3-15 550 
second apart, uniform distribution) for 3 consecutive days. Next, training in a “pavlovian” task 551 
began, wherein rewards were delivered after a variable delay from trial start. The start of each 552 
trial is signaled by the onset of a 4.3kHz tone that continued to escalate in frequency in 553 
proportion to fraction of trial completed. We used nine different frequencies that were selected 554 
to minimize harmonic overlap; 4.3kHz, 6.2kHz, 8.3kHz, 10kHz, 12.4kHz, 14.1kHz, 16kHz 555 
,8.4kHz, 20kHz. Across trials, the duration to wait for reward is randomly drawn from a uniform 556 
distribution (4-8 seconds). At the end of a trial, the auditory sound is turned off, and the solenoid 557 
delivered 3μL of water reward to a spout in front of the mouse. Licking behavior is detected 558 
using capacitive touch sensors (AT42QT1010, Sparkfun). In some catch trials, the initial 4.3kHz 559 
tone turned off after 0.5s and the mouse did not have continuous information of progress to 560 
reward. For clarity, we only focused on escalating-tone trials. The next trial started after a 561 
variable inter-trial-interval of 3-8 seconds. After 2-3 weeks of the pavlovian task, activity of 562 
dopamine axons in the striatum was imaged in a test chamber with a widefield and 2-photon 563 
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imaging system. The same animals were then further trained on a distance-variant of the same 564 
task, where reward delivery is now contingent on mice running on the wheel. Mice were 565 
exposed to the “instrumental” task in training chambers requiring them to run on the wheel to 566 
traverse linearized distances, also randomly selected from a uniform distribution (50-150cm). 567 
Progress to reward was indicated by the same tone frequencies, and the angular position of the 568 
wheel recorded using a miniature rotary encoder (MA3A10250N, US Digital). All behavioral data 569 
is digitized and stored to disc at 50Hz. 570 
 571 
Widefield and two-photon imaging. All imaging was performed using a multi-photon 572 
microscope with modular laser-scanning and light microscopy designed by Bruker/Prairie 573 
Technologies. For widefield imaging, we used a full-spectrum LED illumination with FITC filter 574 
cassette for illumination at 470nm and detection centered at 530nm. Images were acquired 575 
using a CoolSnap ES2 CCD camera (global shutter, Photometrics) and synchronized with 576 
behavioral events through TTL triggers. All widefield images during behavioral tasks were 577 
acquired with a 4X objective (Olympus), 100ms exposure (10Hz) and 8X on-camera binning to 578 
achieve a sample resolution of 40μm/pixel (unless indicated otherwise). Two-photon microscopy 579 
was performed using a 20X air objective (Olympus) on the same imaging platform with a 580 
femtosecond pulsed TiSapphire laser source (MaiTai DeepSee, 980nm power measured at 581 
objective was 20-50mW) that was scanned across the sample using a resonant (x-axis) and 582 
non-resonant (y-axis) galvanometer scanning mirrors. Returning photons were collected through 583 
an imaging path onto milti-alkali PMTs (R3896, Hamamatsu), and recorded frames were online-584 
averaged to achieve a sampling rate of 10-15Hz. 585 
 586 
Data Analysis and statistics. All images were processed with custom routines in MATLAB. 587 
Each session is preprocessed for image registration, and alignment to behavioral events based 588 
on triggers. Movement artifacts and image drift in the XY plane were corrected using rigid-body 589 
registration using a DFT-based method77. To cluster the activity of dopamine axons, we used 590 
the K-means algorithm in MATLAB. To compute robustness of clustering results, we used the 591 
adjusted rand Index measure which computes the similarity of two clusters based on the 592 
probability of member overlap (corrected for chance; 0=random clusters, 1=exact same 593 
membership). To examine how robust the clustering results were, we re-clustered the same 594 
dataset 100 times in K-means using random initialization and varied cluster limits. We compared 595 
the extent that pixels were re-clustered into the same group using the adjusted rand index as an 596 
indicator of robustness of underlying structure of the data that produced clusters (see Extended 597 
Data Fig. 4. To additionally test the extent spatial relationship between the pixels, or the how 598 
similarity in temporal activation influenced the identified clusters, we repeated the same analysis 599 
but shuffled the spatial or temporal relationships between the pixels. To estimate the optimal 600 
number of clusters within each dataset, we computed the Bayesian information criterion (BIC) 601 
on the K-means algorithm. 602 
 We characterized flow patterns in dopamine waves by adapting standard optical flow 603 
algorithms in machine vision that are adapted for imaging of fluorescence signals34,36,78. Briefly, 604 
flow trajectories were computed for any two successive frames as a displacement of intensity 605 
across the pixels in time. This method allows us to evaluate a pixel-by-pixel velocity vector fields 606 
that summarizes the direction and strength of flow at each pixel. While there are multiple 607 
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methods to achieve this calculation36,78, we adapted a combined Global-Local (CGL) 608 
algorithm79,80 that combines the Lucas-Kanade and Horn-Schunck methods. The frame-by-609 
frame vector fields calculated using the CGL method was further processed to extract sink and 610 
source locations and also flow trajectories across multiple frames (Fig. 2a, bottom). The frame-611 
by-frame flow magnitude for each frame (or flow-velocity, with units of mm/second) is computed 612 
by averaging the length of vectors at each pixel (e.g. Fig. 2b, red). The locations of sinks or 613 
sources were estimated based on local vector orientations: i.e sinks are points of inward flow, 614 
whereas sources are points of outward flow. We estimated the pixel-wise likelihood of sinks and 615 
sources by simply computing the divergence of the vector field in each frame (“divergence” 616 
function in MATLAB, Supplementary Video 2). The flow trajectory across frames were 617 
calculated from vector fields using the “stream3” function in MATLAB from seeded pixels (e.g. 618 
Fig3l). 619 
 For alignment of fluorescence time series, DMS and DLS masks were defined using one 620 
of three methods: i) manual drawing, ii) boundaries using cluster boundaries (as in Fig. 1i, top) 621 
and iii) uniformly spaced ROIs on the mediolateral axis (as in Fig. 4l, inset). Each animal 622 
performed multiple behavioral sessions, and we used one session per animal (n=6 mice in 623 
instrumental task, and n=8 mice in pavlovian task) that had the largest Δf/F deviations to avoid 624 
results from being dominated by a few animals.  625 
 To determine the influence of reward-wave on behavioral performance on the next trial, 626 
we performed a multiple regression predicting the running velocity of mice late (i.e. 75-100% of 627 
trial complete) in the next trial based on reward aligned wave magnitude (1-sec bins, Fig. 4c). 628 
To determine whether DMS ramp slopes influenced how last-trial wave outcome, on the next 629 
trial, we conditioned this analysis on the ramping profile in the DMS, median split into low, and 630 
high ramp conditions (Fig 4k). We evaluated the correlation between the ramp slope and 631 
latency to peak by first peak-normalizing the reward response in 2-sec window and finding the 632 
time index (after reward) for which the fluorescence signal reached peak levels. To examine 633 
whether anticipatory dopamine ramps had a preference for different distance conditions (Fig. 634 
4n, also see Extended Data Fig. 7), we sorted the trials based on the expressed ramps in each 635 
pixel and averaged the distance contingency in trials with top 90% ramping. 636 
 TIFF stacks of 2-photon images of dopamine axon segments were also pre-processed 637 
for registration and alignment with behavioral data. To draw ROIs of these segments for 638 
assessing organization of responses (Extended Data Fig. 1), we followed the Howe and 639 
Dombeck 28. Otherwise, we generally used pixel-wise analyses.  640 
 641 
Computational model. We modeled mouse behavior using a mixture of experts / multi-agent 642 
RL architecture25, extended here to accommodate the sequential tone structure with semi-643 
markov dynamics40. We modeled the two task structures as separate “experts” that learned a 644 
value function V as a function of either elapsed time as in classical temporal difference learning 645 
applied to Pavlovian condition, or as a function of distance travelled. Because mice were trained 646 
on both time and distance tasks, multiple sub-experts (representing clusters in mediolateral 647 
coordinates of striatum) were pre-trained for 2000 trials to span a range of contingencies (e.g., 648 
400ms, 600ms, or 800ms per tone transition; or 5, 10 or 15cm). For simplicity,  we modeled the 649 
task with discrete sub-experts that specialized on (had been preferentially exposed to) particular 650 
times/distances. However, one can easily generalize the framework to the continuous case 651 
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(e.g., using basis functions81) and the discrete space can be modeled with arbitrary resolution 652 
by simply increasing the number of sub-experts. Moreover, various models have shown that 653 
prediction errors can be used to segregate learning of different latent task states43,56.  654 

Subexpert and expert learning. The value function for each time sub-expert s estimates 655 
the discounted future reward Vs(Xi,t) = r(t) + Vs(Xi,t +1) and was trained via temporal 656 
differences82 based on reward prediction errors δ(Xi,t) = r(t) + V(Xi,t +1)  - V(Xi,t).  Each auditory 657 
tone was modeled as a distinct state Xi,t or Xi,d with semi-markov dynamics. That is, the onset of 658 
each tone i would advance the state vector to the corresponding position even if the tone 659 
occurred earlier or later in absolute time/distance. Thus the value function learned for each sub-660 
expert was tied to the current state (tone) and the (discretized) dwell time (t) or distance (d) 661 
since it has been entered, and not to the absolute time or distance that passed from the onset of 662 
the first state.   This semi-markov process was based on the assumption that the tone stimuli 663 
induce a neural state representation upon which TD is computed40,81 and evidence that rodents 664 
are endowed with such a rich state representation 83. The value function was learned by 665 
adjusting weights in response to the X state vector, with V(Xi,t)= wt Xi,t and wt  ← wt +  δ(t), 666 
where  is a learning rate. The distance experts were trained analogously but with the X vector 667 
advancing with discretized distance steps taken rather than passive time. Thus if the agent 668 
stopped moving, the Xi,d vector remained constant until it moved again, and if it moved faster 669 
than usual, the Xi,d vector would advance to later states accordingly. We fixed =0.25 and 670 
=.95 for all experts but verified that the patterns were robust to other settings. 671 
  Performance and inference. After learning, the on-line evidence (responsibilities, fig 4B, 672 
modeling the ramps) for each sub-expert was computed as an approximation to the likelihood of 673 
the trial-wise tone transitions for that sub-expert given the dwelling time or distance since the 674 
last tone.  We adopted a hybrid Bayesian-RL formulation25.  Each expert learns a value function 675 
associated with the tones, and inference about which expert is responsible is computed in 676 
proportion to the log likelihood ratio of the observations (tone transitions at particular instances 677 
following elapsed time or distance) given their predictions relative to the other experts. 678 
  From a Bayesian perspective, the attentional weights for each expert can be 679 
evaluated by computing the posterior probability that each expert encompasses the best 680 
account of the observed data x: P(s|x) = P(x|s) P(s) / P(x|si) P(si). Thus the evidence for each 681 
expert is computed by considering its prior evidence and the likelihood that the observed tone 682 
transitions or rewards (positive or negative) would have been observed under the expert's 683 
model, relative to all other experts. For example, if there was a low probability for a tone 684 
transition at a particular moment under a given expert, then the likelihood of that observation 685 
given the expert's model is low. Once the posterior evidence for each expert is computed, one 686 
can then apply Bayesian model averaging to allocate attentional weights to each expert in 687 
proportion to their log evidence. 688 
  Rather than a fully Bayesian realization, we instead implemented an RL approximation 689 
that we posited would more directly relate to corticostriatal DA mechanisms25. Instead of 690 
computing the likelihood directly, each expert was penalized as a function of its reward 691 
prediction errors. In particular we updated the evidence for each sub-expert’s predictions in 692 
terms of a responsibility weight `s  which was decremented when the corresponding sub-expert 693 
experienced a reward prediction error: `s  ← `s −  δs, where δs is the positive reward 694 
prediction error according to the corresponding sub-expert’s value function at the state vector X. 695 
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(Similar results hold if using |δs| instead of only positive RPEs to decrement expert weights, but 696 
positive RPEs dominate). Intuitively, experts with more prediction errors are less likely to have 697 
been responsible for the outcome (tone transition or reward).  These responsibility weights were 698 
then normalized relative to all sub-experts as an approximation to the log evidence for a given 699 

subexpert: si =  / , where is an inverse temperature parameter. 700 
Thus, in contrast to standard RL in which RPEs reinforce actions that yield rewards, during 701 
inference, more frequent RPEs for a given subexpert are indicative that it is less responsible for 702 
observations compared to those that predict these observations. Such a scheme is compatible 703 
with extant models that use reward prediction errors for state creation and inference separate 704 
from reinforcement per se 25,43,56,63.  We posited that these RPEs correspond to the phasic 705 
events observed at tone transitions in the 2p imaging data. The accumulation of these 706 
responsibility weights were posited to relate to the 1p imaging data in discrete sub-regions of 707 
DMS.  708 

Finally, a second-level task selection process was implemented to arbitrate responsibility 709 
between the overall distance expert and overall time expert (each of which constituted a 710 
weighted combination of their subordinate experts). This inference process was identical to that 711 
for the sub-experts, with responsibility updated based on their experienced prediction errors: `D  712 
← `D −  δD, where `D  is the accumulated responsibility of the distance expert based on its 713 
reward prediction errors, δD= r(t) + VD(t+1)  - VD(t). The value function for the distance and 714 
time experts VD and VT are in turn weighted averages according to the inferred responsibilities of 715 
the subordinate experts within each structure: VD(t)= sDVSD(t) and VT = sTVST(t). Similarly, 716 
the value function of the agent as a whole is the weighted average value function across the two 717 
experts V(t)  = D VD (t)+ T VT(t). These responsibility weights for each task structure were 718 
again normalized across tasks, D = eβw`D / eβ w`D+ eβw`T.    719 
  For each distance or time, 100 test trials were run with 10 tones each and an inter trial 720 
interval was randomly drawn from 5-15s. The agent as a whole selects actions in terms of 721 
speeds to run for a period of time at each tone transition or after it has completed it’s previous 722 
running. Speeds were selected in proportion to the inferred responsibility of the DMS expert, 723 

together with some stochasticity: speed(t) =  5* D (t)-0.5)) + , where  was drawn from a 724 
uniform distribution with a mean of 3. Stochasticity facilitates the agent ability to disambiguate 725 
distance from time tasks within a trial (a constant speed would equate the prediction errors for 726 
the two tasks given appropriate sub-experts). Increasing speed with inferred  DMS expert 727 
responsibility D allows the model to capture the increased running with instrumental task 728 
structure (extended Fig 7). More detailed investigation of how speeds may be optimized 729 
according to reward/effort/delay tradeoffs will be examined in future work.    730 
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 953 

Extended Data Fig. 1: Individual dopamine axons also exhibit decorrelated activity 954 
patterns.  955 

a, Example frames illustrating that different portions of axon laticies are activated 956 
asynchronously. b, Representative timeseries of fluorescence from two axon segments outlined 957 
in blue and red at a. c, Additional examples of activity in dopamine axon segments. Data is 958 
organized such that rearby axons are plotted closer. d, Quantification of correlation between the 959 
sessionwide timesereries of axons based anatomical distances. Note that nearby axons are 960 
highly correlated, but they exhibit a distance dependent falloff as reported in Fig. 1g, although a 961 
different anatomical scale.  962 
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 963 

Extended Data Fig. 2: Dopamine axon activity clusters into hierarchical domains.  964 

Data from one session, mean projection of fluorescence is displayed at the top left. 965 
Progressively increasing cluster limits identifies contiguous striatal subregions that decompose 966 
into sub-clusters. 967 

.CC-BY-NC-ND 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under 

The copyright holder for this preprint (which was notthis version posted August 13, 2019. ; https://doi.org/10.1101/729640doi: bioRxiv preprint 

https://doi.org/10.1101/729640
http://creativecommons.org/licenses/by-nc-nd/4.0/


32 

 968 

Extended Data Fig. 3: Clustering patterns in all 8 mice.  969 

We provide the K-means cluster of each of the animals examined. Plotting format follows panels 970 
in Fig 1. 971 
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 972 

 973 

Extended Data Fig. 4: Cluster patterns are robust.  974 

a, Adjusted rand-index score of cluster patterns determined using the K-means for re-clustering 975 
(black) or shuffling the temporal (red) or spatial(blue) indices of pixels. Results are shown for 976 
100 reclustering iternation with or without shuffling. Note that randomizing the temporal or 977 
spatial relationships of fluorescence activity results in random clusters. b, BIC score for K-978 
means results all sessions examined (n=31 sessions, 8 mice; gray), and average (purple). c, 979 
Distribution of optimal number of clusters identified using the BIC metric. d, Distribution of areas 980 
of identified clusters across all mice. 981 
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 982 

Extended Data Fig. 5: Local sources and sinks initiate and terminate dopamine activity, 983 
delivering temporally delayed dopamine to striatal subregions. 984 

 a, Flow pattern (top) amd divergence map (bottom) for sinks that are clustered in medial, lateral 985 
or central striatal regions. b, same format as a, for source locations. c, Time Course of activity 986 
across the mediolateral gradient for a one minute recording epoch. Blue boxes focus on 987 
transient events that were produced by ML, LM, or CO waves that deliver dopamine to different 988 
parts of the dorsal striatum with relative lags.  989 
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 990 

 991 

 992 

Extended Data Fig. 6: The running behavior of mice is more structured and goal-directed 993 
in the instrumental task.  994 

a, Example velocity profile for an instrumental session. Top shows the trial by trial velocity 995 
aligned to the end of trial (reward receipt) White dots indicate the start of the trial. Bottom 996 
illustrates mean velocity trajectory for different distance contingencies. b, Same format as a but 997 
for  pavlovian session. Note that the running behavior of the mouse is disorganized relative to 998 
task events (quantified in later sessions). c, Example session showing variability the latency to 999 
start running on the next trial. d, We quantified this latency for training sessions across all mice 1000 
and observed a significantly shorter latency to initiate next trial running. X-axis is displayed in 1001 
log scale. e, Single trial trajectories of position from trial start during instrumental sessions, and 1002 
pavlovian sessions in f. Circles denote mouse position at the end of a trial. g, Overall, mice ran 1003 
less distance that the requirement in instrumental sessions (i.e. 50-150cm) , and h, mice chose 1004 
not to run at all in a significant fraction of trials during the pavlovian task (note that running is 1005 
required for rewards in instrumental sessions). 1006 
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 1007 

Extended Data Fig. 7: Within-trial dynamics of model variables at all three levels under 1008 
different task conditions.  1009 

a,b Positive and negative accumulation of distance expert (level-1, equivalent to DMS) weights 1010 
under (a) instrumental and (b) Pavlovian task condition, for short, medium and long trial types. 1011 
Each trace is the average dynamics on the very first trial, averaged for 10 simulation sessions. 1012 
Similar dynamics accumulate across trials within a session when the task is repeated  (not 1013 
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shown). Note that the ramp shape is convex in the first trial but concave for later trials. c, Within 1014 
the distance expert, sub-experts (level-2) specialize on distinct contingencies and the weights 1015 
ramp accordingly depending on task conditions. d, RPEs within a sub-expert in which tone 1016 
transitions occur at unexpected times/distances (RPEs are zero for sub-experts that perfectly 1017 
predict the current contingency; not shown). Note the larger magnitude RPEs for short 1018 
compared to longer trials, as seen empirically (Fig. 5). Escalation of RPEs across the trial is due 1019 
to temporal discounting. Similar to the empirical data, the impact of larger RPEs on short 1020 
distances is more evident later in the trial. e) Model velocities (averaged across simulations) 1021 
recapitulate increase in running in  instrumental compared to pavlovian sessiona. The model 1022 
selects speeds in proportion to inferred responsibility of the distance (“DMS”) expert, which 1023 
accumulates across a session. 1024 
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 1025 

Extended Data Fig. 8: Additional example session of striatal subregions that have 1026 
preferred distance contingency. 1027 

The trial-by-trial ramp slope during anticipation epoch was distinctly modulated for different 1028 
striatal subregions. Color maps are in same format as Fig. 4n. 1029 
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 1030 

Extended Data Fig. 9: Discrete and ramp-like responses in dopamine axon segments.  1031 

a, Discrete, tone responses in two mice. Format is as in Fig 5. b, Example ramping patterns in 1032 
the two animals. c, Examination of the anatomical distribution of pixels that exhibit tone-1033 
transition tuning. Top row summarizes data from mouse-1, and bottom is for the second mouse. 1034 
Leftmost panels show the mean projection of field of view, and the next three panels show the 1035 
individual pixels that display discrete responses early (first transition), mid-trial (5th transition) 1036 
and late-trial (last-tone transition) responses. Moreover, the anatomical organization of these 1037 
pixels are intermingled. Fifth panel shows the anatomical position of all phasically responding 1038 
pixels color coded for which transition they respond to. Finally, Last panel on the right shows the 1039 
anatomical distribution and trial-averaged ramp slopes of pixels within the 2-photon field of view 1040 
that exhibit sustained upward or downward activity during the anticipatory epoch. Same format 1041 
for mouse-2 at bottom d, Quantification of how peak response at  tone-transition is affected by 1042 
distance to needed to run on current trial. Our simulations predict (see Extended Data Fig. 7) 1043 
that shorter trials will elicit larger PEs. We found a significantly negative correlation overall in 1044 
both mice (p<0.001, left), but  the influence of distance was more prominent for later tones 1045 
(middle, filled bar are have p<0.05) as in the model (Extended Data fig 7). Right panel shows 1046 
that similar fraction of pixels that were responsive to each tone transition.  1047 
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Supplementary Video 1: Example recording session demonstrating the activity pattern of 1048 
dopamine axons in the dorsal striatum. Video playback is 1X. 1049 

Supplementary Video 2: Video illustrating extraction of flow trajectories on  a frame by frame 1050 
basis. Video playback is slowed down 0.25X.  1051 

Supplementary Video 3: Reward response in Instrumental task. Clock at top left displays time 1052 
relative to reward. Video playback is 1X. 1053 

Supplementary Video 4: Reward response in Pavlovian task. Clock at top left displays time 1054 
relative to reward. Video playback is 1X. 1055 

Supplementary Video 5: Progressively organized and continuous reward response to 1056 
unpredicted reward deliver in naive mice (top), or animals that have received training in 1057 
pavlovian sessions for 3 weeks. Clock at top left displays time relative to reward. Video 1058 
playback is slowed down 0.5X. 1059 
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