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How cells with different genetic makeups compete in tissues is an outstanding question

in developmental biology and cancer research. Studies in recent years have revealed two

fundamental mechanisms of cell competition, driven by short-range biochemical signalling

or by long-range mechanical stresses within the tissue. In both scenarios, the outcome of

cell competition has generally been characterised using population-scale metrics. However,

the underlying strategies for competitive interactions at the single-cell level remain elusive.

Here, we develop a cell-based computational model for competition assays informed by high-

throughput timelapse imaging experiments. By integrating physical cell interactions with

cellular automata rules for proliferation and apoptosis, we find that the emergent modes of

cell competition are determined by a trade-off between entropic and energetic properties of

the mixed tissue. While biochemical competition is strongly sensitive to local tissue organ-

isation, mechanical competition is largely driven by the difference in homeostatic pressures

of the two competing cell types. These findings suggest that competitive cell interactions

arise when the local tissue free energy is high, and proceed until free energy is minimised.
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INTRODUCTION

C
ell competition is a fitness control mechanism in which less fit cells (the losers) are eliminated

from a tissue for optimal survival of the host [1, 2]. First discovered in the Drosophila wing

disc [3], cell competition has since been observed in many other physiological and pathophysiological

conditions, especially in embryogenesis [4] and the development of tumours [5, 6]. While there have

been extensive population-scale studies of competition [7, 8], the competitive strategies and their

underlying mechanisms at the single-cell level remain poorly understood.

To date, two broad classes of cell competition have been uncovered. Mechanical competition

arises when the two competing cell types have different sensitivities to crowding [9]. In this case,

the loser cells die cell-autonomously as a result of increasing overall density and loser cells far from

the interface with winners may die [8, 10]. By contrast, during biochemical competition, signalling

occurs at the interface between two cell types leading to apoptosis of the loser cells [7, 11, 12].

In this case, elimination only occurs in losers that are in direct contact with the winner cells,

and the probability of elimination appears to depend on the extent of contact a loser has with

winners [13, 14]. As a result, perturbations affecting the strength of intercellular adhesion have

been shown to affect the outcome of competition, suggesting that cell mixing is an important factor

in biochemical competition [13]. However, rigorously testing these hypotheses remains challenging

due to the difficulty of obtaining sufficient time-resolved single cell level information to bridge scales

to the whole tissue.

The emergence of automated long-term microscopy and advanced image analysis for segmenta-

tion and cell-cycle state recognition now make single cell studies a realistic prospect [10, 15, 16].

These experimental data allow for the characterisation of each cell’s environment and enable hy-

potheses to be formulated regarding the mechanisms of cell elimination. For example, recent work

has shown that cell death in a model of mechanical competition is influenced by local cell density

as expected, but that, in addition, division of winner cells appears favoured in neighbourhoods

with many loser cells [15], something reminiscent of biochemical competition. Therefore, multiple

modes of competition may be at play simultaneously and which dominates remains unclear.

One way of testing the dominance of one mechanism over another is through computational

or mathematical modelling. While population-scale models of competition based on ordinary or

partial differential equations capture the overall behaviour of the tissue [9, 15, 17], they do not

provide insights into the influence of local topography, mechanics and cell-cell signalling on the

outcome of competition. Cell-resolution computational models [18, 19] are well suited for describ-
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ing how the behaviour of single cells and cell-cell interactions lead to population-scale dynamics.

However, cell-scale models of competition have not yet been implemented to test different com-

petitive strategies or investigate the physical parameters that are important in competition. This

is largely due to the lack of well characterised experimental data as well as technical challenges

in implementing basic biological phenomena such as contact inhibition of proliferation [20]. While

biochemical and mechanical competition have usually been viewed as separate phenomena acting

through completely different mechanisms, they both lead to the elimination of one cell population

raising the possibility of the existence of a unified definition of cell competition.

Here we develop a multi-layered, cell-scale computational model to gain a mechanistic under-

standing of the single-cell mechanisms that govern mechanical competition and decipher the rules

of the cellular game. After calibrating the key physical parameters using pure populations of win-

ner and loser cells, we show that competition emerges naturally when the two distinct cell types

are mixed and investigate the impact of each interaction and kinetic parameters on the outcome

of mechanical cell competition. We then implement a model of biochemical competition based on

contact-dependent death that can replicate all current experimental observations and uncover the

key parameters influencing biochemical competition. We find that mechanical competition appears

controlled by energetic properties of the tissue, whereas biochemical competition is governed purely

by the entropy of cell mixing.

RESULTS

Cell-based model for competition.

Our cell-based model for competition consists of two distinct computational layers that simulate:

(i) mechanical interactions between cells and the underlying substrate, and (ii) a cellular automaton

that makes decisions for cell growth, mitosis and apoptosis (Figure 1A). Physical interactions at the

cell-cell and cell-substrate interfaces are simulated using the Cellular Potts Model [21] (Methods).

This implementation was preferred to the less computationally costly vertex model [22], because

we calibrate our model to our in vitro competition experiments [15] that start from a sub-confluent

state. In the Potts model, each cell type is assigned a value of adhesion energy with other cells and

the substrate, as well as a preferred (target) area, AT , and a compressibility modulus, λ. While

the balance of forces between adhesion and elasticity determines equilibrium cell shapes, changes

in cell size during growth, division and apoptosis are controlled by a second computational layer

comprising cell automata rules. It is in this layer that cellular decision-making is implemented at

.CC-BY-NC-ND 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under 

The copyright holder for this preprint (which was notthis version posted August 8, 2019. ; https://doi.org/10.1101/729731doi: bioRxiv preprint 

https://doi.org/10.1101/729731
http://creativecommons.org/licenses/by-nc-nd/4.0/


4

AiAi

Growth Laws

Increasing sensitivity to contact inhibition, k

Contact Inhibition
Cell-Cell Adhesion

Cell-Substrate 
Adhesion

Single-cell Model Ingredients

Apoptosis

Growth Law

A1

A6
A5

A4

A3

A2

c Apoptosis

Mechanical
(Density dependent) 

Biochemical
(Neighbourhood dependent) 

Live Extrusions Contact Inhibition

b

ed

a

Live Extrusions:

RulesRules

Mechanics Mech
anics

FIG. 1. Physical and decision-making components of the multi-layered computational model.

(A) Schematic of the single cell behaviours incorporated into the multi-layered computational model. The

first layer modelling the mechanics, such as adhesion and compressibility, is implemented using the Cellular

Potts Model. The second layer comprises cellular automata rules describing cell growth, division, apoptosis

and contact inhibition. These rules are algorithmically executed for each cell at each time point. (B) Cells

grow linearly in time and follow an adder mechanism for division control, in which a threshold size must be

added before a cell can divide. (C) Two rules were implemented for apoptosis. One describes the density-

dependent cell death observed as in mechanical competition. The other describes the contact-dependent

cell death observed in biochemical competition. (D) A rule for live cell extrusion postulates that if a cell’s

area, A, decreases below half of the mean cell area of the population, 〈A〉/2, then it is extruded from the

monolayer. (E) Schematic depiction of contact inhibition showing cell growth and movement are arrested

when local cell density increases.

each time-point based on a set of probabilistic rules (Methods).

To model cell growth during the cell cycle, we increased the cell target area at a constant rate.

Cells divide once a threshold area has been added since the start of the cell cycle (Figure 1B),

following the adder mechanism of division control recently found for the MDCK cells that we use

in our experiments [23]. We implemented two different rules for apoptosis (Figure 1C) for me-
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chanical and biochemical competition. Under crowded conditions where mechanical competition

is dominant, the probability of apoptosis increases with local cell density (Supplementary Figure

1A), which we determined from our experimental data [15]. In biochemical competition, the prob-

ability of apoptosis of loser cells depends on the percentage of their perimeter in contact with the

winner cells (heterotypic contact, Supplementary Figure 1B) [13]. Cell elimination could also occur

through live cell extrusions [24, 25] when a cell’s area, A, dropped below half the average cell area

in the simulation (Figure 1D). In addition to the above decision-making rules, we also incorporated

contact inhibition of proliferation (Figure 1E), such that the addition of cell area, and consequently

division timing, slow down exponentially as the local cell density increases (Methods). To model

contact inhibition, we assume that the effective growth rate of the cell depends on the difference

between the current cell area and the target area as, dAT /dt = Ge−k(A−AT )2 , where G is the base

growth rate and k quantifies the sensitivity to contact inhibition. Taken together, the combination

of cellular mechanics and decision-making strategies provides an integrative computational plat-

form to investigate how the interplay between short-range and long-range competitive interactions

determine tissue composition.

Growth and homeostasis of pure cell populations

Having developed a multi-layered computational model for an epithelium, we sought to describe

homeostasis in pure cell populations undergoing proliferation and apoptosis. To this end, we cali-

brated the intercellular adhesion energy Jcell−cell, the cell-substrate adhesion energy Jcell−substrate,

the area elasticity λ, the growth rate G, and the contact inhibition parameter k for each cell

type separately based on our experimental data (Supplementary Table 1). We sought to match

the experimentally measured area of cells in sparse conditions to calibrate J and λ, and used the

experimentally measured cell doubling time to determine G. The strength of contact inhibition,

k (Methods), was chosen such that the cell density at long time scales in simulations reached a

plateau that matched the one observed in experiments.

When the simulations were initialised with the calibrated parameters and the same initial cell

number as in experiments, cell count and density in the simulations qualitatively reproduced our

experimental observations (Figure 2A-B, Supplementary Figure 2, Supplementary movie 1). The

MDCK wild type (MDCKWT ) cell count increased for 70h before reaching a plateau at a normalised

cell count of 5.5, indicative of homeostasis (Figure 2C). The temporal evolution of the average local

cell density and the distribution of number of neighbours at confluence were also faithfully replicated

by our simulations (Figure 2D-E). An accurate replication of sidedness of cells (Figure 2E) is
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FIG. 2. Model simulations capture the dynamics of growth and homeostasis in pure cell

populations. (A) Simulation snapshots of the growth of a pure population of MDCKWT (winner) cells.

Each image corresponds to one computational field of view, representing 530 µm× 400 µm. (B) Experimental

snapshots of MDCKWT cells expressing the nuclear marker H2B-GFP. Each image corresponds to 530 µm

× 400 µm and is acquired by wide-field epifluorescence using 20x magnification. The timing of each image

is indicated between the two image rows. (C) Normalised cell count as a function of time for winner cells

in simulations (blue) and experiments (green). (i-iv) indicate the time points at which the snapshots in

(A-B) were taken. (D) Local cellular density as a function of time for the same data as C. (E) Distribution

of sidedness of cells post confluence. The curves indicate the proportion of cells as a function of number

of neighbours. (C-E) green curves represent experimental data and blue curves simulated data. (F-H) are

same as (C-E) for pure populations of loser cells (MDCK Scribkd). Purple curves are experimental data

and black curves represent simulated data. (C-H) Data are pooled from three biological replicates imaging

four fields of view each, and from 12 simulations. The solid line indicates the mean and the shaded area

indicates the standard deviation.
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particularly important for simulating biochemical competition, because the probability of apoptosis

of loser cells is linked to the fraction of perimeter occupied by winner cells [13].

Similar to the wild type cells, our parametrisation of loser cells (MDCK scribblekd) accurately

replicated the temporal evolution of cell count and density, as well as the distribution of the num-

ber of cell neighbours (Figure 2F-H, Supplementary movie 2). In particular, the loser cell count

and density stayed fairly constant throughout the experiment, indicative of a lower homeostatic

density than the winner cells, as observed in our experiments. This difference in homeostatic

density between the winner and the loser cells is necessary for mechanical competition to ensue,

as we discuss later.

Model epithelia possess a well-defined homeostatic density

The maintenance of an intact barrier between the internal and the external environment is a key

function of epithelia. This necessitates exact balancing of the number of cell deaths and divisions

and failure to do so is an early marker of cancer development. Recent work has revealed that

epithelia possess a preferred density to which they return following perturbation [24, 26, 27]. In

experiments, cells were grown to confluence on stretchable substrates and subjected to a step

deformation. When deformation increased cellular apical area, cells resumed division, while a

decrease in apical area resulted in live cell extrusion and apoptosis [24]. Therefore, the existence

of a homeostatic density is an essential property of epithelia that relates to their sensitivity to

crowding, a key factor in mechanical competition.

To test the ability of our model to replicate epithelial homeostatis, we simulated a sudden increase

in cell density and its subsequent relaxation, in a confluent epithelium. We replicated experiments

in which the cell density of a confluent epithelium grown on a stretched substrate was suddenly

increased by 30% via release of the mechanical stretch [24]. In the experiments, the sudden increase

in crowding was followed by a gradual decrease in cell density, before returning to the initial

homeostatic density after ∼6h (green data points, right panel, Figure 3A, Supplementary movie

3). Decrease in cell number was the result of a combination of live cell extrusions at early times

and apoptoses later.

In our simulations, we allowed cells to reach their homeostatic density before suddenly increas-

ing it by an amount similar to experiments. The simulated evolution of cell density faithfully

replicated the experimental data, with cell density returning to homeostasis after 6h (blue dots,

Figure 2B). In snapshots of the simulations, many live cell extrusions were apparent immediately

after the increase in density (red cells, t = 0 min, Figure 3A). Thus, our model implementation
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FIG. 3. Return to homeostasis in response to density perturbation. (A) Simulation snapshots of

MDCKWT cells grown to confluence on a stretched silicon substrate, and subjected to a sudden increase in

density after stretch release. Top row: cartoon diagrams depicting the experiment. Bottom row: snapshots

of simulations. Homeostatic density is restored after an increase in cell elimination by either extrusion (red)

or apoptosis (blue). (B) Evolution of cell density as a function of time in response to a step increase in cell

density at t = 0 minutes. Density in simulations is indicated by open blue circles and experimental data are

shown by green diamond markers [24].

and parametrisation faithfully replicates all dynamic features of winner and loser cell populations,

including their ability to reach a homeostatic density after mechanical perturbation.

Mechanical competition is an emergent property of mixed cell populations with dif-

ferent homeostatic densities

Having accurately parametrised our cell-based model to reproduce the dynamics of pure cell pop-

ulations, we asked if winner and loser cells would compete when placed in mixed populations. We

initialised our simulations by seeding a 90:10 winner-to-loser cell ratio. Strikingly, our simulations

were able to quantitatively reproduce the experimental data for competition dynamics, with no

further adjustment in parameters.

As in the experiments, simulated winner cells (green) rapidly proliferated while loser cell num-

bers (red) remained roughly constant before diminishing (Figure 4A-B, Supplementary movie 4).

Furthermore, the evolution of cell count was quantitatively replicated over the entire duration of

the experiment for both winner and loser cells (Figure 4C). When loser cells underwent apoptosis,

this was accompanied by the formation of a rosette structure around the dying cell that mirrors

what is observed in experiments that visualise cell boundaries [28, 29] (Figure 4E-F). One of the
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FIG. 4. Cell competition is an emergent property in co-cultures of cells with different homeo-

static densities. (A) Simulation snapshots of competition between 90% winner (green) and 10% loser cells

(red). Each image corresponds to 530 µm × 400 µm. (B) Experimental snapshots of competition between

90 % winner cells (green) and 10% loser cells (red) over time. Winner cells (MDCKWT ) express the nuclear

marker H2B-GFP, while loser cells (MDCK Scribkd) express the nuclear marker H2B-RFP. Each image cor-

responds to 530 µm × 400 µm, and is acquired by wide-field epifluorescence using 20x magnification. The

timing of snapshots is indicated in between the two rows of images. (C) Evolution of normalised cell count

for winner cells (simulations: blue line, experiments: green line) and loser cells (simulations: black line,

experiments: purple line) in experiments initiated with a 90:10 ratio of winner:loser cells. Data are pooled

from three biological replicates imaging four fields of view for the experiments and from 12 simulations.

Solid lines indicate the means and the shaded areas indicate the standard deviations from experiments.

(i-iv) indicate the time points at which the snapshots in (A-B) were taken. (D) Temporal evolution of the

local cell density. (E-F) Snapshots of simulations (E) and experiments (F) showing apoptosis of a loser cell
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most striking features of experimental data is that the local density of loser cells increases dramat-

ically compared to pure populations (∼5 fold increase, magenta curve, Figure 4D), while the local

density of winner cells follows the same trend as in pure populations (green curve, Figure 4D) [15].

The increase in local density of loser cells is replicated in our simulations and is due to their lower

stiffness modulus, λ. In the experiments, the increased local density of loser cells is accompanied

by an increase in their height [8], suggesting preservation of cell volume and that λ should be

interpreted as an out-of-plane deformability modulus. Thus, differences in homeostatic densities

alone appear sufficient to replicate the evolution of cell count and density observed in competition

between MDCKWT and MDCK scribblekd [15], suggesting that mechanical competition is the

dominant mechanism in these experiments.

Differences in homeostatic density and relative cell stiffness control the outcome of

mechanical cell competition

Our simulations indicate that mechanical competition between the two cell types results from the

combination of two factors: the lower stiffness λ of the loser cells that leads to their compaction,

and their increased sensitivity to crowding (Supplementary Figure 3), both parameters directly

calibrated from experimental data. To test this further, we investigated how changes in the contact

inhibition parameter k and cell stiffness λ altered the outcome of mechanical competition. In our

simulations, sensitivity to contact inhibition was chosen to be the same for both cell types and

it constrains how far cells can deviate from their target area before they quiesce (Methods). In

pure winner cell populations, homeostatic density decreased with increasing contact inhibition

(Figure 5A). However, this effect was not present in pure loser populations (Figure 5A) because

their probability of apoptosis is high even for densities below the homeostatic density dictated

by k (Supplementary Figure 1A). Indeed, under normal growth conditions, loser cells never reach

densities where contact inhibition becomes active. In all cases, the homeostatic density of winner

cells was higher than in loser cells but the difference (∆HD) decreased with increasing k (Figure 5A).

Thus, in winner cells, homeostatic density is controlled by the contact inhibition parameter k, while

in loser cells it is controlled by their sensitivity to crowding (Supplementary Figure 1A).

When we varied the homeostatic density of the winner cells (by changing k), we found that

loser cells were completely eliminated for high values of winner cell homeostatic density but they

survived when winner homeostatic density was lower (Figure 5B-C, E). In addition, the time

required for elimination of 50% of loser cells increased with decreasing difference in homeostatic

density (Figure 5A, F). Therefore, the difference in homeostatic density, ∆HD, between the winner
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ical competition. (A) Evolution of homeostatic density as a function of the parameter k, quantifying the

sensitivity to contact inhibition. Data are shown for pure populations of winner (blue) and loser (red) cells.

(B) Simulation snapshots of competition between 90 % winner cells (green) and 10% loser cells (red). The

top two panels show the population evolution for a small difference in homeostatic density ∆HD between

the two cell types. The bottom two panels show the population evolution for a large ∆HD between the

two cell types. Each image corresponds to 530 µm × 400 µm. (C) Normalised cell count for loser cells

in competition simulations for different values of the contact inhibition parameter k. (D) Normalised cell

count for loser cells in competition simulations for different values of their stiffness parameter λ. Winner

cells have a fixed stiffness of 1.0. Snapshots of competition are shown in Supplementary figure 3A-B. (E)

Loser cell survival fraction after 80 hours in simulations run with different parameters for stiffness (red line)

and contact inhibition (blue line). Shaded blue and red regions denote the standard deviation. The gray

shaded region indicates the survival fraction of loser cells observed in experiments after 80h. (F) Time to

50% elimination of loser cells as a function of the contact inhibition parameter. The solid line indicates the

mean and the shaded regions the standard deviation.

and loser cells governs the kinetics and the outcome of mechanical competition (Figure 5A, C, F).

As the winner cells have a higher stiffness λ, they likely impose their homeostatic density on the

whole population, leading to increased apoptosis of loser cells. To test this hypothesis, we varied

the loser cell stiffness while maintaining winner cell stiffness constant. When loser cell stiffness was

lower than the winner cell stiffness, loser cells were eliminated (Supplementary Figure 5A). By
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contrast, when the loser cell stiffness was equal to or larger than the winner cell stiffness, loser cells

survived (Supplementary Figure 4A, Figure 5D). Akin to ∆HD, changes in the ratio of winner-

to-loser cell stiffness altered the kinetics of competition (Figure 5D). In both cases (when ∆HD

was high or loser cell stiffness was high), the change in outcome occurred because of a decrease in

the density of loser cells under competitive conditions, which in turn led to decreased apoptosis.

Furthermore, winners have an extra competitive edge because when free space becomes available

due to cell death or cell area compressibility, they are more susceptible to take advantage of the

free space due to faster growth, using a squeeze and take or a kill and take tactic [16].

Other simulations parameters had little impact on mechanical cell competition. We found that

the growth rate of loser cells controlled the time to elimination and the peak loser cell count but

did not affect the outcome of competition (Supplementary Figure 3D-E). Overall, our simulations

suggest that mechanical competition is entirely dependent upon parameters affecting the stored

mechanical energy, λ and k.

Entropy of cell mixing governs the outcome of biochemical competition

Our cell-based model can also be used to gain mechanistic insights into biochemical competition.

Recent work has shown that, during biochemical competition, apoptosis in loser cells is governed

by the extent of their contact with the neighbouring winner cells [13]. Furthermore, perturbations

that increased mixing between cell types increased competition [13].

To study biochemical competition in isolation from any mechanical effect, we assumed that both

cell types have identical stiffnesses, sensitivity to contact inhibition, and a high homeostatic density.

In both cell types, we modelled the dependency of apoptosis on the proportion of cell perimeter

engaged in heterotypic contact by using a Hill function parametrised by a steepness S and an

amplitude A (Supplementary Figure 1B). When S decreases, the probability of apoptosis increases

rapidly with the extent of heterotypic contact (Supplementary Figure 4C). For winner cells, we

chose a low A and high S because we do not expect their apoptosis to show sensitivity to contact

with loser cells. In contrast, for loser cells, we chose A to be ten-fold higher, giving an amplitude

similar to the maximal probability of apoptosis observed in losers during mechanical competition

(Supplementary Figure 4C, Supplementary Figure 1A). First, we assumed a homogenous seeding

of each cell type with a 50:50 ratio between winners and losers and examined the dependency

of outcome on S in loser cells. Loser cells first increased in number until overall confluence,

before decreasing after that. When S was low, losers were eliminated (Supplementary Figure 4A,

D), whereas when S was high, the two cell populations coexisted and no competition took place
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FIG. 6. Tissue organisation and intercellular adhesions govern the outcome of biochemical

competition. (A-C) The middle panels show the initial configuration of a competition between 50% loser

(green) and 50% winner (red) cells for various seeding arrangements (fully mixed, partially sorted, fully

sorted). The right panels show the outcome of competition for biochemical competition. The left panels

show the outcome of competition for mechanical competition. Cells are initially separated by free space

(black). (D) Normalised proliferation profiles of loser cells from the three configurations for biochemical

competition (5A-C, right hand column). (E) Normalised proliferation profiles of loser cells from the three

configurations for mechanical competition (5A-C, left hand column). (F) Temporal evolution of the entropy

of cell mixing for the three different configurations).
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(Supplementary Figure 4B).

Next, we investigated dependency of cell competition on initial seeding conditions for the same

simulation parameters. We examined three different conditions: fully mixed (Figure 6A, middle

column, Supplementary movies 5-6), partially sorted (with loser cells grouped into a few colonies,

Figure 6B, middle column, Supplementary movies 7-8), and fully sorted (with loser cells and winner

cells occuping opposite sides of the field of view, Figure 6C, middle column, Supplementary movie

9). Strikingly, while loser cells were always eliminated for mechanical competition (Figure 6A-C,

left hand column, Figure 6E), the outcome of competition was strongly dependent on seeding in

biochemical competition (Figure 6A-C, right hand column, Figure 6D). Indeed, whereas loser

cells were eliminated for fully mixed seeding, they coexisted with winner cells for partially and

fully sorted seedings. This suggests that biochemical competition is sensitive to mixing entropy of

cells. When we computed the evolution of mixing entropy in each competition (Methods), we found

that, when cells reached confluence, entropy was highest in the fully mixed seeding and lowest in

the fully sorted seeding (Figure 6F). In all cases, entropy decreased after overall confluence as the

competition progressed (Figure 6F). Colony size and geometry therefore determine the impact of

biochemical competition. Small colonies of loser cells have a high curvature and each loser cell at

the colony interface comes into contact with several winner cells, leading to increased competition.

In contrast, in the fully sorted conditions, the interface between loser and winner cells has a low

curvature such that loser cells do not contact a sufficient number of winner cells to be eliminated.

In contrast to mechanical competition where energetic parameters governed the outcome of

competition, we found that the outcome of biochemical competition was controlled by mechanisms

that affected the intermixing of cells. When we examined how changes in heterotypic adhesion

(adhesion energy between winner and loser cells), Jheterotypic, affected the outcome of competition,

we found that the final loser cell count decreased with decreasing Jheterotypic (Supplementary Figure

5B,D,F). This is because for low Jheterotypic, cell intermixing is favoured and winner cells can invade

colonies of loser cells(Supplementary Figure 5A-D), consistent with experimental observations [13].

However in the fully sorted configuration, where the entropy of mixing is initially zero and re-

mains small after confluence because of the minimisation of interface between the two cell types

(Figure 6F), changes in Jheterotypic only have a weak effect (Supplementary Figure 5E-F). Thus,

biochemical competition appeared primarily governed by entropic factors. In summary, our simple

implementation of biochemical competition was sufficient to qualitatively reproduce experimental

observations, although the precise experimental curves relating probability of apoptosis to extent

of heterotypic contact remain to be accurately determined experimentally.
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DISCUSSION

In this study, we developed a cell-based computational model for competition that allows inves-

tigation of the interplay between physical cell interactions and probabilistic decision-making rules

on controlling the outcome cell competition. Using this model, we identify the physical and geomet-

rical parameters that influence the outcome of mechanical and biochemical cell competition. Our

analysis reveals that the outcome of biochemical or comparative fitness competition is governed

by the entropy of mixing between the cell types, whereas the outcome of mechanical competition

is controlled by the difference in homeostatic density of the two cell types together with energetic

parameters.

Calibration of our model parameters separately for pure populations of winner and loser cells

allowed us to quantitatively reproduce the experimentally measured kinetics of cell proliferation,

mechanics of tissue homeostasis, as well as the topology of tissue organisation. Strikingly, mechan-

ical competition emerged in mixed populations of MDCKWT (winner) and MDCK scribkd (loser)

cells with no further adjustments to the model parameters. Winners and losers differed in their

compressibility modulus λ, their growth rates G, and their probability of apoptosis as a function of

density. The latter is directly measured in our experiments [15] and is consistent with the increased

sensitivity to crowding in loser cells due to interplay between stress pathways [8, 30]. Our simu-

lations further showed that the growth rate of individual cells controls the kinetics of competition

but not its outcome. Varying the growth rate of loser cells led to an increase in the maximal loser

cell count, and in elimination time but this did not affect the final outcome of mechanical compe-

tition (Supplementary Figure 3E). Overall, only two factors governed the outcome of mechanical

competition: the compressibility parameter λ, and the sensitivity to contact inhibition quantified

by the parameter k.

The contact inhibition parameter k regulates the rate of cell growth and proliferation post-

confluence (Methods). In winner cells, this effect translates into the control of homeostatic density,

which is lower for high sensitivity to contact inhibition. However, k does not control homeostatic

density in loser cells, due to their increased probability of apoptosis under crowding conditions.

As a result, when k is increased, the difference in homeostatic density between the winners and

losers, ∆HD, decreases. This leads to slowing of the kinetics of mechanical competition, eventually

ceasing altogether. Thus, our simulations predict that ∆HD, which is related to the difference in

homeostatic pressure [31], is a good predictor for the outcome of mechanical competition.

Our model parametrisation leads to loser cells that are typically more compressible (or softer)
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than winners. As a consequence, in competition assays, loser cells tend to decrease their apical

areas after confluence. This higher local density, together with losers’ higher sensitivity to crowding,

results in preferential elimination of loser cells. Conversely, when losers are stiffer than winners,

their local density does not increase dramatically and they survive. Thus, a relative stiffness

parameter, Λ = λloser/λwinner, emerges as a key control parameter for mechanical competition.

Loser cells tend to be eliminated if Λ < 1, whereas they survive for Λ > 1. Although by convention

λ is referred to as an area compressibility modulus, cells are three-dimensional objects and their

volume is tightly regulated even when subjected to mechanical deformations [32, 33]. Thus, the

decrease in apical area of loser cells in competition implies a concomitant increase in cell height,

consistent with experimental observations [8]. Therefore, λ should be understood as a height

elasticity that may emerge from the ratio of apical to lateral contractility that governs the height

of epithelial cells in 3D vertex models [34, 35]. Overall, both contact inhibition of proliferation

and planar cell compressibility altered the outcome of mechanical competition by changing the

local density attained by the loser cells. Thus, mechanical competition appears to be primarily

regulated by parameters controlling the compressional mechanical energy stored in the system.

Finally, our simulations suggest that the interaction between MDCKWT and MDCK scribkd cells in

our experiments [15] can be entirely explained by mechanical competition alone despite suggestions

that biochemical competition may play a role.

Biochemical competition, on the other hand, depends on the proportion of heterotypic contact

between losers and winners. As a result, the outcome of biochemical condition strongly depends on

the topological organisation of the epithelium but is not affected by changes in cell compressibility

or contact inhibition. Instead, two entropic parameters controlled the outcome of biochemical

competition: the heterotypic adhesion energy and the initial organisation of the tissue. Indeed,

tissue organisations with greater mixing between the cell types resulted in greater elimination of

the loser cells (Figure 6). This arises as a natural consequence of the probability of apoptosis of

loser cells depending on the extent of heterotypic contact. As a result, tissue organisations where

cells were highly mixed led to more competition than those were the two populations are more

sorted. In other words, competition depends on the entropy of cell intermixing. Consistent with

this, increasing the heterotypic adhesion energy led to more mixing between cell types and more cell

competition. Interestingly, experimental evidence has revealed that perturbations that promote

cohesion of losers protect against elimination, while those that promote intercalation of winners

and losers promote greater elimination [13]. In purely biochemical competition, our simulations

reveal the existence of a critical colony radius necessary for survival that depends strongly on the
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shape of the function relating the probability of apoptosis to fraction of perimeter in heterotypic

contact (Supplementary Figures 4-5). Overall, biochemical competition was favoured in systems

with high entropy of mixing but downregulated in systems with lower entropy. While cells did not

possess high motility in our simulations, we would expect this to affect the outcome of biochemical

competition, as motility would increase entropy of mixing. Overall, our simple implementation of

biochemical competition is sufficient to qualitatively replicate current experimental data.

In summary, our study revealed that mechanical competition is governed by factors that reduce

the stored mechanical energy in the system, while biochemical competition is favoured by factors

that increase the entropy of cell mixing. Mechanical competition did not appear to be affected by

entropic factors, whereas biochemical competition was not sensitive to parameters that changed

the stored mechanical energy of the tissue. Together, these data suggest a unified definition for

cell competition as a process that takes place when the free energy of the system is high and

seeks to reduce this. Such a thermodynamic interpretation would further predict that conditions

in which we observe coexistence of cell populations are metastable, which has implications for the

design of treatment plans in the form of pulses of drug. Future work will be necessary to test these

hypotheses in experimental systems.

METHODS

Cellular Potts model. The cellular Potts model is implemented in compucell3D [36]. We chose

a 2D lattice-based model, where cells are composed of a collection of lattice sites (pixels). Cells

interact at their interfaces through pre-defined adhesion energies and several different cell types can

be implemented. Each cell is then given attributes that are crucial for their mechanical properties.

For example, each cell is assigned a cell type τ , which in turn has some value of adhesion energy

J with other cell types and the substrate. Cells are also assigned a target area A and an area

expansion modulus λ, which are important in the implementation of growth and division dynamics.

In addition, we also incorporate active cell motility. The free energy of the system is given by the

Hamiltonian H:

H =
∑
<i,j>

J [τ(σki,j), τ(σi′,j′)](1− δm(σki,j , σi′,j′))

+ λ
∑
σ

(A(σk)−AT (σk))2Θ(τ)

+ λm
∑
σ

m̂(σ, t) · ŝ ,

(1)
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where the first term describes the interaction of lattice sites due to the adhesion energy between

the cell types. The coefficient J is the adhesion energy between cell type τ of the target lattice

site σki,j and the cell type τ(σi′,j′) of its nearest neighbour lattice points. The multiplicative term

(1− δm(σki,j , σi′,j′)) prevents cells from interacting energetically with themselves, where:

δij =


1, if σki,j = σi′,j′ ,

0, if σki,j 6= σi′,j′ .

(2)

The second term in the Hamiltonian describes an additional energy cost due to deviation of the

actual area A(σ) of a cell from its target area AT (σ), specific to the cell type. The coefficient λ

represents the area expansion modulus in 2D, which is related to planar cell stiffness or the ratio

between apical and lateral contractility that control cell height. We introduce the term Θ(τ) to

treat the free space pixels differently from the cell pixels. In contrast to cells, the free space does

not have a target area, and hence no associated mechanical energy.

Θτ =


1, if τ(σki,j) = 0 (free space),

0, Otherwise .

(3)

The final term in the Hamiltonian assigns active motility to the cells along a random unit vector

m̂ [37]. Here ŝ is the spin flip direction between the lattice site in question and one of its neigh-

bouring lattice sites.

Model parametrisation. To describe epithelial cell dynamics using the Potts model, we

parametrised it using our experimental data [15]. For simplicity, we chose the same length scale for

pixels in our simulation as in our experimental images of competition experiments. The lattice size

and cell sizes are chosen to match the experimental data. The lattice is chosen to be 1200x1600

pixels, where each pixel is 0.33 µm. The target area of each cell type was determined based on

the average cell areas measured from the images of each cell type plated in sparse conditions

such that the cells are isolated from one another. A conversion between experimental time and

computational time was derived empirically by comparing the mean squared displacements of cells

in experiments with that in the simulations. We found that 10 Monte Carlo time steps (MCS)

represented 1 frame of a timelapse movie in our experiments (4 mins).

Cell growth and division. The next layer of the model requires the introduction of cellular

behaviour in the form of probabilistic rules for cell growth, division, extrusion, and apoptosis. In
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our simulations, cells grow linearly by increasing their target areas at a constant rate. Cell growth

rate was chosen to replicate the average cell doubling time measured in experiments [15]. In line

with recent experimental work [23], we assume that MDCK cells follow an “adder” mechanism

for cell size control, such that cells divide along their major axis once a threshold volume has

been added. In our simulations, the added cell volume was normally distributed around the mean

experimental value, so as to capture cell-to-cell variability. When the simulation was initialised,

cell areas had a homogenous distribution ranging from 0.5 to 1 times the threshold volume for

division to mimic the distribution of cell ages at the start of experiments.

Contact inhibition of proliferation. Above a certain cell density, proliferation all but ceases,

a phenomenon known as contact inhibition of proliferation [20, 38]. An implication of this process

is the existence of a homeostatic density for each cell type. Arrest in proliferation is accompanied

by a decrease in protein synthesis due to a drop in ribosome assembly and downregulation of the

synthesis of cyclins [39]. In our simulations, cells possess a target area, AT , which they would occupy

if they had no neighbours, and an actual current area, A. As the target area of cells increases at each

time step, the difference between their target and current area increases. If this difference becomes

too large, the second term of the Hamiltonian dominates leading to energetically unfavourable

swaps and a collapse of the network. To mimic reduced protein synthesis during contact inhibition

of proliferation, we assume that the effective growth rate depends on the difference between the

current cell area and the target area:

dAT
dt

= G exp(−k(A−AT )2) , (4)

where G is the base growth rate, AT the target cell area, A the current area, and k quantifies the

sensitivity to contact inhibition, which parametrises how much deviation can be tolerated between

the target area and current cell area. Note that this condition is applied iteratively at every frame

for each cell, such that when free space becomes available growth can resume nearby.

Apoptosis due to competition. In crowded conditions such as those present in mechanical

competition, the probability of apoptosis increases with local cell density [8, 15, 24]. To imple-

ment this, each cell was assigned a probability of apoptosis at each time step. The probability

of apoptosis depended on the local cell density, which we determined using experimental data for

each cell type [15] (Supplementary Figure 1A-B). In biochemical competition, apoptosis occurs

when loser cells are in direct contact with winner cells. Recent work has shown that in Drosophila,
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the probability of apoptosis of loser cells depends on the percentage of the perimeter in contact

with the winner cells [13]. Following this, we chose to implement the probability of apoptosis as a

sigmoid function (Hill function) following the relationship Papo(p) = Vmaxp
n/(Sn + pn), where p is

the percentage of perimeter in heterotypic contact, n is the hill coefficient, Vmax is the maximum

probability, and S is the half maximum probability. We chose a maximum probability Vmax of

death per frame similar to that encountered in mechanical competition. (Supplementary Figure

1C). This is justified by the fact that mechanical and biochemical competition take comparable

amounts of time in MDCK cells [40, 41]. For both mechanical and biochemical competition, apop-

tosis was implemented by setting the target area of the cell to zero and area expansion modulus

to 2.0. This allows for a quick but not instantaneous decrease of the cell area until the cell is

completely removed.

Live extrusion of cells. Under conditions where the local cell density increases rapidly, live cells

can be extruded from monolayers, likely because they have insufficient adhesion with the substrate

to remain in the tissue [24, 25] (Figure 1D). We assumed that cells underwent live extrusion when

their area dropped below half of the average cell area at that time point: Ai ≤ 〈A〉/2. Once a

cell is committed to extruding, it is eliminated immediately from the tissue. Unlike apoptosis

elimination from extrusion is an instantaneous deletion of the qualifying cell from the lattice.

Comparison to experimental data. All simulated data for mechanical competition were com-

pared quantitatively to experiments acquired in [15]. Methods for data acquisition, segmentation,

and analysis are described in detail in [15]. Briefly, cells were seeded at a density of 0.07 cells per

100 µm2 and left to adhere for 2 hours. Cells were then imaged every 4 minutes for 4 days. MDCK

wild type cells (MDCKWT ) were winners in these competitions and their nuclei were labelled with

H2B-GFP, while MDCK scribble knock down cells (MDCK scribblekd) were the losers and labelled

with H2B-RFP. Movies were then automatically analysed to track the position, state, and lineage

of the cells using deep learning based image classification, and single-cell tracking, as detailed

in [15]. Cell neighbours are determined using a Voronoi tessellation of the Delunay triangulation

of nuclei.

Entropy of cell mixing. The entropy of mixing was calculated as the Shannon entropy of

a two-state system, where the states considered are the cell types (winner/loser). The en-

tropy was then calculated as s = −P1Ln(P1) − P2Ln(P2) for each cell at each frame. Where
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P1 = no. winner neighbours
total no. neighbours and P2 = no. loser neighbours

total no. neighbours . The entropy of the whole system was then

calculated as: S =< s > /
∑
cells.

Cell fate analysis. Fate information for each cell is dynamically recorded to a file and analysed

using a custom software written in Matlab to analyse experimental data [15].

REFERENCES

[1] Vincent, J.-P., Fletcher, A. G. & Baena-Lopez, L. A. Mechanisms and mechanics of cell competition

in epithelia. Nature Reviews Molecular cell biology 14, 581 (2013).

[2] Levayer, R. & Moreno, E. Mechanisms of cell competition: themes and variations. J Cell Biol 200,

689–698 (2013).

[3] Morata, G. & Ripoll, P. Minutes: mutants of drosophila autonomously affecting cell division rate.

Developmental Biology 42, 211–221 (1975).

[4] Amoyel, M. & Bach, E. A. Cell competition: how to eliminate your neighbours. Development 141,

988–1000 (2014).

[5] Chen, C.-L., Schroeder, M. C., Kango-Singh, M., Tao, C. & Halder, G. Tumor suppression by cell

competition through regulation of the hippo pathway. Proceedings of the National Academy of Sciences

109, 484–489 (2012).

[6] Madan, E. et al. Flower isoforms promote competitive growth in cancer. Nature 1 (2019).

[7] Moreno, E., Basler, K. & Morata, G. Cells compete for decapentaplegic survival factor to prevent

apoptosis in drosophila wing development. Nature 416, 755 (2002).

[8] Wagstaff, L. et al. Mechanical cell competition kills cells via induction of lethal p53 levels. Nature

Communications 7, 11373 (2016).

[9] Shraiman, B. I. Mechanical feedback as a possible regulator of tissue growth. Proceedings of the

National Academy of Sciences 102, 3318–3323 (2005).

[10] Levayer, R., Dupont, C. & Moreno, E. Tissue crowding induces caspase-dependent competition for

space. Current Biology 26, 670–677 (2016).

[11] Tyler, D. M., Li, W., Zhuo, N., Pellock, B. & Baker, N. E. Genes affecting cell competition in drosophila.

Genetics 175, 643–657.

[12] Yamamoto, M., Ohsawa, S., Kunimasa, K. & Igaki, T. The ligand sas and its receptor ptp10d drive

tumour-suppressive cell competition. Nature 542, 246 (2017).

[13] Levayer, R., Hauert, B. & Moreno, E. Cell mixing induced by myc is required for competitive tissue

invasion and destruction. Nature 524, 476 (2015).

[14] Dı́az-Dı́az, C. et al. Pluripotency surveillance by myc-driven competitive elimination of differentiating

.CC-BY-NC-ND 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under 

The copyright holder for this preprint (which was notthis version posted August 8, 2019. ; https://doi.org/10.1101/729731doi: bioRxiv preprint 

https://doi.org/10.1101/729731
http://creativecommons.org/licenses/by-nc-nd/4.0/


22

cells. Developmental Cell 42, 585–599 (2017).

[15] Bove, A. et al. Local cellular neighborhood controls proliferation in cell competition. Molecular Biology

of the Cell 28, 3215–3228 (2017).

[16] Gradeci, D., Bove, A., Charras, G., Lowe, A. R. & Banerjee, S. Single-cell approaches to cell com-

petition: high-throughput imaging, machine learning and simulations. In Seminars in Cancer Biology

(Elsevier, 2019).

[17] Nishikawa, S., Takamatsu, A., Ohsawa, S. & Igaki, T. Mathematical model for cell competition:

Predator–prey interactions at the interface between two groups of cells in monolayer tissue. Journal of

Theoretical Biology 404, 40–50 (2016).

[18] Lee, S.-W. & Morishita, Y. Possible roles of mechanical cell elimination intrinsic to growing tissue from

the perspective of tissue growth efficiency and homeostasis. PLoS Computational Biology 13, e1005651

(2017).

[19] Tsuboi, A. et al. Competition for space is controlled by apoptosis-induced change of local epithelial

topology. Current Biology 28, 2115–2128 (2018).

[20] Abercrombie, M. Contact inhibition and malignancy. Nature 281, 259 (1979).

[21] Graner, F. & Glazier, J. A. Simulation of biological cell sorting using a two-dimensional extended potts

model. Physical Review Letters 69, 2013 (1992).

[22] Fletcher, A. G., Osterfield, M., Baker, R. E. & Shvartsman, S. Y. Vertex models of epithelial morpho-

genesis. Biophysical Journal 106, 2291–2304 (2014).

[23] Cadart, C. et al. Size control in mammalian cells involves modulation of both growth rate and cell

cycle duration. Nature Communications 9, 3275 (2018).

[24] Eisenhoffer, G. T. et al. Crowding induces live cell extrusion to maintain homeostatic cell numbers in

epithelia. Nature 484, 546 (2012).

[25] Kocgozlu, L. et al. Epithelial cell packing induces distinct modes of cell extrusions. Current Biology

26, 2942–2950 (2016).

[26] Marinari, E. et al. Live-cell delamination counterbalances epithelial growth to limit tissue overcrowding.

Nature 484, 542545 (2012).

[27] S.A., G. et al. Mechanical stretch triggers rapid epithelial cell division through piezo1. Nature 543,

118121 (2017).

[28] Kuipers, D. et al. Epithelial repair is a two-stage process driven first by dying cells and then by their

neighbours. J Cell Sci 127, 1229–1241 (2014).

[29] Rosenblatt, J., Raff, M. C. & Cramer, L. P. An epithelial cell destined for apoptosis signals its neighbors

to extrude it by an actin-and myosin-dependent mechanism. Current Biology 11, 1847–1857 (2001).

[30] Kucinski, I., Dinan, M., Kolahgar, G. & Piddini, E. Chronic activation of jnk jak/stat and oxidative

stress signalling causes the loser cell status. Nature Communications 8, 136 (2017).

[31] Basan, M., Risler, T., Joanny, J.-F., Sastre-Garau, X. & Prost, J. Homeostatic competition drives

tumor growth and metastasis nucleation. HFSP Journal 3, 265–272 (2009).

.CC-BY-NC-ND 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under 

The copyright holder for this preprint (which was notthis version posted August 8, 2019. ; https://doi.org/10.1101/729731doi: bioRxiv preprint 

https://doi.org/10.1101/729731
http://creativecommons.org/licenses/by-nc-nd/4.0/


23

[32] Harris, A. R. & Charras, G. Experimental validation of atomic force microscopy-based cell elasticity

measurements. Nanotechnology 22, 345102 (2011).

[33] Harris, A. R. et al. Characterizing the mechanics of cultured cell monolayers. Proceedings of the

National Academy of Sciences 109, 16449–16454 (2012).

[34] Alt, S., Ganguly, P. & Salbreux, G. Vertex models: from cell mechanics to tissue morphogenesis.

Philosophical Transactions of the Royal Society B: Biological Sciences 372, 20150520 (2017).

[35] Latorre, E. et al. Active superelasticity in three-dimensional epithelia of controlled shape. Nature 563,

203 (2018).

[36] Swat, M. H. et al. Multi-scale modeling of tissues using compucell3d. In Methods in Cell Biology, vol.

110, 325–366 (Elsevier, 2012).

[37] Li, J. F. & Lowengrub, J. The effects of cell compressibility, motility and contact inhibition on the

growth of tumor cell clusters using the cellular potts model. Journal of Theoretical Biology 343, 79–91

(2014).

[38] Lieberman, M. & Glaser, L. Density-dependent regulation of cell growth: an example of a cell-cell

recognition phenomenon. The Journal of Membrane Biology 63, 1–11 (1981).

[39] Azar, R., Susini, C., Bousquet, C. & Pyronnet, S. Control of contact-inhibition by 4e-bp1 upregulation.

Cell Cycle 9, 1241–1245 (2010).

[40] Hogan, C. et al. Characterization of the interface between normal and transformed epithelial cells.

Nature Cell Biology 11, 460 (2009).

[41] Kajita, M. et al. Interaction with surrounding normal epithelial cells influences signalling pathways

and behaviour of src-transformed cells. J Cell Sci 123, 171–180 (2010).

ACKNOWLEDGEMENTS

This work was supported two Engineering and Physical Sciences Research Council (EP-

SRC) PhD studentships to DG and AB. SB acknowledges support from the Royal Society

(URF/R1/180187). AL and GC wish to acknowledge the support of BBSRC grant BB/S009329/1.

.CC-BY-NC-ND 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under 

The copyright holder for this preprint (which was notthis version posted August 8, 2019. ; https://doi.org/10.1101/729731doi: bioRxiv preprint 

https://doi.org/10.1101/729731
http://creativecommons.org/licenses/by-nc-nd/4.0/

