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Cortical areas comprise multiple types of inhibitory interneurons with stereotypical connectivity motifs, but their combined
effect on postsynaptic dynamics has been largely unexplored. Here, we analyse the response of a single postsynaptic
model neuron receiving tuned excitatory connections alongside inhibition from two plastic populations. Depending on the
inhibitory plasticity rule, synapses remain unspecific (flat), become anti-correlated to, or mirror excitatory synapses. Crucially,
the neuron’s receptive field, i.e., its response to presynaptic stimuli, depends on the modulatory state of inhibition. When both
inhibitory populations are active, inhibition balances excitation, resulting in uncorrelated postsynaptic responses regardless
of the inhibitory tuning profiles. Modulating the activity of a given inhibitory population produces strong correlations
to either preferred or non-preferred inputs, in line with recent experimental findings showing dramatic context-dependent
changes of neurons’ receptive fields. We thus confirm that a neuron’s receptive field doesn’t follow directly from the weight
profiles of its presynaptic afferents.

Inhibitory neurons exhibit large variability in morphology,
connectivity motifs, and electrophysiological properties1–4.

Inhibition often balances excitatory inputs, thus stabilising
neuronal network activity5,6 and allowing for a range of differ-
ent functions7–11. When both inhibitory and excitatory inputs
share the same statistics and their weight profiles are similar12,
the resulting state of the postsynaptic neuron is one of precise
balance of input currents9. Modulation of inhibition, e.g., a de-
crease or increase in local inhibitory activity and, consequently,
a change in the balance between excitation and inhibition, can
control the activity of neuronal groups13,14, and it is believed
that disinhibition is an important mechanism for the imple-
mentation of high-level brain functions, such as attention14,15,
memory retrieval6,16,17, signal gating18,19, and rapid learning11.

The state of balance is thought to be achieved and main-
tained by inhibitory plasticity, e.g., a Hebbian-like inhibit-
ory plasticity rule6 (increase in synaptic weights for correl-
ated pre- and postsynaptic activity), as observed in auditory
cortex20. Other types of inhibitory plasticity have also been
observed, such as a form of anti-Hebbian inhibitory plasticity
(decrease of synaptic weights for correlated pre- and postsyn-
aptic activity)21–23 that has been proposed as a mechanism for
memory formation24.

Given that cortical circuit motifs feature multiple in-
terneuron types1,2,7, we wondered how these opposing types
of plasticity may act in concert on the same postsynaptic tar-
get, and how the resulting synaptic weight profiles can help
to shape the receptive field of the postsynaptic neuron. We
speculated that two plasticity rules could form complement-
ary synaptic weight profiles for inhibitory connections, such
that synapses following a Hebbian-like inhibitory plasticity
rule would mirror excitatory inputs; Anti-Hebbian plasticity
should impose strong inhibitory inputs for weak excitatory
ones, and vice-versa. Such opposite wiring profiles of distinct
inhibitory synapse populations are in line with intracellular
recordings showing that strong inhibitory postsynaptic poten-
tials can be elicited by stimuli with preferred orientations of the
postsynaptic neuron25,26, but also by stimuli with non-preferred
orientations27,28. What’s more, dynamically changing recept-
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ive fields could be achieved through targeted modulation of a
specific type of inhibition.

Altered receptive properties have been widely observed,
e.g., in mouse auditory cortex where neurons change their
preferred sound frequency with varying sound intensity29. In
macaque primary visual cortex (V1) neurons can modulate
their response according to an extra cue of a different (audit-
ory) sensory nature30. Intriguingly, they responded either more
strongly to their preferred stimulus or, on the contrary, they
were more suppressed when a pure tone was played along-
side the presentation of the visual stimuli. In macaque V431

and V532 neurons have been shown to change how they rep-
resent different stimuli during detection and discrimination
tasks, and in macaque V433 some neurons change their hue
preference when subjected to single-hue or naturally coloured
images. Finally, recent work by Billeh et al. 34 showed that in
mice, visual neurons change their response to the direction of
motion of visual stimuli depending on either the temporal of
the spatial frequency of the stimulus (drifting grating). These
results suggest that the receptive fields of sensory neurons are
dramatically affected by input, context or attentional state, but
it is unclear by which mechanisms such changes can transpire.

Here, we tested how the response of a single neuron is
affected when the activity of presynaptic inhibitory popula-
tions is modulated. We combined two hypotheses to address
this question. First, we considered that different types of in-
hibitory interneurons may follow distinct synaptic plasticity
learning rules (Fig. 1A), thus creating different connectivity
profiles onto postsynaptic neurons9 (Fig. 1B) such as those ob-
served for e.g., parvalbumin-positive (PV+) and somatostatin-
positive (SOM+) interneurons35. PV+ interneurons may fol-
low a Hebbian-like plasticity rule6,20, thus targeting pyramidal
neurons with similar preferred orientation35. SOM+ interneur-
ons, on the other hand, could follow a non-Hebbian plasti-
city rule (e.g., anti-Hebbian or homeostatic), which results in
a non-selective connectivity35. Our second hypothesis posits
that changes in the activity of inhibitory neurons are respons-
ible for the highly variable receptive fields observed in recent
experiments29–34 (Fig. 1C). This hypothesis extrapolates from
evidence of cortical disinhibition during functional tasks13,36,
and requires that a different brain region provide attentional or
contextual signals, such as observed in prefrontal cortex and
regions in the frontal lobe37–40.

To investigate the origins of such varying responses from
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FIG. 1. Learning of two distinct inhibitory populations and postsyn-
aptic response due to attentional switch between contexts. A, Schem-
atic of co-active plasticity rules. A postsynaptic neuron (black triangle)
receives tuned excitatory input (red population) and inhibition from
two distinct populations (blue populations). The two inhibitory pop-
ulations follow different synaptic plasticity rules. ∆w indicates change
in synaptic weight and ∆t indicates interval between pre- and post-
synaptic spikes. B, Initially un-tuned inhibitory weights (blue lines)
acquire different synaptic weight profiles after learning that depend
on the excitatory weight profile (red dashed line). C, Contextual
changes (e.g., due to attention), which we hypothesise to be respons-
ible for modulating the activity of inhibitory populations result in
different postsynaptic responses to the same stimulus29–34, such that
preferred (green) and non-preferred (purple) stimuli elicit postsynaptic
responses with different amplitudes.

the same cell, we investigated the behaviour of a single post-
synaptic neuron model receiving tuned excitatory inputs, and
inhibition from two distinct populations. Input tuning may
correspond to preference to a specific sound frequency12, ori-
entation of visual cues41 or to colour hue33, taste42, whisker
stimulation43, or position in space44. We show that when dis-
tinct biologically plausible plasticity rules operate on the syn-
apses of different inhibitory populations, at least three different
tuning profiles may emerge. After learning, the postsynaptic
neuron arrives at a balanced state with respect to its excitat-
ory and inhibitory inputs. In this state, preferred signals are
transiently revealed, but steady state responses are indiscrim-
inate of the stimulus preference6 (i.e., its ‘orientation’, etc.),
regardless of the inhibitory connectivity. However, we could
substantially alter the responses of the postsynaptic neuron by
modulating the activity of either of the two presynaptic in-
hibitory populations, allowing for the propagation of facets of
the input patterns that were previously quenched by inhibi-
tion. Such inhibitory modulation can thus serve as a mech-
anism to selectively filter stimuli according to, e.g., attentional

cues, as observed in recent experiments29–34. In summary, our
work proposes a simple biological implementation for an at-
tentional switch of input selectivity, and provides a solution
for how such a neuronal circuit can emerge with autonomous
and unsupervised, biologically plausible plasticity rules. To
our best knowledge, our model is the first proof of principle
that the receptive field of a neuron, i.e., its response to pre-
synaptic stimuli, must not follow directly from the (excitatory)
presynaptic weight profiles.

Results

To study the effect of interacting populations of feedforward in-
hibition, we investigated the response of a single postsynaptic
leaky integrate-and-fire neuron receiving tuned excitatory in-
puts and inhibition from two distinct populations. Excitatory
inputs were organised into a single population, subdivided
into 16 signal groups of 200 excitatory afferents. Inhibitory in-
puts initially formed a single population, mirroring the excitat-
ory subdivision, but with 50 afferents per group. Subsequently,
we split the inhibitory inputs into two populations with 25 af-
ferents per signal group (Fig. 2A, see Methods for details),
allowing us to obtain two differently tuned populations (pre-
sumably types) of inhibition. Excitatory and inhibitory affer-
ents belonging to the same group shared temporal fluctuations
in firing rates, termed input patterns, even if they belonged
to different populations. In our simulations, input patterns
could either be natural or pulse. Natural inputs were generated
through an inhomogeneous Poisson process based on a modi-
fied Ornstein-Uhlenbeck process (Fig. 2B,C), such that neurons
of the same signal group also had temporally-correlated firing
patterns (Fig. 2C, top; see also Ujfalussy et al. 45 ). The res-
ulting long-tail distribution of inter-spike-intervals (Fig. 2C,
bottom) was similar to experimentally observed spike patterns
in vivo46,47. We used this type of input to train inhibitory syn-
apses via plasticity rules, and to quantify steady-state (average)
postsynaptic responses.

In the alternative pulse input regime we analysed transi-
ent responses with 100-ms long pulses of varying amplitudes6.
Pulses were delivered through a single signal group of excitat-
ory and inhibitory afferents, while all other groups remained
at baseline firing-rate (Methods). Responses were quantified
according to postsynaptic firing rates during the first (phasic)
and last (tonic) 50 ms stimulation (Fig. 2D), averaged over 100
trials. Separating responses in phasic and tonic allowed us
to discriminate changes in output due to the input onset, and
slower integration of the pulse, respectively.

Learning was implemented via three distinct inhibitory plas-
ticity rules (Fig. 3), in three different combinations. We first im-
plemented a Hebbian rule (that potentiated synaptic weights
for coincident pre- and postsynaptic spikes and depressed
them for sole presynaptic spikes6; Fig. 3A) in one of the two in-
hibitory populations, while the synapses of the other inhibitory
and the excitatory population remained fixed. This learning
rule has previously been shown to generate inhibitory weight
profiles that mirror the excitatory synaptic weight profiles of
a postsynaptic neuron, imposing a firing-rate fixed-point (tar-
get; Fig. 3A) by balancing excitation and inhibition6, support-
ing similar experimental findings in mouse auditory cortex20.
Next, we implemented the Hebbian plasticity rule in one of
them and a scaling plasticity rule (Fig. 3B) in the other pop-
ulation. The homeostatic scaling rule up- or down-regulates
the entire synapse population to reach a predetermined target
firing-rate. Notably, this plasticity rule was purely local, taking
only synaptic weights and postsynaptic firing rate into account,
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FIG. 2. Model details. A, Schematic of the input organisation. An external signal (representing, e.g., sound) was delivered through three input
populations (one excitatory and two inhibitory), with 16 input signals per population (representing, e.g., sound frequency). Each signal was
simulated by 250 independent, but temporally correlated, spike trains (input afferents); 200 excitatory, and 50 inhibitory divided into two groups
of 25. One postsynaptic neuron (black triangle) was the output of this system, simulated as a single-compartment leaky integrate-and-fire neuron
(LIF). The firing rate of each of the inhibitory populations was modulated by a contextual cue (green and purple boxes). Excitatory and inhibitory
input spike trains were generated as point processes (see Methods for details). B, Natural input statistics. Raster plot (grey dots) of 800 neurons
that take part in 4 signal groups (200 neurons per signal group), each with firing-rate changing according to a modified Ornstein-Uhlenbeck process
(coloured lines; Methods). C, Temporal autocorrelation (top) and distribution of the inter-spike intervals (ISI; bottom) of the pre-synaptic inputs.
The autocorrelation of two groups are shown (green and pink), as well as the correlation between two different groups (black). Autocorrelation
is computed as the Pearson coefficient with a delay (x-axis; Methods). D, Pulse input schematic. A step-like increase in the firing rate of a given
input group lasting 100 ms with varying firing rates (grey scale). The postsynaptic response is separated in phasic (first 50 ms), and tonic (last 50
ms).
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the target rate. C, Anti-Hebbian plasticity rule. Left, Spike-timing dependency. Presynaptic spikes elicit positive changes, while coincident pre-
and postsynaptic spikes elicit negative changes in synaptic weights. Middle, Changes in synaptic efficacy (∆w) as a function of the postsynaptic
firing-rate. The target rate of anti-Hebbian plasticity rule is unstable. Right, Evolution of the learning-rate of the anti-Hebbian plasticity model.
Due to its unstable nature, we set the learning-rate to decay exponentially over time.

similarly to the experimentally observed scaling of inhibitory
synapses48,49. Finally, we also implemented an experiment-
ally observed21–23 anti-Hebbian rule in the second inhibitory
population (Fig. 3C). Unlike its Hebbian counterpart, the anti-
Hebbian rule leads to indefinite increases in the firing rate of
the postsynaptic neuron, because correlated activity decreases
synaptic weights (only sole presynaptic spikes increase syn-
aptic weights; Methods). The anti-Hebbian plasticity rule is
thus unstable (Fig. 3C, middle). We found that we could pre-
vent catastrophe without incorporating additional, complex
dynamics by using a variable learning rate for the anti-Hebbian
rule. For simplicity, we decreased the learning rate exponen-
tially over time (Fig. 3C, right), but this could also be achieved
through top-down control (see Discussion).

Shaping and modulating a single inhibitory population. To
begin, we constructed a standard cortical circuit motif with one

excitatory and one inhibitory population6,18,50–52 (Fig. 4A, top).
We followed previous work showing that the Hebbian plas-
ticity rule (Fig. 2A,B) changes inhibitory synapses to provide
precisely balanced inputs6, such that both excitatory and in-
hibitory weight profiles are shaped according to previous ex-
perimental observations12 (Fig. 4A, bottom). Afferent synaptic
weights were set so to allow average post-synaptic firing rates
of approximately 5 Hz for natural inputs (Fig. 4B). We then
changed the gain of all inhibitory afferents by modulating their
firing rates, from 50% to 150% of control rates. This change of
input balance translated into changes in output rates (Fig. 4C,
bottom), and spike patterns (Fig. 4B, middle and right). When
inhibition was equal or larger than excitation, the output was
largely uncorrelated to any given input signal (Fig. 4D, top).
When inhibitory firing rates fell below 90% of the control condi-
tion, the output first began to correlate with the preferred input
signal. When inhibition became even weaker, the correlations
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FIG. 4. Postsynaptic response for a model with a single inhibitory population. A, Schematic of the circuit with a single inhibitory population
(top). Pre-synaptic spikes were generated as point-processes (pp), for both excitatory (red; 16 signals) and inhibitory (blue; 16 signals) inputs,
and fed into a single-compartment leaky integrate-and-fire neuron (LIF). Schematic of the synaptic weight profiles (bottom). Average weight
(y-axis) for different input signals (x-axis); preferred signal is pathway no. 9 (grey dashed line). B, Average firing-rate of the preferred, and
two non-preferred inputs and mean of all inputs (top row), excitatory and inhibitory input currents (middle row), and membrane potentials
(bottom row), for control (left), decreased (middle) and increased (right) inhibition. Control case is hand-tuned for postsynaptic firing-rates of
∼ 5 Hz. Decreased (increased) inhibition lowered (raised) inhibitory firing-rates by 10%, respectively. C, Average and standard deviation of the
postsynaptic firing-rate in response to natural input for the three explored cases (top), and as a function of the inhibitory firing-rate (bottom).
D, Pearson correlation between postsynaptic firing-rate and excitatory input firing-rates for different input signals for the three conditions in B
(top). Correlation between output activity and preferred (continuous line) or non-preferred (dashed line) inputs as a function of the inhibitory
firing-rate (bottom). E, Response to a pulse input in the phasic (left; first 50 ms), and tonic (right; last 50 ms) periods. Firing rate computed as the
average number of spikes (for 100 trials) normalised by the bin size (50 ms). Each line corresponds to a different input strength; from light (low
amplitude pulse) to dark (high amplitude pulse) colours. Insets show tonic response for control and decreased inhibitory firing-rates.

increased, and even non-preferred signals were articulated in
the postsynaptic firing patterns (Fig. 4D, bottom).

Transient presynaptic activity pulses caused strong phasic
responses in the balance state when they were delivered
through the afferents of the preferred inputs (Fig. 4E, top
row). Stimuli from non-preferred afferents were largely ig-
nored. This discriminability between transients of low or
high amplitude pulses decreased when inhibition was down-
regulated (Fig. 4E, middle row) such that pulse stimuli from
all signal groups caused a response. Increased inhibition, on
the other hand, completely abolished transient responses to
non-preferred afferents (Fig. 4E, bottom row). In all three cases
(balanced control, weak and strong inhibition), the postsyn-
aptic neuron elicited most of its spikes within the phasic period
of the total 100 ms input step (Fig. 4E). This indicates that strong
postsynaptic responses are mostly driven by the onset of the
presynaptic stimulation rather than the stimulus being integ-
rated slowly over time, consequence of the precise balance of

excitatory and inhibitory inputs6.
Thus, a single inhibitory population, even with tuned

weights, could not affect the postsynaptic receptive field via
only the modulation of the inhibitory firing-rate. To test
whether an additional inhibitory population would allow for
more sophisticated control of postsynaptic activity, we con-
structed a model with different plasticity rules, which were
applied to two different populations of inhibitory inputs.

Plasticity shapes inhibitory weight profiles and receptive
fields. To study how plasticity can shape the emergence of
distinct synaptic weight profiles, we incorporated inhibitory
synaptic plasticity mechanisms into a model with two inhibit-
ory populations. We started with a symmetric Hebbian plasti-
city rule in one of the two inhibitory populations: coincident
pre- and postsynaptic spikes potentiated synapses whereas
sole presynaptic spikes depressed synapses6 (Fig. 3A). The
synapses of the excitatory and the other inhibitory popula-
tion remained fixed (Fig. S1). Simulations began with tuned
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excitatory synapses and flat inhibitory weight profiles in both
inhibitory populations (Fig. S1A).

After 30 minutes of stimulation with natural inputs (cf.
Fig. 2B), inhibitory weights of the plastic population stabil-
ised (Fig. S1D-G). Whether the target firing rate (Fig. S1B,C)
was reached depended on the synaptic strength of the other,
static population of inhibitory synapses. If the static weights
were weak, the plastic synapses increased their strength un-
til the target firing rate was reached (Fig. S1C). If the static
population provided strong inhibition (and thus kept postsyn-
aptic firing below the target rate), weights from the plastic
population would eventually vanish – before the target firing-
rate could be reached (Fig. S1C,G). Consequently, the shape
of the static population determined the shape of the plastic
population (Fig. S1D,E). As expected, the input/output cor-
relation of the postsynaptic responses followed the effective
synaptic weight profile (Fig. S3A, cf. Fig. S1E), with distinct
input/output correlations for turning either of the populations
off (Fig. S3B). The Hebbian plasticity rule, due to the strength-
ening of synapses for coincident pre- and postsynaptic spikes,
thus complemented additional inhibitory synaptic connectiv-
ity in establishing a state of detailed balance of excitatory and
inhibitory inputs.

Hebbian and scaling plasticity rules. Next, we introduced plasti-
city to the second population of inhibitory afferents. We tested
two different rules, beginning with a homeostatic plasticity
rule which (multiplicatively) scaled synapses down and addit-
ively potentiated synapses so that a fixed-point for the post-
synaptic firing-rates was reached (Fig. 3B; Methods). With the
homeostatic rule co-active, the Hebbian synapses – connections
changing according to the Hebbian plasticity rule – developed
a co-tuned profile from initially random weights (Fig. 5A, top;
Fig. 5C, left), while the synapses following the scaling rule col-
lapsed to a single value (Fig. 5A, bottom; Fig. 5C, right; see
Methods for mathematical analysis). Consequently, the post-
synaptic neuron received precisely balanced inputs (Fig. 5B).
The two plasticity rules cooperate to impose an average post-
synaptic activity, and thus naturally work in harmony.

We then studied the effects of differentially modulating the
activity of the two inhibitory populations after their tuning
curves had been established by the plasticity rules described
above. First, we focused on the interaction of the connectivity
created by Hebbian and the scaling plasticity rules (Fig. 6A,
top; cf. Fig. 5), i.e., a co-tuned population and a flat population
(Fig. 6A, bottom). We compared the output of the neuron in

three scenarios: with both inhibitory popula-
tions active (control); with the co-tuned pop-
ulation inactive; and with the flat population
inactive (Fig. 6B-E).

With both populations active, the input-
output correlation was indistinguishable
from a model with one, homogeneous inhib-
itory population (Fig. 6D, top; cf. Fig. 4D,
top), because the two populations (co-tuned
and flat) were mimicking the effect of the
single (co-tuned) population. Deactivating
either population (while increasing the firing-
rate of the other to maintain the same average
output firing rate of 5 Hz in the modulated
conditions, Fig. 6C) had pronounced effects
on postsynaptic responses. Fluctuations in
firing rate and membrane potential increased
in both cases (Fig. 6B,C). When the co-tuned

inhibitory population was turned off, the emerging imbalance
of excitation and inhibition unmasked the excitatory tuning
curve, thus increasing the chance of action potential genera-
tion when preferred signal populations were active (Fig. 6B,
middle). The compensatory increase in the activity of the flat
population further quenched non-preferred excitatory signals,
leading to anti-correlated responses for non-preferred input
signals (Fig. 6D, purple), reflecting the lack of postsynaptic fir-
ing during periods in which non-preferred signals were active
(Fig. 6B, middle). The opposite effect could be observed when
the flat population was deactivated. In this case, the lack of
inhibition for non-preferred signals gave rise to input/output
correlations for non-preferred signals, while preferred signals
saw no response (Fig. 6B, right and Fig. 6D, green).

Transient responses, when compared to the unmodulated
control case (Fig. 6E, top), were substantially increased for pre-
ferred inputs when the co-tuned population was deactivated,
and the response to non-preferred signals was completely di-
minished (Fig. 6E, middle). When the flat population was
deactivated, the postsynaptic neuron responded strongly to
the non-preferred inputs, but not to preferred inputs (Fig. 6E,
bottom). Interestingly, modulating either of the inhibitory pop-
ulations had similar effects on the postsynaptic response both
in phasic and tonic periods, in contrast with the unmodulated
control case, in which only phasic responses were postsynaptic-
ally elicited (Fig. 6E). Again, this reflects the state of balance
between excitation and inhibition in the unmodulated control
case, which only reveals transient input dynamics.

Hebbian and anti-Hebbian plasticity rules. Instead of a purely
homeostatic scaling rule, we also tried an experimentally
observed21–23 anti-Hebbian rule in the second inhibitory pop-
ulation (Fig. 3C). The anti-Hebbian rule, unlike the Hebbian,
decreases synaptic weights for correlated activity, and sole pre-
synaptic spikes increase synaptic weights. Such a rule can
only either indefinitely increase the firing rate of the postsyn-
aptic neuron or decrease it to zero (Methods). We accoun-
ted for the unstable nature of the anti-Hebbian plasticity rule
(Fig. 3C, middle) by controlling its learning rate, such that
it decreased exponentially over time (Fig. 3C, right). With
both Hebbian and anti-Hebbian rules active, initially random
weights evolved into co-tuned and counter-tuned synaptic
weight profiles (Fig. 7). As learning slowed down due to the
decreasing learning rate, the anti-Hebbian synapses – connec-
tions changing according to the anti-Hebbian plasticity rule –
stabilised, and Hebbian synapses ceased to change once the
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FIG. 6. Postsynaptic response for the model with co-tuned and flat inhibitory populations. A, Schematic of the circuit with two inhibitory
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(pp) and fed into an LIF. Schematic of the synaptic weight profile (bottom). Average weight (y-axis) for different input signals (x-axis); preferred
signal is pathway no. 9 (grey dashed line). B, Average firing-rate of the preferred and two non-preferred inputs and mean of all inputs (top
row), total excitatory current and inhibitory currents of both populations (middle row), and membrane potential (bottom row), for control (left),
co-tuned (middle) and flat (right) population inactive. C, Average and standard deviation of the postsynaptic firing-rate in response to natural
input for the three cases (top), and as a function of the inhibitory firing-rate (bottom). D, Pearson correlation between postsynaptic firing-rate and
excitatory input firing-rates for different input signals for the three conditions in B. Correlation between output activity and preferred (continuous
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target firing rate was reached (Fig. 7B,C).

Postsynaptic dynamics with two inhibitory populations
with tuning that resulted from the combination of the Hebbian
and the anti-Hebbian plasticity rules (Fig. S2A), i.e., co-tuned
and counter-tuned populations, were similar to that with co-
tuned and flat inhibitory populations. In the unmodulated
balanced state, output behaviour is near identical to previous
results (Fig. S2B-D, control). The main distinction between the
models with counter-tuned or flat inhibitory profiles is how
they complemented the co-tuned inhibitory currents: the flat
inhibition produced currents that tracked the co-tuned inhib-
itory currents, whereas counter-tuned inhibition produced in-
hibitory currents that were largely uncorrelated to the co-tuned
inhibitory currents (Fig. S2B, left; compare with Fig. 6B, left).

When either the co- or the counter-tuned inhibitory popu-
lations were inactivated, fluctuations in both firing rate and
membrane potential increased considerably (Fig. S2B, middle
and right). Deactivation of the co-tuned population resulted
in positive correlation between postsynaptic activity and pre-

ferred signals, and negative correlation between output and
non-preferred signals (Fig. S2D, purple). For transient stimu-
lation, there was no discernible difference to the model with
flat inhibition in the control state (Fig. S2E, top).

Turning off counter-tuned inhibition (Fig. S2B-E) also had
similar results in the postsynaptic response as turning off the
flat inhibition (cf. Fig. 6B-E), i.e., non-preferred input produced
output activity with positive correlation (Fig. S2D) and strong
postsynaptic activity for transient activation (Fig. S2E, bottom).
Unlike before, turning off co-tuned inhibition produced elev-
ated firing-rate responses also for transient stimuli from signals
directly neighbouring the preferred input (Fig. S2E, middle
row, compare with Fig. 6E, middle).

Quantitative differences of inhibitory profiles. For a bet-
ter understanding of the differences between the three con-
ditions studied here (one inhibitory population, co-tuned &
flat and co- & counter-tuned) we compared different mod-
ulation schemes quantitatively. We introduced the para-
meter ∆C = 0.5(Cpref − Cnon-pref), i.e., 50% of the difference
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learning for synapses following the Hebbian plasticity rule (left) and synapses following
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in input/output correlation between preferred, Cpref, and non-
preferred, Cnon-pref, signals (Methods). Ideally, the sensory sys-
tem should present three distinct responses for the three dif-
ferent modulatory conditions, which are captured by different
values of ∆C. With unmodulated input (control), the output
neuron should present correlated activity with all input groups,
and thus ∆C ≈ 0. Modulated inputs (by decreasing the activity
of either of the inhibitory populations) should correlate pre-
ferred (for one inhibitory inactive) and non-preferred (for the
other population inactive) to the output activity. This results
in ∆C > 0 for correlated output/preferred signals, and ∆C < 0
for correlated output/non-preferred signals.

In the control condition, we observed similar ∆C ≈ 0 in
all models (Fig. 8A, grey), reflecting low levels of correla-
tion between output and input signals (Fig. 8B, top). With
down-regulated inhibition, ∆C increased slightly in the model
with one homogeneous inhibitory population. ∆C increased
more considerably in a two-population model in which the co-
tuned population was inactive (Fig. 8A, purple), confirming
an increased correlation between preferred signal and output
(Fig. 8B, middle). When the flat or the counter-tuned inhib-
itory populations were inactivated, we observed postsynaptic
responses even to non-preferred input signals (Fig. 8B, bottom),
which led to negative ∆C. Inactivating the counter-tuned in-
hibition resulted in a slightly better discrimination (larger neg-
ative ∆C) of non-preferred input signals (Fig. 8A, green).

To compare pulse responses of the three models, we quanti-
fied which input signal groups elicited a substantial response
to a pulse signal. We defined the number of signals recovered
(Fig. 8C) as the number of responses with more than 50% of
the maximum postsynaptic firing-rate (Fig. 8D). The single in-
hibitory population model could only produce responses to
preferred input signals, while co-modulation of two inhibitory
populations could promote responses to non-preferred input
signals, as well. Counter-tuned population achieved better
(i.e., broader) postsynaptic control than flat inhibition (Fig. 8C).

The addition of a second population of inhibitory inputs
thus gives rise to a more flexible response to varying stimuli.
In summary, our results shed light on the role of the many
types of interneurons in cortical areas1,2,4, and show the benefits
of combining different biologically inspired plasticity rules in
neuronal networks.

Discussion
We investigated how several distinctly tuned inhibitory con-
nectivity profiles emerge through biologically reasonable plas-

ticity rules and how they interact with a
tuned excitatory connectivity profile in a re-
ceptive field-like paradigm. We found that
the two aspects of selective attention – en-
hancing response to targets, and suppressing
the response to distractors – were implemen-
ted in our model by two types of disinhibi-
tion. Our results indicate a simple neuronal
mechanism to help disentangle (or bind) par-
allel sensory input streams and may repres-
ent a step towards understanding the neural
basis of intricate behaviours such as the cock-
tail party effect – focusing on a single voice in
a crowded, cacophonous place.

Modulation of receptive field response. Our
findings also fit well with recent experimental
results showing that pyramidal neurons in

sensory areas of the cortex change their response to external
stimuli depending on the context of the signal or attentional
state29–33. For example, principal neurons in macaque V4 re-
spond to monochrome images of varying hues with variable
response amplitude that is consistent with specific colour-
tuning. However, the preferred colour response of the neur-
ons changes when naturally coloured images are shown. In
macaque V1, principal neurons can change the preferred ori-
entation of visual stimuli when a pure tone is played alongside
the visual stimulation30. In the framework of our model, such a
change in preference could be explained with differential input
to the two inhibitory populations, or by changes in their gains
through contextual neuromodulation. Similarly, up to 20% of
neurons in all areas of the mouse visual system34 were recently
shown to change their preferred orientation according to the
(spatial and temporal) frequency of the drifting gratings used
in the experiments. These effects could also be explained by
temporal fluctuations in the interaction of the two inhibitory
populations, and the concurrent changes in transient responses
of our model.

Neuron types. The architecture of our model maps eas-
ily onto the neocortical microcircuit1,4. Co-tuned inhibi-
tion, e.g., may originate from parvalbumin-positive (PV+) in-
terneurons. As the main source of inhibition to pyramidal
cells, PV+ interneurons target postsynaptic neurons with sim-
ilar preferred orientation35, and activation of these neurons
leads to broadened selectivity35 (but see Lee et al. 53 ). Flat
or counter-tuned inhibition may arrive from somatostatin-
positive (SOM+) interneurons with their less selective con-
nectivity patterns35. This interpretation is also in line with
recent evidence suggesting that top-down visual attention re-
lies on local inhibitory circuitry in primary visual cortex54. In
this scheme, PV+ and SOM+ neurons inhibit pyramidal cells,
while vasoactive intestinal peptide-positive (VIP+) neurons
suppress other inhibitory interneurons, acting as a source of
disinhibition. Direct manipulation of SOM+, PV+ and VIP+
neurons confirms these respective roles in inhibition and dis-
inhibition in both visual55 and auditory cortices14,36. Addition-
ally, Zhou et al. 54 reported that VIP+ neurons received excitat-
ory top-down inputs from the rodent cingulate cortex, leading
to a narrow selectivity profile of pyramidal cells when cingu-
late inputs are active active and broad tuning when cingulate
cortex is silent. Finally, blocking cortical inhibition reduces
the stimulus-selectivity of cortical neurons56,57 (but see Nelson
et al. 58 ).
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Balance between excitatory and inhibitory inputs. In our
model, we aimed for precise balance of excitation and inhibi-
tion, by way of a Hebbian-like inhibitory plasticity rule6, and
accordant with evidence of excitatory and inhibitory co-tuning
in cat visual cortex59, rodent auditory cortex12,54,60 and rodent
hippocampus61, and temporal correlations in neighbouring ex-
citatory and inhibitory synapses62. Consistent with earlier
work, we could modulate the efficacy of a single inhibitory
population to enhance the output correlation with the pre-
ferred input18,19, but the flexibility of the control mechanism
was very limited and non-preferred signals never evoked faith-
ful responses.

Inhibitory synaptic plasticity. To explore how different inhib-
itory synaptic populations could form and interact, we split
the inhibitory afferents into two populations and implemen-
ted a Hebbian-like inhibitory plasticity rule6,20 in one popula-
tion that was co-active with either a homeostatic scaling48,49

or an anti-Hebbian21–23 plasticity rule. The scaling plasti-
city rule acted locally, but squeezed the distribution of all
synaptic strengths to a narrow regime, providing a parsimo-
nious explanation for the un-tuned, blanket inhibition often
encountered in experiments63,64, and providing easy means
for modulating postsynaptic responses independently of the
presynaptically-tuned weight profiles. The anti-Hebbian rule
was naturally unstable, i.e., it could lead to infinite strengthen-
ing of weights and thus silent networks. Our implementation
reinforces this outcome because inhibitory inputs are always
active.

It is unclear how biological circuits would avoid such cata-
strophe, but in our model we could balance the effect of the
two opposing rules and remain at plausible levels of postsyn-
aptic activity by including a modulatory term that controlled
the learning rate of the anti-Hebbian plasticity rule. While this
mimics some of the observed modulatory control of plasticity
through other neuronal types12,65–67, the reality is likely more
complex, and possibly relies on finely orchestrated interaction
of several different plasticity rules9,68. Additionally, if the in-

hibitory neurons are driven laterally by excitatory neurons that
lack excitatory recurrence, a form of anti-Hebbian plasticity is
also stable24. No matter what form the ultimate mechanism
may take, it is unlikely that it will affect the generality of our
results.

Parallels to artificial neural networks. Interestingly, artificial
networks have been shown to develop similar receptive field
profiles to the ones explored here when they are trained to
solve multiple tasks69. Yang et al. 69 have shown that clusters
of neurons can acquire co-tuned or flat connectivity, which are
controlled by context-encoding signals. These results hint at
the possibility that biological and artificial systems may utilise
similar strategies to solve context-dependent filtering tasks.

Additional biological complexity. To explore the interac-
tion between two distinct inhibitory plasticity rules without
confounds, we made the simplifying assumption that excit-
atory synapses would remain fixed (but see Clopath et al. 51 ,
Litwin-Kumar and Doiron 70 , and Zenke et al. 68 ). Obviously,
inhibitory plasticity rules do interact with multiple additional
rules and constraints like, e.g., excitatory or modulatory syn-
aptic plasticity. Similarly, our model only considered a single
postsynaptic neuron, with no feedback or lateral connectiv-
ity, which is thought to play an important role in cortical fea-
ture selectivity71, and was theoretically shown to provide the
means for multiplicative and additive modulation of recept-
ive fields, and surround suppression72 . Finally, other possible
functions beyond simple input filtering, such as multiplex-
ing or amplifying temporally varying signal streams73,74, and
one-shot learning11 must be considered. Our work only lays
the groundwork for studies of multiple distinct plasticity rules
in larger networks, with more complex excitatory-inhibitory
interaction9,75,76

Conclusion. We predict that various GABAergic interneurons
in the same cortical region must obey a range of different in-
hibitory synaptic plasticity rules, to restore or reverse neuronal
stimulus-selectivity as appropriate and necessary. Such evid-
ence would inform the theoretical framework presented here,

Agnes, Luppi, Vogels (2019) 8 Attentional switch in sensory circuits

.CC-BY 4.0 International licenseunder a
not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available 

The copyright holder for this preprint (which wasthis version posted December 19, 2019. ; https://doi.org/10.1101/729988doi: bioRxiv preprint 

https://doi.org/10.1101/729988
http://creativecommons.org/licenses/by/4.0/


and in turn inspire future computational modelling.

Materials and Methods

Detailed methods can be found below (after references).

Software and code availability

Simulations were run in Fortran, compiled with Intel Fortran
Compiler 19.0 on an Intel-based Linux computer (Debian 9;
i9-9900X processor; 32 GB memory). Codes will be made avail-
able online upon publication77. Individual plots were gener-
ated with Gnuplot. Figures were generated with Inkscape.
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Methods of
Complementary inhibitory weight profiles emerge from plasticity and allow attentional switching of receptive fields

Everton J. Agnes, Andrea I. Luppi, and Tim P. Vogels

Codes for all results are openly available at GitHub, repository
https://github.com/ejagnes/attentional_switch.

Neuron model. To investigate changes in neuronal response
due to specific inhibitory connectivity motif we simulated a
postsynaptic leaky integrate-and-fire neuron (LIF) receiving
excitatory and inhibitory afferents. Postsynaptic neuronal
membrane potential dynamics is governed by

τm
du(t)

dt
= − [u(t) − urest]

− gE(t) [u(t) − EE] − gI(t) [u(t) − EI] , (1)

where u(t) is the somatic voltage at time t, τm = RC is the mem-
brane time constant (membrane resistance, R, times membrane
conductance, C), urest is the resting membrane potential, and EE
and EI are the reversal potential for excitatory and inhibitory
synapses, respectively. Synaptic conductances, gE(t) and gI(t),
evolve according to

dgE(t)
dt

= −
gE(t)
τE

+

NE∑
j=1

w j(t)S j(t) (2)

and
dgI(t)

dt
= −

gI(t)
τI

+

N∑
j=NE+1

w j(t)S j(t). (3)

Both excitatory and inhibitory conductances decay exponen-
tially to zero with time constants τE and τI, respectively. Pre-
synaptic action potentials trigger increase in synaptic conduct-
ances through the sum of Dirac delta functions,

S j(t) =
∑

k

δ
(
t − tkj

)
, (4)

where tkj is the time of the kth spike of presynaptic afferent j.
The contribution of a given presynaptic afferent j to changes
in conductances is given by the synaptic weight w j(t), which
was fixed for excitatory synapses and could change over time
due to plasticity mechanisms for inhibitory synapses. The
total number of presynaptic afferents is N = NE + NI, with NE
being the number of excitatory and NI of inhibitory presynaptic
afferents.

An action potential is triggered at the postsynaptic neuron
once its membrane potential u(t) crosses the spiking threshold
uth from below. The membrane potential is then instantan-
eously reset to ureset, being clamped at this value for the dura-
tion of the refractory period, τref. The postsynaptic spike train
is described here as a sum of Dirac deltas,

Spost(t) =
∑

k

δ(t − tk), (5)

where tk is the time of the kth spike of the postsynaptic
neuron, or the time the membrane potential crosses the spiking
threshold from below. Parameters used for the postsynaptic
neuron are detailed in Table .

Inputs. To mimic experimentally observed synaptic input
profiles12, we divided the synaptic inputs into P signal groups
(µ = 1, ...,P) that share the same fluctuation in firing rate. We
tested two cases: (i), natural input, and (ii), pulse input. Both
are described below.

Natural input. For presynaptic activity mimicking a natural
input, activity follows an inhomogeneous Poisson process that
changes according to a modified Ornstein-Uhlenbeck (OU)
process. We first defined an auxiliary variable for each pattern,
yµ(t), that follows a stochastic first-order differential equation
given by

dyµ(t)
dt

= −
yµ(t)
τOU

+ ξµ(t), (6)

where µ is the signal group index, τOU is the time constant for
the decaying process that changes due to a Gaussian noise term
ξµ(t) with unitary standard deviation. The mean value of the
variable yµ is zero, and thus it assumes positive and negative
values with same probability (for long periods).

The spike train of an afferent in a given signal group µ is
given by the variable νXµ(t) which is a rectified version of the
auxiliary variable plus a term to generate background firing
rate, νXbg, where X indicates the presynaptic population; X = E
for excitatory and X = I for inhibitory. The spike trains of the
afferents of signal group µ are generated by

νXµ(t) = νX0

[
yµ(t)

]
+

+ νXbg, (7)

where νX0 is the amplitude of the modulated firing rate fluctu-
ations, and [·]+ is a rectifying function,

[y]+ =

{
y, if y > 0
0, otherwise.

(8)

Note that due to the symmetry of yµ(t), an afferent is half the
time in the background state and half the time in the active
state.

Presynaptic action potentials were generated as an inhomo-
genous Poisson process according to the modified OU process
described above and a fixed background firing rate. Addition-
ally, we implemented a refractory period, τEref for excitatory
and τIref for inhibitory inputs. Given the time step of the simu-
lation ∆t, spikes of a presynaptic afferent that is part of the sig-
nal group µ are generated with a probability pXµ(t) = νXµ(t)∆t if
there was no spike elicited during the refractory period before-
hand, and thus the average firing rate of a X = E (excitatory)
or X = I (inhibitory) afferent that is part of the signal group µ
becomes

FXµ(t) =
1
∆t

pXµ(t)
(
1 − pXµ(t)

)τXref/∆t
. (9)

Pulse input. To test transient responses to brief changes in
presynaptic activity we also quantified postsynaptic responses
to pulse inputs. In this case, we simulated the postsynaptic
neuron receiving inputs with constant background firing-rate.
For 100 ms we increased the probability of presynaptic spikes
for a given signal groupµ by a factor kν∗, with k being an integer
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larger or equal than zero, and ν∗ = 5 Hz. Thus presynaptic
spikes are generated by

νXµ(t) = αXνkν∗ + νXbg, (10)

during the 100 ms step and by

νXµ(t) = νXbg (11)

during only background activity. Parameter αXν is a scalar that
sets the ratio of excitatory and inhibitory firing rate.

Responses to the pulse input were divided in two bins: phasic
and tonic. Phasic responses were defined as the postsynaptic
activity elicited in the first 50 ms of the pulse input. Tonic
activity was correspondingly defined as having occurred in
the last 50 ms of the stimulus. We simulated 100 trials per in-
put strength kν∗, and defined the response (for both phasic and
tonic) as the average number of spikes on the period for the
strength kν∗ minus the average number of spikes on the same
period without extra input, multiplied by 20 to convert to Hz.
We subtracted background spikes to ascertain that we quan-
tified the response to the extra step input alone. Parameters
used for inputs are detailed in Table II.

Synaptic tuning. Based on Vogels et al. 6 , we used a synaptic
weight profiles given by

r(µ) =
( 1

1 + r0

)
+

( r0

1 + r0

) ( 1
1 + b

(
µ − µ0

)c

)
, (12)

where r0, b and c are parameters defining the shape of the syn-
aptic weight profile and µ0 defines the preferred signal group,
which maximises r(µ); r(µ0) = 1. Note that r0 > 1, b 6 1, µ0 > 0,
and c is an even positive integer.

For simplicity we define ζ j as the signal group that afferent
j is part of. Thus excitatory synapses are set as

w j = wE0r(ζ j) + ε j, j = 1, . . . ,NE, (13)

where wE0 is a normalisation factor for excitatory weights, and
ε j is a noise term drawn from a uniform random distribution
between −ε∗E and ε∗E.

First we simulated a single inhibitory population with a
tuned profile (Fig. 4), following Eq. 12 such that,

w j = wI0r(ζ j) + ε j, j = NE + 1, . . . ,N, (14)

where wI0 is a normalisation factor for inhibitory weights, and
ε j is a noise term drawn from a uniform random distribution
between −ε∗I and ε∗I . The parameter wI0 was chosen so that a
state of balance was enforced, with postsynaptic firing-rate of 5
Hz. Due to the small number of inhibitory afferents compared
to the excitatory ones, and the difference in driving force, in-
hibitory weights were much larger than excitatory ones. Thus,
to plot excitatory and inhibitory weights on the same scale we
computed the correcting factor, αw, from

αw =
NE

∑N
j=NE+1 w j

NI
∑NE

j=1 w j

. (15)

In all plots with excitatory and inhibitory weights, we plotted
excitatory weights multiplied by the parameter αw.

Next, inhibitory afferents were divided in two types that
connect to the postsynaptic neuron with different synaptic
weight profiles. We started the inhibitory synaptic weights

randomly and applied plasticity rules (details below). To com-
pute input/output correlations and postsynaptic responses, we
defined inhibitory weight profiles based on Eq. 12, i.e., we
hand-tuned their shape according to the profiles learned due to
the plasticity rules (details below).

We combined a co-tuned population with either a flat (Fig. 6)
or a counter-tuned (Fig. S2) population. In both cases we based
co-tuned weights on a modified version of Eq. 12,

rI(µ) =
1

1 + b
(
µ − µ0

)c , (16)

with b, µ0 and c the same as for Eq. 12. Inhibitory weights for
the co-tuned profiles are chosen so that

w j = wIcorI(ζ j) + ε j, j = NE + 1, . . . ,NE + (NI/2) , (17)

where wIco is a normalisation factor for inhibitory weights fol-
lowing the co-tuned synaptic weight profiles, and are different
when combined with either the flat or the counter-tuned pop-
ulations.

We set the flat population such that

w j = wIf + ε j, j = NE + (NI/2) + 1, . . . ,N, (18)

where wIf is the average for the flat population. The shape of
the counter-tuned population was defined by

r̄I(µ) =
3
2

r(1) −
1
2

r(µ), (19)

and synapses were hence tuned such that

w j =
[
wIcounterr̄I(ζ j) + ε j

]
+
, j = NE + (NI/2) + 1, . . . ,N, (20)

where [·]+ is a rectifier (Eq. 8), used to enforce only positive
synaptic weights. The parameters wIcounter is a normalisation
factor for the counter-tuned inhibitory populations.

When plasticity was simulated, initial conditions for all
plastic inhibitory populations were flat with noise (Fig. 5, Fig. 7,
Fig. S1 and Fig. S3),

w j(0) = wIF + ε j, j = NE + 1, . . . ,N. (21)

Parameters used for the tuning curves are detailed in Table II,
and for synaptic weights in Table III. Both the average of the
weights for flat population, wIf, and the noise term, ε∗I , were
distinct for different simulations.

Plasticity models. In this work we used three different inhib-
itory synaptic plasticity (ISP) rules. We termed them Hebbian,
scaling, and anti-Hebbian. Both Hebbian and anti-Hebbian plas-
ticity rules are triggered by pre- and postsynaptic spikes, and
depend on a low-pass filter of these spike trains. The presyn-
aptic trace (low-pass filter) is given by

dx j(t)
dt

= −
x j(t)
τSTDP

+ S j(t), (22)

where x j(t) is the value of the trace of the spike train of presyn-
aptic afferent j at time t; τSTDP is the time constant of the trace,
and S j(t) is a sum of Dirac delta functions (Eq. 4) representing
the spike train of afferent j. The same is considered for the
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postsynaptic neuron,

dxpost(t)
dt

= −
xpost(t)
τSTDP

+ Spost(t), (23)

where xpost(t) is the postsynaptic trace, and Spost(t) is the spike
train of the postsynaptic neuron (Eq. 5). Note that we used the
same time constant for both pre- and postsynaptic traces.

Hebbian inhibitory plasticity. Precise balance of excitatory and
inhibitory inputs was learned by a Hebbian inhibitory plasti-
city rule6. The weight of the jth inhibitory synapse changes
according to

dw j(t)
dt

= ηH

[
x j(t)Spost(t) + xpost(t)S j(t) − αHS j(t)

]
, (24)

where ηH is the learning rate, andαH is a parameter that defines
the postsynaptic firing-rate. The first two terms on the right-
hand side of Eq. 24 are Hebbian terms that increase the weights
when both pre- and postsynaptic activities are correlated. The
last term on the right-hand side of Eq. 24 is a penalty term for
inhibitory spikes alone, which creates a homeostatic set-point
for the postsynaptic firing-rate given by

ρ0 ≈
αH

2τSTDP
. (25)

Later we describe how to arrive at this approximation.

Inhibitory synaptic scaling for flat tuning. One of the synaptic
weight profiles we used for inhibitory synapses was flat, i.e.,
every synapse group had the same strength. To learn the flat
profile from random initial weights we implemented a scal-
ing plasticity rule, partially based on experimental work that
observed synaptic scaling on inhibitory synapses48,49. Weights
are increased if the postsynaptic firing-rates are too high, and
decreased otherwise,

dw j(t)
dt

=ηswIs

[
ypost(t) − ρ0

]
Θ

(
ypost(t) − αsρ0

)
− ηsw j(t)

[
ρ0 − ypost(t)

]
Θ

(ρ0

αs
− ypost(t)

)
+ (26)

where ηs is a learning rate, ρ0 is a firing-rate reference value,
chosen to be the same as the one for Hebbian plasticity rule, Θ(·)
is the Heaviside function and αs is a term that sets the firing-
rate range for which synapses do not change. Postsynaptic
neuron’s firing-rate is computed with a slow averaging of the
postsynaptic activity through

dypost(t)
dt

= −
ypost(t)
τscaling

+
1

τscaling
Spost(t), (27)

where τscaling is the time constant for the postsynaptic activity
and Spost(t) is the postsynaptic spike train (Eq. 5). Note that the
last term on the right-hand side of the equation above is divided
by τscaling so that ypost(t) is in units of rate. Synaptic depression
is weight dependent while synaptic potentiation is not, which
ensures that all synaptic weights tend to the same value. When
the postsynaptic neuron is firing below a threshold ρ0/αs, all
inhibitory synapses in the flat group have their weights de-
creased proportionally to the difference between the target
firing-rate and the average firing-rate, but also proportional
to the current weight value. This way, strong synapses un-
dergo stronger decrease than weak ones. Conversely, when

the postsynaptic neuron is firing above a threshold αsρ0, the
same synapses increase in value by the same amount. Intuit-
ively, these mechanism ensures that all synapses converge to
the same value for a long run.

Anti-Hebbian inhibitory plasticity. The third inhibitory plasticity
rule we used is an anti-Hebbian rule based on experimental
data21–23 and theoretical work on recurrent networks24. Syn-
aptic weights change according to

dw j(t)
dt

= −ηaH(t)
[
x j(t)Spost(t) + xpost(t)S j(t) − αaHS j(t)

]
, (28)

where ηaH(t) is a variable learning rate and αaH is a parameter
to counterbalance the anti-Hebbian term. The resulting rule
dictates that coincident events decrease inhibitory synapses,
while non-coincident ones increase synaptic weights. Due to
the unstable nature of this plasticity rule (see details below),
we implemented a time-varying learning rate which evolves
according to

dηaH(t)
dt

= −
ηaH(t)
τaH

+ MaH(t), (29)

where τaH is the decay time constant for the learning rate, and
MaH(t) is an external signal to transiently activate plasticity. We
speculate that such signal could come from modulatory neur-
ons such as dopaminergic or cholinergic and assumed that the
external signal peaks at a time t0 (beginning of the simulation),
so that

MaH(t) = η∗aHδ(t − t0), (30)

where η∗aH is the maximum learning rate before decaying to
zero, and t0 is the time when plasticity at these synapses are
initiated. Parameters used for plasticity models are detailed in
Table IV.

Mean-field analysis of the plasticity rules. We were inter-
ested in plasticity rules with stable dynamics. For a better
intuition on fixed-point dynamics and stability we consider
here a simplified dynamics of a mean-field model for both the
Hebbian6 and the anti-Hebbian models. We define the post-
synaptic firing-rate as νpost(t) and the presynaptic firing-rates as
ν j(t). The traces of both presynaptic afferent and postsynaptic
neuron thus have an average of τSTDPν j(t) and τSTDPνpost(t),
respectively68. Neglecting any correlation between pre- and
postsynaptic spikes, the average weight change for Hebbian
synapses is given by〈

dw j(t)
dt

〉
= ηH

[
2τSTDPν j(t)νpost(t) − αHν j(t)

]
, (31)

where 〈·〉 represents average over time. Intuitively, the post-
synaptic firing-rate, νpost(t), changes negatively with changes in
inhibitory weights – increased inhibition generates fewer post-
synaptic spikes and vice-versa for decreased inhibition. This
means that average firing rates are inversely linked to average
inhibitory weights, i.e.,〈

dνpost(t)
dt

〉
∝ −

〈
dw j(t)

dt

〉
= 2ηHν j(t)τSTDP

[
αH

2τSTDP
− νpost(t)

]
.

(32)
The steady state is computed by considering the vanishing
point of the equation above (we assume that the presynaptic
activity is nonzero), thus

νpost(t) =
αH

2τSTDP
≡ ρ0. (33)
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This means that the postsynaptic activity νpost(t) increases (via
decreases in inhibitory efficacy) when below ρ0 and decreases
when above ρ0, creating a stable fixed-point for the postsyn-
aptic firing-rate.

The opposite is true for the anti-Hebbian plasticity rule.
Changes in postsynaptic firing-rate (with the same assump-
tion as for the Hebbian plasticity rule) follow〈

dνpost(t)
dt

〉
∝ νpost(t) −

αaH

2τSTDP
= νpost(t) − ρ1. (34)

Because postsynaptic activity increases when it is above
threshold ρ1 and decreases when it is below, this rule is un-
stable. The postsynaptic firing-rate eventually explodes or
vanishes. We chose the simplest way to overcome these prob-
lems by setting a time-varying learning-rate. Other intricate
mechanisms could be implemented, but this is not the scope of
our work.

Convergence of weights following the scaling plasticity rule.
Our scaling plasticity rule has two different mechanisms, one
for long-term depression (LTD) and one of long-term potenti-
ation (LTP): LTD is multiplicative and LTP is additive (Eq. 26).
The combined effect ensures that all incoming weights collapse
to the same value (synaptic changes do not depend on presyn-
aptic activity either). Here we present a mathematical intution
to explain how synaptic weights can converge to the same
value. First, we rewrite the scaling plasticity rule into two sim-
plified terms. We consider constant postsynaptic firing-rate
during LTD, ypost(t) = ȳLTD

post < ρ0/αs. Consequently, the LTD
part is described by

dw j(t)
dt

= −ηsw j(t)ȳLTD
post (35)

with solution

w j(t) = w(0) exp
(
−ηS ȳLTD

postt
)
. (36)

Doing the same for LTP (ypost(t) = ȳLTP
post > ρ0αs) we arrive in

dw j(t)
dt

= ηswIs ȳLTP
post (37)

with solution
w j(t) = w j(0) + ηswIs ȳLTP

postt. (38)

Defining tLTD
i as the ith interval in which LTD occurred and

tLTP
i as the ith interval in which the synapse underwent LTP we

can combine Eq. 36 and Eq. 38 (after a few lines of math) to
rewrite the synaptic strength, w j(t), at time t as

w j(t) =w j(0) exp

−ηs ȳLTD
post

TLTD∑
i=1

tLTD
i


+ ηswIs ȳLTP

post

TLTP∑
i=1

tLTP
i exp

−ηs ȳLTD
post

TLTD∑
k=i

tLTD
k

 , (39)

where TLTD and TLTP are the number of intervals with LTD and
LTP, respectively. Because synaptic scaling is a continuous pro-
cess, we can assume that LTP is always followed by LTD, and
vice-versa, and thus TLTD = TLTP ± 1. Taking into consideration
that the postsynaptic neuron’s firing-rate fluctuates around the

target firing-rate, ρ0, LTD and LTP occur with similar rates,

TLTP∑
i=1

tLTP
i ≈

TLTD∑
i=1

tLTD
i (40)

The first term on the right-hand side of Eq. 39 vanishes for
long times, and the second term dominates with the late terms
(i� 1, or, from TLTP − κ to TLTP for small κ),

lim
t→∞

w j(t) ≈ ηswIs ȳLTP
post

TLTP∑
i=TLTP−κ

tLTP
i exp

−ηs ȳLTD
post

TLTD∑
k=i

tLTD
k

 , (41)

which is finite given that the postsynaptic neuron’s firing-rate
fluctuates around the target firing-rate, ρ0. The final (stable)
weight depends on the time the system stays in LTD and LTP
after stabilisation, but not on the initial weight w j(0).

Correlation. We quantified the response of the postsynaptic
neuron to natural inputs with the Pearson correlation between
postsynaptic firing-rate and input firing-rate fluctuations, per
signal group. We computed the firing rate of a signal groups as
the low-pass filter of the spike trains of its excitatory afferents,

τZ
dZµ(t)

dt
= −Zµ(t) +

∑
j⊂µ

S j(t), (42)

where Zµ(t) is the firing rate of the signal group µ at time t,
filtered with a time constant τZ. The postsynaptic activity is
also computed through a low-pass filter of its spike train,

τY
dY(t)

dt
= −Y(t) + Spost(t), (43)

where Y(t) is the activity of the postsynaptic neuron at time t
filtered with a time constant τY. The correlation is then com-
puted as

Cµ =
cov(Zµ,Y)
σZµσY

=
〈(Zµ − 〈Zµ〉)(Y − 〈Y〉)〉√
〈(Zµ − 〈Zµ〉)2〉〈(Y − 〈Y〉)2〉

, (44)

where cov(z, y) is the covariance between variables z and y, σz
is the standard deviation of variable z, and 〈·〉 represents time
average.

Subsequently we computed a performance index ∆C as the
difference between the correlation measure for preferred (µ =
9) and non-preferred (µ = 1) input signals,

∆C =
1
2

(C9 − C1) . (45)

Maximum positive performance index, ∆C = 1, means that
the preferred signal group has maximum correlation (C9 =
1) while the non-preferred signal group has maximum anti-
correlation (C1 = −1), indicating that the postsynaptic neuron is
responding solely to the preferred signal group. Consequently,
∆C = −1, indicates that the postsynaptic neuron is responding
solely to the non-preferred signal group. A flat response is
indicated by ∆C = 0. Note that maximum ∆C (either positive
and negative) is only achievable if there is no overlap between
activation of preferred and non-preferred input signals, which
is never the case here. We define as best performance when
∆C = 0 for all inhibitory inputs active (control), ∆C = 1 (or
∆C > 0) for one inhibitory population inactive, and ∆C = −1
(or ∆C < 0) when the other inhibitory population is inactive.
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Parameters used for computing correlations are detailed in
Table V.

Implementation. Models were simulated with a time-step ∆t,
with either analytical or semi-analytical solution of the corres-
ponding differential equation. All codes were written in For-
tran, compiled with Intel Fortran Compiler 19.0, running on
an Intel-based Linux computer (Debian 9; i9-9900X processor;
32 GB memory). Bellow we describe how each equation was
implemented, with the parameter values in tables in the end
of this section.

When not in the refractory period (see below), the leaky
integrate-and-fire neuron is updated as

un+1 = un
∞

+
[
un
− un

∞

]
exp

[
−

∆t
τn

eff

]
, (46)

where n is the iteration index, un
∞

and τn
eff

are auxiliary variables
described by

un
∞

=
urest + gn

EEE + gn
I EI

1 + gn
E + gn

I

(47)

and
τn

e f f =
τm

1 + gn
E + gn

I

. (48)

This is the analytical solution when considering that all vari-
ables apart from u(t) are constant during a time-step, which we
refer to as semi-analytical.

When the membrane potential crosses a threshold from be-
low, the membrane potential is reset (because of a spike being
triggered), and kept at the reset potential for the duration of
the refractory period,

um = ureset, if un > uth, (49)

where
m = n + 1,n + 2, ...,n +

τref

∆t
. (50)

Synaptic conductances are implemented as

gn+1
E = gn

E exp
(
−

∆t
τE

)
+

NE∑
j

w jSn
j (51)

gn+1
I = gn

I exp
(
−

∆t
τI

)
+

NE+NI∑
j=NE+1

wn
j Sn

j . (52)

Note that here Sn
j is equal to one when afferent j spiked at

time-step n and zero otherwise.
For natural inputs, we updated the auxiliary variable yµ(t)

every ∆T,

yn+1
µ =

 yn
µ exp

(
−

∆T
τOU

)
+
√

∆Tξn
µ, if mod

(
n, ∆T

∆t

)
= 0

yn
µ, otherwise,

(53)

where mod(·, ·) is the modulo operation and ξn
µ is a random

number drawn from a gaussian distribution with zero mean
and unitary standard deviation. Presynaptic spikes are gener-
ated as point processes, so that at each time-step the probability
of a presynaptic afferent to spike is

pn
Eµ =

(
νE0

[
yn
µ

]
+

+ νEbg

)
∆t (54)

and pn
Eµ = 0 during the τEref/∆t iterations after a spike. The

same is valid for an inhibitory afferent; the probability of firing

an action potential is

pn
Iµ =

(
νI0

[
yn
µ

]
+

+ νIbg

)
∆t (55)

and pn
Iµ = 0 during the τIref/∆t iterations after a spike.

For pulse inputs, presynaptic afferents were set to fire at
background firing-rate and had an elevated firing-rate during
a 100-ms period, which was varied in 5 Hz steps. For the
activated pattern

pn
Eµ =


(
αEνkν∗ + νEbg

)
∆t, for n =

[
n0,n0 + 100 ms

∆t

]
νEbg∆t, otherwise,

(56)

where αEν adjusts the excitatory firing-rate, k is an integer for
varying the pulse intensity, and n0 is the iteration in which the
pulse starts. The same implementation was used for inhibit-
ory afferents (αInu being the parameter to adjust the inhibitory
firing-rate),

pn
Iµ =


(
αIνkν∗ + νIbg

)
∆t, for n =

[
n0,n0 + 100 ms

∆t

]
νIbg∆t, otherwise.

(57)

An afferent in an inactive pattern fires action potentials with
background frequency (pn

Eµ = νEbg∆t and pn
Iµ = νIbg∆t), and

there is no spike elicit in the refractory period (pn
Eµ = 0 and

pn
Iµ = 0 during the τEref/∆t and τIref/∆t iterations after a spike,

respectively).
Plasticity was implemented with spike triggered events. For

the Hebbian and anti-Hebbian plasticity rules, auxiliary vari-
ables changed as

xn+1
post = xn

post exp
(
−

∆t
τSTDP

)
+ Sn

post (58)

xn+1
j = xn

j exp
(
−

∆t
τSTDP

)
+ Sn

j , (59)

where Sn
post = 1 if the postsynaptic neurons generated an action

potential at iteration n and zero otherwise. Hebbian weights
changed according to

wn+1
j = wn

j + ηH

(
xn

post − αH

)
Sn

j + ηHxn
j Sn

post, (60)

and anti-Hebbian to

wn+1
j = wn

j − η
n
aH

(
xn

post − αaH

)
Sn

j − η
n
aHxn

j Sn
post, (61)

with the learning rate varying as

ηn+1
aH = ηn

aH exp
(
−

∆t
τaH

)
+ Mn

aH (62)

with M0
aH = η∗aH, and Mn

aH = 0 for n > 0.
Scaling was implemented with a different trace,

yn+1
post = yn

post exp
(
−

∆t
τscaling

)
+ Sn

post, (63)

with weight update following

wn+1
j =

 wn
j + ∆tηswn

j

[
yn

post − ρ0

]
, if yn

post < ρ0/αs

wn
j + ∆tηswIs

[
yn

post − ρ0

]
, if yn

post > αsρ0.
(64)
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Correlation-related variables were updated as

Zn+1
µ = Zn

µ exp
(
−

∆t
τZ

)
+

∑
j∈µ

Sn
j (65)

and
Yn+1
µ = Yn

µ exp
(
−

∆t
τY

)
+ Sn

post. (66)

Parameter Symbol Value Figs.

Membrane time constant τm 30 ms 4 – 8, S1 – S3
Resting potential urest −65 mV 4 – 8, S1 – S3
Excitatory reversal potential EE 0 mV 4 – 8, S1 – S3
Inhibitory reversal potential EI −80 mV 4 – 8, S1 – S3
Excitatory time constant τE 5 ms 4 – 8, S1 – S3
Inhibitory time constant τI 10 ms 4 – 8, S1 – S3
Spiking threshold uth −50 mV 4 – 8, S1 – S3
Reset potential ureset −60 mV 4 – 8, S1 – S3
Refractory period τref 5 ms 4 – 8, S1 – S3
Simulation time step ∆t 0.1 ms 4 – 8, S1 – S3

TABLE I. Simulation parameters for postsynaptic neuron.

Parameter Symbol Value Figs.

Number of excitatory afferents NE 3200 4 – 8, S1 – S3
Number of inhibitory afferents NI 800 4 – 8, S1 – S3
Number of signal groups P 16 4 – 8, S1 – S3
Refractory period for excitatory afferents τEref 5 ms 2, 4 – 8, S1 – S3
Refractory period for inhibitory afferents τIref 2.5 ms 2, 4 – 8, S1 – S3
Ornstein-Uhlenbeck process (OU) time constant τOU 50 ms 2, 4 – 8, S1 – S3
OU update time step ∆T 1 ms 2, 4 – 8, S1 – S3
Excitatory firing rate amplitude for OU νE0 5 Hz 2, 4 – 8, S1 – S3
Inhibitory firing rate amplitude for OU νI0 10 Hz 2, 4 – 8, S1 – S3
Excitatory background firing-rate νEbg 2 Hz 2, 4 – 8, S1 – S3
Inhibitory background firing-rate νIbg 4 Hz 2, 4 – 8, S1 – S3
Pulse amplitude reference ν∗ 5 Hz 4, 6, 8, S2
Excitatory ratio for pulse input αEν 1 4, 6, 8, S2
Inhibitory ratio for pulse input αIν 2 4, 6, 8, S2
Synaptic weight profile amplitude r0 4 4 – 8, S1, S3
Synaptic weight profile slope b 0.25 4 – 8, S1, S3
Preferred pattern index µ0 9 4 – 8, S1 – S3
Synaptic weight profile power c 2 4 – 8, S1 – S3
Simulation time step ∆t 0.1 ms 2, 4 – 8 – S1, S3

TABLE II. Simulation parameters for inputs.
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Parameter Symbol Value Figs.

Excitatory baseline weight wE0 0.5 4 – 8, S1 – S3
Noise parameter for excitatory weights ε∗E 0.01 4 – 8, S1 – S3
Inhibitory baseline weight (one inh. population) wI0 1.04 4, 8
Inhibitory baseline weight (co-tuned & flat) wIco 1.58 6, 8
Inhibitory baseline weight (co-tuned & flat) wIf 0.52 6, 8
Inhibitory baseline weight (co- & counter-tuned) wIco 2.43 8, S2
Inhibitory baseline weight (co- & counter-tuned) wIcounter 0.53 8, S2
Noise parameter for inhibitory weights ε∗I 0.01 4, 6, 8, S2
Inhibitory baseline weight (Hebbian & scaling) wIF 0.8 5
Noise parameter for inhibitory weights (Hebbian & scaling) ε∗I 0.3 5
Inhibitory baseline weight (Hebbian & anti-Hebbian) wIF 0.6 7
Noise parameter for inhibitory weights (Hebbian & anti-Hebbian) ε∗I 0.01 7
Inhibitory baseline weight wIF Varying S1, S3
Noise parameter for inhibitory weights ε∗I 0.01 S1, S3

TABLE III. Simulation parameters for weights.

Parameter Symbol Value Figs.

STDP time constant τSTDP 20 ms 5, 7, S1
Hebbian learning rate ηH 10−3 5, 7, S1
Hebbian decay term αH 0.2 5, 7, S1
Firing-rate set-point ρ0 5 Hz 5, 7, S1
Scaling time constant τscaling 1000 ms 5
Scaling learning rate ηs 5 × 10−7 5
Scaling learning rate weight wIs 0.6 5
Scaling threshold parameter αs 2 5
Anti-Hebbian initial learning rate η∗aH 10−3 7
Anti-Hebbian learning rate time constant τaH 200 s 7
Anti-Hebbian increase term αaH 0.6 7
Anti-Hebbian peak time t0 0 ms 7
Simulation time – 30 mins 5, 7, S1

TABLE IV. Simulation parameters for plasticity rules.

Parameter Symbol Value Figs.

Presynaptic time constant τZ 10 ms 4, 6, 8, S2, S3
Postsynaptic time constant τY 250 ms 4, 6, 8, S2, S3
Simulation time – 30 mins 4, 6, 8, S2, S3

TABLE V. Simulation parameters for correlation measure.

Agnes, Luppi, Vogels (2019) 17 Attentional switch in sensory circuits

.CC-BY 4.0 International licenseunder a
not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available 

The copyright holder for this preprint (which wasthis version posted December 19, 2019. ; https://doi.org/10.1101/729988doi: bioRxiv preprint 

https://doi.org/10.1101/729988
http://creativecommons.org/licenses/by/4.0/


Supplementary figures of
Complementary inhibitory weight profiles emerge from plasticity and allow attentional switching of receptive fields

Everton J. Agnes, Andrea I. Luppi, and Tim P. Vogels

A

signal index

w
ei

gh
t

1 4 7 10 13 16

initial conditions

time [min]

ra
te

 [H
z]

0.1

10

1000

0 10 20 30

target = 5 Hz
B C

ra
te

 [H
z]

0

2

4

6

0 0.5 1 1.5

init. weight [1]

w
ei

gh
t [

1]

time [min]

0

0.5

1

1.5

0 10 20 30

9
7/10

6/11

5/12

w(0) = 0.75

fin
. w

ei
gh

t [
1]

0

0.5

1

1.5

0 0.5 1 1.5

signal index

E F G

-1
-0.5

0
0.5

1

1 4 7 10 13 16

to
t. 

w
ei

gh
t [

1]

init. weight [1]

E
I1
I1+I2

target

0

1

2

3

w
ei

gh
t [

1]

1 4 7 10 13 16

signal index

0

1

2

3
D

w(0) = 0 w(0) = 0.3

w(0) = 0.45 w(0) = 0.6 w(0) = 0.75

1 4 7 10 13 16

w(0) = 0.9

1 4 7 10 13 16

w(0) = 1.05 w(0) = 1.2

0

1

2

3

w(0) = 0.15

FIG. S1. Inhibitory plasticity acting on one inhibitory population compensates global inhibition from a second inhibitory population.
A, Schematic of the synaptic weight profile for excitatory synapses (red) and different initial conditions for inhibitory synapses (pink to purple
colour-code). Inhibitory population 1 has its inhibitory synapses changing according to a plasticity mechanism while population 2 remains fixed.
B, Time-course of the postsynaptic firing-rate for different initial conditions (colours as in A). Inhibitory plasticity on population 1 is set to achieve
a balanced state with target of 5 Hz (arrowhead). C, Stabilised postsynaptic firing-rate as a function of the initial inhibitory synaptic weight.
D, Individual synaptic weight profiles for excitatory (red), inhibitory population 1 (blue, after synaptic stabilisation), and inhibitory population 2
(colour coded as A). E, Total synaptic weight per signal (excitatory minus inhibitory) for different initial conditions after stabilisation of synapses
from population 1. F, Example of synaptic dynamics of inhibitory population 1 for a given initial condition. Colours represent different signal
groups. G, Final weights as a function of initial inhibitory weights. Plotted are excitatory (red), plastic inhibitory (blue) and sum of total inhibitory
synapses (grey).
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