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Abstract 

To characterize differences between different state-related brain networks, 

statistical graph theory approaches have been employed to identify informative, 

topological properties. However, dynamical properties have been studied little in 

this regard. Our goal here was to introduce spectral graph theory as a reliable 

approach to determine dynamic properties of functional brain networks and to 

find how topological versus dynamical features differentiate between such 

networks. To this goal, 45 participants performed no task with eyes open (EO) or 
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closed (EC) while electroencephalography data were recorded. These data were 

used to create weighted adjacency matrices for each condition (rest state EO and 

rest state EC). Then, using the spectral graph theory approach and Shannon 

entropy, we identified dynamical properties for weighted graphs, and we 

compared these features with topological aspects of graphs. The results showed 

that spectral graph theory can distinguish different state-dependent neural 

networks with different synchronies. On the other hand, correlation analysis 

indicated that although dynamical and topological properties of random networks 

are completely independent, these network features can be related in the case of 

brain generated graphs. In conclusion, the spectral graph theory approach can be 

used to make inferences about various state-related brain networks, for healthy 

and clinical populations. 

Author Summery

By considering functional communications across different brain regions, a 

complex network is achieved that is known as functional brain network. 

Topologically, this network is constructed by different nodes (activity of brain 

regions or signals over recording electrodes) and different edges (similarity, 

correlation or phase difference between nodes). Paths, clusters, hubs, and 

centrality of nodes are examples of topological properties of these networks. 

However, synchrony and stability of functional brain networks can not be 

revealed by consideration of topological properties. Alternatively, spectral graph 

theory (SGT) can demonstrate the dynamic, synchrony and stability of graphs. But 

this approach has been studied little in brain network analysis. Here, we 

employed SGT, as well as topological methods, to investigate which approaches 
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are more reliable to find differences between distinct state-related brain 

networks. On the other hand, we investigated correlations between topology and 

dynamic in different type of networks (brain generated and random networks). 

We found that SGT measures can clearly distinguish between distinct state-

related brain networks and it can reveal synchrony and complexity of these 

networks. Also, results show that although dynamic and topology of random-

generated graph are completely independent, these properties exhibit several 

correlations in the case of functional brain networks.

Keywords: spectral graph theory, minimum spanning tree, weighted graphs, 

electroencephalography, Shannon entropy, synchronization

1- Introduction

After the development of graph theory analytical (GTA) tools in physics 1–3, these tools 

have been used to investigate the statistical aspects of  functional brain networks 4–6. By 

exploiting this method, earlier studies focused on topological properties of functional 

brain networks to revealed the most primary features of the brain connectivity7–11, for 

example, in describing neural basis of brain functions/dysfunctions in health/disease 

6,12–14. However, in the last decade, GTA (using more sophisticated measures) has also 

been used to unravel neural networks that are involved in different states of brain/mind 

and then associate the topological properties of these neural networks to further 

evaluate the brain connectivity at global or local levels 7–11,15,16.
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  Recently, studies using GTA to evaluate brain networks have been merged under the 

name of “network neuroscience”8. As the second important advance in the field, recent 

studies have been focused on dynamics of functional brain network 17–26. To this aim, 

most of these investigations employed a sliding window method (i. e. by dividing the 

entire signal into separate or overlapping parts) to investigate the dynamic functional 

connectivity 17,22–26. In the related literature, network connectivity that is derived from the 

entire signals (or averaging between sections) is referred to as ‘static functional 

connectivity’26, whereas, networks that are disclosed by the sliding window method are 

labeled under the term ‘dynamic functional connectivity’26. Thus, by employing either of 

these methods, the topological (static/dynamic) of functional networks can be revealed 

22–26. 

   In contrast, from a mathematical perspective, the topology of a network (association 

between nodes and edges17) is considered as a statistical (not dynamical) issue 27–30. 

Then the topological parameters, namely: shortest path, clustering coefficient and 

degree8 cannot be attributed to the dynamic properties of complex networks, such as, 

synchronization27–29 and level of coupling in a graph31. Therefore, even small-world 

graphs can be non-synchronized31 and two networks with same topology can exhibit 

two different levels of synchronization 27. From this point of view, the dynamical aspects 

of graph are invariant in relation to topology and a different mathematical method is 

required to describe that. To this aim, a specific filed in graph theory that is known as 

“spectral graph theory, SGT”32 was introduced. Mathematically, this approach adopted 

linear algebra to decompose adjacency or Laplacian matrix to the corresponding 

eigenvalues and eigenvectors32.

.CC-BY 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under 

The copyright holder for this preprint (which was notthis version posted August 8, 2019. ; https://doi.org/10.1101/729806doi: bioRxiv preprint 

https://doi.org/10.1101/729806
http://creativecommons.org/licenses/by/4.0/


5

    Despite the important role of the SGT to find the dynamic of functional brain 

networks, only few studies have implemented SGT to elucidate the dynamical 

properties of the brain33–37 in network neuroscience. These studies indicated that the 

overall coupling strength between functional brain network-units (brain regions or 

electrophysiological electrodes) can be changed by age38 or by disorders like 

schizophrenia36 and epilepsy35,37. However, the differences/correlations between results 

derived from SGT approach and topological methods are still unclear. On the other 

hand, most of previous studies have been performed on binary on sparse adjacency 

matrices34,36,39,40 or did not consider the methodological problems such as weight-

conserving 41 of SGT measures that they applied on weighted graph 37,38. 

   Here, to find the associations between the results of spectral and topological method, 

and then clarify the efficiency of these approaches, we investigated a well-studied 

paradigm — what is the difference in electroencephalography (EEG) between eye-

closed and eye-open conditions42–44? We analyzed state-related EEG network during 

resting state eyes-closed (rsEC) and resting state eyes-open (rsEO) conditions. 

Previous studies demonstrated that functional brain networks are changed during rsEC 

and rsEO conditions42–45. Thus, it is an appropriate example to compare the eligibility of 

both dynamical and topological approaches in network neuroscience. We also used a 

K-mean clustering approach with different inputs that are derived by topological/spectral 

methods. This approach can clarify whether spectral or topological graph measures can 

separate state-related EEG networks during two different resting state conditions. 

Furthermore, to figure out the ‘weight distribution conserving’ of topological and spectral 

approaches, we applied above mentioned methods to randomly generated matrices 
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with same means and standard deviations but with different distribution of weights 

(exponential vs. normal distribution). Thus, we could find which of above approaches 

can demonstrate the randomness of networks even with different distribution of weights. 

Since the SGT reveals the dynamic rather than the topology of graph, we hypothesized 

that despite the topological approach, this method is invariant in relation to distribution 

of weights. By this way, independent information can be obtained by these two different 

approaches (topological and spectral).                     

   Since the brain synchrony and complexity are frequently reported to be related to 

each other20,46,47, we considered the complexity of networks through the novel 

application of Shannon entropy, and, then the possible relation between the functional 

brain network complexity and synchrony was evaluated. We further hypothesized that 

there is an inverse relation between network complexity and synchrony while complexity 

is irrelevant to topology of network. To our knowledge, the relationship between SGT 

measures, Shannon entropy and topological graph indices has been investigated for the 

first time in this study. We found that although new information about functional brain 

networks can be revealed by SGT, still there are several correlations between SGT and 

topological measures in brain networks analysis. 

2- Results

2-1. Probability distribution of weights 

The probability distributions of four types of matrices (i.e., rsEO, rsEC, normal 

distribution, exponential distribution) are shown in Fig. 1. The results of the probability 

distribution analysis indicate that the brain-generated adjacency matrices, which are 
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representative of brain coherence between all the electrodes, show a semi-exponential 

distribution. In addition, a power law constraint is established on the brain-generated 

connectivity weights. 

The R-squared value was also calculated between histograms. Results from this 

analysis indicate that considerable R-squared values were obtained for: 1) rsEO and 

rsEC conditions (0.883), 2) rsEC and random exponential (0.877), and 3) rsEO and 

random exponential (0.899). In contrast, the R-squared values between normal and 

exponential distributions (0.398), normal and EC distributions (0.474), and normal and 

EO distributions (0.412) exhibited a weak correlation. 

2-2. Graph theoretical analysis

2-2-1 Topological measures of weighted graph

False discovery rate (FDR) analysis results showed that there were significant 

differences between the two eye conditions in clustering coefficient (F=6.647, p-value < 

0.0001) and characteristic shortest path (F = 3.749, p-value < 0.0001). Higher values of 

clustering coefficient and characteristic shortest path were found in our rsEC condition 

(Figs. 3, 4). Investigation of individual participant activity indicates that 40/45 

participants exhibited the same pattern for the clustering coefficient, whereas 37/45 

participants showed a similar pattern for characteristic shortest path (EC > EO). FDR 

analysis indicated that clustering coefficient and characteristic shortest path are 

significantly different for two random sets of graphs. The significant difference of 

clustering coefficient was observed between random graphs with exponential 

distribution and two brain-generated datasets (rsEC and rsEO). However, clustering 
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coefficient of random graph set with normal distribution was not significantly different 

from rsEC condition. In characteristic shortest path, although significant differences 

were observed between random graphs with exponential distribution and two brain-

generated graph sets (rsEC and rsEO), random graph with normal distribution exhibited 

significant difference only with the rsEC condition (Fig 2).     

2-2-2 MST measures

After applying FDR correction to the results of a within-subject permutation t-test, we 

found no significant differences in betweenness centrality (F=0.0567, p-value=0.521), 

leaf fraction (F=-0.2633, p-value=0.354), eccentricity (F=0.333, p-value=0.355) and 

diameter (F=0.4997, p-value=0.308) between the rsEO and rsEC conditions. Individual 

results indicated that participants did not share the same pattern of results for these 

measures (Fig. 2). Further, we found that both random datasets showed significant 

differences from brain generated graphs (in all the MST measures). However, there 

were no significant differences between two randomly generated graphs.    

2-2-3 Dynamical Measures (Synchrony and Complexity)

After FDR analysis, significant differences between the two eye conditions (rsEO and 

rsEC) across the tested dynamical indices were observed. Significantly higher values of 

Shannon entropy were observed in the rsEO condition (F=-6.828, p-value=0.0001) 

while higher values of largest eigenvalue (F=-7.045, p-value=0.0001) and energy (F=-

10.852, p-value=0.0001) were observed in the rcEC condition (Fig. 2). However, there 

was no significant difference between rsEC and rsEO in the second smallest 

eigenvalue. The differences between random graphs were significant in energy, entropy 
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and second smallest eigenvalue, but two random graph sets exhibited statistically no 

significant deference in largest eigenvalues. Significant differences were observed 

between brain-generated and random-generated graphs in the largest eigenvalue, the 

second smallest eigenvalue, and the energy. However, there was no significant 

difference between brain-generated and random-generated graph in entropy (Fig. 2).  

2-2-4 Correlation Analysis

Figure 3 indicates that several significant positive and negative correlations exist 

between the graph measures that we tested. According to the correlation analysis, in 

both of random networks, generally three main clusters were observed that exhibited 

high correlation. First, a cluster between the dynamical indices (largest eigenvalue, 

second smallest eigenvalue and energy). Second, a cluster between weighted graphs 

measures (L and C), and third, a cluster of MST measures (BC, LF, diameter and 

eccentricity). For these analyses, we did not find any significant correlation across these 

three clusters. 

   However, in the brain generated graphs (rsEC and rsEO) we found several significant 

correlations across dynamical, weighted and MST measures. In both conditions, 

significant positive correlations were observed between the maximum spectral 

measures (largest eigenvalue and energy) and the weighed graph measures (C and L). 

On the other hand, for both conditions, entropy exhibited a significant negative 

correlation with spectral measures (largest eigenvalue and energy) and weighed graph 

measures (C and L). In rsEC, there was a significant correlation between the largest 

eigenvalue and the MST measures (positive correlation with LF and negative correlation 
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with diameter and eccentricity). Significant correlations between the weighted graph 

measures and the MST measures were also observed in both conditions. There was no 

significant correlation between the second smallest eigenvalue and other measures. All 

correlational measures as well as p-values (after Bonferroni correction) are presented in 

Fig. 3.             

2-2-5 Clustering Analysis

The scatter plots indicate that two-dimensional patterns (using both dynamical and 

topological measures) are not linearly separable (Fig. 4). Based on the results of the 

FDR analysis on the data from the two conditions, we used the measures that had 

significant differences between them, as inputs for the linear k-means approach. The 

input patterns differed across the dimensions, which ranged from two to five. All 

possible combinations of inputs were tested and incorrect assignments for each model 

were determined. The best accuracy (93.3%) was obtained using clustering coefficient, 

characteristic shortest path, and entropy. 
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Figure 1: a) The probabitity distribution of weights in adjacency matrices. We generated 

two sets of random networks (45 networks with random exponential distribution and 45 

networks with random normal distribution of wheights) using mean and SD of brain 

generated networks (rsEC and rsEO conditions). The rsEC and rsEO networks show 

semi-exponantial distribution while the normal distribution is completely different from 

the brain-generated distributions. b) Average of adjacency matrices (over 45 matrices 

for each subject). In the rsEC and rsEO matrices, each row/column represents an EEG 

channel (not applicable for random distribution matrices). Lighter colors are associated 

with higher coherences between channels, while, darker colors corrspond to lower 

coherences. 
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Figure 2: Weighted graph measures (top). The rsEC network exhibits higher value of C 

while the random exponential network shows the lowest value. C is sensitive to 

distribution but not to randomness. Random normal network shows the highest L, while, 

the rsEO and random exponential networks have lower values of L. L is sensitive to 

distribution of weights. MST measures (middle). Max BC, LF, diameter and eccentricity 

are sensitive to randomness but not to distribution. These measures cannot distinguish 

the rsEC and rsEO networks. Dynamical measures (below). The highest values of 

energy and largest eigenvalue are related to the rsEC network, whereas, the rsEO 

network shows the highest value of entropy. Energy is sensitive to distribution.The 

largest eigenvalue is sensitive to randomness but not to distribution. The second 

smallest eigenvalue exhibits same values for rsEC and rsEO networks but it can 

distinguish brain-generated and random networks.   
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Figure 3: Heatmap of correlations between measures (Top). Light green colors are 

associated with negative high correlation between measures, while, light red color 

indicates positive high correlation between measures. Dark green, dark red and black 

indicate low correlation between measures. P-value of correlations after Bonferroni 

correction (Bottom). Black cells indicate significant correlation between measures 

(p<0.05) while red color indicates non-significant correlations (p>0.05). Different groups 

of correlation are observed for random networks with exponential and normal 

distribution of weights. In the correlation Heatmap of these networks, we can distinguish 

at least three groups for three types of measures; spectral, topological for weighted 

graph and MST. These groups are completely separated for random networks with no 

correlation across them. However, several correlations are observed across these 

groups for EEG networks (see discussion section). 

S. S eigenvalue is second smallest eigenvalue. L. eigenvalue is largest eigenvalue.

.CC-BY 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under 

The copyright holder for this preprint (which was notthis version posted August 8, 2019. ; https://doi.org/10.1101/729806doi: bioRxiv preprint 

https://doi.org/10.1101/729806
http://creativecommons.org/licenses/by/4.0/


14

Figure 4: The scatter plot of clustering results by K-mean approach. Circles show 

individual values of graphs in the EC (blue circles) and the EO (red circles) condition. 

Dots show clusters that are assigned to each circle (individual data). If the color is 

matched between circle and dot (red-red or blue-blue), the clustering assignment is 

correct. a) Results of two-dimensional clustering based on the weighted graph 

measures (left side) and dynamical measures (right side) are shown in the scatter plot. 

b) Results of five-dimensional clustering based on the both topological weighted 

measures (clustering coefficient and characteristic shortest path) and dynamical 

measures (energy, entropy, largest eigenvalue). Both charts show the same clustering 
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results but in different views (e.g. weighted dimensions (left side) and dynamical 

dimensions (right side)).     

3- Discussion and conclusion  

In this study, our aim was to investigate the overall link between different approaches to 

functional network connectivity analysis, using methods that have been previously 

investigated on their own or almost not at all. To this aim, we investigated topological 

and dynamical features of neural networks for two eye conditions as well as two random 

generated networks. Also, we performed Shannon entropy analysis, which we propose 

to be a plausible measure for evaluating the brain complexity. This would allow us to 

determine if there are any links between topology, synchrony and complexity of brain 

networks versus random networks. Our results indicate that: 1) the topological 

measures that we tested are effective in determining a state-dependent difference in 

brain connectivity and 2) brain synchrony can be best relayed by energy and largest 

eigenvalue. Lastly, there was no link between topology, synchrony and complexity of 

random networks however in the case of brain networks, several interactions can be 

found between these properties. 

3-1 Differences between rsEC and rsEO conditions: Topological and spectral 

measures

3-1-1 Topological measures: 

Clustering coefficient is closely associated with brain segregation, while brain 

integration is inversely related to characteristic shortest path 7,10. Based on our findings, 

the alpha network, that we explored here, exhibited higher segregation and lower 
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integration in the rsEC condition compared with the rsEO condition. This result confirms 

the recent results of an EEG study  that showed increased path length and clustering 

coefficient during rsEC condition in relation to the rsEO condition48. Therefore, it can be 

proposed that the alpha network tends to engage in more local processing when the 

eyes are closed versus open. Previous findings also indicate that a particular 

thalamocortical circuit that is specific to visual processing is involved in alpha band 

oscillation generation49. In particular, this oscillation band can be attributed to more 

posterior cortical regions50. Thus, it is no surprise that more segregation occurs in the 

rsEC condition than in the rsEO condition. However, seeing less integration in the EC 

condition is an emergent finding derived by the graph theory approaches described 

here. 

However, topological measures associated with MST parameters, exhibited non-

significant differences for the two (rsEO and rsEC) conditions. This result could be 

related to a lack of weak weights and loops as they are removed in the MST approach. 

In some literatures, the weak connections are considered in relation to noise 51. 

However, based on the nature of our connectivity measure (i.e. coherence) global noise 

(that can affect all the electrodes) can induce high value of coherence between 

electrodes. But, local noise (that can affect a few numbers of electrodes) may make 

weak connections between noisy electrodes and other electrodes. In this study, we 

performed a high-level control on artifact rejection and selected signals that were artifact 

free. Moreover, two conditions (rsEC and rsEO) were recorded at successive sessions, 

then possible local noise should affect both conditions. Then weak weights (that 

possibly cause significant differences between two conditions) cannot be considered in 
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relation to noisy signals, and thus, may play a significant role in distinguishing the rsEC 

and rsEO conditions (at least when the connectivity measure is coherence).  

3-1-2 Spectral measures:

Using spectral graph theory, we were able to distinguish between the two eye 

conditions in the brain network. Specifically, our results indicate that the rsEC condition 

exhibits higher energy than the rsEO condition. Previous findings have suggested that 

alpha activity is strongly synchronized in several electrodes especially posterior 

electrodes50. In literature, it has been shown that higher energy is directly related to a 

high degree of synchronization in the graph52. If we extend this to our findings, it follows 

that the higher energy of the rsEC condition predicts higher synchronization in 

comparison with the rsEO condition. Therefore, we can introduce energy as a powerful 

measure to find the level of synchronicity in functional brain networks. 

Consistent with spectral graph theory literature27,30,32, we found that another spectral 

graph theory measure, the largest eigenvalue, can also be used to explore the 

synchronicity in functional brain networks. This measure also shows great sensitivity to 

the difference in the network between the two conditions. We suggest that this 

dynamical measure can be used in a reliable manner to ascertain the presence of 

differences in dynamical synchronization and desynchronization in resting state brain 

networks. Another spectral graph theory measure that we considered in this study was 

the second smallest eigenvalue, which was not significantly different between two 

conditions. The second smallest eigenvalue of graph is related to the robustness and 

stability of the network dynamic system53. There is not enough literature in network 
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neuroscience to find the dynamical robustness and stability in functional brain networks 

during cognitive states (eyes closed or eyes open). Only a recent study has shown that 

Alzheimer’s disease decreases robustness of dynamic in the functional brain network54. 

This result, in addition to our result, can suggest that stability and robustness in dynamic 

of healthy brain remains constant during different cognitive states (at least during 

different states of visual processing), while diseases can change that. 

3-2 Shannon entropy:

The last measure that we supposed to be associated with the dynamic of functional 

brain network was entropy, and it was also significantly different between the two 

conditions. Specifically, higher entropy was observed in the rsEO condition compared 

with the rsEC condition. To frame this in terms of what is already known about entropy 

and network analysis, Shannon entropy describes the level of complexity and 

unpredictable information in a system (on a more general level) (Shannon, 1948). When 

measuring entropy in a network, higher entropy is attributed to a random and 

unpredictable network, whereas a network that has repeating or similar units is 

associated with the lowest entropy (i.e., an entropy of 0). In terms of our results, the 

network units (or the coherence between the electrodes in this case) in the rsEC 

condition are more predictable and simpler than for the rsEO condition. This suggests 

that there may be a decreased global synchronization of alpha band coherence in the 

rsEO condition compared with the rsEC condition. More synchronized systems (such as 

that associated with brain activity in the rsEC condition) exhibit similar correlations 

between coherence values. Shannon entropy may, thus, be another excellent tool to 

evaluate the synchronization (as well as complexity) of dynamical functional brain 
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networks.   Therefore, Shannon entropy (as well as energy and largest eigenvalue) can 

be utilized in the assessment or discrimination of different cognitive states. 

3-3 Difference between brain-generated and random networks

Based on the results derived by calculation of L, C and entropy over brain generated 

networks vs. random networks, we did not see a specific pattern to distinguish these 

two types of networks. While the L, C and entropy in random exponential networks are 

in the order of brain-generated networks, the normal random network exhibits higher 

values for both L and C and lower value for entropy. It suggests that topological 

measures of a weighed graph and also entropy are more sensitive to distribution of 

weights and less sensitive to randomness of weight values. This is consistent with 

previous findings that suggested these measures are strongly related to distribution of 

weights and possible differences between networks may be affected by this bias55. 

Despite the measures of weighted graph, results indicate that MST measures are not 

dependent on distribution of weights but they are sensitive to randomness of weights. 

This result confirms a previous study that suggested MST as a weight-conserving 

approach 55. Same as MST measures, the spectral measures can clarify differences 

between brain-generated networks and random graphs. Both — the energy and the 

largest eigenvalue showed lower values for random networks. This suggests that EEG 

networks (brain-generated networks) are more synchronized than random networks with 

same mean and standard deviation of weights. Overall, these results suggest that 

topological properties of weighted networks are invariant to randomness of weights, but 

synchrony of networks differs from weight randomness. 
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3-4 Linking Entropy, Topological and Spectral Measures

One of our goals for this study was to ask whether topological and spectral measures 

are linked or not? To this aim, we performed the linear correlation analysis between 

measures that are derived from two kinds of networks (i. e. functional brain networks 

and random networks). In random networks (with normal and exponential distribution of 

weights), we found that measures are clustered independently from one another, 

suggesting that entropy, spectral, weighted and MST measures are in fact not linked. 

However, there are various correlations between different types of measures in brain-

generated networks. In both conditions (rsEC and rsEO), spectral measures (except 

second smallest eigenvalue), Shannon entropy and weighted graph measures are 

significantly correlated. There was no significant correlation (in rsEO condition) between 

second smallest eigenvalue (related to stability of dynamical networks) and other 

measures — especially energy and largest eigenvalue (associated with synchrony at 

dynamical networks). This result indicates that in low-level synchronized EEG network 

(rsEO), stability of network is independent from synchrony and topology of network. But 

in the high-synchronized EEG network (rsEC), stability is partly associated with 

synchrony (since it is significantly correlated with energy but not with largest 

eigenvalue). The correlation was positive, and it suggests high-level synchrony in EEG 

network can generate stability and robustness and vice versa.          

Entropy is negatively correlated with spectral and weighted graph measures. The 

negative correlation between entropy and spectral measures suggests that brain 

networks with high synchrony have less complexity. The correlations between Shannon 
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entropy and weighted graph measures can be considered in relation to segregation and 

integration in the EEG networks. Negative correlation between entropy and 

characteristic shortest path suggests the EEG network complexity is associated with 

integration within graph. On the other hand, negative entropy between entropy and 

clustering coefficient reveals complexity is inversely related to segregation in EEG 

networks. Mathematically, a regular graph (with same connectivity weights between 

nodes) presents minimum Shannon entropy, while, it exhibits maximum values for C 

and L1 and then it is not surprising to see the negative correlation between these 

measures. However, as demonstrated from our results, the negative association 

between Shannon entropy and C/L has not been observed in randomly generated 

graphs. Thus, our results suggest that this correlation is specifically distinguished in 

brain-generated networks (as a complex network).    

Our results also revealed a positive correlation between the spectral and the weighted 

graph measures in brain-generated graphs (but not in random networks). These 

correlations suggest that, in the EEG networks, higher synchrony is associated with 

higher segregation (higher values for C) and lower integration (higher values for L). 

Therefore, one can conclude that local processing in EEG networks causes higher 

global synchrony, while global integration reduces level of synchrony in EEG networks. 

Mathematically, it can be justified by the argument that synchrony (energy and largest 

eigenvalue) is directly related to magnitude of weights but integration is reduced by 

higher values of weights (because L is directly associated with value of weights). This 

type of correlation has not been distinguished for random graph, as well as correlation 

between entropy and weighted graph measures. Then, it can be supposed that this type 
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of correlation between spectral and topological graph measures is observed for specific 

types of complex networks, such as, EEG networks.    

The last correlation measure for (brain-generated graphs) that we observed was 

between the weighted graph measures and the MST measures. This result was 

consistent with previous study that suggests same correlation55. As recommended by 

this study55 the mentioned correlations suggest both MST and weighted graph 

measures show same properties in topological brain networks, such as; segregation 

and integration.  

In addition to the analysis of the individual parameters that are correlated within these 

sub-clusters, we also analyzed if we could compare the two eye condition states. We 

approached this problem using a k-means approach and we were able to determine 

that, when we utilize both topological and dynamical measures, we could more 

accurately differentiate between the networks associated with each of these cognitive 

states. A similar approach has been used once before, but only with topological 

measures (Ghaderi, Moradkhani, Haghighatfard, Akrami, Khayyer, & Balcı, 2018). Here, 

we showed that the extension of this method (also including dynamical measures) can 

prove to be a plausible approach in distinguishing different cognitive state-associated 

networks (Fig. 6). 

3-5 Finding the best measure for the EEG network

While revealing brain networks related to the variable that is being tested (in our case, 

the cognitive state related to whether the eyes are open or closed), it is important to 

consider which measures are capable of distinguishing between these different states. 
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However, it is more intricate than that. A good measure has to meet three important 

criteria: 1) it must be able to distinguish between variable-related and randomly 

generated data; 2) it must be independent of the distribution of weights (see 55 for 

discussion); and 3) it must be able to differentiate between the levels of the variable 

being tested (i.e., between the rsEO and rsEC condition networks here). 

From our results, we were able to determine the measures that have met these criteria. 

Importantly, only one measure met all three criteria: largest eigenvalue. Previously, 

weighted graph measures were used to distinguish variable-related states 7,10. Later it 

has also been proposed that MST measures could be used to accomplish this goal55,56 . 

Here, we showed that weighted graph measures met the third criterion only, whereas 

most MST measures met the first two criteria. Taken together, we suggest that, when it 

is important to distinguish between dynamical networks (such as EEG network) that 

must satisfy all three of these criteria, largest eigenvalue could be used; otherwise, 

weighted graph and MST measures should be applied based on the nature of the 

variable being tested. 

We also proposed three measures (energy, largest eigenvalue, and entropy) as 

possible measures that could distinguish between rsEO and rsEC condition-related 

networks. However, from these three measures, energy met two of the three criteria, 

whereas entropy only met one criterion. Energy was able to distinguish between 

variable-related and random data, differentiate between rsEO and rsEC condition 

networks, but, it was sensitive to the weight distribution. On the other hand, entropy was 

only sensitive to rsEO versus rsEO condition networks, which is a similarity between 

entropy and other weighted graph measures. 
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Overall, these considerations suggest that it is important to consider the nature of the 

independent variable being tested, as well as which criteria need to be met. Certain 

analyses may require that only some or particular criteria need to be met, and thus, the 

appropriate measure(s) should be chosen, be it weighted graph, MST, or those 

proposed here, based on the requirements of the network. 

3-6 Conclusion 

In this study, we investigated and introduced new measures to distinguish different 

types of networks (two brain-generated and two random generated networks). Not only 

did we investigate the ability of topological measures to make this distinction, but we 

also introduced dynamical measures in this endeavor. We showed here that topological 

and dynamical measures exhibited different properties of networks. These two types of 

measures were completely independent in the case of random-generated networks, 

however, several significant correlations between topology and dynamic of EEG 

network (brain generated networks) were found. To distinguish between two types of 

brain networks, topological measures show that alpha bands are more segregated in 

the rsEC condition and are more integrated in the rsEO condition. On the other hand, 

dynamical measures suggest that the alpha network is more synchronized in the rsEC 

condition. In terms of complexity, Shannon entropy showed that the complexity of the 

rsEO state is higher than for the rsEC state. Shannon entropy may, thus, be used to 

investigate the level of complexity in a functional brain network. Having both topological 

and dynamical measures made it more helpful to separate the two cognitive state-

related networks that we investigated (using a k-means approach). Thus, the 

methodology used in this study helps to provide information about the synchronicity and 
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complexity of brain networks. However, to achieve these analyses, it is especially 

important to consider which measures are best suited to distinguish between such 

state-related networks (i.e., sensitivity to random networks, distribution, and ability to 

separate between cognitive-related states). Of all the measures that we investigated, 

we found that the largest eigenvalue is a great candidate for this goal, as it met all three 

criteria. Overall, further investigations of all these measures in functional network 

analysis are required, as the findings may have major implications for many cognitive 

and clinical studies.            

4- Method

4-1 Participants, ethical considerations and EEG acquisition   

We reanalyzed a previous open access dataset 

(https://figshare.com/articles/Over_zip/5970886) from the same participants in the rsEC 

and rsEO conditions. The ethical processes and EEG acquisition/data were similar to 

our previous published paper14. The details about ethical considerations, participants 

and EEG recordings are in the previously published work14.

4-2 Pre-analysis of EEG data

EEG activity was recorded for five minutes for each condition (rsEO and rsEC). Artifacts 

were rejected using a z-score-based algorithm (NeuroGuide software; 

www.appliedneuroscience.com). Signal selection was then performed manually by an 

expert. Since the signal-length plays a significant role in calculating the value of 

connectivity measures57 we used a similar signal-length for all participants and 

conditions.  In each condition, 20 to 25 artifact-free signal segments with a length of 
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three seconds were selected for fast Fourier transform (FFT) analysis. This analysis 

was performed separately for each segment with a 25 % sliding window 58 for FFT 

analysis. As alpha rhythm is more affected by eye conditions48,59, we applied a 

bandwidth filter (8 to 12 Hz, i.e., alpha rhythm) on the original signal and then alpha 

band was used for further analysis.

4-3 EEG connectivity and adjacency matrix 

Although high-density EEG studies with more than 64 recording channels can display a 

highly spatial resolution of brain function and the number of electrodes or nodes can 

improve the GTA analysis, several recent studies with limited recording channels 

indicate that reliable results can also be obtained using standard 10/20 system with 19 

EEG channels12,13,60–63. In order to compute a functional brain network, we used 

coherence as a simple and well-studied EEG connectivity measure 4,12,14,64–67. Although 

several criticisms (e.g., effect of volume conduction) have been raised against  

coherence68, still it is a useful and meaningful measure when coupling and 

synchronizing between neural units are important64,69–71. Furthermore, when topological 

measures were investigated, a recent study suggested that coherence might be a better 

measure than phase order parameter and synchronization likelihood to expose more 

significant differences between groups or conditions65.  On the other hand, the effect of 

volume conduction is more important when EEG electrodes are located very close 

together (high-density EEG). But in 19-channel system (as we used in this study), the 

reliability of 1×N connectivity derived by coherence is greater than phase synchrony 

estimates72. 
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We used the function ‘mscohere’ in MATLAB to find magnitude-squared coherence in 

alpha band (8-12 Hz). Mathematically this function calculates 73: 

  
    ,)(
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where is a cross-spectrum between signals x and y and ,  are auto- fGxy  fGxx  fGyy

spectra for x and y respectively. In this equation, coherence is related to the phase 

difference between signals x and y. When the phase changes randomly between 

signals, then coherence is close to ‘zero’, whereas  coherence is equal to ‘one’ when 

the phase is constant between signals74. In this study, coherence was calculated 

between 171 pairs ( ) of channels which was then used to generate the adjacency 
2

1819

matrix. In the adjacency matrix, each row/column represents a channel and their 

intersection in the matrix corresponds to the coherence between channels. This 

weighted adjacency matrix was subsequently used for further analysis (as described in 

the following sections).

4-4 Topological indices 

4-4-1 Clustering coefficient and characteristic shortest path of weighed 

graphs 

We used two well-studied measures (i. e., clustering coefficient (C) and characteristic 

shortest path (L)) to investigate the topology of weighted graphs 7,8,10. The clustering 

coefficient helps to identify features related to the level of segregation in the network10. 
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The C of the node ‘i’ in an undirected weighted network, such as that in our study is 

defined as75: 

    ,
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1
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where ki is the degree of the node ‘i’ and aij defines the connectivity weight between the 

nodes ‘i’ and ‘j’.  

Another index of a weighted graph that can be determined is the characteristic shortest 

path10, which uncovers information about the integration in a complex brain network. In 

an undirected weighted graph, the shortest path between two nodes ‘i’ and ‘j’ is 

measured by the minimum summation of weights between those two nodes, where the 

characteristic shortest path is the average of all the shortest paths between all possible 

pairs of nodes10:
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where  is the distance between two nodes ‘i' and ‘j’ and ‘n’ is number of the paths in w
ijd

the graph. 

 To calculate these measures, we used the matrices obtained in the previous section 

that contain coherence values for each combination of the 19 pairs of electrodes. These 

matrices were calculated for both the rsEO and rsEC conditions (i.e., two matrices 

(rsEO, rsEC) for each participant) as well as random matrices with normal and 

exponential distributions. We have used the brain connectivity toolbox10 to calculate the 

clustering coefficient and characteristic shortest path of weighed graphs. 
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4-4-2 Minimum Spanning Tree (MST) analysis

Typically, MST finds a backbone (tree) for a weighted graph56. In the weighted 

networks, nodes can be connected through multiple paths to each other and several 

loops may be generated via a graph. These loops and multiple paths lead to graph 

measure dependency on factors such as the average of connection power and the 

distribution of weights51,55. To investigate changes of the MST measures according to 

weight distribution and randomness of weights, and to evaluate the correlations 

between MST measures and SGT measures we performed MST analyses for two 

experimental conditions (rsEO and rsEC) vs. two randomly generated dataset with 

different weight distributions. 

   To compare these matrices, four MST indices were calculated: 1) betweenness 

centrality, 2) leaf fraction, 3) diameter, and 4) eccentricity. Betweenness centrality of a 

node is defined as the number of paths (specifically shortest paths) that emerge from a 

specific node. In the MST approach, all the paths between nodes are the shortest path 

(because no loops are possible), which allows us to define betweenness centrality 

simply as a function of all the paths that cross a particular node. This allows us to report 

a betweenness centrality measure for all the nodes in a network; however, we can also 

average this measure across all nodes for a particular condition and report a single 

value only. The more integrated the graph, nodes will exhibit higher betweenness 

centrality10. 

   In the MST approach, the second index is the leaf fraction which is associated with 

the number of nodes at the end of the chain. Here, a chain is known as a particular set 
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of connections of nodes in a network from the beginning to the end. Within the chain, a 

leaf is defined as a node that has a degree equal to a value of ‘1’. Mathematically, the 

leaf fraction is equal to the number of nodes with a degree of value equal to ‘1’ (N(k=1)) 

divided by N-1, where N represents the total  number of nodes in a tree51. When the 

tree has a central node connected to all other nodes, the value of the leaf fraction is 

maximal; on the other hand, the leaf fraction is at a minimum for a tree with a line shape 

where one node is connected uniquely to another node in the network 13. In terms of 

integration of a network, trees with a network in the shape of a line that have low leaf 

fraction value are deemed to be less integrated than graphs with a flower shape and 

high leaf fraction value 56. 

   The maximum path length in a tree defines the third MST index which is the diameter. 

This is same as the shortest path measure in a weighted graph. Diameter is inversely 

proportional to the level of integration in a network, such that a longer path is associated 

with less integration and a shorter path is reflective of greater integration 51. 

   The final MST index is eccentricity, which is defined as the longest distance of a node 

to any other node in either direction of a chain. Each node can be assigned an 

eccentricity, but we can also calculate an average eccentricity for the entire tree. In a 

tree, eccentricity is negatively related to integration, whereby graphs with a higher 

average eccentricity have highly isolated nodes and show less integration, and vice 

versa. First, we used the biograph toolbox in MATLAB (ver. 2016a) to compute the MST 

tree of weighted graphs, the results of which we subsequently fed into the brain 

connectivity toolbox 10 to obtain the final four MST indices.                          
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5- Dynamical indices 

5-1 Spectral graph theory (eigenvalues and energy) 

Mathematically, each oscillatory system with different units of oscillators can be 

presented by a symmetric connectivity matrix (A) of oscillations between units (e.g., an 

EEG channel) and each symmetric connectivity matrix can be decomposed into a set of 

eigenvalues and eigenvectors that follow the bellow equation: 

(A- ⋋ 𝐼)𝑥 = 0 ,

where I is a single unit matrix, x is eigenvector of A and  is the eigenvalue matrix, if ⋋

and only if Det |A-  | = 0.       ⋋ 𝐼

   In graph theory, eigenvalue spectrums associated with adjacency or Laplacian (i.e., 

adjacency matrix minus unit matrix of degrees associated with the nodes in a network) 

matrices are commonly considered as measures related to dynamics and 

synchronization of a network76. In SGT in particular, the largest eigenvalue and energy 

are considered as two important measures related to synchrony27,29,77 and the stability 

of the network78. The energy of a graph is defined as the sum of the absolute values of 

eigenvalues79. This energy is directly related to the number of nodes and value of edges 

79. Therefore, it is expected that, in a dynamical system with constant nodes (e.g., 19 in 

this study for each of the 19 electrodes), higher energy would be achieved when the 

synchronization or coupling is increased in the graph79. Energy is defined by:

,
1





n

i
iH 

.CC-BY 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under 

The copyright holder for this preprint (which was notthis version posted August 8, 2019. ; https://doi.org/10.1101/729806doi: bioRxiv preprint 

https://doi.org/10.1101/729806
http://creativecommons.org/licenses/by/4.0/


32

where is the eigenvalue spectrum and n is the number of nodes. Since the adjacency i

matrices of brain networks are typically symmetric and positive, the SGT approach can 

be easily applied to them. As a result, the eigenvalues of these networks are always 

computable and non-negative. We compared largest eigenvalue and energy between all 

conditions (e.g. rsEC, rsEO, normal distribution, exponential distribution). We took our 

adjacency matrices for these conditions and then applied the eig function in MATLAB 

(ver. 2016a) to these matrices in order to calculate eigenvalues. 

5-2 The Shannon entropy of brain network

Entropy measures have been employed to investigate functional brain connectivity. 

Transfer entropy80  and mutual information81 are appropriate measures to evaluate the 

level of disorder between two signals. However, although these measures can 

demonstrate the complexity of synchronization/desynchronization between two neural 

regions or electrodes, they cannot evaluate the complexity of global brain networks. To 

study the global complexity of a network, the entropy of graph degrees3 and graph 

spectrum82 has been proposed as two valid measures. It is important to note that the 

network entropies that focus on the complexity of the overall network require a relatively 

large number of nodes (e.g. N≈100). However, the limited number of electrodes in many 

EEG setups (same as our setup) precludes the use of such measures. Thus, in order to 

investigate the complexity of a brain network, given this limitation, we used Shannon or 

information entropy 83. Mathematically, Shannon entropy is defined by: 

,log2
i

ii ppS
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where p is the probability of i (the possible values within an array in the adjacency 

matrix). According to this equation, a system with maximum Shannon entropy (with fully 

random behavior) has non-repetitive values in the array, while Shannon entropy is equal 

to zero in a deterministic system (e.g., matrix of ones). The number of possible values 

of array cells (i.e., histogram count) is directly related to the Shannon entropy84. 

In this study, we considered Shannon entropy for a 19×19 adjacency matrix. We 

introduced the application of Shannon entropy of an adjacency matrix to provide 

information entropy of brain network. This measure is suggested for the use of 

evaluating the complexity of global brain connectivity. We calculated this measure for a 

weighted adjacency matrix derived by short term signals (i.e., duration on the order of 

seconds). We used the Entropy function in the image processing toolbox of MATLAB 

(ver. 2016a) that works based on the Imhist function. 

6- Statistical analysis 

6-1 Probability distribution of an adjacency matrix 

The probability distributions of the adjacency matrix were considered in the rsEO and 

rsEC conditions. To this end, we constructed 45 adjacency matrices with a normal 

distribution and 45 adjacency matrices with a random exponential distribution. We used 

the mean and standard deviation of brain-generated adjacency matrices to construct the 

random values. The probability distribution was presented through histograms. We used 

200 bins for each histogram between 0 and 100 (the values of coherence are between 0 

and 1 and we multiplied all the coherence values by 100 for the ease of visualization 

and analysis). This number of bins results in an appropriate representation of the data. 
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Then, the r-squared errors between distributions were calculated which were ultimately 

used to determine the distances between probability distributions. We used this 

probability distribution analysis to find the effects of probability distribution on dynamical 

or statistical graph measures. 

6-2 Permutation test

A nonparametric permutation test85 with 10,000 random shuffles was used to compare 

graph measures between two conditions. To avoid type 1 error, a false discovery rate 

(FDR) analysis 86 was performed and then corrected p-values (q-values) were obtained. 

We performed FDR separately for weighted graph measures (i.e., clustering coefficient, 

characteristic shortest path), MST measures (i.e., betweenness centrality, leaf fraction, 

eccentricity, and diameter) and dynamical measures (i.e., largest eigenvalue, energy 

and entropy). The permutation test was carried out using a previously created MATLAB 

function13,14. After that, an individual comparison was performed to identify significant 

measures between the two conditions. We also used the FDR analysis to correct 

multiple comparisons between conditions (e. g. rsEC, rsEO, random exponential, 

random normal).

6-3 Correlation analysis and K-means

Correlation analysis was performed between all measures using the MATLAB function 

corr and then the p-values were obtained. To avoid the effect of multiple comparisons, 

Bonferroni correction was performed. After that, a K-means clustering approach was 

used to separate the data into two clusters. Topological measures (i.e., clustering 

coefficient and shortest path of a weighted graph), MST measures, and dynamical 
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combinations, thereof, were considered in order to determine the best measures at 

clustering the data. The accuracy of clustering was then compared in order to determine 

the most appropriate measure to cluster the data in a linear manner. All statistical 

analyses were performed in MATLAB (ver. 2016a), and the ttest1 function (for within 

subject t-test analysis) was used specifically to compare the means of the conditions.  
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