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Cortical areas comprise multiple types of inhibitory interneurons with stereotypical connectivity motifs, but the combined
effect of different inhibitory connectivity patterns on postsynaptic dynamics has been largely unexplored. Here, we analyse
the response of a single postsynaptic neuron receiving tuned excitatory connections that are balanced by various combinations
of inhibitory input profiles. Inhibitory tuning can be flat, share the same tuning preference as the excitation or, alternatively, it
can feature counter-tuning such that non-preferred excitatory inputs receive large inhibition. When all inhibitory populations
are active, the net inhibitory effect is the same regardless of the tuning profile. By modulating the activity of specific
inhibitory populations, strongly correlated responses to preferred or non-preferred inputs, as well as uncorrelated responses
emerge. Moreover, biologically inspired inhibitory plasticity rules produce the necessary connectivity profiles, indicating
how plasticity rules in various cell types can interact to shape cortical circuit motifs and their dynamics.

Inhibitory neurons exhibit large variability in morphology,
connectivity motifs, and electrophysiological properties1–4.

One of inhibition’s main function is to balance excitatory in-
puts, thus stabilising neuronal network activity5,6, and allow-
ing for a range of different functions to be implemented by the
brain7–11. When both inhibitory and excitatory inputs share
the same statistics, and their weight profiles (receptive fields)
are similar12, the resulting state of the postsynaptic neuron is
one of precise balance of input currents9. Modulation of inhib-
ition, e.g., decrease or increase in local inhibitory activity and,
consequently, change in the balance between excitation and in-
hibition, is essential to control the activity of neuronal groups13.
It is thus believed that disinhibition is an important mechan-
ism for the implementation of high-level brain functions, such
as attention14,15, memory retrieval6,16,17, signal gating18,19, and
rapid learning11. This type of modulation cannot be easily im-
plemented, and may hint at why neuronal circuit motifs have
so many interneuron types1,2,7.

To reach a state of precise balance, a Hebbian-like inhibitory
plasticity rule — increase in synaptic weights for correlated
pre- and postsynaptic activity, as observed, e.g., in auditory
cortex20 — is required6. A form of anti-Hebbian inhibitory plas-
ticity — decrease of synaptic weights for correlated pre- and
postsynaptic activity — has also been reported21–23, and such
a rule has been proposed as a mechanism for memory forma-
tion and retrieval24. These two types of plasticity rules would
form opposite receptive fields for inhibitory connections: syn-
apses following a Hebbian-like inhibitory plasticity rule would
mirror excitatory inputs while an anti-Hebbian plasticity rule
would impose strong inhibitory inputs for weak excitatory
ones, and vice-versa. In line with this hypothesis, intracellular
recordings indicate that strong inhibitory postsynaptic poten-
tials can be elicited by stimuli with preferred orientations25,26,
but also by stimuli with non-preferred orientations27,28. Ad-
ditionally, postsynaptic responses in auditory cortex of mice
have been shown to vary with sound intensity29.

To understand the mechanistic origin of such varying re-
sponses from the same cells, we investigated the behaviour
of a single postsynaptic neuron model receiving tuned excit-
atory inputs, and inhibition from two distinctly tuned pop-
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ulations. Tuning may correspond to preference to a specific
sound frequency12, orientation of visual cues30, taste31, whisker
stimulation32, or position in space33. We show that when the
postsynaptic neuron is in a balanced state with respect to its
excitatory and inhibitory inputs, preferred signals are transi-
ently revealed, but steady state responses are indiscriminate of
the stimulus preference6 (i.e., its ‘orientation’, etc.), regardless
of the inhibitory connectivity. We could substantially alter the
response profile of the postsynaptic neuron by modulating the
activity of either of the two presynaptic inhibitory populations,
allowing for the propagation of facets of the input patterns that
were previously quenched by inhibition. We thus introduce a
mechanism to selectively filter stimuli according to, e.g., at-
tentional cues. We show that the tuning profiles necessary for
such attentional gating can be achieved by a set of biologically
plausible plasticity rules. These rules are based on previous
theoretical and experimental work, suggesting that distinct
plasticity rules can harmoniously coexist in the brain. Our
work proposes a simple biological implementation for an at-
tentional switch at a mechanistic level, and provides a solution
for how such a neuronal circuit can emerge with autonomous
and unsupervised, biologically plausible plasticity rules.

Results

To study the effect of interacting populations of feedforward
inhibition, we investigated the response of a single postsyn-
aptic leaky integrate-and-fire neuron receiving tuned excitat-
ory and inhibitory inputs. Excitatory inputs were organised
into a single population, subdivided into 16 signal groups of
200 excitatory afferents. Inhibitory inputs initially formed a
single population, mirroring the excitatory subdivision, but
with 50 afferents per group. Later, we split the inhibitory in-
puts into two populations with 25 afferents per signal group
(Fig. 1A, see Methods for details), allowing us to obtain two
differently tuned populations (presumably types) of inhibition.
Excitatory and inhibitory afferents belonging to the same group
shared temporal fluctuations in firing rates, termed input pat-
terns, even if they belonged to different populations. In our
simulations, input patterns could either be natural or pulse.
Natural inputs were generated through an inhomogeneous
Poisson process based on a modified Ornstein-Uhlenbeck pro-
cess (Fig. 1B,C), such that neurons of the same signal group also
had temporally-correlated firing patterns (Fig. 1C, top; see also
Ujfalussy et al. 34 ). The resulting long-tail distribution of inter-
spike-intervals (Fig. 1C, bottom) was similar to experimentally
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FIG. 1. Synaptic inputs. A, Schematic of the input organisation. An external signal (representing, e.g., sound) was delivered through three input
populations (one excitatory and two inhibitory), with 16 input signals per population (representing, e.g., sound frequency). Each signal was
simulated by 250 independent, but temporally correlated, spike trains (input afferents); 200 excitatory, and 50 inhibitory divided into two groups
of 25. One postsynaptic neuron (black triangle) was the output of this system, simulated as a single-compartment leaky integrate-and-fire neuron
(LIF). The firing rate of each of the inhibitory populations was modulated by a contextual cue (green and purple boxes). Excitatory and inhibitory
input spike trains were generated as point processes (see Methods for details). B, Natural input statistics. Raster plot (grey dots) of 800 neurons
that take part in 4 signal groups (200 neurons per signal group), each with firing-rate changing according to a modified Ornstein-Uhlenbeck process
(coloured lines; Methods). C, Temporal autocorrelation (top) and distribution of the inter-spike intervals (ISI; bottom) of the pre-synaptic inputs.
The autocorrelation of two groups are shown (green and pink), as well as the correlation between two different groups (black). Autocorrelation
is computed as the Pearson coefficient with a delay (x-axis; Methods). D, Pulse input schematic. A step-like increase in the firing rate of a given
input group lasting 100 ms with varying firing rates (grey scale). The postsynaptic response is separated in phasic (first 50 ms), and tonic (last 50
ms).

observed spike patterns in vivo35,36. We used this type of input
to quantify steady-state (average) postsynaptic responses, and
to train inhibitory synapses via plasticity rules.

In the alternative pulse input regime we analysed transi-
ent responses with 100-ms long pulses of varying amplitudes6.
Pulses were delivered through a single signal group of excitat-
ory and inhibitory afferents, while all other groups remained
at baseline firing-rate (Methods). Responses were quantified
according to postsynaptic firing rates during the first (phasic)
and last (tonic) 50 ms stimulation (Fig. 1D), averaged over 100
trials. Separating responses in phasic and tonic allowed us
to discriminate changes in output due to the input onset, and
slower integration of the pulse, respectively.

Modulating a single inhibitory population. At first, we con-
structed a standard cortical circuit motif with one excitatory
and one inhibitory population6,37 (Fig. 2A, top). Both excitat-
ory and inhibitory weights were tuned according to a receptive-
field-like profile, providing precise balance between excitation
and inhibition (Fig. 2A, bottom) and average post-synaptic fir-
ing rates of 5 Hz for natural inputs (Fig. 2B, left; Fig. 2C, con-
trol). We then changed the gain of all inhibitory afferents by
modulating their firing rates, from 50% to 150% of control rates.
This change of input balance translated into changes in output
rates (Fig. 2C, bottom), and spike patterns (Fig. 2B, middle
and right). When inhibition was equal or larger than excita-
tion, the output was largely uncorrelated to any given input
signal (Fig. 2D, top). When inhibitory firing rates fell below
90% of the control condition, the output first began to correlate
with the preferred input signal. When inhibition became even
weaker, the correlations increased, and even non-preferred sig-
nals were articulated in the postsynaptic firing patterns (Fig.
2D, bottom).

Transient presynaptic activity pulses caused strong phasic
responses in the balance state when they were delivered
through the afferents of the preferred inputs (Fig. 2E, top
row). Stimuli from non-preferred afferents were largely ig-
nored. This discriminability between transients of low or
high amplitude pulses decreased when inhibition was down-

regulated (Fig. 2E, middle row) such that pulse stimuli from
all signal groups caused a response. Increased inhibition, on
the other hand, completely abolished transient responses to
non-preferred afferents (Fig. 2E, bottom row). In all three cases
(balanced control, weak and strong inhibition), the postsyn-
aptic neuron elicited most of its spikes within the phasic period
of the total 100 ms input step (Fig. 2E).

Co-tuned and flat inhibitory populations. Next we incorpor-
ated two types of inhibition into the circuit motif (Fig. 3A, top).
One population mirrored the synaptic weight profile of the
excitation. We tuned the inhibitory weights of this co-tuned
population so that the output weights of non-preferred signal
populations (far from the peak of the receptive field) decreased
to zero. The other inhibitory population featured an un-tuned
response profile (we termed this the flat population; Fig. 3A,
bottom). We ensured that the sum of the inhibitory weights
for each signal group balanced the excitatory inputs by de-
fault (Methods). We tested three conditions: both inhibitory
populations active (control); co-tuned population inactive; and
flat population inactive (Fig. 3B-E). To maintain the same av-
erage output firing rate of 5 Hz in the modulated conditions,
we increased the activity of the remaining active inhibitory
population (Fig. 3C).

When both populations were active, the input-output cor-
relation remained unchanged (Fig. 3D, top), because the two
populations (co-tuned and flat) were mimicking the effect of the
single (co-tuned) population. Deactivating either population
(while increasing the firing-rate of the other) had pronounced
effects on postsynaptic responses. The average postsynaptic
firing rate remained unchanged, but fluctuations in firing rate
and membrane potential increased in both cases (Fig. 3B,C).
When the co-tuned inhibitory population was turned off, the
emerging imbalance of excitation and inhibition unmasked the
excitatory tuning curve, increasing the chance of action poten-
tial generation when preferred signal populations were active
(Fig. 3B, middle). The compensatory increase in the activity of
the flat population further quenched non-preferred excitatory
signals, leading to anti-correlated responses for non-preferred
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FIG. 2. Postsynaptic response for a model with a single inhibitory population. A, Schematic of the circuit with a single inhibitory population
(top). Pre-synaptic spikes were generated as point-processes (pp), for both excitatory (red; 16 signals) and inhibitory (blue; 16 signals) inputs,
and fed into a single-compartment leaky integrate-and-fire neuron (LIF). Receptive field profile (bottom). Average weight (y-axis) for different
input signals (x-axis); preferred signal is pathway no. 9 (grey dashed line). B, Average firing-rate of the preferred, and two non-preferred inputs
and mean of all inputs (top row), excitatory and inhibitory input currents (middle row), and membrane potentials (bottom row), for control (left),
decreased (middle) and increased (right) inhibition. Control case is hand-tuned for postsynaptic firing-rates of ∼ 5 Hz. Decreased (increased)
inhibition lowered (raised) inhibitory firing-rates by 10%, respectively. C, Average and standard deviation of the postsynaptic firing-rate in
response to natural input for the three explored cases (top), and as a function of the inhibitory firing-rate (bottom). D, Pearson correlation between
postsynaptic firing-rate and excitatory input firing-rates for different input signals for the three conditions in B (top). Correlation between output
activity and preferred (continuous line) or non-preferred (dashed line) inputs as a function of the inhibitory firing-rate (bottom). E, Response to
a pulse input in the phasic (left; first 50 ms), and tonic (right; last 50 ms) periods. Firing rate computed as the average number of spikes (for
100 trials) normalised by the bin size (50 ms). Each line corresponds to a different input strength; from light (low amplitude pulse) to dark (high
amplitude pulse) colours. Insets show tonic response for control and decreased inhibitory firing-rates.

input signals (Fig. 3D, purple). The opposite effect could be
observed when the flat population was deactivated. In this
case, the lack of inhibition for non-preferred signals gave rise
to input/output correlations for non-preferred signals, while
preferred signals saw no response (Fig. 3B, right and Fig. 3D,
green).

Compared to the control case (Fig. 3E, top), transient re-
sponses were drastically increased for preferred inputs when
the co-tuned population was deactivated, and the response
to non-preferred signals was completely diminished (Fig. 3E;
middle). When the flat population was deactivated, the post-
synaptic neuron responded strongly to the non-preferred in-
puts, but not to preferred inputs (Fig. 3E; bottom).

Co- and counter-tuned inhibitory populations. We also ana-
lysed the dynamics of two inhibitory populations which were
tuned such that one population mirrored the tuning of the
excitation (as before, co-tuned), while the other population
was tuned such that the weakest excitatory signals received
the strongest inhibition (Fig. 4A). We called this population

counter-tuned. Counter-tuning has been observed as a con-
sequence of anti-Hebbian inhibitory plasticity in experimental
work in hippocampus21–23 and used in theoretical work on
associative memory networks24. In the balanced state, out-
put behaviour is almost identical to the scenarios described
above (Fig. 4B-D; control). The main distinction between the
models with counter-tuned or flat inhibitory profiles is how
they complemented the co-tuned inhibitory currents: the flat
inhibition produced currents that tracked the co-tuned cur-
rent, whereas counter-tuned inhibition produced inhibitory
currents that were largely uncorrelated to the co-tuned inhib-
itory currents (Fig. 4B, left; compare with Fig. 3B, left).

When either the co- or the counter-tuned inhibitory popu-
lations were inactivated, fluctuations in both firing rate and
membrane potential increased considerably (Fig. 4B, middle
and right). Deactivation of the co-tuned population resulted
in positive correlation between postsynaptic activity and pre-
ferred signals, and negative correlation between output and
non-preferred signals (Fig. 4D, purple).
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FIG. 3. Postsynaptic response a the model with co-tuned and flat inhibitory populations. A, Schematic of the circuit with two inhibitory
populations (top); I1 corresponds to the co-tuned population and I2 to the flat population. Pre-synaptic spikes were generated as point-processes
(pp) and fed into an LIF. Receptive field profile (bottom). Average weight (y-axis) for different input signals (x-axis); preferred signal is pathway
no. 9 (grey dashed line). B, Average firing-rate of the preferred and two non-preferred inputs and mean of all inputs (top row), total excitatory
current and inhibitory currents of both populations (middle row), and membrane potential (bottom row), for control (left), co-tuned (middle) and
flat (right) population inactive. C, Average and standard deviation of the postsynaptic firing-rate in response to natural input for the three cases
(top), and as a function of the inhibitory firing-rate (bottom). D, Pearson correlation between postsynaptic firing-rate and excitatory input firing-
rates for different input signals for the three conditions in B. Correlation between output activity and preferred (continuous line) or non-preferred
(dashed line) as a function of the inhibitory firing-rate of each inhibitory population (bottom). E, Response to a pulse input in the phasic (left; first
50 ms), and tonic (right; last 50 ms) periods. Firing rate computed as the average number of spikes (for 100 trials) normalised by bin size (50 ms).
Each line corresponds to a different input strength; from light (low amplitude pulse) to dark (high amplitude pulse) colours. Insets show tonic
response for control firing-rates.

For pulse stimulation, there was no discernible difference to
the model with flat inhibition in the control state (Fig. 4E, top).
Turning off counter-tuned inhibition (Fig. 4B-E) also had sim-
ilar results in the postsynaptic response as turning off the flat
inhibition (cf. Fig. 3B-E). Unlike before, turning off co-tuned in-
hibition produced elevated firing-rate responses also for tran-
sient stimuli from signals directly neighbouring the preferred
input (Fig. 4E, middle row, compare with Fig. 3E, middle).

Quantitative differences of inhibitory profiles. For a quant-
itative evaluation of the differences between the three models
with their varying inhibitory receptive fields, we introduced
the parameter ∆C = 0.5(Cpref − Cnon-pref), i.e., 50% of the dif-
ference in input/output correlation between preferred, Cpref,
and non-preferred, Cnon-pref, signals (Methods). In the control
condition, we observed similar ∆C ≈ 0 in all models (Fig. 5A,
grey), reflecting low levels of correlation between output and
input signals (Fig. 5B, top). With down-regulated inhibition,
∆C increased slightly in the model with one homogeneous
inhibitory population. ∆C increased more considerably in a
two-population model in which the co-tuned population was

inactive (Fig. 5A, purple), indicating an increased correlation
between preferred signal and output (Fig. 5B, middle). When
the flat or the counter-tuned inhibitory populations were in-
activated, we observed postsynaptic responses even to non-
preferred input signals (Fig. 5B, bottom), which led to negative
∆C. Inactivating the counter-tuned inhibition resulted in a
slightly better discrimination of non-preferred input signals
(Fig. 5A, green).

To quantify pulse responses, we considered how many pulse
signals could be recovered across the receptive field (Fig. 5C).
We counted only those responses with more than 50% of the
maximum firing-rate (Fig. 5D). The single inhibitory popula-
tion model could only produce responses to preferred input
signals, while co-modulation of two inhibitory populations
could promote responses to non-preferred input signals, as
well. Counter-tuned population achieved better postsynaptic
control than flat inhibition (Fig. 5C).

Plasticity shapes inhibitory receptive fields. We have shown
that complementary tuning of two inhibitory populations al-
lows the retrieval of various facets of mixed and coincident
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FIG. 4. Postsynaptic response for the model with co- and counter-tuned inhibitory populations. A, Schematic of the circuit with two inhibitory
populations (top); I1 corresponds to co-tuned and I2 to counter-tuned population. Pre-synaptic spikes were generated as point-processes (pp)
and fed into an LIF. Receptive field profile (bottom). Average weight (y-axis) for different input signals (x-axis); preferred signal is pathway
no. 9 (grey dashed line). B, Average firing-rate of the preferred and two non-preferred inputs and mean of all inputs (top row), total excitatory
current and inhibitory currents of both populations (middle row), and membrane potentials (bottom row), for control (left), co-tuned (middle)
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cases (top), and as a function of the inhibitory firing-rate (bottom). D, Pearson correlation between postsynaptic firing-rate and excitatory input
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with the output activity as a function of the inhibitory firing-rate of each inhibitory population (bottom). E, Response to a pulse input in the phasic
(left; first 50 ms), and tonic (right; last 50 ms) periods. Firing rate computed as the average number of spikes (for 100 trials) normalised by the bin
size (50 ms). Each line corresponds to a different input strength; from light (low amplitude pulse) to dark (high amplitude pulse) colours. Insets
show tonic response for control firing-rates.

stimuli. We wondered how such tuning patterns could emerge
from naïve connectivity. To study how plasticity can shape
the emergence of opposite receptive fields, we incorporated
inhibitory synaptic plasticity mechanisms into our model with
two inhibitory populations. We first implemented a Hebbian
rule (that potentiated synaptic weights for coincident pre- and
postsynaptic spikes and depressed them for sole presynaptic
spikes6, Fig. S1A), in one of the two inhibitory populations
while the synapses of the excitatory and the other inhibitory
population remained fixed (Fig. 6). This learning rule has pre-
viously been shown to generate inhibitory weight profiles that
mirror the excitatory receptive field of a postsynaptic neuron,
imposing a firing-rate fixing-point (target; Fig. S1B) by balan-
cing excitation and inhibition. Simulations began with tuned
excitatory synapses and flat inhibitory weight profiles in both
inhibitory populations (Fig. 6A).

After 30 minutes of stimulation with natural inputs (cf. Fig.
1B), inhibitory weights of the plastic population stabilised (Fig.
6D-G). Whether the target firing rate (Fig. 6B,C) was reached
depended on the synaptic strength of the other, static popula-

tion of inhibitory synapses. If the static weights were weak, the
plastic synapses increased their strength until the target firing
rate was reached (Fig. 6C). If the static population provided
strong inhibition (and thus kept postsynaptic firing below the
target rate), weights from the plastic population would even-
tually vanish — before the target firing-rate could be reached
(Fig. 6C,G).

The effective receptive field could be interpreted as the cu-
mulative difference between excitatory and inhibitory weights.
Consequently, the shape of the static population determined
the shape of the plastic population (Fig. 6D,E). As expected,
the input/output correlation of the postsynaptic responses fol-
lowed the effective receptive field profile (Fig. 7A, cf. Fig. 6E).
The best performance, i.e., distinct responses to preferred or
non-preferred stimuli according to the modulatory state, and
flat responses otherwise (Fig. 7B), emerged when the synapses
of the static population were constrained to a narrow band of
synaptic weights (Fig. 7C, shaded region).

Next, we introduced plasticity to the second population of
inhibitory afferents. We tried two different rules. We began
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with a homeostatic plasticity rule (Methods) which scaled syn-
apses to reach a fixed-point in the postsynaptic firing-rates
(Fig. S1C), achieving results that matched the handed-tuned
solution. Notably, this plasticity rule was purely local, taking
only presynaptic weights and postsynaptic firing rates into ac-
count, similar to experimentally observed scaling of inhibitory
synapses38,39. With the homeostatic rule co-active, the Hebbian
synapses — connections changing according to the Hebbian
plasticity rule — developed a co-tuned profile from initially
random weights (Fig. 8A, top; Fig. 8C, left), while the synapses
following the scaling rule collapsed to a single value (Fig. 8A,
bottom; Fig. 8C, right). Consequently, the postsynaptic neuron
received precisely balanced inputs (Fig. 8B), autonomously ar-
riving in a regime of optimal performance (cf. Fig. 7C).

Instead of a purely homeostatic scaling rule, we also tried an

experimentally observed21–23 anti-Hebbian rule in the second
inhibitory population (Fig. S1D). The Hebbian plasticity rule
in one synapse population leads to stable receptive fields and
imposes a firing-rate set point for the postsynaptic neuron. The
anti-Hebbian rule, on the other hand, increases the firing rate of
the postsynaptic neuron indefinitely, because correlated activ-
ity decreases synaptic weights (only sole presynaptic spikes
increase synaptic weights; Methods). Anti-Hebbian plasticity
rules is thus unstable (Fig. S1E). To overcome this problem
without incorporating additional, complex dynamics, we set
the learning rate of the anti-Hebbian rule to decrease expo-
nentially over time (Fig. S1F; see Discussion). With the anti-
Hebbian rule active, initially random weights evolved into co-
tuned and counter-tuned receptive field profiles (Fig. 8D). As
learning slowed down, the anti-Hebbian synapses — connec-
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tions changing according to the anti-Hebbian plasticity rule —
stabilised, and Hebbian synapses ceased to change once the
target firing rate was reached (Fig. 8E; Fig. 8F). The final shape
of both receptive fields was nearly identical to the hand-tuned
profiles (cf. Fig. 4A), with equivalent postsynaptic perform-
ances (data not shown; see also Fig. 3 and Fig. 4).

Discussion

We investigated how several distinctly tuned inhibitory and
excitatory synaptic populations interact in a receptive field-
like paradigm. In our model, we aimed for precise balance of
excitation and inhibition, accordant with evidence of excitatory
and inhibitory co-tuning in cat visual cortex40, rodent auditory
cortex12,41,42 and rodent hippocampus43, and temporal correla-
tions in neighbouring excitatory and inhibitory synapses44.

Consistent with earlier work, we could modulate the effic-
acy of a single inhibitory population to enhance the output
correlation with the preferred input18,19, but the flexibility of
the control mechanism was very limited. Non-preferred sig-
nals never evoked faithful responses (Fig. 2). We wondered if
additional, independently tuned synapse populations would
grant more flexible control over the signal stream.

We constructed models with two types of inhibitory in-
terneurons that could be modulated independently and carried
a diverse set of input signals. Each signal group of excitatory
synapses had two corresponding signal groups of inhibitory
synapses, all three displaying correlated activity patterns, with
their combined efficacy balancing the net input current in the
baseline (control) state. To emphasise different aspects of the
overall input, we allowed for the ratio of inhibitory currents
delivered by the two inhibitory populations to vary dynam-
ically over time, consistent with evidence from macaque V1
indicating that the receptive fields of neurons are dynamic,
rapidly switching their selectivity45. Our results suggest that
a discrimination of preferred and non-preferred stimuli, such
as occurs in selective attention, may be achieved by dynam-
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ically modulating inhibition. Such modulation of stimulus-
selectivity could correspond to mechanisms of top-down se-
lective attention46–48.

Attending to a specific stimulus is known to increase the
firing rate of sensory cells selective for this stimulus49–51. Such
sharpening of stimulus-selectivity was also observed in our
simulations (Fig. 3 and Fig. 4; purple). We also observed the
opposite: enhanced postsynaptic responses to non-preferred
and suppressed responses to preferred stimuli (Fig. 3 and Fig.
4; green). We interpreted this as selectively ignoring a specific
stimulus, rather than attending to it. Thus, the two aspects of
selective attention – enhancing response to targets, and sup-
pressing the response to distractors – were implemented in our
model by the two types of disinhibition.

The architecture of our model fits well with the di-
versity of interneuron types and connectivity profiles in the
neocortex1,4. Co-tuned inhibitory afferents may originate from
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parvalbumin-positive (PV+) interneurons. As the main source
of inhibition to principal cells, PV+ interneurons tend to tar-
get postsynaptic neurons with similar preferred orientation52.
Moreover, activation of these neurons leads to a flattened se-
lectivity curve52 (but see Lee et al. 53 ). Flat (or counter-tuned)
inhibitory afferents may arrive from somatostatin-positive
(SOM+) interneurons, with their less selective connectivity
pattern52. This interpretation is in line with recent evidence
suggesting that top-down visual attention relies on local inhib-
itory circuitry in primary visual cortex42. In this scheme, PV+
and SOM+ neurons inhibit pyramidal cells, while vasoactive
intestinal peptide-positive (VIP+) neurons suppress other in-
hibitory interneurons, acting as a source of disinhibition. Dir-
ect manipulation of SOM+, PV+ and VIP+ neurons confirms
these respective roles in inhibition and disinhibition in both
visual54 and auditory cortices15,55. Additionally, Zhou et al. 42

reported that VIP+ neurons received excitatory top-down in-
puts from the rodent cingulate cortex, allowing for a narrow
selectivity profile of pyramidal cells when active and the op-
posite when inactive. Finally, blocking cortical inhibition re-
duces the stimulus-selectivity of cortical neurons56,57 (but see
Nelson et al. 58 ).

To show how these inhibitory synaptic profiles could de-
velop, we implemented a Hebbian-like inhibitory plasticity
rule6,20, co-active with either a homeostatic scaling38,39 (Fig. 8A-
C) or an anti-Hebbian21–23 (Fig. 8D-F) plasticity rule. The scal-
ing plasticity rule we implemented decreases synaptic weights
proportionally to their current weight (multiplicative), and
strengthens weights by a constant amount (additive), relat-
ive to the firing rate of the postsynaptic neuron. Consequently,
all synapses tend to converge to the same value, without being
enforced by a global rule. There is currently no direct evidence
for this specific implementation, but it would provide a parsi-
monious explanation for the un-tuned, blanket inhibition often
encountered in experiments59, and would allow modulating
postsynaptic responses independently of the presynaptically
tuned receptive field.

The anti-Hebbian rule we used had the opposite shape of
the Hebbian plasticity rule, and was unstable, i.e., it could
lead to infinite strengthening of presynaptic weights. A silent
feedforward network would be the result of such connectivity
(but see Hendin et al. 24 ). To obtain a plausible receptive field,
we thus had to use an additional mechanism. The simplest
solution was to include a modulatory term to the learning
rate of the anti-Hebbian plasticity rule. This process mimics
modulatory control of plasticity through the activity of other
neuronal types12,60,61 and allowed us to balance the effect of the
opposing rules. Other mechanisms could be used to control
the unstable nature of the Anti-Hebbian plasticity rule, but the
generality of the results would likely not be altered.

To explore the interaction between two distinct inhibitory
plasticity rules without confounds, we made the simplifying
assumption that the excitatory synapses would remain fixed
(but see Clopath et al. 62 , Litwin-Kumar and Doiron 63 , and
Zenke et al. 64 ). Further work could explore how inhibitory
plasticity rules interact not only with each other, but also with
rules for excitatory synaptic plasticity — thus getting closer to
the realistic conditions of biological neural circuits. Addition-
ally, incorporating more types of inhibitory interneurons is a
possible next step to be explored, and thus the study of the
interaction of more inhibitory plasticity rules9,65,66.

Our model only considered a single postsynaptic neuron,
with no feedback connectivity, which is thought to be the
source of most orientation-selective input to cortical cells67.

Further theoretical work should extend the combined use
of these distinct plasticity rules for inhibitory synaptic con-
nectivity to larger architectures, involving multiple neurons
and incorporating feedback connections. Further synergies
may emerge, such as multiplicative and additive modulation
of receptive fields, and surround suppression68. Other pos-
sible functionalities that have been explored in this context
are gating of different signal streams47,48, one-shot learning in
hippocampus11, and consequences to brain disorders69.

Interestingly, artificial networks have been shown to de-
velop similar receptive field profiles to the ones explored here
when they are trained to solve multiple tasks70. Yang et al. 70

have shown that clusters of neurons can acquire co-tuned or
flat connectivity, which are controlled by context-encoding sig-
nals. These results hint at the possibility that biological and
artificial systems may utilise similar strategies to solve context-
dependent filtering tasks.

Finally, we predict that various GABAergic interneurons in
the same cortical region must obey a range of different inhib-
itory synaptic plasticity rules, to restore or reverse neuronal
stimulus-selectivity as appropriate and necessary. Such evid-
ence would provide empirical validation to the theoretical res-
ults presented here, and in turn inform future computational
modelling.

Materials and Methods
Detailed methods are given in the supplementary materials.

Software and code availability
Simulations were run in Fortran, compiled with Intel Fortran
Compiler 19.0 on an Intel-based Linux computer (Debian 9;
i9-9900X processor; 32 GB memory). Codes will be made avail-
able online upon publication71. Individual plots were gener-
ated with Gnuplot. Figures were generated with Inkscape.
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Supplementary material of
Complementary inhibitory receptive fields emerge from synaptic plasticity and create an attentional switch in sensory circuits

Everton J. Agnes, Andrea I. Luppi, and Tim P. Vogels

Codes for all results are openly available at GitHub, repository
https://github.com/ejagnes/attentional_switch.

Neuron model. To investigate changes in neuronal response
due to specific inhibitory connectivity motif we simulated a
postsynaptic leaky integrate-and-fire neuron (LIF) receiving
excitatory and inhibitory afferents. Postsynaptic neuronal
membrane potential dynamics is governed by

τm
du(t)

dt
= − [u(t) − urest]

− gE(t) [u(t) − EE] − gI(t) [u(t) − EI] , (1)

where u(t) is the somatic voltage at time t, τm = RC is the mem-
brane time constant (membrane resistance, R, times membrane
conductance, C), urest is the resting membrane potential, and EE
and EI are the reversal potential for excitatory and inhibitory
synapses, respectively. Synaptic conductances, gE(t) and gI(t),
evolve according to

dgE(t)
dt

= −
gE(t)
τE

+

NE∑
j=1

w j(t)S j(t) (2)

and
dgI(t)

dt
= −

gI(t)
τI

+

N∑
j=NE+1

w j(t)S j(t). (3)

Both excitatory and inhibitory conductances decay exponen-
tially to zero with time constants τE and τI, respectively. Pre-
synaptic action potentials trigger increase in synaptic conduct-
ances through the sum of Dirac delta functions,

S j(t) =
∑

k

δ
(
t − tkj

)
, (4)

where tkj is the time of the kth spike of presynaptic afferent j.
The contribution of a given presynaptic afferent j to changes
in conductances is given by the synaptic weight w j(t), which
was fixed for excitatory synapses and could change over time
due to plasticity mechanisms for inhibitory synapses. The
total number of presynaptic afferents is N = NE + NI, with NE
being the number of excitatory and NI of inhibitory presynaptic
afferents.

An action potential is triggered at the postsynaptic neuron
once its membrane potential u(t) crosses the spiking threshold
uth from below. The membrane potential is then instantan-
eously reset to ureset, being clamped at this value for the dura-
tion of the refractory period, τref. The postsynaptic spike train
is described here as a sum of Dirac deltas,

Spost(t) =
∑

k

δ(t − tk), (5)

where tk is the time of the kth spike of the postsynaptic
neuron, or the time the membrane potential crosses the spiking
threshold from below. Parameters used for the postsynaptic
neuron are detailed in Table I.

Inputs. To mimic receptive field input-like, we divided the
synaptic inputs into P signal groups (µ = 1, ...,P) that share the
same fluctuation in firing rate. We tested two cases: (i), natural
input, and (ii), pulse input. Both are described below.

Natural input. For presynaptic activity mimicking a natural
input, activity follows an inhomogeneous Poisson process that
changes according to a modified Ornstein-Uhlenbeck (OU)
process. We first defined an auxiliary variable for each pattern,
yµ(t), that follows a stochastic first-order differential equation
given by

τOU
dyµ(t)

dt
= −yµ(t) + ξµ(t), (6)

where µ is the signal group index, τOU is the time constant for
the decaying process that changes due to a Gaussian noise term
ξµ(t) with unitary standard deviation. The mean value of the
variable yµ is zero, and thus it assumes positive and negative
values with same probability (for long periods).

The spike train of an afferent in a given signal group µ is
given by the variable νXµ(t) which is a rectified version of the
auxiliary variable plus a term to generate background firing
rate, νXbg, where X indicates the presynaptic population; X = E
for excitatory and X = I for inhibitory. The spike trains of the
afferents of signal group µ are generated by

νXµ(t) = νX0

[
yµ(t)

]
+

+ νXbg, (7)

where νX0 is the amplitude of the modulated firing rate fluctu-
ations, and [·]+ is a rectifying function,

[y]+ =

{
y, if y > 0
0, otherwise. (8)

Note that due to the symmetry of yµ(t), an afferent is half the
time in the background state and half the time in the active
state.

Presynaptic action potentials were generated as an inhomo-
genous Poisson process according to the modified OU process
described above and a fixed background firing rate. Addition-
ally, we implemented a refractory period, τEref for excitatory
and τIref for inhibitory inputs. Given the time step of the simu-
lation ∆t, spikes of a presynaptic afferent that is part of the sig-
nal group µ are generated with a probability pXµ(t) = νXµ(t)∆t if
there was no spike elicited during the refractory period before-
hand, and thus the average firing rate of a X = E (excitatory)
or X = I (inhibitory) afferent that is part of the signal group µ
becomes

FXµ(t) =
1
∆t

pXµ(t)
(
1 − pXµ(t)

)τXref/∆t
. (9)

Pulse input. To test transient responses to brief changes in
presynaptic activity we also quantified postsynaptic responses
to pulse inputs. In this case, we simulated the postsynaptic
neuron receiving inputs with constant background firing-rate.
For 100 ms we increased the probability of presynaptic spikes
for a given signal groupµ by a factor kν∗, with k being an integer
larger or equal than zero, and ν∗ = 5 Hz. Thus presynaptic
spikes are generated by

νXµ(t) = αXνkν∗ + νXbg, (10)
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during the 100 ms step and by

νXµ(t) = νXbg (11)

during only background activity. Parameter αXν is a scalar that
sets the ratio of excitatory and inhibitory firing rate.

Responses to the pulse input were divided in two bins: phasic
and tonic. Phasic responses were defined as the postsynaptic
activity elicited in the first 50 ms of the pulse input. Tonic
activity was correspondingly defined as having occurred in
the last 50 ms of the stimulus. We simulated 100 trials per in-
put strength kν∗, and defined the response (for both phasic and
tonic) as the average number of spikes on the period for the
strength kν∗ minus the average number of spikes on the same
period without extra input, multiplied by 20 to convert to Hz.
We subtracted background spikes to ascertain that we quan-
tified the response to the extra step input alone. Parameters
used for inputs are detailed in Table II.

Synaptic tuning. Based on Vogels et al. 6 , we used a receptive
field profile given by

r(µ) =
( 1

1 + r0

)
+

( r0

1 + r0

) ( 1
1 + b

(
µ − µ0

)c

)
, (12)

where r0, b and c are parameters defining the shape of the
receptive field andµ0 defines the preferred signal group, which
maximises r(µ); r(µ0) = 1. Note that r0 > 1, b 6 1, µ0 > 0, and c
is an even positive integer.

For simplicity we define ζ j as the signal group that afferent
j is part of. Thus excitatory synapses are set as

w j = wE0r(ζ j) + ε j, j = 1, . . . ,NE, (13)

where wE0 is a normalisation factor for excitatory weights, and
ε j is a noise term drawn from a uniform random distribution
between −ε∗E and ε∗E.

First we simulated a single inhibitory population with a
tuned profile (Fig. 2), following Eq. 12 such that,

w j = wI0r(ζ j) + ε j, j = NE + 1, . . . ,N, (14)

where wI0 is a normalisation factor for inhibitory weights, and
ε j is a noise term drawn from a uniform random distribution
between −ε∗I and ε∗I . The parameter wI0 was chosen so that a
state of balance was enforced, with postsynaptic firing-rate of 5
Hz. Due to the small number of inhibitory afferents compared
to the excitatory ones, and the difference in driving force, in-
hibitory weights were much larger than excitatory ones. Thus,
to plot excitatory and inhibitory weights on the same scale we
computed the correcting factor, αw, from

αw =
NE

∑N
j=NE+1 w j

NI
∑NE

j=1 w j

. (15)

In all plots with excitatory and inhibitory weights, we plotted
excitatory weights multiplied by the parameter αw.

Next, inhibitory afferents were divided in two types that con-
nect to the postsynaptic neuron following different receptive
field profiles. We used two approaches to sculpt the inhibit-
ory synaptic weight profiles. In our first approach we defined
them based on Eq. 12, i.e., we hand-tuned their shape. For our
second approach we started them randomly and applied plas-
ticity rules so that they produced the previously hand-tuned
shapes through unsupervised learning.

We combined a co-tuned population with either a flat (Fig. 3)
or a counter-tuned (Fig. 4) population. In both cases we based
co-tuned weights on a modified version of Eq. 12,

rI(µ) =
1

1 + b
(
µ − µ0

)c , (16)

with b, µ0 and c the same as for Eq. 12. Inhibitory weights for
the co-tuned profiles are chosen so that

w j = wIcorI(ζ j) + ε j, j = NE + 1, . . . ,NE + (NI/2) , (17)

where wIco is a normalisation factor for inhibitory weights fol-
lowing the co-tuned receptive profile, and are different when
combined with either the flat or the counter-tuned populations.

We set the flat population such that

w j = wIf + ε j, j = NE + (NI/2) + 1, . . . ,N, (18)

where wIf is the average for the flat population. The shape of
the counter-tuned population was defined by

r̄I(µ) =
3
2

r(1) −
1
2

r(µ), (19)

and synapses were hence tuned such that

w j =
[
wIcounterr̄I(ζ j) + ε j

]
+
, j = NE + (NI/2) + 1, . . . ,N, (20)

where [·]+ is a rectifier (Eq. 8), used to enforce only positive
synaptic weights. The parameters wIcounter is a normalisation
factor for the counter-tuned inhibitory populations.

When plasticity was simulated, initial conditions for all
plastic inhibitory populations were flat with noise (Fig. 6, Fig.
7 and Fig. 8),

w j(0) = wIF + ε j, j = NE + 1, . . . ,N. (21)

Parameters used for the tuning curves are detailed in Table II,
and for synaptic weights in Table III. Both the average of the
weights for flat population, wIf, and the noise term, ε∗I , were
distinct for different simulations.

Plasticity models. In this work we used three different inhib-
itory synaptic plasticity (ISP) rules. We termed them Hebbian,
scaling, and anti-Hebbian. Both Hebbian and anti-Hebbian plas-
ticity rules are triggered by pre- and postsynaptic spikes, and
depend on a low-pass filter of these spike trains. The presyn-
aptic trace (low-pass filter) is given by

dx j(t)
dt

= −
x j(t)
τSTDP

+ S j(t), (22)

where x j(t) is the value of the trace of the spike train of presyn-
aptic afferent j at time t; τSTDP is the time constant of the trace,
and S j(t) is a sum of Dirac delta functions (Eq. 4) representing
the spike train of afferent j. The same is considered for the
postsynaptic neuron,

dxpost(t)
dt

= −
xpost(t)
τSTDP

+ Spost(t), (23)

where xpost(t) is the postsynaptic trace, and Spost(t) is the spike
train of the postsynaptic neuron (Eq. 5). Note that we used the
same time constant for both pre- and postsynaptic traces.
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Hebbian inhibitory plasticity. Precise balance of excitatory and
inhibitory inputs was learned by a Hebbian inhibitory plasti-
city rule6. The weight of the jth inhibitory synapse changes
according to

dw j(t)
dt

= ηH

[
x j(t)Spost(t) + xpost(t)S j(t) − αHS j(t)

]
, (24)

where ηH is the learning rate, andαH is a parameter that defines
the postsynaptic firing-rate. The first two terms on the right-
hand side of Eq. 24 are Hebbian terms that increase the weights
when both pre- and postsynaptic activities are correlated. The
last term on the right-hand side of Eq. 24 is a penalty term for
inhibitory spikes alone, which creates a homeostatic set-point
for the postsynaptic firing-rate given by

ρ0 ≈
αH

2τSTDP
. (25)

Later we describe how to arrive at this approximation.

Inhibitory synaptic scaling for flat tuning. One of the receptive
profiles we used for inhibitory synapses was flat, i.e., every
synapse group had the same strength. To learn the flat pro-
file from random initial weights we implemented a scaling
plasticity rule, partially based on experimental work that ob-
served synaptic scaling on inhibitory synapses38,39. Weights
are increased if the postsynaptic firing-rates are too high, and
decreased otherwise,

dw j(t)
dt

=ηswIs

[
ypost(t) − ρ0

]
Θ

(
ypost(t) − αsρ0

)
− ηsw j(t)

[
ρ0 − ypost(t)

]
Θ

(ρ0

αs
− ypost(t)

)
+ (26)

where ηs is a learning rate, ρ0 is a firing-rate reference value,
chosen to be the same as the one for Hebbian plasticity rule, Θ(·)
is the Heaviside function and αs is a term that sets the firing-
rate range for which synapses do not change. Postsynaptic
neuron’s firing-rate is computed with a slow averaging of the
postsynaptic activity through

dypost(t)
dt

= −
ypost(t)
τscaling

+
1

τscaling
Spost(t), (27)

where τscaling is the time constant for the postsynaptic activity
and Spost(t) is the postsynaptic spike train (Eq. 5). Note that the
last term on the right-hand side of the equation above is divided
by τscaling so that ypost(t) is in units of rate. Synaptic depression
is weight dependent while synaptic potentiation is not, which
ensures that all synaptic weights tend to the same value. When
the postsynaptic neuron is firing below a threshold ρ0/αs, all
inhibitory synapses in the flat group have their weights de-
creased proportionally to the difference between the target
firing-rate and the average firing-rate, but also proportional
to the current weight value. This way, strong synapses un-
dergo stronger decrease than weak ones. Conversely, when
the postsynaptic neuron is firing above a threshold αsρ0, the
same synapses increase in value by the same amount. Intuit-
ively, these mechanism ensures that all synapses converge to
the same value for a long run.

Anti-Hebbian inhibitory plasticity. The third inhibitory plasticity
rule we used is an anti-Hebbian rule based on experimental
data21–23 and theoretical work on recurrent networks24. Syn-
aptic weights change according to

dw j(t)
dt

= −ηaH(t)
[
x j(t)Spost(t) + xpost(t)S j(t) − αaHS j(t)

]
, (28)

where ηaH(t) is a variable learning rate and αaH is a parameter
to counterbalance the anti-Hebbian term. The resulting rule
dictates that coincident events decrease inhibitory synapses,
while non-coincident ones increase synaptic weights. Due to
the unstable nature of this plasticity rule (see details below),
we implemented a time-varying learning rate which evolves
according to

dηaH(t)
dt

= −
ηaH(t)
τaH

+ MaH(t), (29)

where τaH is the decay time constant for the learning rate, and
MaH(t) is an external signal to transiently activate plasticity. We
speculate that such signal could come from modulatory neur-
ons such as dopaminergic or cholinergic and assumed that the
external signal peaks at a time t0 (beginning of the simulation),
so that

MaH(t) = η∗aHδ(t − t0), (30)

where η∗aH is the maximum learning rate before decaying to
zero, and t0 is the time when plasticity at these synapses are
initiated. Parameters used for plasticity models are detailed in
Table IV.

Mean-field analysis of the plasticity rules. We were inter-
ested in plasticity rules with stable dynamics. For a better
intuition on fixed-point dynamics and stability we consider
here a simplified dynamics of a mean-field model for both the
Hebbian6 and the anti-Hebbian models. We define the post-
synaptic firing-rate as νpost(t) and the presynaptic firing-rates as
ν j(t). The traces of both presynaptic afferent and postsynaptic
neuron thus have an average of τSTDPν j(t) and τSTDPνpost(t),
respectively64. Neglecting any correlation between pre- and
postsynaptic spikes, the average weight change for Hebbian
synapses is given by〈

dw j(t)
dt

〉
= ηH

[
2τSTDPν j(t)νpost(t) − αHν j(t)

]
, (31)

where 〈·〉 represents average over time. Intuitively, the post-
synaptic firing-rate, νpost(t), changes negatively with changes
in inhibitory weights — increased inhibition generates fewer
postsynaptic spikes and vice-versa for decreased inhibition.
This means that average firing rates are inversely linked to
average inhibitory weights, i.e.,〈

dνpost(t)
dt

〉
∝ −

〈
dw j(t)

dt

〉
= 2ηHν j(t)τSTDP

[
αH

2τSTDP
− νpost(t)

]
.

(32)
The steady state is computed by considering the vanishing
point of the equation above (we assume that the presynaptic
activity is nonzero), thus

νpost(t) =
αH

2τSTDP
≡ ρ0. (33)

This means that the postsynaptic activity νpost(t) increases (via
decreases in inhibitory efficacy) when below ρ0 and decreases
when above ρ0, creating a stable fixed-point for the postsyn-
aptic firing-rate.

The opposite is true for the anti-Hebbian plasticity rule.
Changes in postsynaptic firing-rate (with the same assump-
tion as for the Hebbian plasticity rule) follow〈

dνpost(t)
dt

〉
∝ νpost(t) −

αaH

2τSTDP
= νpost(t) − ρ1. (34)
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Because postsynaptic activity increases when it is above
threshold ρ1 and decreases when it is below, this rule is un-
stable. The postsynaptic firing-rate eventually explodes or
vanishes. We chose the simplest way to overcome these prob-
lems by setting a time-varying learning-rate. Other intricate
mechanisms could be implemented, but this is not the scope of
our work.

Correlation. We quantified the response of the postsynaptic
neuron to natural inputs with the Pearson correlation between
postsynaptic firing-rate and input firing-rate fluctuations, per
signal group. We computed the firing rate of a signal groups as
the low-pass filter of the spike trains of its excitatory afferents,

τZ
dZµ(t)

dt
= −Zµ(t) +

∑
j⊂µ

S j(t), (35)

where Zµ(t) is the firing rate of the signal group µ at time t,
filtered with a time constant τZ. The postsynaptic activity is
also computed through a low-pass filter of its spike train,

τY
dY(t)

dt
= −Y(t) + Spost(t), (36)

where Y(t) is the activity of the postsynaptic neuron at time t
filtered with a time constant τY. The correlation is then com-
puted as

Cµ =
cov(Zµ,Y)
σZµσY

=
〈(Zµ − 〈Zµ〉)(Y − 〈Y〉)〉√
〈(Zµ − 〈Zµ〉)2〉〈(Y − 〈Y〉)2〉

, (37)

where cov(z, y) is the covariance between variables z and y, σz
is the standard deviation of variable z, and 〈·〉 represents time
average.

Subsequently we computed a performance index ∆C as the
difference between the correlation measure for preferred (µ =
9) and non-preferred (µ = 1) input signals,

∆C =
1
2

(C9 − C1) . (38)

Maximum positive performance index, ∆C = 1, means that
the preferred signal group has maximum correlation (C9 =
1) while the non-preferred signal group has maximum anti-
correlation (C1 = −1), indicating that the postsynaptic neuron is
responding solely to the preferred signal group. Consequently,
∆C = −1, indicates that the postsynaptic neuron is responding
solely to the non-preferred signal group. A flat response is
indicated by ∆C = 0. Note that maximum ∆C (either positive
and negative) is only achievable if there is no overlap between
activation of preferred and non-preferred input signals, which
is never the case here. We define as best performance when
∆C = 0 for all inhibitory inputs active (control), ∆C = 1 (or
∆C > 0) for one inhibitory population inactive, and ∆C = −1
(or ∆C < 0) when the other inhibitory population is inactive.
Parameters used for computing correlations are detailed in
Table V.

Implementation. Models were simulated with a time-step ∆t,
with either analytical or semi-analytical solution of the corres-
ponding differential equation. All codes were written in For-
tran, compiled with Intel Fortran Compiler 19.0, running on
an Intel-based Linux computer (Debian 9; i9-9900X processor;
32 GB memory). Bellow we describe how each equation was
implemented, with the parameter values in tables in the end
of this section.

When not in the refractory period (see below), the leaky
integrate-and-fire neuron is updated as

un+1 = un
∞

+
[
un
− un

∞

]
exp

[
−

∆t
τn

eff

]
, (39)

where n is the iteration index, un
∞

and τn
eff

are auxiliary variables
described by

un
∞

=
urest + gn

EEE + gn
I EI

1 + gn
E + gn

I

(40)

and
τn

e f f =
τm

1 + gn
E + gn

I

. (41)

This is the analytical solution when considering that all vari-
ables apart from u(t) are constant during a time-step, which we
refer to as semi-analytical.

When the membrane potential crosses a threshold from be-
low, the membrane potential is reset (because of a spike being
triggered), and kept at the reset potential for the duration of
the refractory period,

um = ureset, if un > uth, (42)

where
m = n + 1,n + 2, ...,n +

τref

∆t
. (43)

Synaptic conductances are implemented as

gn+1
E = gn

E exp
(
−

∆t
τE

)
+

NE∑
j

w jSn
j (44)

gn+1
I = gn

I exp
(
−

∆t
τI

)
+

NE+NI∑
j=NE+1

wn
j Sn

j . (45)

Note that here Sn
j is equal to one when afferent j spiked at

time-step n and zero otherwise.
For natural inputs, we updated the auxiliary variable yµ(t)

every 1 millisecond,

yn+1
µ =

{
yn
µ exp

(
−

1 ms
τOU

)
+ ξn

µ, if mod
(
n, 1 ms

∆t

)
= 0

yn
µ, otherwise,

(46)

where mod(·, ·) is the modulo operation and ξn
µ is a random

number drawn from a gaussian distribution with zero mean
and unitary standard deviation. Presynaptic spikes are gener-
ated as point processes, so that at each time-step the probability
of a presynaptic afferent to spike is

pn
Eµ =

(
νE0

[
yn
µ

]
+

+ νEbg

)
∆t (47)

and pn
Eµ = 0 during the τEref/∆t iterations after a spike. The

same is valid for an inhibitory afferent; the probability of firing
an action potential is

pn
Iµ =

(
νI0

[
yn
µ

]
+

+ νIbg

)
∆t (48)

and pn
Iµ = 0 during the τIref/∆t iterations after a spike.

For pulse inputs, presynaptic afferents were set to fire at
background firing-rate and had an elevated firing-rate during
a 100-ms period, which was varied in 5 Hz steps. For the
activated pattern

pn
Eµ =

{ (
αEνkν∗ + νEbg

)
∆t, for n =

[
n0,n0 + 100 ms

∆t

]
νEbg∆t, otherwise,

(49)
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where αEν adjusts the excitatory firing-rate, k is an integer for
varying the pulse intensity, and n0 is the iteration in which the
pulse starts. The same implementation was used for inhibit-
ory afferents (αInu being the parameter to adjust the inhibitory
firing-rate),

pn
Iµ =

{ (
αIνkν∗ + νIbg

)
∆t, for n =

[
n0,n0 + 100 ms

∆t

]
νIbg∆t, otherwise.

(50)

An afferent in an inactive pattern fires action potentials with
background frequency (pn

Eµ = νEbg∆t and pn
Iµ = νIbg∆t), and

there is no spike elicit in the refractory period (pn
Eµ = 0 and

pn
Iµ = 0 during the τEref/∆t and τIref/∆t iterations after a spike,

respectively).

Plasticity was implemented with spike triggered events. For
the Hebbian and anti-Hebbian plasticity rules, auxiliary vari-
ables changed as

xn+1
post = xn

post exp
(
−

∆t
τSTDP

)
+ Sn

post (51)

xn+1
j = xn

j exp
(
−

∆t
τSTDP

)
+ Sn

j , (52)

where Sn
post = 1 if the postsynaptic neurons generated an action

potential at iteration n and zero otherwise. Hebbian weights

changed according to

wn+1
j = wn

j + ηH

(
xn

post − αH

)
Sn

j + ηHxn
j Sn

post, (53)

and anti-Hebbian to

wn+1
j = wn

j − η
n
aH

(
xn

post − αaH

)
Sn

j − η
n
aHxn

j Sn
post, (54)

with the learning rate varying as

ηn+1
aH = ηn

aH exp
(
−

∆t
τaH

)
+ Mn

aH (55)

with M0
aH = η∗aH, and Mn

aH = 0 for n > 0.
Scaling was implemented with a different trace,

yn+1
post = yn

post exp
(
−

∆t
τscaling

)
+ Sn

post, (56)

with weight update following

wn+1
j =

 wn
j + ∆tηswn

j

[
yn

post − ρ0

]
, if yn

post < ρ0/αs

wn
j + ∆tηswIs

[
yn

post − ρ0

]
, if yn

post > αsρ0.
(57)

Correlation-related variables were updated as

Zn+1
µ = Zn

µ exp
(
−

∆t
τZ

)
+

∑
j∈µ

Sn
j (58)

and
Yn+1
µ = Yn

µ exp
(
−

∆t
τY

)
+ Sn

post. (59)

Parameter Symbol Value Figs.

Membrane time constant τm 30 ms 2 – 8
Resting potential urest −65 mV 2 – 8
Excitatory reversal potential EE 0 mV 2 – 8
Inhibitory reversal potential EI −80 mV 2 – 8
Excitatory time constant τE 5 ms 2 – 8
Inhibitory time constant τI 10 ms 2 – 8
Spiking threshold uth −50 mV 2 – 8
Reset potential ureset −60 mV 2 – 8
Refractory period τref 5 ms 2 – 8
Simulation time step ∆t 0.1 ms 2 – 8

TABLE I. Simulation parameters for postsynaptic neuron.
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Parameter Symbol Value Figs.

Number of excitatory afferents NE 3200 2 – 8
Number of inhibitory afferents NI 800 2 – 8
Number of signal groups P 16 2 – 8
Refractory period for excitatory afferents τEref 5 ms All
Refractory period for inhibitory afferents τIref 2.5 ms All
Ornstein-Uhlenbeck process (OU) time constant τOU 50 ms All
Excitatory firing rate amplityde for OU νE0 250 Hz All
Inhibitory firing rate amplitude for OU νI0 500 Hz All
Excitatory background firing-rate νEbg 2 Hz All
Inhibitory background firing-rate νIbg 4 Hz All
Pulse amplitude reference ν∗ 5 Hz 2 – 5
Excitatory ratio for pulse input αEν 1 2 – 5
Inhibitory ratio for pulse input αIν 2 2 – 5
Receptive field profile amplitude r0 4 2 – 8
Receptive field profile slope b 0.25 2 – 8
Preferred pattern index µ0 9 2 – 8
Receptive field profile power c 2 2 – 8
Simulation time step ∆t 0.1 ms All

TABLE II. Simulation parameters for inputs.

Parameter Symbol Value Figs.

Excitatory baseline weight wE0 0.5 2 – 8
Noise parameter for excitatory weights ε∗E 0.01 2 – 8
Inhibitory baseline weight (one inh. population) wI0 1.04 2, 5
Inhibitory baseline weight (co-tuned & flat) wIco 1.58 3, 5
Inhibitory baseline weight (co-tuned & flat) wIf 0.52 3, 5
Inhibitory baseline weight (co- & counter-tuned) wIco 2.43 4, 5
Inhibitory baseline weight (co- & counter-tuned) wIcounter 0.53 4, 5
Noise parameter for inhibitory weights ε∗I 0.01 2 – 5
Inhibitory baseline weight wIF Varying 6, 7
Noise parameter for inhibitory weights ε∗I 0.01 6, 7
Inhibitory baseline weight (Hebbian & scaling) wIF 0.8 8A-C
Noise parameter for inhibitory weights (Hebbian & scaling) ε∗I 0.3 8A-C
Inhibitory baseline weight (Hebbian & anti-Hebbian) wIF 0.6 8D-F
Noise parameter for inhibitory weights (Hebbian & anti-Hebbian) ε∗I 0.01 8D-F

TABLE III. Simulation parameters for weights.
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Parameter Symbol Value Figs.

STDP time constant τSTDP 20 ms 6 – 8
Hebbian learning rate ηH 10−3 6 – 8
Hebbian decay term αH 0.2 6 – 8
Firing-rate set-point ρ0 5 Hz 6 – 8
Anti-Hebbian initial learning rate η∗aH 10−3 8
Anti-Hebbian learning rate time constant τaH 200 s 8
Anti-Hebbian increase term αaH 0.6 8
Anti-Hebbian peak time t0 0 ms 8
Scaling time constant τscaling 1000 ms 8
Scaling learning rate ηs 5 × 10−7 8
Scaling learning rate weight wIs 0.6 8
Scaling threshold parameter αs 2 8
Simulation time — 30 mins 6 – 8

TABLE IV. Simulation parameters for plasticity rules.

Parameter Symbol Value Figs.

Presynaptic time constant τZ 10 ms 2 – 4, 7
Postsynaptic time constant τY 250 ms 2 – 4, 7
Simulation time — 30 mins 2 – 4, 7

TABLE V. Simulation parameters for correlation measure.

Agnes, Luppi, Vogels (2019) 17 Attentional switch in sensory circuits

.CC-BY 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under 

The copyright holder for this preprint (which was notthis version posted August 8, 2019. ; https://doi.org/10.1101/729988doi: bioRxiv preprint 

https://doi.org/10.1101/729988
http://creativecommons.org/licenses/by/4.0/


Supplementary figures of
Complementary inhibitory receptive fields emerge from synaptic plasticity and create an attentional switch in sensory circuits

Everton J. Agnes, Andrea I. Luppi, and Tim P. Vogels
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FIG. S1. Synaptic plasticity models. A, Spike-timing dependency of the Hebbian plasticity model. ∆w indicates level of synaptic change, and ∆t
indicates interval between pre- and postsynaptic spikes. Coincident pre- and postsynaptic spikes elicit positive changes while presynaptic spikes
alone elicit negative changes in synaptic strength (Eq. 24). B, Synaptic changes (∆w) as a function of postsynaptic firing-rate for the Hebbian
plasticity model. When the postsynaptic neuron’s firing-rate is above the target rate, inhibitory synapses increase in weight and, as a consequence,
the postsynaptic neuron’s firing-rate decreases. The opposite happens for when the postsynaptic neuron’s firing-rate is lower than the target rate.
See Eq. 31 to Eq. 33 for the mathematical analysis. C, Synaptic scaling model. Changes in synaptic strength (∆w) as a function of the postsynaptic
neuron’s firing-rate (Eq. 26). When the postsynaptic neuron’s firing-rate is lower than a lower bound threshold, inhibitory synapses decrease,
proportionally to their current strenght. When the postsynaptic neuron’s firing-rate is higher than a upper bound threshold, inhibitory synapses
increase. Because of the lower and upper bounds, a region with no change around the target rate is created. D, Spike-timing dependency of the
anti-Hebbian plasticity model. Presynaptic spikes elicit positive changes, while coincident pre- and postsynaptic spikes elicit negative changes
in synaptic weights (Eq. 28). E, Same as B for anti-Hebbian plasticity model. Because the anti-Hebbian plasticity model is a reversed version
of the Hebbian plasticity one, the target rate becomes unstable. See Eq. 34 for mathematical analysis. F, Evolution of the learning-rate of the
anti-Hebbian plasticity model. Due to its unstable nature, we set the learning-rate to decay exponentially over time (Eq. 29 and Eq. 30).
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