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ABSTRACT 29 
 30 
Antibiotics were a revolutionary discovery of the 20th century, but the ability of bacteria to 31 
spread the genetic determinants of resistance via horizontal gene transfer (HGT) has quickly 32 
endangered their use1. Indeed, there is a global network of microbial gene exchange, the analysis 33 
of which has revealed particularly frequent transfer of resistance determinants between farm 34 
animals and human-associated bacteria2. Here, we leverage the recent release of a rumen 35 
microbial genome reference set and show that the wide-spread resistance gene cluster aadE-sat4-36 
aphA-3 is harboured in ruminal Bacteroidetes. While this cluster appears to have been recently 37 
transferred between commensal bacteria in the rumen and many diverse animal and human 38 
pathogens, comparative analysis suggests that the cluster stabilized in the pathogens. Then, 39 
focusing on streptomycin resistance, it was found that homologues from the rumen span much of 40 
the known diversity of aminoglycoside O-nucleotidyltransferases (AadEs) and that distinct 41 
variants of the enzyme are present in a single rumen bacterial genome. Notably, a second variant 42 
of AadE has also been recently transferred, albeit more often as a single gene, throughout a 43 
different set of animal and human associated bacteria. By examining the synteny of AadE 44 
orthologues in various bacterial genomes and analyzing corresponding gene trees in an 45 
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environmental context, we speculate that the ruminant associated microbiome has a salient role 46 
in the emergence of specific resistance variants and clusters. In light of the recent literature on 47 
the evolutionary origin of antibiotic resistance, we further suggest that the rumen provides a 48 
possible route of dissemination of resistance genes from soil resistomes, throughout the farm, 49 
and to human pathogens3. 50 
 51 
MAIN TEXT 52 
 53 
Since the introduction of antibiotics in 1937, the emergence and spread of antibiotic resistance 54 
determinants (ARDs) has become one of the largest threats to human health1,4. In fact, the history 55 
of antibiotic use is concurrent with the history of increasing antibiotic resistance (AR), which 56 
now vastly outpaces new antibiotic discovery5. Considering the lack of new antimicrobial 57 
compounds entering the clinic, there have been many renewed calls for efforts to discover new 58 
compounds or to return to modifying well-understood classes of antibiotics, such as the 59 
aminoglycosides5–8. In addition to restricting the use of current and future antibiotics, there is a 60 
need to better understand the extensive evolutionary history of specific ARDs and their routes of 61 
dissemination 3,9–11. In doing so, attempting to re-trace evolutionary events involving ARDs and 62 
resistance clusters will be essential to move from the metagenomic description of AR reservoirs 63 
to identifying particular sources where AR variants emerge, assemble into clusters, and 64 
subsequently transfer to human pathogens12,13. Fortunately, the ability to carry out such analysis 65 
is constantly improving with the number of publicly available genome sequences14. Recently, 66 
several high-quality datasets containing hundreds of bacterial and archaeal genomes from the 67 
rumen microbiome have been published, such as the Hungate1000 collection15,16.  68 
 69 
In order to search for ARDs that may form clusters in commensal rumen bacteria, we first 70 
collected prokaryotic genome sequences from cultured organisms and combined them with a set 71 
of metagenome assembled genomes (MAGs), all sourced from the rumen15,16. This led to a total 72 
of 1585 genomes (453 genomes from cultured organisms and 1133 MAGs). Predicted open 73 
reading frames (ORFs) from this dataset were then compared to the comprehensive antibiotic 74 
resistance database (CARD) and it was noticed that 2 characterized ARDs from the antibiotic 75 
inactivation category, AadE and AphA-3 from Streptococcus oralis and Campylobacter coli, 76 
respectively, each shared 100% amino acid identity with an ORF from three different genomes in 77 
the rumen dataset17. In all three genomes, these two ORFs were proximal on the same contig, 78 
indicating that they may be organized in a cluster (Table S1). Two of the genomes derive from 79 
different species of Bacteroides from cows in the US, while the third came from a MAG 80 
classified as Prevotella sampled from a cow in Scotland. When compared at the nucleotide level, 81 
the three contigs identified from the rumen bacterial genomes shared a region of approximately 82 
~10kB at 100% nucleotide identity, which upon further annotation, was found to contain the 83 
well-known aminoglycoside-streptothricin AR cluster aadE-sat4-aphA-318. This cluster was 84 
originally identified as the transposon Tn5405 in Staphylococcus aureus and the genes aadE, 85 
sat4, and aphA-3 encode for an aminoglycoside O-nucleotidyltransferase, a streptothricin N-86 
acetyltransferase and a aminoglycoside O-phophotransferase, respectively (Figure 1)19,20. The 87 
Tn5405 sequence itself is also among those conserved at 100% nucleotide identity and to date, 88 
the cluster has been observed across a wide range of human and animal pathogens18–27. When 89 
compared to the NCBI non-redundant nucleotide database, it was found that a highly-conserved 90 
region that spanned ~6kB of the ~10kB region was present in a diverse set of pathogens (Figure 91 
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1A, Table S2). The segment of this ~6kB which contained the aadE-sat4-aphA-3 cluster ranged 92 
from 99.8-100% nucleotide identity in 32 unique sequences as compared to the rumen sourced 93 
contigs, while the flanking regions ranged from 89.9-100% (Figure 1A). Interestingly, the 94 
regions that were missing in the pathogens as compared to the rumen bacterial genomes 95 
contained only annotated transposases, including a transposase located between aphA-3 and sat4 96 
in the cluster, indicating that the cluster has stabilized in the pathogens (Figure 1B, Table S3)28. 97 
It is worth noting that the only example found where the cluster was not shared as a whole was in 98 
Bacteroides fragilis, a common reservoir of AR and an opportunistic pathogen, where aphA-3 99 
appears to have recombined into a different multi-drug resistance cluster, CTnHyb29,30. Further, 100 
B. fragilis was the only non-rumen sequence found with an additional highly conserved region 101 
and is the most closely related organism phylogenetically to the three genomes sourced from the 102 
rumen. Taken together, the version of aadE-sat4-aphA-3 identified in rumen Bacteroides is 103 
highly-conserved in diverse human pathogens, was therefore likely recently horizontally 104 
transferred and the loss of transposases, only observed in the pathogenic isolates, implies 105 
stabilization of the cluster outside of the rumen. We then sought to gain more evolutionary 106 
insight into the individual ARDs within the cluster. 107 
 108 
Since genes are the units of evolution and proliferation for mobile traits, we attempted to analyze 109 
the evolutionary history of a single enzyme within the cluster. We focused on AadE (also known 110 
as ANT(6)), an enzyme characterized to be involved in streptomycin resistance, as it is known to 111 
have diverse homologues with the same activity and streptomycin resistance has been long 112 
observed in the rumen31,32. For instance, in 1966, a range of rumen isolates were screened against 113 
various antibiotics and the only compound that demonstrated resistance in all cases was 114 
streptomycin32. We used 1354 homologues of AadE from the NCBI non-redundant (nr) protein 115 
sequences database to build a gene tree (Figure 2)33,34. The majority of the homologues (78%) 116 
came from Firmicutes, where AadEs likely originated, followed by the Bacteroidetes (13%)31.  117 
The taxonomic origin of the remaining sequences was diverse and interestingly, despite the fact 118 
that only 7% of the sequences derive from the rumen microbiome, they span much of the 119 
diversity represented in the NCBI nr database (Figure 2). This indicates that the rumen has been 120 
exposed to a large and diverse gene pool with respect to sequences homologous to AadE. Then, 121 
we noticed that a sub-clade (clade 7) contained both the AadE from the aadE-sat4-aphA-3 122 
cluster, as well as a homologous variant from the same rumen Bacteroides genome (Bacteroides 123 
thetaiotaomicron nale-zl-c202 (Hungate collection 4309680)) (Figure 2). These two variants 124 
were annotated as ANT(6)-Ia (AadE-Ia) and ANT(6)-Ib (AadE-Ib), respectively. As these two 125 
enzymes are thought to have the same activity, we were interested to see how the horizontal 126 
transfer of aadE-Ib compared with that of aadE-Ia31. To do so, we carried out the same type of 127 
analysis as shown in Figure 1, but instead analyzed the aadE-Ib containing contig from the B. 128 
thetaiotaomicron nale-zl-c202 (Figure 3, Table S2). In this case, aadE-Ib was widely distributed 129 
in pathogens and commensal bacteria, albeit with lower nucleotide identities as compared to 130 
aadE-Ia (81.3-100%) and seems to be transferred alone or with a different aminoglycoside O-131 
nucleotidyltransferase (aad9 or ANT(9)) (Figure 3, Table S3). Considering that the most closely 132 
related sequences to aadE-Ib are not as conserved and not exclusively found in pathogens, this 133 
gene is likely not under as strong of selection as aadE-Ia. It is however recombining in context 134 
with other ARDs. For example, it was found to recombine near Tet(O) in C. coli SX8, a gene 135 
which is also highly conserved in several ruminal bacteria at the nucleotide level (Figure 3B, 136 
Figure S1A). When looking at further syntenic regions, AadE-Ib was often found in context of 137 

.CC-BY 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under 

The copyright holder for this preprint (which was notthis version posted August 12, 2019. ; https://doi.org/10.1101/729681doi: bioRxiv preprint 

https://doi.org/10.1101/729681
http://creativecommons.org/licenses/by/4.0/


AadE-Ia and the aadE-sat4-aphA-3 cluster. We therefore were interested to further compare 138 
AadE-Ia and AadE-Ib across many environments and bacterial genomes and better understand 139 
how these two variants may have emerged. 140 
 141 
By building a gene tree with all protein sequences within clade 7, shown in Figure 2, we 142 
observed four clear sub groups that each corresponded to a different annotated version of AadE 143 
(Figure 4A). Outside of bacteria from the rumen or pathogens, the two groups representing 144 
AadE-Ia and AadE-Ib contained sequences that were mostly sourced from various animal or 145 
human intestinal samples (Figure 4A). Moreover, the sequences from the rumen tended to span 146 
these two groups, whereas the sequences from the two more deeply branching sub groups, 147 
containing ANT(6)-Id (AadE-Id) and ANT(6)-Ic (AadE-Ic), were mostly sourced from diverse 148 
environmental samples, such as plants and soil (Figure 4A, Table S4). This may not be surprising 149 
in light of several genomic analyses of the transfer of horizontal resistance, which have pointed 150 
to the gut as an interconnection between soil and clinical pathogens or found that farm animal 151 
microbiomes are enriched for transfer events with human-associated bacteria2,11. This does 152 
however point more specifically to the rumen as a link between the environment and the human 153 
or animal intestinal tract. Two questions that then arise are: why did these two variants, AadE-Ia 154 
and AadE-Ib, emerge evolutionarily and why are they both often present in a single genome (e.g. 155 
B. thetaiotaomicron nale-zl-c202)? Especially considering that the characterized versions have 156 
the same activity31. When looking at those genomes that were selected for sharing high 157 
nucleotide identity with the aadE-Ia or aadE-Ib from B. thetaiotaomicron nale-zl-c202, several 158 
of them were also found to have both or multiple copies of AadE (Figure 4B and Figure 4C). By 159 
comparing their identity and synteny, it is clear that several AadEs have arisen via gene 160 
duplication events and often remained in context of each other (Figure 4B and Figure C). 161 
Interestingly, outside of the aadE-sat4-aphA-3, the genes found in context of the two AadEs are 162 
mostly streptomycin or aminoglycoside modifying enzymes (Figure 4B and Figure C). Other 163 
ARDs in context include tetracycline and lincosidamide resistance genes, which are also heavily 164 
represented in the rumen and act on compounds produced by Streptomyces (Table S1, Table S5, 165 
Figure S1). It is interesting to note, although often observed with other ARDs, that AadE-Ia and 166 
AadE-Ib further recombine into clusters with genes which would theoretically yield the same 167 
resistance phenotype. A logical suggestion is that aminoglycoside producing bacteria from soil 168 
are also the sources of AR, and that these genes may have served modifying roles outside of 169 
resistance to the toxicity of the compounds35–37. Altogether, it is possible that recombining 170 
variants of aadE from the environment further duplicated, potentially including the events that 171 
spawned AadE-Ia and AadE-Ib, adapted, and refined their syntenic context in the rumen. During 172 
the process, there were likely many subsequent transfer events, often with commensal bacteria of 173 
the intestinal tract of humans and other animals.  174 
 175 
In terms of food-producing animals, aminoglycosides accounted for 3.5% of the total sales of 176 
antimicrobials in 2015 and are most frequently used to treat infections38. Considering the 177 
diversity of homologues of aminoglycoside inactivating or modifying enzymes and that cattle are 178 
not directly fed aminoglycosides, it is worth considering that the rumen is also exposed to the 179 
compounds and an ARD gene pool via natural sources. Soil, for example, is a well characterized 180 
reservoir of antibiotic producing organisms and ARDs, which long predate the use of antibiotics, 181 
and aminoglycosides have particularly high sorption in soils8,9,39–41. Additionally, Streptomyces 182 
are often isolated from agricultural soils, including in the case of the discovery to streptomycin42, 183 
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as well as from feed sources such as hay directly43. The rumen takes in enormous amount of feed 184 
and in various ways, it has been shown to provide favourable conditions for genetic exchange44–185 
46. Considering that ecology shapes gene exchange, it is reasonable to assume that the rumen, a 186 
100-200L anaerobic bioreactor constantly interfacing with the feed containing a diversity of 187 
antibiotic related compounds and the microorganisms producing them, provides an opportunity 188 
for a ARD gene pool to exchange and adapt within an animal associated microbiome and 189 
environment. While streptomycin is not regularly detected in feed, other compounds produced by 190 
Streptomyces, which are easier to detect, such as chloramphenicol, are found regularly47. 191 
Ultimately, a wide range of aminoglycoside modifying enzymes sourced from soils or sediments 192 
may be transferred to and refined the rumen, especially in terms of genetic synteny, before being 193 
spread throughout the farm and potentially strongly selected or co-selected for when treating an 194 
animal infection or when a field is contaminated with antibiotics (Figure S2)48. In terms of 195 
spreading throughout the farm, the humans, whose associated microbes show 25 fold more HGT 196 
as compared to non-human isolates, in contact with the animals are the most obvious conduit2. It 197 
was however also interesting to find a common dog pathogen (Staphylococcus 198 
pseudointermedius) in the analysis which contained the highly conserved aadE-sat4-aphA-3 199 
cluster (Figure 1A). Overall, we observed recent horizontal transfer events of ARDs between 200 
ruminal bacteria, farm animals, pets and pathogens infecting humans, whose history of assembly 201 
points towards the rumen as the source. Therefore, while only one of many sources of AR, the 202 
rumen should be considered an environment with high potential for generating clusters of ARDs 203 
and providing a central link to other reservoirs, especially on the farm, before going on to create 204 
problems in the clinic. If further evidence corroborates this suggestion, antibiotic discovery 205 
efforts could focus on antibiotic compounds from organisms that evolved in environments with 206 
little or no connection to agricultural feed.   207 
 208 
FIGURE LEGENDS 209 
 210 
Figure 1. A. Aligned regions from nucleotide blast comparisons of the most similar sequences 211 
from NCBI to three rumen contigs (see Table S1) compared to a Prevotella sp. metagenome 212 
assembled genome (MAG)(RUG782) contig. B. Gene diagram comparison between 2 rumen 213 
sourced and 2 pathogen bacterial genomes to show conservation of genetic synteny from a few 214 
selected examples. Gene numbering maps to annotations in Table S3 and grey connections 215 
between genes represent homologues.  216 
 217 
Figure 2. A. Maximum likelihood phylogenetic tree using the top 1354 most similar sequences to 218 
AadE-V1 from both the rumen database and NCBI nr with lengths between 250 and 350 amino 219 
acids. Clades are numbered for reference. Pie charts show the distribution of phyla from which 220 
the sequences were obtained. Numbers within the pie charts indicate how many sequences make 221 
up the clade. Clade 7 contains ANT(6)-Ia (AadE-Ia) and ANT(6)-Ib (AadE-Ib) from B. 222 
thetaiotaomicron nale-zl-c202. 223 
 224 
Figure 3. A. Aligned regions from nucleotide blast comparisons of the most similar sequences 225 
from NCBI to a single rumen contig (see Table S1) compared to a B. thetaiotaomicron nale-zl-226 
c202 genome (Hungate collection 4309680) contig. B. Gene diagram comparison between a 227 
rumen sourced and 2 pathogenic organism genomes to show conservation of genetic synteny 228 
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from a few selected examples. Gene numbering maps to annotations in Table S3 and grey 229 
connections between genes represent homologues. 230 
 231 
Figure 4. A. A maximum likelihood tree using all sequences falling within clade 7 (Figure 2). 232 
Ultrafast bootstrap values are shown and sequences in bold are from the Hungate 1000 233 
collection. Clades are labelled based on containing specific variants of AadE. The outgroup used 234 
was a randomly selected sequence taken from clade 22 in Figure 2. B and C. Each point around 235 
the circle is an antibiotic resistance determined (ARD) coloured by the contig containing it. A 236 
contig is representated if the genome was used in Figure 1 or Figure 3 and contained two or more 237 
AadE. An ARD is shown if it is annotated as AadE-Ia or AadE-Ib or another annotated ARD that 238 
is syntenic with one of the AadE variants (within a resistance cluster). B. Connections show 239 
amino acid identity with AadE-Ib from B. thetaiotaomicron nale-zl-c202 (Hungate collection 240 
4309680). C. Connections show amino acid identity with AadE-Ia from B. thetaiotaomicron 241 
nale-zl-c202 (Hungate collection 4309680). Genes are labelled if they are annotated as AadE-Ib, 242 
AadE-Ia, part of the aadE-sat4-aphA-3 cluster or annotated to act on aminoglycosides. Other 243 
ARDs present in the resistance cassettes are shown in Table S5.  244 
 245 
Figure S1. A. Aligned regions from nucleotide blast comparisons of rumen bacterial genomes to 246 
a C. coli (JQ655275)(A) and Erysipelothrix rhusiopathiae (KP339868)(B) genome. 247 
 248 
Figure S2. Graphical overview of a scenario where the rumen plays a predominant role in 249 
connecting soils and crops, harboring the organisms who produce antibiotics and have evolved 250 
ARDs, to the rest of the farm. It is suggested that the rumen provides a significant opportunity 251 
for ARDs to transfer into an animal associated microbiome, recombine and adapt before being 252 
spread throughout the farm, where the resulting antibiotic resistance cassettes are (co-) selected 253 
for in treating human or animal pathogens.  254 
 255 
METHODS 256 
 257 
Comparative analysis of aadE-sat4-aphA-3 and aadE-Ib 258 
 259 
Genome sequences from the Hungate1000 project, including those listed as previously 260 
published, were combined with MAGs from Steward et al.15,16. Using a concatenated fasta file 261 
containing all genome and MAG nucleotide sequences, ORFs were predicted using prodigal 262 
v2.6.349. The resulting ORFs were then blasted against the CARD using local blastp v2.9.0+50. 263 
The 3 contigs (Hungate collection 4309689_79 and 43809680_52, MAG RUG782_1) which 264 
coded for the top 6 blast hits, in terms of bitscore, were then blasted against the NCBI nucleotide 265 
collection (nr/nt) using web-based blastn and the full-length sequence for each of the top 50 hits 266 
was downloaded33,34. After removing identical sequences, a total of 54 sequences were used in 267 
the downstream analysis, the accession numbers and descriptions for which are listed in Table 268 
S2. Each of the downloaded sequences was then blasted against the rumen sourced Prevotella sp. 269 
contig (RUG782_1) using local blastn 2.9.0+50. A sequence was displayed in Figure 1A if the 270 
total combined length of alignments was over 4000 bp for each query and the percent identity of 271 
the alignment was over 80%. For the gene diagrams displayed in Figure 1B, annotations from up 272 
to 10 of the top blastp hits from the NCBI non-redundant protein sequences database are listed in 273 
Table S333,34. The same was done for Figure 3A, except starting with the contig from B. 274 

.CC-BY 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under 

The copyright holder for this preprint (which was notthis version posted August 12, 2019. ; https://doi.org/10.1101/729681doi: bioRxiv preprint 

https://doi.org/10.1101/729681
http://creativecommons.org/licenses/by/4.0/


thetaiotoamicron nale-zl-c202 genome (43809680_59) containing aadE-Ib. Again, top 50 hits 275 
from the NCBI nucleotide collection (nr/nt) were downloaded (Table S2) and subsequently 276 
blasted against the rumen B. thetaiotoamicron contig (43809680_59). Here, a sequence was 277 
displayed in Figure 3A if the total combined length of alignments was over 1000 bp and the 278 
percent identity of the alignments were over 80%.  279 
 280 
Phylogenetic and syntenic analysis of AadE 281 
 282 
The predicted ORF for AadE from the 3 selected rumen contigs (Hungate  collection 283 
4309689_79 and 43809680_52, MAG RUG782_1), being identical ORFs, was blasted against 284 
the NCBI non-redundant protein sequences database33,34. All hits with an e-value below 1e-4 285 
were downloaded. Sequences were further eliminated if the length was below 250 bp or above 286 
350 bp and an initial alignment was then made using MUSCLE (including the following flags: -287 
maxiters 3 -diags -sv -distance1 kbit20_3)51. This alignment was inspected using Geneious 288 
v9.1.8, trimmed to between position 64 and 609, and further refined using the default setting 289 
from MUSCLE, while allowing for up to 50 iterations51,52. The phylogenetic tree shown in 290 
Figure 2 was subsequently constructed FastTree on the default settings53. In terms of 291 
visualization, clades were collapsed whose average branch length to the leaves was below 1.5 292 
using the interactive tree of life (iTOL) online tool54.  The resulting tree is down in Figure 2. 293 
 294 
The tree shown in Figure 4A was constructed using the sequences extracted from clade 7 in 295 
Figure 2, with the addition of any homologues of AadE-Ia or AadE-Ib (>200 amino acids and 296 
>60% identity to the two versions from B. thetaiotoamicron nale-zl-c202 when compared using 297 
local blastp 2.9.0+) from the genomes used in Figure 1 and 3, if they contained multiple copies 298 
of the homologues50. The sequences were aligned using MUSCLE with 50 iterations, inspected 299 
using Geneious v9.1.8,  and trimmed to between positions 25 and 305. Moreover, truncated 300 
proteins were removed, resulting in an alignment of 156 sequences, which was again refined 301 
using MUSCLE. This was then used as the input file for IQ-TREE using the standard settings 302 
with the following flags: -m TEST -bb 1000 -alrt 1000. An Le Gascuel (LG) model was selected 303 
using Gamma with 4 categories for the rate of heterogeneity55–57. The resulting tree, along with 304 
ultrafast bootstrap values, was visualized using iTOL.  305 
 306 
To analyze synteny, any ORFs annotated as ARDs surrounding the AadE-Ia or AadE-Ib 307 
homologues (within maximum ~50kB) that were taken from the genomes used in Figure 1 and 3 308 
are shown in Figure 4B and C. These were compared to AadE-Ib (Figure 4B) AadE-Ia (Figure 309 
4C) or using local blastp 2.9.0+50. The annotation based on the top blastp hits from the NCBI 310 
non-redundant protein sequences database are listed in Table S533,34. 311 
 312 
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A. Soils and crops harbour organism
s 

containing the original ARD
s.

B. ARD
s diversify, recom

bine and adapt 
predom

inantly in the rum
en - an anim

al associated
m

icrobiom
e constantly exposed to soils and crops.  

C
. ARD

s transfer throughout the farm
 via hum

ans and pets. H
ere, the treatm

ent of disease 
can result in the strong (co-) selection and stablization (ex. gene loss and/or further 

recruitm
ent) of antibiotic resistance clusters originally sourced from

 the rum
en. 
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