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Abstract

We present a flexible, open source R package designed to obtain additional biological

and epidemiological insights from commonly available serological datasets. Analysis of

serological responses against pathogens with multiple strains such as influenza pose a

specific statistical challenge because observed antibody responses measured in

serological assays depend both on unobserved prior infections and the resulting

cross-reactive antibody dynamics that these infections generate. We provide a general

modelling framework to jointly infer these two typically confounded biological processes

using antibody titres against current and historical strains. We do this by linking latent

infection dynamics with a mechanistic model of antibody dynamics that generates

expected antibody titres over time. This makes it possible to use observations of

antibodies in serological assays to infer an individual’s infection history as well as the
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parameters of the antibody process model. Our aim is to provide a flexible inference

package that can be applied to a range of datasets studying different viruses over

different timescales. We present two case studies to illustrate how our model can infer

key immunological parameters, such as antibody titre boosting, waning and

cross-reaction, and well as latent epidemiological processes such as attack rates and

age-stratified infection risk.

Introduction 1

Serological assays measure the interaction of a virus with the antibody repertoire of an 2

individual host [1]. Originally developed in the mid-20th Century, assays based on 3

haemagglutination inhibition (HI) and viral neutralization (VN) are still widely used 4

and are highly repeatable within the same lab [2]. These assays can be setup relatively 5

easily when viral culture systems are in place and require no specialist kits. Usually, 6

serum is diluted in 2- or 4-fold steps. Limiting dilutions with higher titres indicate a 7

stronger antibody response, whereas titres below the limit of detection indicate the 8

absence of a significant response. In influenza, ‘lower than 1:10’ is often the minimum 9

reading and dilutions of 1:1024 or higher indicate strong antibody responses. The 10

longevity of antibodies such as IgG make serological assays a key tool in epidemiological 11

surveillance, particularly where virological assays are not possible and symptoms are 12

non-specific or non-existent [3–6]. When only a single sample is available for an 13

individual, a threshold titre is often used as evidence of prior exposure or protection or 14

both, for example the commonly used threshold of 1:40 for influenza [7, 8]. 15

Paired blood samples and serological assays using known circulating strains can be 16

used to estimate exposure within a specific period of time. Samples taken before and 17

after an influenza season for which the main circulating strain is known can therefore be 18

used to infer attack rates [9–11]. Samples are usually processed as a pair to limit the 19

impact of between batch variability in testing. A ≥ 4-fold rise in titre against the 20

circulating strain (homologous titre) between the pre- and post-exposure samples is 21

typically assumed to be evidence of influenza infection. Because there is a degree of 22

subjectivity in the characterization of a sample being a limiting dilution, a ≥ 4-fold 23

difference, within a 2-fold dilution scheme, is deemed to be more robust against human 24
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error than a ≥ 2-fold difference in assessing the presence of haemaglutination (for HI) or 25

cell death (for VN) in each well of the assay plate [12, 13]. However, a Bayesian analysis 26

of titre rise data has suggested that the somewhat arbitrary fourfold rise hides a 27

substantial number of lesser true titre rises that may represent missed infections [14]. 28

Individual-level differences in age, infection history, time between exposure and 29

measurement, and virus-specific effects likely all play a role in generating sub-fourfold 30

titre rises [15–18]. 31

Cross-reactivity complicates the interpretation of serological results when an 32

individual may have been exposed to two or more antigenically related viruses. Two 33

pathogens are considered antigenically related if exposure to one generates a 34

cross-reactive antibody response to the other in a serological assay. For example, 35

antibody responses against one dengue virus serotype can cross-react with another [19], 36

as well as other flaviviruses such as Zika virus [20,21]. Moreover, sequential lineages of 37

individual influenza A subtypes cross-react with their precursors and progeny [22]. One 38

popular use of HI assays is to assess the cross-reactivity between current influenza A 39

sub-types. Naive ferrets are inoculated with one of a panel of current reference strains 40

to produce virus-specific serum. HI titres are then measured for potentially novel 41

viruses using stocks of these reference ‘antisera’ [23]. 42

Recently, there have been a number of initiatives to refine the analyses of commonly 43

available serological data. Antigenic cartography was developed to reduce complex 44

tables of HI readings for novel viruses and reference antisera to two dimensional space, 45

visualised as an ‘antigenic map’ [23–25]. An individual’s entire antibody repertoire 46

against an antigenically variable pathogen can be then projected as a surface over these 47

antigenic maps, with the height of the surface at any specific point indicating the 48

expected titre for that individual against a strain at that location in the map [26]. 49

These ‘antibody landscapes’ can be used to generate biological insight by investigating 50

how antibody profiles develop over an individual’s life [27]. Further, compartmental 51

transmission models can be defined with explicit strata for each serological assay result 52

and used to test hypothesis about the interplay of social mixing and pre-existing 53

immunity [28]. These approaches retain much of the information present in the 54

magnitude of an assay measurement that may be lost when using seroconversion and 55

seropositivity thresholds. 56
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Here, we present the R package serosolver, which is the latest version of a code 57

base developed specifically to increase the epidemiological insight available from 58

serological assays [27,29]. Serosolver takes assay results from one or more serum 59

samples for an individual, which may have been tested against one or more related viral 60

strains, and infers a history of infections for that individual that is consistent with the 61

observed titres. It can jointly estimate the process parameters for the antibody kinetic 62

process by simultaneously inferring infection histories for many people. We use a 63

Bayesian approach and obtain correlated samples from the posterior densities for 64

infection histories and process parameters. The required assumptions for some priors 65

are straightforward and may incorporate previously observed immunological phenomena. 66

Prior assumptions for infection histories and the process that generates them can also 67

be incorporated, but can require additional justification, as we shall discuss. 68

The basic inference challenge can be summarised as follows. For a given set of 69

serological data (Y , which may include assay measurements against one or more 70

strains), we wish to obtain the joint posterior distribution of the process parameters (θ), 71

individual infection histories (Z) and temporal probability of infection in the population 72

(φ). This posterior is proportional to three components: (i) the observation and 73

antibody process models f(Yi|Zi, θ), which give the likelihood of observing a set of 74

titres Yi for each individual i at serum sampling times (ti), given infection history Zi 75

and process parameters θ; (ii) the transmission level P (Zi,j |φj), which gives the 76

probability of individual i having an infection with the strain circulating in time period 77

j, given population infection probability φj ; and (iii) the prior level, giving the prior 78

probability for the process parameters, P (θ) and the prior probability of any infection 79

at each time period j, P (φj). This results in the following expression: 80

P (Z,φ, θ|Y ) ∝
n∏
i=1

( ∏
k∈ti

f(Yi,k|Zi, θ)

jmax∏
j=jmin

P (Zi,j |φj)P (φj)
)
P (θ) (1)

First we outline how this expression is flexibly implemented in the serosolver 81

package, then we show how the package can be applied to cross-sectional and 82

longitudinal influenza data from China and Hong Kong to infer key epidemiological and 83

immunological values. 84
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Design and Implementation 85

Antibody process model 86

For a given individual infection history and set of biological parameters, the antibody 87

process model generates a set of expected log titres for that individual against all 88

possible test strains. Following previous work [27], the expected log titre individual i 89

has against the strain that circulated at time j when observed at time k is defined as a 90

linear combination of the contribution of antibody responses from each prior infection: 91

Xi,j,k =
∑
m∈Zi

s(Zi,m) [µ1d1(j,m) + µ2w(m, k) d2(j,m)] (2)

The model components are defined by: 92

1. Long-term boosting. This is defined by a parameter µ1, equivalent to the expected 93

persistent rise in titre against a homologous strain following primary infection. 94

2. Short-term boosting. The transient component of the antibody dynamics is 95

defined by µ2w(m, k) = µ2 max{0, 1− ωtm}, where µ2 is the boost in titre, ω is a 96

waning parameter to be fitted, and tm = k −m is the time since infection with 97

strain m. 98

3. Long-term cross-reactive antibody response from related strains. We assume the 99

level of cross-reaction between a test strain j and infecting strain m ∈ Zi 100

decreases linearly with antigenic distance (see Data section below for definition). 101

The cross-reaction function is d1(j,m) = max{0, 1− σ1δm,j}, where δm,j is 102

antigenic distance between strains j and m, and σ1 is a fitted parameter. 103

4. Short-term cross-reactive antibody response. Similar to the long-term response, 104

except this can wane over time. Cross-reactivity between a test strain j and 105

infecting strain m is defined as d2(j,m) = max{0, 1− σ2δm,j} 106

5. Antigenic seniority by suppression. This results in lower titres from later 107

infections in comparison to earlier ones. In the model, this works by scaling the 108

titre contribution by a factor s(Zi,m) = max{0, 1− τ(Nm − 1)}, where Nm is the 109

infection number (i.e., primary infection is 1, secondary is 2) and τ is a fitted 110
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parameter. 111

The antibody process model can be reduced to simpler models by setting certain 112

parameter values equal to 0. For example, a model without antigenic seniority can be 113

created by setting τ = 0 or a model with only waning responses by setting µ1 = 0. 114

In addition, serosolver can been extended to include more complex antibody 115

kinetics, as described in Supplementary Material 2. We note that the additional 116

immunological phenomena described in Supplementary Material 2 are not exhaustive, 117

and additional mechanisms may easily be implemented by making minor modifications 118

to the package code. 119

Antigenic distance 120

The antibody process model described in Equation 2 includes parameters which 121

describe short- and long-term cross-reactive antibody processes. These processes depend 122

on a metric of antigenic distance between each pair of strains [23]. In the model, the 123

antigenic distance δm,j between strains m and j is therefore defined by a matrix of 124

pairwise distances. Serosolver can accommodate antigenically varying strains (all δm,j 125

are specified) or a single homologous strain (all δm,j = 0). The extent to which strains 126

are antigenically distinct or similar can be described using the distance matrix. 127

Observation model 128

The expected titre Xi,j,k defined in Equation 2 feeds into the observation model, which 129

converts the continuously valued model predicted titre into a discrete observed titre. 130

The distribution of the observed titre consists of a normally distributed random variable 131

g(s) with mean Xi,j,k and variance ε, which is then censored to account for 132

integer-valued log titres in the assay. Hence the probability of observing an empirical 133

titre at time k within the limits of a particular assay Yi,j,k ∈ {0, ..., Ymax} given 134

expected titre Xi,j,k is, 135

P (Yi,j,k|Xi,j,k) = f(Yi,j,k|Zi, θ) =


∫ Yi,j,k+1

Yi,j,k
g(s)ds if Yi,j,k ∈ {1, Ymax − 1} ;∫ 1

−∞ g(s)ds if Yi,j,k = 0 ;∫∞
Ymax

g(s)ds if Yi,j,k = Ymax .

(3)
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Serosolver includes an additional option to include strain-specific measurement bias, 136

which may arise through strain-specific differences in assay reactivity [26,30–32]. 137

Specifically, an additional observation error is added to the predicted log antibody titres; 138

this measurement error can be different for each individuals strain or can be specified 139

for a group (or cluster) of strains. The predicted titre X ′i,j,k taking into account 140

strain-specific measurement bias is given as: 141

X ′i,j,k = Xi,j,k + χj (4)

Where χj is the measurement offset for strain j. The hierarchical form of the 142

measurement bias term may also be specified by the user: χj may be estimated as an 143

independent parameter for each j; may be assumed to come from a hierarchical 144

distribution χj ∼ N (χ̄, σ2
χ); and may be fixed for particular strains/groups e.g., fixing 145

χ̄ = 0 or χjmax = 0. 146

Infection history model 147

Serosolver tracks each individual’s infection history as a binary vector of latent states 148

indicating the presence (1) or absence (0) of infection, where each element of the vector 149

represents a time period during which individuals could be infected. The set of infection 150

histories for the sample population are therefore described by a binary matrix, Z, where 151

each row represents an individual, i, and each column represents a time, j, at which an 152

individual could be infected once. The probability of the infection history matrix, P (Z) 153

is given by, 154

P (Z) =

n∏
i=1

jmax∏
j=jmin

(
P (Zij |φj)P (φj)

)
. (5)

Each infection event (Zi,j) is the outcome of a single Bernoulli trial, with probability 155

P (Zi,j |φj) = φ
Zi,j

j (1− φj)Zi,j . The choice of the prior distribution for the probability of 156

infection, P (φj), is discussed below and in further detail in Supplementary Material 1. 157

The time resolution of infection times may be set by the user depending on the data; 158

frequent sampling times affords greater time resolutions (e.g., months), whereas less 159

frequent sampling may be better suited to cruder time resolutions (e.g., years). 160
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The infection history posterior can be used to calculate a key epidemiological 161

measure of interest: the population attack rate over time. Attack rates can be inferred 162

through combining inferred infection histories post-hoc to estimate the proportion of at 163

risk individuals (those that were alive and in the sample) that were infected in a given 164

time period. Summing the columns of the infection history matrix gives the total 165

number of infections for a given time period, whereas summing the rows give the total 166

number of lifetime infections for an individual. To ensure biological plausibility, 167

individual infection histories are constrained to prevent infections before an individual is 168

born and after the last time at which a serum sample was taken. A key feature of the 169

package is that the user is given control over the prior assumptions for the infection 170

history and the probability of infection in each time unit (months, years etc). 171

Application to influenza A/H3N2 172

The initial development of serosolver focused on influenza A/H3N2, which has 173

circulated in human populations since 1968 and has undergone substantial antigenic 174

evolution over this time [23,32–34]. Figure 1 illustrates how our analytical approach 175

applies to influenza A/H3N2. In this case, we make the assumption that the antigenic 176

distance between strains can be described by a two-dimensional distance, with strains 177

moving through the space over time. The expected log antibody titre for a given 178

individual against a specific strain at a specific time can therefore be predicted using 179

this antigenic distance map, the antibody process model described by Equation 2, and 180

the individual level infection histories. Finally, the observed log antibody titres can be 181

used to infer individual level infection histories and antibody process parameters based 182

on time of sampling and the observation model. 183

Data 184

The serosolver package requires two datasets as inputs. The first is an antigenic map, 185

which defines the two-dimensional location of viruses that circulated at each time point 186

during the period of interest, and hence can be used to calculate the pairwise antigenic 187

distance between any two viruses (i.e., δm,j in the antibody process model, for strains m 188

and j). The model automatically sets the potential period during which individuals 189
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Fig 1. Conceptual overview of the analytical approach used in serosolver,
as applied to influenza A/H3N2. Top panel: antigenic map for influenza
A/H3N2 using coordinates from [23], with different viruses coloured by year of isolation.
Solid points show centroids across all strains isolated in a given year, hollow points show
individual strains. Dashed line shows an antigenic summary path, generated by fitting a
smoothing spline through the observed isolates. Points further apart in space are less
cross-reactive. Middle panel: conceptual illustration of the antibody kinetics model.
An individual is infected with the orange virus, which results in boosting and waning of
homologous antibody titres. In parallel, antibodies that cross react with viruses at
different points in antigenic space also boost and wane (green and blue viruses). The
individual is later infected by the green virus, which leads to further boosting and
waning of antibodies. Bottom panel: HI titres measured from serum samples taken at
different times capture different parts of the homologous and cross reactive antibody
kinetics. Different sampling strategies will represent different subsets of these
measurements e.g., a cross-sectional study might inform a single subplot, whereas a
longitudinal study might inform just the orange bars from each of the three subplots.
Clearly a sampling strategy with multiple serum samples and many viruses tested per
sample will provide the most information.
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could have been infected based on the earliest and latest circulating strains in the 190

antigenic map. 191

The second dataset consists of individual-level log titres against one or more viruses 192

defined in the antigenic map. Each titre measurement is accompanied by a sampling 193

time k (i.e., when the serum sample was collected) and strain circulation time j (i.e., 194

when the strain was originally isolated). 195

Inference 196

Prior assumptions 197

Inference in serosolver is fully Bayesian, which means priors must defined for all 198

model parameters and infection histories. The priors on the antibody process 199

parameters are uniform by default, but users may create their own prior function, which 200

may be based on previous analyses. For example, constrained estimates for the short 201

term antibody waning parameters may be used to specify strong beta or Gaussian 202

priors on some of the antibody kinetics parameters for analyses where serum samples 203

may be poorly suited to inform such short term effects. 204

Priors on the infection histories require more consideration, as the prior also 205

captures any assumptions regarding the infection generating process. Because the 206

number of potential infection times and strains can be vast, the contribution of the 207

infection history prior must be well characterised to avoid any unforeseen bias during 208

inference. The prior assumption on the functional form of φ, whether individual 209

infection risks are independent at a given time j, and whether an individual’s risk of 210

infection depends on infection outcomes at previous times can have important 211

implications for the prior on key infection history summary metrics, such as the attack 212

rate in a given time period and the lifetime number of infections for an individual. 213

Although the literature for Bayesian variable selection presents a number of 214

potential options, infection states are influenced by epidemiological and immunological 215

structures that are not well characterised by standard prior assumptions (i.e., highly 216

dispersed attack rates and variation in individual-level susceptibility) [35]. We therefore 217

provide the user with flexibility in the assumed infection history and attack rate priors, 218

with different prior assumptions each bringing their own biases and rationale. 219
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Serosolver includes four infection history prior options. We summarise these priors in 220

the main text, though an extensive discussion is provided in Supplementary Material 1. 221

Hyper-prior on the probability of infection over time, version 1: Under 222

this prior, the probability of infection is given by φj . The infection generating process is: 223

φj ∼ f(j) (6)

Zi,j ∼ Bernoulli(φj) (7)

where f is a user specified function describing the prior distribution on φ, P (φj). By 224

default, f is the uniform distribution, φj ∼ unif(0, 1), though it may be set to 225

incorporate information related to transmission such as seasonality or changes in social 226

behaviour. 227

Beta prior on the probability of infection over time, version 2: As in prior 228

1, this prior assumes that individuals are under a common infection process during a 229

given window of time. However, by placing a beta prior with parameters α and β and 230

integrating over values for φ, each φ need not be estimated explicitly. We have found 231

that this improves convergence of the model fitting framework. The infection generating 232

process is: 233

φj ∼ Beta(α, β) (8)

Zi,j ∼ Bernoulli(φj) (9)

The probability of infection in a given time period is independent of other time 234

periods, but dependent on the infection status of other individuals in the population at 235

that time. The prior on the per-capita attack rate is therefore a beta distribution, and 236

the prior on the lifetime number of infections for any individual follows a binomial 237

distribution. 238

Beta-binomial prior on the total number of infections during an 239

individual’s life, version 3: Unlike priors 1 and 2, this prior assumes that an 240

individual’s risk of infection at a given time is independent of all other individuals. 241

Rather, a prior is placed on the total number of infections that an individual is expected 242

to experience over the course of their life. This is the prior used in our previous 243
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work [27]. The infection generating process is assumed to be: 244

pi ∼ Beta(α, β) (10)

Zi,j ∼ Bernoulli(pi) (11)

The prior on the per-capita attack rate across all individuals therefore follows a 245

binomial distribution, and the prior on the lifetime number of infections for any 246

individual follows a beta-binomial distribution, with parameters α and β that can be set 247

by the user. 248

Beta prior on the probability of any infection, version 4: In the final prior 249

version, infection states are assumed to be independently and identically distributed 250

with respect to both time and individual under the following infection generating 251

process: 252

φ ∼ Beta(α, β) (12)

Zi,j ∼ Bernoulli(φ) (13)

This assumption places a beta-binomial prior on both the number of infections at a 253

given time j (the attack rate) and the number of lifetime infections experienced by 254

individual i. 255

Markov Chain Monte Carlo 256

Serosolver uses a custom, adaptive Markov Chain Monte Carlo (MCMC) framework 257

to sample from the joint posterior distribution of θ and Z conditional on the antibody 258

titre data (Equation 1). The package jointly estimates θ and Z using a 259

Metropolis-Hastings algorithm, alternating between sampling values for θ and Z. The 260

MCMC framework automatically tunes the proposal step size for θ, and changes the 261

number of individuals sampled for Z to achieve a specified acceptance rate. Given that 262

MCMC sampling of binary variables is a challenging problem [35,36], serosolver 263

includes additional custom proposal steps included for Z to improve chain mixing. The 264

full sampling algorithm for Z is described in Supplementary Material 1. Briefly, the 265
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algorithm uses a random-scan Metropolis-within-Gibbs proposal on infection histories to 266

either propose new infection states or swap the times of existing infection states. These 267

steps were developed to improve MCMC mixing when the infection states in adjacent 268

time periods may be highly correlated. Where automated tuning is insufficient to 269

achieve good mixing, all of the parameters controlling the proposal algorithm are 270

exposed to the user to be changed manually from their default values. 271

MCMC diagnostics 272

To ensure reliable MCMC model fitting, thorough convergence diagnostics must be 273

calculated to ensure that separate MCMC chains have converged on the same 274

distribution, are not trapped in local modes and provide estimates of the posterior 275

distribution with sufficient sample size. Serosolver includes functions to test these 276

criteria in two broad categories: (i) visual assessment of convergence and goodness of fit; 277

(ii) metrics of convergence checking between-chain agreement, auto-correlation and 278

effective sample size. Alongside existing tools in the coda and bayestools 279

packages [37,38], these functions include: MCMC trace and density plots for antibody 280

kinetics parameters; MCMC trace and density plots for inferred attack rates over time; 281

MCMC trace and density plots for inferred infection histories; model predicted titres 282

plotted against observed titres; and inferred attack rates over time. MCMC chain 283

outputs are written to disk during the fitting procedure, and the chain outputs are 284

compatible with the coda and bayesplot R packages. The full posterior distribution of 285

infection states as augmented data is therefore easily recoverable for further analysis, for 286

example regression analysis of numbers of infections during some period of time. 287

Implementation 288

In serosolver, model inputs and assumptions may be changed depending on the 289

serological data and hypotheses under consideration. For example, in some cases the 290

user may be most interested in short-term, fine-scale (e.g., weekly or monthly) dynamics 291

of infection; in other situations, long-term annual dynamics may be of interest. 292

Furthermore, although much of the development of this package came from analysis of 293

influenza A/H3N2 dynamics, these concepts and inputs are easily adaptable to 294
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antigenically stable pathogens by specifying the input antigenic map. 295

The package work flow is divided into a number of distinct stages, which handle the 296

data and parameter inputs, simulation, inference, posterior diagnostics, and analysis 297

(Fig 2) We developed the package to rely on only a few function calls for each of these 298

stages, but with ample room for customisation and flexibility at each stage. 299

To set up the model, users only need to provide: a data frame describing the model 300

parameters (they can also change a flag to fix or estimate any of the parameters); a 301

data frame with the antibody titre data in long format; and an antigenic map describing 302

the antigenic relationship between each strain. Examples of a typical data cleaning 303

workflow are provided in Supplementary Material 4. 304

Serosolver allows users to create their own likelihood and prior functions on top of 305

those provided by default, requiring only that they return a vector of likelihoods (one 306

per individual), and accept arguments for a vector of parameters (matching those 307

defined in the general serosolver model) and the infection history matrix. Users can 308

specify which prior assumption about infection histories is used, as specified above. In 309

addition to the range of inbuilt options, the modular workflow of serosolver means 310

that custom extensions tailored to particular problems should be readily achievable with 311

only minor modifications to the code. In particular, alternative antibody kinetics 312

models that capture pathogen-specific immunology and alternative assumptions about 313

the infection history generating process. 314

It is essential to run multiple chains to assess mixing properties and potential bias in 315

any MCMC analysis. Furthermore, model comparison and sensitivity analyses are a 316

common output of model fitting analysis. It is simple to use serosolver with a parallel 317

back-end, either through a computing cluster or locally with packages such as 318

doParallel [39] to generate multiple chains in parallel. The accompanying vignettes 319

(Supplementary Material 3 and Supplementary Material 4) demonstrate how multiple 320

chains may be run in parallel locally, but we note that much of our own work with 321

serosolver is done using a high performance cluster. 322
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Fig 2. Inputs and outputs for the serosolver R package. The package has two
sets of inputs to define data and parameters. These feed into the process model that
can either be used to simulate data by itself, or combined with observed data and
MCMC to obtain three posterior outputs: individual-level infection histories, population
probability of infection, and biological parameters. Once these posteriors have been
obtained, serosolver can run MCMC diagnostics and plot key immunological and
epidemiological processes

Results 323

We present two case studies to highlight the range of insights that serosolver can 324

generate from serological samples. These cover two types of study designs commonly 325

used to examine epidemiological and immunological dynamics using serological data, 326

which can be thought of as subsets of the observations shown in Fig 1, bottom panel. 327

The first is a serological survey testing individuals against a single homologous strain, 328

which can reveal short-term epidemic dynamics, analogous to observing each of the bars 329

of a single colour from Fig 1. We use data from a longitudinal study conducted in Hong 330

Kong between 2009 and 2011 to estimate short-term antibody kinetics parameters 331

against A/H1N1pdm09 in a population with no prior immunity. The second type of 332

study design involves testing samples against a panel of previously circulating strains, 333

which can provide insights into historical patterns of infection, analogous to observing 334

all of the bars within a single serum sample from Fig 1. To illustrate this application, 335

we apply the package to cross-sectional samples tested against a panel of historical 336

A/H3N2 influenza strains to infer infection histories and antibody kinetics. 337

Case Study 1 338

The first case study uses data from a cohort study in Hong Kong during and after the 339

2009 A/H1N1pdm09 outbreak [40]. With repeat serological samples tested against a 340
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given virus, serosolver can reconstruct the unobserved infection dynamics from 341

measured titres collected several months apart. It is also possible to examine these 342

infection dynamics stratified by available demographic variables, such as vaccination 343

status (Fig 3A) and age (Fig 3B). Finally, we can estimate biological parameters 344

shaping the short-term antibody response (Fig 3C). 345

We were able to estimate quarterly exposure rates, which could include either 346

infection or vaccination. The inferred peaks in exposure rates are consistent with the 347

observed two waves of the 2009 pandemic. We investigated the impact of vaccination 348

status and age on inferred exposure rates. We found differences in exposure rates in 349

vaccinated individuals compared to unvaccinated individuals, with higher overall 350

exposure rates in vaccinated individuals. Intuitively, we would expect infection rates to 351

be lower in vaccinated individuals; however, the converse suggests that vaccination 352

causes boosts in antibody titres that are being inferred as infections. Thus, an 353

individual’s vaccination status is an important consideration when using serological data 354

to infer infection history. Additionally, we observed clear differences in age-stratified 355

exposure rates with exposure rates highest among adults and children, and lowest 356

among the elderly, confirming previous findings of age-stratified exposure rates during 357

the 2009 pandemic [41]. Finally, we aimed to characterise the short-term immune 358

response following infection by estimating short-term antibody kinetics parameters. We 359

found that there is a strong short term boost (16-fold rise) in antibody titre following 360

infection which wanes by 3% every 4 months. 361

To assess whether data contain enough information to reliably estimate the infection 362

histories and biological process parameters, serosolver can be used to run a 363

simulation recovery study. For example, if data of the same structure as the 364

A/H1N1pdm09 outbreak in Hong Kong are generated using plausible parameter 365

values [27], it is possible to re-infer these parameters (Fig 4B) alongside the 366

individual-level infection histories (Fig 4C) and overall probabilities of infection 367

(Fig 4A). However, depending on the sampling frequency, number of tested strains and 368

number of repeat measurements, there are varying levels of information to estimate 369

these quantities. When antibody titre data is sparse, the priors placed on either the 370

antibody parameters, infection histories or probability of infection parameters will have 371

a greater effect on the estimation performance. We therefore recommend routine 372
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Fig 3. Influenza A/H1N1pdm09 infection dynamics in Hong Kong cohort.
A: Exposure rates in unvaccinated individuals. Red line shows median estimate from
serosolver, with 95% credible intervals (CI); black line shows reported A/H1N1pdm09
isolates. B: Age-specific infection rates in unvaccinated individuals. Lines show median
estimates from serosolver for each age group (red: <19, green: 19-64, blue: >64) with
95% CI. C: Posterior densities of process parameter estimates. Dashed vertical lines
represent 2.5th, 50th, and 97.5th percentiles.

implementation of simulation recovery on new data to ensure that the most suitable 373

model is being applied to the data available. 374

Case Study 2 375

The second case study considers cross-sectional serological samples collected in southern 376

China in 2009, which were tested against nine historical influenza A/H3N2 strains that 377

circulated between 1968 and 2008 [29,42]. Serosolver can be used to reconstruct 378
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Fig 4. Simulation-recovery of parameter and infection estimates using
simulated single strain longitudinal data in same format as the Hong Kong
dataset. A: Model estimated attack rates versus ‘true’ attack rates. Solid line shows
estimated attack rate with 50% and 95% credible intervals (CI); green dashed line shows
true attack rates. B: ‘True’ process parameters used for simulation compared to
estimated posterior densities. Black solid vertical lines indicate true parameter values;
dashed vertical lines represent 2.5th, 50th, and 97.5th percentiles. C: Model predicted
titres and inferred infections compared to observed titres and known infections. Black
points indicate observed titres; black lines indicate posterior median model predicted
titres; green shading shows 50% and 95% CI on model predicted latent titres; dashed
vertical lines indicate the timings of true infections; blue shading indicates posterior
probability of infection.

several features of the epidemiological and immunological dynamics. First, Fig 5A 379

shows substantial variation in the inferred historical attack rates of A/H3N2, with clear 380

periods of high incidence interspersed by periods of very low incidence (range of 381

posterior medians: 3.63% to 95.2%). In these analysis, we used a weakly informative 382

prior on the annual attack rate with a mode of 15% with prior version 2. Our posterior 383

estimates were very similar to this, with a median inferred attack rate of 14.6%, 384

suggesting either agreement between the data and prior or a lack of information in the 385

data. We also identified clear age-specific patterns of infection. Fig 5D shows the 386

median number of infections per 10 years alive stratified by age at the time of exposure. 387
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These results agree with previous analyses that individuals are infected, or at least 388

experience antibody boosting, less frequently as they get older [27]. Fig 5E shows the 389

proportion of individuals infected at least once by a virus from each of the 14 antigenic 390

clusters considered here stratified by age at the time of exposure. Inference of long-term 391

biological parameters suggested that individuals experience a long-term antibody boost 392

mu1 of 2.24 log units (posterior median, 95% CI: 1.95-2.51), corresponding to 393

approximately a 4-fold boost to long term homologous titres that wanes with antigenic 394

distance (long term cross reaction σ1 = 0.105 posterior median, 95% CI: 0.0962-0.113) 395

and decreases with each successive exposure (antigenic seniority parameter, τ = 0.0310 396

posterior median, 95% CI: 0.0210-0.0415). 397

As with the first case study, simulation recovery was used to validate the ability of 398

serosolver to correctly infer underlying processes from a given dataset (discussed in 399

detail in Supplementary Material 4). 400

Fig 5. Influenza A/H3N2 dynamics in southern China. A: Inferred historical
attack rates. Shaded regions show 50% and 95% credible intervals( CI), black line shows
posterior median, dashed green line shows maximum posterior probability estimate; B:
Example latent titre trajectory (dark grey region, light grey region and black line show
50% CI, 95% CI and posterior median estimates respectively) against observed titres
(black dots) of inferred or one individual. D: Frequency of infection by age group. C:
Posterior densities for the inferred antibody kinetics parameters. 95% CI and posterior
medians shown as dashed lines. E: Per cluster attack rates in <20 and ≥20 age groups.
Clusters with darker shading circulated for longer before succession.
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Computational performance 401

Serosolver uses a C++ back-end with substantial optimisation to scale the model to 402

large data sets and high infection time resolutions with reasonable run times. Table 1 403

displays the mean run time of 5 MCMC chains fitting the serosolver model to 404

serological data of different dimensions. In the most complex scenario, which involves 405

fitting the model to 164,000 antibody titre measurements and inferring the infection 406

state of 1000 individuals at 164 different time points (164,000 infection states), effective 407

sample sizes >200 are achievable for both the antibody process parameters and attack 408

rate estimates in <12 hours. For smaller scale analysis (e.g., 100 individuals, <5000 409

titres), high effective sample sizes and well-mixed chains are easily generated within 30 410

minutes. 411
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Availability and Future Directions 412

Serosolver provides a general inference framework to estimate epidemiological and 413

immunological dynamics from serological data. The open source package is available 414

from GitHub (https://github.com/seroanalytics/serosolver), with detailed 415

accompanying vignettes covering the main implementation and case studies we describe 416

here. The aim of this package is to provide an open source, modifiable framework to fit 417

antibody kinetics models that also require inference of unobserved infections. Disparate 418

serosurveys measuring antibody titres over time are often underpinned by comparable 419

dynamics, and we therefore felt that a unifying tool to enable quick reproduction and 420

direct comparison of analyses across different datasets would be a useful addition to the 421

literature. 422

As well as the stand-alone applications we have illustrated in the case studies above, 423

serosolver could easily link with traditional epidemiological analysis. The results 424

presented here are not intended to be exhaustive analyses, but rather to demonstrate 425

the utility and range of insights that can be generated from serological data. In 426

particular, the posterior latent individual-level infection histories and titre trajectories 427

could act as inputs into regression models. For example, serosolver outputs could be 428

combined with syndromic or lab-confirmation data to examine the relationship between 429

susceptibility and titre at time of infection [43]. These methods could also apply to 430

other pathogens; a similar model structure has recently been used to examine latent 431

titres for dengue [44]. 432

Moreover, serosolver can incorporate prior knowledge on time of exposure either 433

from surveillance data or, if relevant, temporal climate variables. In the case studies 434

presented, we used relatively simple priors for the probability of infection. However, 435

more complex temporal priors could be imposed by having a different prior distribution 436

for the probability of at each time point (i.e., different value of α and β) to account for 437

seasonality in transmission dynamics. In the future, we hope to extend serosolver to 438

include non-linear feedback between past exposures and future risk, by embedding an 439

epidemic model as well as the probability of infection [45]. In theory, this package could 440

be used to generate an ongoing database of inferred immunological parameters, allowing 441

estimates to be updated and combined between to better estimate attack rates and 442
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infection histories in less data-rich cohorts. 443

Serosolver could also be used to inform the design of serological sample collection 444

and testing. Given potential logistical or budgetary restrictions on analysis of stored 445

sera or collection of new samples, serosolver could be used to simulate different study 446

designs and show how accurately these designs could recover the main parameters of 447

interest. 448

At present, serosolver focuses on inference for a single exposure type. However, for 449

viruses like influenza and dengue, individuals may be exposed to multiple subtypes or 450

serotypes in the same season. Exposure to one antigen may cross react with another 451

antigen providing protection against antigens an individual has not been directly 452

exposed to. For example, infection with influenza A/H1N1 may provide cross-reactive 453

protection against other group 1 viruses, and A/H3N2 against group 2 viruses [46]. 454

Additionally, the incorporation of multiple exposures can facilitate the inclusion of 455

vaccine exposure. In influenza, where vaccination is recommended annually, exposure to 456

vaccination is an important piece of the immunological life course puzzle of an 457

individual [47]. In its current form, serosolver can estimate differences between 458

exposures by being fit independently to different subtypes. It can also fit models 459

separately to vaccinated or unvaccinated populations to estimate how serological 460

dynamics vary between these groups. Although this is a useful first approximation, 461

future versions of serosolver will include potential for multiple exposure types during 462

the same season so that any interactions can be modelled explicitly. 463

There is increasing evidence that serological titre data contain substantial additional 464

information about infection and immunity dynamics, which are not captured by simple 465

four-fold rise metrics [14,44,48,49] Furthermore, in multi-strain pathogen systems, 466

evidence is mounting that individual-level heterogeneity in unobserved exposure 467

histories is a key driver of susceptibility to infection and disease [26,47,50,51]. 468

Serosolver provides a generic framework to extract this information from commonly 469

collected data. As serological data become increasingly available, it will be important to 470

develop modern analytical methods and tools that account for known biological and 471

epidemiological processes that may confound or bias inference [49,52–54]. 472
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Supporting information 473

Supplementary Material 1. Full description and discussion of the 474

infection history priors and their implications for inference. 475

Supplementary Material 2. Additional immunological mechanisms and 476

how to modify code to incorporate alternative antibody kinetics. 477

Supplementary Material 3. Case study 1 vignette with all code required 478

for model fitting, figure generation and simulation recovery. 479

Supplementary Material 4. Case study 2 vignette with all code required 480

for model fitting, figure generation and simulation recovery. 481
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