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Abstract 29 

Using fMRI and multivariate pattern analysis, we determined whether acoustic 30 

features are represented by independent or integrated neural codes in human 31 

cortex. Male and female listeners heard band-pass noise varying 32 

simultaneously in spectral (frequency) and temporal (amplitude-modulation 33 

[AM] rate) features. In the superior temporal plane, changes in multivoxel 34 

activity due to frequency were largely invariant with respect to AM rate (and 35 

vice versa), consistent with an independent representation. In contrast, in 36 

posterior parietal cortex, neural representation was exclusively integrated and 37 

tuned to specific conjunctions of frequency and AM features. Direct between-38 

region comparisons show that whereas independent coding of frequency and 39 

AM weakened with increasing levels of the hierarchy, integrated coding 40 

strengthened at the transition between non-core and parietal cortex. Our 41 

findings support the notion that primary auditory cortex can represent 42 

component acoustic features in an independent fashion and suggest a role for 43 

parietal cortex in feature integration and the structuring of acoustic input. 44 

  45 
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Significance statement 46 

A major goal for neuroscience is discovering the sensory features to which the 47 

brain is tuned and how those features are integrated into cohesive perception. 48 

We used whole-brain human fMRI and a statistical modeling approach to 49 

quantify the extent to which sound features are represented separately or in 50 

an integrated fashion in cortical activity patterns. We show that frequency and 51 

AM rate, two acoustic features that are fundamental to characterizing 52 

biological important sounds such as speech, are represented separately in 53 

primary auditory cortex but in an integrated fashion in parietal cortex. These 54 

findings suggest that representations in primary auditory cortex can be 55 

simpler than previously thought and also implicate a role for parietal cortex in 56 

integrating features for coherent perception. 57 

		58 

 59 

60 
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Introduction 61 

In structuring the auditory scene, the brain must carry out two 62 

fundamental computations. First, it must derive independent representations 63 

of component acoustic features so that task-relevant features can be 64 

prioritized and task-irrelevant ones ignored. Second, to solve the well-known 65 

“binding problem”, the brain must subsequently integrate these separated 66 

representations into a coherent whole so that the features of a relevant sound 67 

source can be tracked successfully in cluttered scenes. Whether 68 

representations of stimulus features are independent or integrated is a 69 

longstanding issue in psychology (Treisman and Gelade, 1980; Ashby and 70 

Townsend, 1986) and neuroscience (Di Lollo, 2012; Soto et al., 2018). Even 71 

when not explicitly framed using these terms, many questions concerning 72 

sensory systems can be formalized in terms of representational independence 73 

versus integration (Soto et al., 2018). 74 

It is widely believed that auditory processing is hierarchically organized 75 

and that neural representations are progressively transformed from 76 

independent to integrated codes as sensory information ascends the auditory 77 

pathway (Rauschecker and Tian, 2000; Bizley and Cohen, 2013). Thus, while 78 

neurons in low-level regions might respond to single stimulus features, higher-79 

level neurons should show more complex tuning properties and respond to 80 

conjunctions of features. Precisely where along this continuum human primary 81 

auditory cortex (and regions beyond) fit within this conception of the auditory 82 

system has been the subject of debate.  83 

Based on presumed similarities with the visual system, early models 84 

proposed that representations in primary auditory cortex were primarily 85 

independent, instantiated as topographically organized “feature maps” (see 86 

Nelken et al., 2003). According to such accounts, the integration of features is 87 

a computation that should most reliably be observed in non-primary regions. 88 

However, animal physiology studies demonstrate highly non-linear neural 89 

responses already at the level of primary auditory cortex, suggestive of an 90 

integrated coding scheme (deCharms et al., 1998; Nelken et al., 2003; Chi et 91 

al., 2005; Wang et al., 2005; Christianson et al., 2008; Atencio et al., 2009; 92 

Bizley et al., 2009; Sadagopan and Wang, 2009; Sloas et al., 2016). The 93 
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extent to which this also applies in humans remains unclear. While there are 94 

many sources of human imaging evidence that are potentially relevant to this 95 

issue, particularly investigations of how low-level acoustic features and 96 

higher-level categories are represented in cortical activity (Davis and 97 

Johnsrude, 2003; Zatorre et al., 2004; Cusack, 2005; Kumar et al., 2007; 98 

Staeren et al., 2009; Leaver and Rauschecker, 2010; Teki et al., 2011; 99 

Giordano et al., 2013; Norman-Haignere et al., 2015; Overath et al., 2015; 100 

Allen et al., 2017), fewer studies have directly tested and quantified the extent 101 

of representational independence versus integration in human cortex. 102 

In the current study, we used fMRI and multivariate pattern analysis to 103 

determine the extent to which acoustic features are represented by 104 

independent or integrated multivoxel codes and how those codes are 105 

expressed over the human cortical hierarchy. In general, multivariate 106 

approaches allow sensory features to be more directly linked to their 107 

representation in neural response patterns (Tong and Pratte, 2012; 108 

Kriegeskorte and Kievit, 2013; Haynes, 2015), in contrast to traditional 109 

univariate analysis of overall regional differences in signal amplitude. In this 110 

study, an approach based on MANOVA (Allefeld and Haynes, 2014) allowed 111 

us to estimate the contribution of single acoustic features to the observed 112 

multivoxel patterns (reflecting independent coding), as opposed to non-linear 113 

interactions between the features that may arise at the level of object 114 

perception (integrated coding). Moreover, by acquiring whole-brain fMRI, we 115 

were able to characterize neural representations simultaneously across the 116 

entire human cortex, in contrast to more localized physiological recordings in 117 

animals. 118 

Participants listened to band-pass noise varying simultaneously in 119 

frequency (a spectrally-based feature) and amplitude modulation (AM) rate 120 

(temporally-based; see Figure 1A). We chose to investigate these two 121 

acoustic features as they are sufficient alone to characterize much of the 122 

information present in biologically important sounds such as speech (Shannon 123 

et al., 1995; Roberts et al., 2011). 124 
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Figure 1. A) Spectrograms of the nine stimuli, equally spaced on a scale of ERB-rate (Moore 
and Glasberg, 1983) and smoothed to obtain a temporal resolution similar to the Equivalent 
Rectangular Duration (Plack and Moore, 1990). The cyan- and magenta-colored text above 
each spectrogram indicate the center carrier frequency and AM rate of the bandpass noise, 
respectively. B) Multivariate pattern distinctness estimates for each effect of interest, when 
activity patterns were simulated using an independent representation (left-side graph) or an 
integrated representation (right-side graph). Each data point represents the pattern distinctness 
for a single iteration (“participant”) of the simulation. Freq, Frequency. D, Pattern distinctness. 

Methods 125 

Participants 126 

Twenty participants (eleven female), aged between 18 and 27 years 127 

(mean = 23, SD = 2.4), were tested after being informed of the study’s 128 

procedure, which was approved by the research ethics committee of 129 

University College London. All reported normal hearing, normal or corrected-130 

to-normal vision, and had no history of neurological disorders. 131 
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Stimuli 132 

The stimulus consisted of narrow (third of an octave) bandpass noise, 133 

amplitude modulated sinusoidally with 80% depth (see Figure 1A). Each sound 134 

was presented for one second and varied across trials in center carrier 135 

frequency (from hereon, “frequency”) and amplitude modulation rate (“AM”). 136 

Frequency (500, 1300 and 3380 Hz) and AM (4, 10 and 25 Hz) were equally 137 

spaced on a logarithmic scale. Importantly for the purpose of assessing 138 

independent and integrated feature coding (see First-level statistics section 139 

below), frequency and AM varied simultaneously and in an orthogonal fashion, 140 

such that every frequency was paired with every AM (i.e. nine stimuli in total, 141 

arranged as a 3 x 3 factorial design). The relatively slow AM rates precluded 142 

the perception of pitch associated with the temporal modulation. In addition, the 143 

carrier center frequencies and bandwidths were chosen to avoid detectable 144 

spectral cues from resolved sidebands in the stimulus (Moore, 2003). 145 

Stimuli were matched in terms of their RMS amplitude and shaped with 146 

20 ms raised-cosine onset and offset ramps. Bandpass noise was synthesized 147 

independently on each presentation (with a sampling rate of 44100 Hz) and 148 

delivered diotically through MRI-compatible insert earphones (S14, 149 

Sensimetrics Corporation). To compensate for resonances in the frequency 150 

response of the earphones, the stimuli were digitally preprocessed using the 151 

filters and software provided with the earphones. 152 

Procedure 153 

Stimulus delivery was controlled with Cogent toolbox 154 

(http://www.vislab.ucl.ac.uk/cogent) in Matlab (MathWorks). Participants were 155 

scanned for five runs, each lasting around ten minutes consisting of sixteen 156 

repetitions of the nine stimuli. For one participant, there was insufficient time to 157 

scan for the fifth run because of technical difficulties. Stimuli were grouped into 158 

blocks of eighteen sounds within which all nine stimuli appeared twice and in 159 

random order. The inter-stimulus interval ranged uniformly between 2000 and 160 

4000 ms. 161 

Participants were instructed to listen carefully to the sounds while 162 

looking at a central fixation cross and press a button (with their right hand) each 163 
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time a brief (150 ms duration) white-noise interruption occurred during sound 164 

presentation. These white-noise interruptions were unmodulated in their 165 

amplitude profile and occurred on a small percentage (~6%) of stimuli (once 166 

every block of eighteen sounds). Group performance was near ceiling, 167 

confirming engagement with the task. The average hit rate was .98 (ranging 168 

from .8 to 1 across participants; SEM = .014) with no false alarms. 169 

To estimate the perceived saliency of the sounds, two participants from 170 

the main fMRI experiment and four new participants (two female; mean age = 171 

29 years, SD = 4) completed a short behavioral session similar in procedure to 172 

Petsas et al. (2016). These participants listened to all pairwise combinations of 173 

the nine sounds (eight pairs for each of the nine sounds; separated by 200 ms 174 

of silence) and were asked to judge on each trial which of the two sounds was 175 

more salient. Pairs were presented three times in random order, with the order 176 

of the sounds within a pair counterbalanced across trials. 177 

To estimate perceived loudness, we used the loudness model of Moore 178 

et al. (2016), as implemented in Matlab 179 

(http://hearing.psychol.cam.ac.uk/TVLBIN/tv2016Matlab.zip). As the model 180 

output differs slightly for different noise samples of the same condition, we 181 

generated an entire (single-participant) stimulus set in the same way as was 182 

done for the main experiment and submitted each stimulus to the model. We 183 

computed the time-varying long-term loudness, averaged over the duration of 184 

the stimulus and across noise samples within each of the nine stimuli. 185 

Image acquisition 186 

Imaging data were collected on a Siemens 3 Tesla Quattro MRI 187 

scanner (http://www.siemens.com) at the Wellcome Trust Centre for Human 188 

NeuroImaging, University College London. A total of 175 echo planar imaging 189 

(EPI) volumes were acquired per run, using a 32-channel head coil and 190 

continuous sequence (TR = 3.36 sec; TE = 30 ms; 48 slices covering the 191 

whole brain; 3 mm isotropic resolution; matrix size = 64 x 74; echo spacing = 192 

0.5 ms; orientation = transverse). After the third run, field maps were acquired 193 

(short TE = 10 ms; long TE  = 12.46 ms). During the functional scans, we also 194 
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obtained physiological measures of each participant’s breathing and cardiac 195 

pulse. Because of technical issues, physiological measures were not available 196 

for two participants. The experimental session concluded with the acquisition 197 

of a high-resolution (1 x 1 x 1 mm) T1-weighted structural MRI scan. 198 

Image processing 199 

fMRI analysis was performed in SPM12 200 

(http://www.fil.ion.ucl.ac.uk/spm). After discarding the first three volumes to 201 

allow for magnetic saturation effects, the remaining images were realigned 202 

and unwarped to the first volume to correct for movement of participants 203 

during scanning. Also at the unwarping stage, the acquired field maps were 204 

used to correct for geometric distortions in the EPI due to magnetic field 205 

variations. Realigned images were co-registered to the mean functional image 206 

and then subjected to multivariate statistical analysis, generating searchlight 207 

maps from unsmoothed data in each participant’s native space (see First-level 208 

statistics section below). Searchlight maps were subsequently normalized to 209 

the Montreal Neurological Institute (MNI) template image using the 210 

parameters from the segmentation of the structural image (resampled 211 

resolution: 2 x 2 x 2 mm) and smoothed with a Gaussian kernel of 6 mm full-212 

width at half-maximum. Where additional univariate analyses are reported, 213 

realigned images were spatially normalized and smoothed first before 214 

statistical analysis. 215 

First-level statistics 216 

Statistical analysis was based on the general linear model (GLM) of 217 

each participant’s fMRI time series, using a 1/128 Hz highpass filter and AR1 218 

correction for auto-correlation. The design matrix comprised the auditory 219 

stimulus events, each modeled as a stick (delta) function and convolved with 220 

the canonical haemodynamic response function. Separate columns were 221 

specified for each of the nine stimuli, in addition to a column for target sounds 222 

(to remove variance associated with the white noise interruptions and the 223 

button presses). Additional columns were specified for the six movement 224 

parameters and the mean of each run. Cardiac and respiratory phase 225 
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(including their aliased harmonics) as well as heart rate and respiratory 226 

volume were modeled using an in-house Matlab toolbox (Hutton et al., 2011). 227 

This resulted in fourteen physiological regressors in total: six each for cardiac 228 

and respiratory phase and one each for heart rate and respiratory volume. 229 

 For statistical inference, we used cross-validated multivariate analysis 230 

of variance (Allefeld and Haynes, 2014), as implemented in the cvMANOVA 231 

toolbox in Matlab (version 3; https://github.com/allefeld/cvmanova). For each 232 

participant this method measures the pattern distinctness D, a cross-validated 233 

version of one of the standard multivariate statistics: Lawley-Hotelling’s trace. 234 

D quantifies the multivoxel variation in activity attributable to an experimental 235 

contrast, relative to unexplained variation or noise (for examples of previous 236 

applications, see Guggenmos et al., 2016; Christophel et al., 2017, 2018; 237 

Dijkstra et al., 2017). Thus, D is the multivariate extension of the univariate F-238 

statistic in ANOVA and is a clearly interpretable measure of effect size. This is 239 

in contrast to classification accuracy from pattern decoders, which is 240 

dependent on the particular algorithm used as well as the amount of data and 241 

partitioning into training and test sets (see Allefeld and Haynes, 2014). Cross-242 

validation ensures that the expected value of D is zero if two voxel patterns 243 

are not statistically different from each other, making D a suitable summary 244 

statistic for group-level inference (e.g. with the one-sample t-test). Note that 245 

because of this cross-validation, D can sometimes be negative if its true value 246 

is close to zero in the presence of noise.  247 

When applied to the simple case of only two stimuli, the pattern 248 

distinctness D is a measure of between-stimulus pattern dissimilarity and is 249 

closely related to the (cross-validated) Mahalanobis distance, which is argued 250 

to be a more reliable and accurate metric for characterizing multivoxel 251 

patterns than the correlation or Euclidean distance (Kriegeskorte et al., 2006; 252 

Ejaz et al., 2015; Walther et al., 2016). Like the Mahalanobis distance, D 253 

takes into account the spatial structure of the noise (GLM residuals) by 254 

normalizing the multivoxel variation for an experimental effect by the noise 255 

covariance between voxels. As D is obtained from the GLM, cvMANOVA can 256 

also be used to test more complex contrasts such as main effects and 257 
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interactions with a factorial design. As explained below, we can use such 258 

factorial contrasts to distinguish between independent and integrated neural 259 

coding.   260 

cvMANOVA was performed as a searchlight analysis (Kriegeskorte et 261 

al., 2006) using spheres with a radius of three voxels (~9 mm; ~123 voxels of 262 

3 x 3 x 3 mm) and constrained to voxels within the whole-brain mask 263 

generated by SPM during model estimation. Thus, for each participant and 264 

effect of interest, a whole-brain searchlight image was generated in which 265 

each voxel expressed the pattern distinctness D over that voxel and the 266 

surrounding neighborhood. As recommended by Allefeld and Haynes (Allefeld 267 

and Haynes, 2014), to correct for searchlight spheres near the brain mask 268 

boundaries containing fewer voxels, the estimate of D at each voxel was 269 

standardized by dividing by the square root of the number of voxels within the 270 

searchlight. 271 

We tested the extent to which frequency and AM features are 272 

represented by independent or integrated neural codes by examining three 273 

effects of interest. If frequency and AM features are represented in an 274 

integrated fashion, then changes in these two features should combine non-275 

linearly (non-additively) to influence multivoxel activity patterns (see 276 

Kornysheva and Diedrichsen, 2014; Erez et al., 2015). In other words, the 277 

effect of frequency should differ depending on AM (and vice versa). Thus, the 278 

first effect of interest was the interaction between frequency and AM and 279 

quantified the extent of integrated coding. If on the other hand, frequency and 280 

AM features are coded independently, then changes in these two features 281 

should result in a linear (additive) effect on activity patterns. An independent 282 

effect implies that changes in voxel patterns attributable to the frequency 283 

feature remain invariant with respect to AM (and vice versa): there is no 284 

interaction. Within the cvMANOVA framework, the extent of independence 285 

can be quantified by subtracting the interaction from the main effects 286 

(following equation 19 in Allefeld and Haynes 2014), resulting in the two other 287 

effects of interest: Independent coding of frequency and Independent coding 288 

of AM. These measures of independent coding are equivalent to those 289 
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obtained from “cross-decoding” in classifier-based multivoxel pattern analysis 290 

(Formisano et al., 2008; Allefeld and Haynes, 2014; Kornysheva and 291 

Diedrichsen, 2014; Simanova et al., 2014). 292 

Computational simulations confirm that the above effects of interest 293 

can successfully detect the presence of independent and integrated 294 

representations. For each of twenty “participants”, five “runs” and nine stimuli, 295 

we generated synthetic activity patterns over 123 voxels consisting of the true 296 

underlying pattern (normal random vector) added to some noise (signal-to-297 

noise ratio set to 0.1). Within one run, there were sixteen repetitions of the 298 

nine stimuli. These synthetic data were then submitted to cvMANOVA 299 

resulting in a pattern distinctness estimate for each participant and effect of 300 

interest.   301 

Two versions of the simulation were run, following Kornysheva and 302 

Diedrichsen (2014). In the first version, frequency and AM features were 303 

represented independently. That is, voxel patterns were generated separately 304 

for the two features and summed together to obtain voxel patterns (Y) for 305 

each of the nine stimuli with carrier center frequency f and AM rate m: 306 

Yf,m = Ff + Tm + ef,m 307 

where F and T denote, respectively, the voxel pattern representations for the 308 

frequency and AM features and e the noise. 309 

In the second version, frequency and AM were represented in an 310 

integrated fashion by generating a unique pattern for each of the nine stimuli. 311 

Thus, in this version of the simulation, the representation of frequency is 312 

inseparable from that of AM: 313 

Yf,m = FTf,m + ef,m 314 

Here FT denotes the true pattern that was generated uniquely for each 315 

condition. In both versions, the resulting patterns were scaled to have the 316 

same mean and variance.  317 

As Figure 1B shows, when frequency and AM were simulated as 318 
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independent representations, the pattern distinctness D was significantly 319 

greater than zero when testing the independent (but not integrated) coding 320 

effects of interest (frequency: t(19) = 29.2, p < .001; AM: t(19) = 35.1, p < 321 

.001; Integrated: t(19) = -.104, p = .541). In contrast, when frequency and AM 322 

were represented in an integrated fashion, the reverse was true with a 323 

significant effect of integrated (but not independent) coding (frequency: t(19) = 324 

-1.39, p = .910; AM: t(19) = -.429, p = .664; Integrated: t(19) = 33.0, p < .001). 325 

Group-level statistics 326 

 Searchlight images were submitted to a group-level one-sample t-test 327 

under minimal assumptions using a nonparametric permutation procedure, as 328 

implemented in SnPM (http://warwick.ac.uk/snpm).  We used 5000 iterations 329 

with 6 mm of variance smoothing (Nichols and Holmes, 2002) and 330 

constrained the analysis to voxels within the cortex (as defined by the 331 

probabilistic Harvard-Oxford cortical mask thresholded at 25%, distributed 332 

with FslView https://fsl.fmrib.ox.ac.uk). Statistical maps were thresholded 333 

voxelwise at p < .005 and clusterwise at p < .05 (familywise error [FWE] 334 

corrected for multiple comparisons). 335 

 Additional region of interest (ROI) analyses within the superior 336 

temporal plane were carried out in regions anatomically defined by the Jülich 337 

and Harvard-Oxford probabilistic atlases (distributed with FslView) and 338 

thresholded at 30%. These included primary auditory cortex (area Te1.0 in 339 

middle Heschl’s gyrus [HG]) and the non-primary auditory areas Te1.1 340 

(posteromedial HG), Te1.2 (anterolateral HG), planum polare (PP) and 341 

planum temporale (PT). We also tested the posterior parietal region revealed 342 

in the whole-cortex SnPM analysis, to enable a comparison of effect size with 343 

the auditory cortical ROIs and to statistically test for between-region 344 

differences. To avoid statistical “double-dipping” (Kriegeskorte et al., 2009), 345 

we used a leave-one-subject-out procedure (Esterman et al., 2010) in which 346 

the whole-cortex second level t-test was repeatedly re-estimated, each time 347 

leaving out one participant, and using the resulting left parietal cluster as the 348 

ROI for the left out subject (cluster defining threshold p < .005 uncorrected). 349 

To obtain the homologous cluster in the right hemisphere, each left parietal 350 
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cluster was left-right flipped using MarsBaR toolbox for SPM 351 

(http://marsbar.sourceforge.net). To reduce computation time, these leave-352 

one-subject-out t-tests were conducted parametrically in SPM (i.e. without the 353 

SnPM toolbox). ROI effect sizes were computed by averaging the searchlight 354 

image over the spatial extent of each ROI. To facilitate interpretation (Allefeld 355 

and Haynes, 2014), ROI effect sizes are reported after transforming the 356 

standardized pattern distinctness back into the original estimate (by 357 

multiplying by a constant factor of √123 i.e. the typical number of voxels 358 

within each searchlight). 359 

 Classical multidimensional scaling (MDS) was performed on the 360 

average dissimilarity matrix in selected ROIs, formed by computing the 361 

pattern distinctness between all stimuli. Prior to MDS, each element in the 362 

dissimilarity matrices was subjected to a group-level one-sample t-test.  Given 363 

that the goal of this analysis was to better visualize effects of interest already 364 

identified as significant (i.e. the independent and integrated contrasts in the 365 

whole-cortex and ROI analyses), we thresholded these dissimilarity matrices 366 

at p < .05 uncorrected. 367 

 368 

Spatial resolution of current fMRI data and relationship with 369 

previous mapping studies 370 

Because we wished to measure whole-brain responses, including in 371 

regions outside classically defined auditory cortex, we measured BOLD 372 

responses with a resolution of 3 mm isotropic voxels (the data were 373 

additionally smoothed with a 6 mm kernel but only after the critical multivariate 374 

statistics were computed). While finer-resolution data are commonly obtained 375 

in studies investigating how frequency and other acoustic features are 376 

mapped to individual voxels (e.g. Formisano et al., 2003; Barton et al., 2012; 377 

Herdener et al., 2013; Leaver and Rauschecker, 2016), our concern here is 378 

how frequency and AM features are represented at a more abstract level in 379 

activity patterns over multiple voxels. Such representations may reflect both 380 

“distributed” and “sparse” coding schemes (Bizley and Cohen, 2013). It is 381 

well-established that multivoxel methods can sensitively measure changes in 382 

brain responses to acoustic features (even with standard-resolution data) by 383 
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pooling weak but consistent signals over voxels and exploiting between-voxel 384 

correlations (e.g. Linke and Cusack, 2015). 385 

 Note that while significant independent coding of frequency and AM 386 

might be consistent with separate underlying neural populations responding to 387 

those features, this need not be the case. That is, the same neurons could 388 

simply be responding in a linear (additive) fashion to changes in frequency 389 

and AM rate. Thus, the extent of representational independence and 390 

integration in multivoxel patterns reveals more abstract computational 391 

properties (rather than the precise spatial configuration) of neural populations 392 

in a cortical region.    393 
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Figure 2. Whole-cortex multivariate searchlight analysis. A) Group-level statistical maps for 
each effect of interest, overlaid onto coronal and axial sections of the group-averaged structural 
(in MNI space) and thresholded voxelwise at p < .005 and clusterwise at p < .05 (FWE corrected 
for multiple comparisons). B) ROI analysis. Each data point shows the pattern distinctness D, 
averaged over the searchlight map within each ROI and over participants. Error bars represent 
the standard error of the mean. Asterisk symbols above each data point indicate significantly 
above-zero pattern distinctness, FDR corrected for multiple comparisons across contrasts, 
ROIs and hemispheres. *** p < .001, ** p < .01, * p < .05. 
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Effect of 
Interest Hemisphere Region Label 

   
Extent   t-value x y z 

Frequency Left Heschl's Gyrus  6056 14.2923 -44 -22 6 

  Superior Temporal Gyrus  13.1983 -48 -26 -2 

  Supramarginal Gyrus  6.2306 -54 -44 12 

 Right Central Opercular Cortex 5987 14.0351 50 -20 14 

  Superior Temporal Gyrus  12.1458 50 -22 0 

  Superior Temporal Gyrus  8.3851 58 -6 -4 
AM Left Parietal Operculum Cortex 2721 7.9246 -50 -30 14 

  Insular Cortex 5.8524 -42 -14 0 

  Superior Temporal Gyrus  5.1419 -52 -36 6 

 Right Superior Temporal Gyrus  2384 7.0587 62 -14 -2 

  Superior Temporal Gyrus  5.7386 62 -28 8 

  Inferior Frontal Gyrus 3.3739 56 12 10 
Integrated Left Inferior Parietal Lobule 445 4.5942 -32 -68 32 

  Superior Parietal Lobule 4.3273 -28 -72 50 
Saliency Left Superior Temporal Gyrus 5446 17.9633 -52 -30 8 

  Superior Temporal Gyrus 7.0212 -58 -10 0 

 Right Superior Temporal Gyrus 5409 14.9611 56 -24 8 

  Temporal Pole 8.5181 56 0 -2 

  Superior Temporal Gyrus 4.2615 50 -44 28 
 394 

Table 1- MNI coordinates and anatomical labels for significant multivariate searchlight effects 395 

Results 396 

 397 
Cortical distribution of independent and integrated codes 398 

We used cross-validated MANOVA (Allefeld and Haynes, 2014) to 399 

determine the extent to which cortical activity patterns show evidence for 1) 400 

independent coding of frequency, in which the influence of frequency was 401 

invariant with respect to AM, 2) independent coding of AM, in which the 402 

influence of AM was invariant with frequency or 3) integrated coding, in which 403 

the influences of frequency and AM were interdependent. This was achieved 404 

by testing whether the pattern distinctness D over a searchlight sphere or ROI 405 

was significantly above zero for the independent and integrated effects of 406 

interest (see First-level statistics in the Methods section). 407 

Using a whole-cortex searchlight analysis (Kriegeskorte et al., 2006), 408 

we detected large clusters in the superior temporal plane bilaterally (extending 409 

into the superior temporal gyrus) that showed significant independent coding 410 

of frequency and AM (Figure 2A and Table 1). Within these regions of 411 
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auditory cortex, there was no evidence for integrated coding after correcting 412 

for multiple comparisons over the whole cortex. Instead, significant integrated 413 

coding was observed in a cluster outside of classically defined auditory cortex 414 

in the left posterior parietal lobe, extending over the inferior and superior 415 

portions of the parietal lobule and the intraparietal sulcus. 416 

We next conducted an ROI analysis in which independent and 417 

integrated coding was tested in anatomically defined regions in the superior 418 

temporal plane, including primary auditory cortex in middle HG (area Te1.0) 419 

as well as regions more anterior (Te1.2, PP) and posterior (Te1.1 and PT). 420 

This allowed us to make between-region comparisons and examine how the 421 

strength of independent and integrated codes changes with increasing levels 422 

of the cortical hierarchy. In addition to the anatomically defined auditory ROIs, 423 

we included the posterior parietal region identified in the whole-cortex 424 

searchlight analysis. To avoid statistical “double-dipping” (Kriegeskorte et al., 425 

2009), this parietal region was functionally defined using a leave-one-subject-426 

out procedure (Esterman et al., 2010). 427 

We first tested each ROI separately, using false discovery rate (FDR) 428 

correction for multiple comparisons across 6 ROIs x 2 hemispheres x 3 effects 429 

of interest (Genovese et al., 2002). As expected from the earlier whole-cortex 430 

analysis, significant independent coding of both frequency and AM was 431 

observed in all auditory ROIs but not in posterior parietal cortex (shown in 432 

Figure 2B). The effect size for independent coding of AM (mean D = 0.02-0.04 433 

over auditory regions) was relatively small, amounting to no more than 8% of 434 

the frequency effect size (mean D = 0.5-1.0). Also expected was significant 435 

integrated coding in the left posterior parietal ROI. However, additional effects 436 

of integrated coding were observed in right primary auditory cortex (area 437 

Te1.0), right anterolateral auditory area Te1.2 and right PT. The effect size for 438 

integrated coding (mean D = 0.01-0.02 over right Te1.0, Te1.2, PT and left 439 

parietal) was considerably smaller than that for independent coding (50% of 440 

the AM effect size and no more than 4% of the frequency effect size). Thus, 441 

this ROI analysis suggests that in sub-fields of auditory cortex, cortical 442 

activation patterns show a mixture of components: a strong independent code 443 

and a weak integrated code. In contrast in parietal cortex, only an integrated 444 

code is present. 445 
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Pairwise comparisons between left and right hemispheres revealed 446 

only one significant effect: an increase in frequency coding in left versus right 447 

auditory area Te1.1 (two-tailed pairwise t(19) = 2.55, p < .025). However, this 448 

did not survive FDR correction for multiple comparisons across regions. 449 

We next assessed how the magnitude of independent and integrated 450 

coding changed along successive stages of the cortical hierarchy. For 451 

independent coding of frequency, there was a significant decrease in pattern 452 

distinctness in non-primary versus primary auditory cortex (t(19) = -12.2, p < 453 

.001; region x hemisphere interaction: t(19) = .427, p = .674). This was also 454 

the case for parietal versus non-primary auditory cortex (t(19) = -11.8, p < 455 

.001; region x hemisphere interaction: t(19) = -.612, p = .548). The pattern 456 

was less clear-cut for independent coding of AM and integrated coding. Like 457 

the results for the frequency feature, there was a significant decrease in 458 

independent coding of AM in parietal versus non-primary auditory cortex (t(19) 459 

= -5.38, p < .001; region x hemisphere interaction: t(19) = -1.89, p = .075). 460 

However, the equivalent comparison for non-primary versus primary auditory 461 

cortex was not significant (t(19) = -1.21, p = .240; region x hemisphere 462 

interaction: t(19) = -1.04, p = .312). For integrated coding, there was a (left-463 

lateralized) increase in parietal versus non-primary auditory cortex (left 464 

hemisphere: t(19) = 2.94, p < .01; right hemisphere: t(19) = -.539, p = .596; 465 

region x hemisphere interaction: t(19) = 2.72, p < .025). However, there was 466 

no significant difference between non-primary and primary auditory regions 467 

(t(19) = -0.797, p = .435; region x hemisphere interaction: t(19) = 1.67, p = 468 

.112). In summary, although there was a clear and fine-grained change 469 

across hierarchical levels in the strength of frequency coding (primary vs. non-470 

primary auditory cortex, non-primary auditory vs. parietal cortex), such a 471 

change for AM and integrated coding was less fine-grained and only evident 472 

in the higher hierarchical levels (non-primary vs. parietal cortex). 473 

Additional univariate analyses were conducted in which we assessed 474 

the strength of activation in each ROI using repeated measures ANOVA (with 475 

frequency and AM as factors). As shown in Figure 3, main effects of 476 

frequency and AM were present in auditory cortical regions but not in parietal 477 

cortex (FDR corrected as before, across 6 ROIs x 2 hemispheres x 3 effects 478 

of interest). No significant interaction between frequency and AM was 479 
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observed in any of the regions tested (even with an uncorrected threshold). 480 

This suggests that the integrated coding effects revealed by cvMANOVA are 481 

inherently multivariate and arise from the pattern (and not strength) of 482 

multivoxel activity, a point to which we will return in the Discussion. 483 

 
Figure 3. Univariate ROI analysis. Data represent the BOLD signal change averaged over the 
spatial extent of each ROI and across participants. Error bars represent the standard error of 
the mean. Asterisk symbols indicate a significant main effect of frequency (in cyan) or AM rate 
(in magenta), FDR corrected for multiple comparisons across contrast, ROI and hemisphere. 
*** p < .001, ** p < .01, * p < .05.  
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Multidimensional scaling analysis 484 

 Having established the cortical distribution of independent and 485 

integrated codes, we next used classical MDS to further characterize those 486 

codes (Kriegeskorte and Kievit, 2013). In three selected ROIs (right Te1.0, 487 

right PT and left parietal), we computed the pattern distinctness for all pairs of 488 

stimuli and assembled the results into dissimilarity matrices. These ROIs were 489 

chosen as together they fully sample the transition from auditory core to non-490 

core to parietal cortex and show a mixture of independent and integrated 491 

coding profiles. After averaging the matrices over participants and 492 

thresholding at p < .05 uncorrected (Figure 4A), MDS was performed to 493 

project the multivoxel dissimilarity structure onto a simple two-dimensional 494 

space (Figure 4B). In this visualization, stimuli that are close together are 495 

associated with similar multivoxel activation patterns while stimuli that are far 496 

from each other are associated with dissimilar patterns. 497 

 In right primary auditory cortex (area Te1.0) and right PT, frequency 498 

and AM features were automatically projected by the MDS solution onto 499 

separate dimensions, despite the method having no information as to the 500 

stimulus features. Frequency was carried by the first MDS dimension (shown 501 

as the x-axis in Figure 4B) while AM was carried by the second dimension (y-502 

axis). This is consistent with our previous observation of these regions 503 

representing frequency and AM in a largely independent manner. We note 504 

further that the 4 and 10 Hz AM rates (in right Te1.0) and the 10 and 25 Hz 505 

AM rates (in right PT) were closer in MDS space for the middle carrier 506 

frequency (1300 Hz), which may account for the small degree of integrated 507 

coding observed in these regions. However, as establishing the group-level 508 

reliability of MDS solutions is difficult due to the arbitrary rotation induced by 509 

the method (Ejaz et al., 2015), we refrain from drawing strong conclusions 510 

about this latter observation.  511 

In contrast to auditory cortex, MDS for the left parietal ROI did not 512 

clearly separate frequency and AM features. Instead, activation patterns in 513 

this region were modulated by particular conjunctions of carrier frequency and 514 

AM rate (e.g. F500AM10 and F3380AM25). This is again consistent with our 515 
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previous observation that parietal cortex is characterized solely by an 516 

integrated code. 517 

  

 
Figure 4. Visualizations of multivariate pattern distinctness A) Matrices expressing the multivoxel dissimilarity for 
all pairs of stimuli, averaged over the searchlight map within each ROI. Warm colors indicate multivoxel patterns 
that are highly dissimilar while cool colors indicate less dissimilarity. Dissimilarity matrices are shown thresholded 
at p < .05 (uncorrected). B) MDS solutions for the dissimilarity matrices shown in panel A (first two dimensions 
plotted only). The cyan number beside each data point indicates the carrier center frequency of the bandpass 
noise while the magenta number indicates the AM rate. 

 
Saliency analysis 
 

In the visual domain, parietal cortex has repeatedly been implicated in 518 

the processing of bottom-up saliency (Arcizet et al., 2011; Bogler et al., 2011). 519 

We therefore asked to what extent the integrated coding effect observed in 520 

posterior parietal cortex could be explained by between-stimulus differences 521 

in perceived saliency. In a separate behavioral session, listeners listened to 522 

all pairwise combinations of the nine sounds and judged which sound in each 523 

pair was more salient. We then estimated the perceived saliency of each 524 

sound as the percentage of trials the sound was chosen as more salient 525 

(shown in Figure 5A as thick black line). Because saliency is related (although 526 

not identical) to loudness (Liao et al., 2015), we also show for comparison the 527 

loudness of the stimuli as predicted by the model of Moore et al. 2016 (shown 528 

in Figure 5A as thick blue line). 529 

Repeated measures ANOVA of the saliency judgments, with frequency 530 
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and AM rate as factors, revealed a significant main effect of frequency 531 

(reflecting higher saliency for increasing frequency; F(2,10) = 31.5, p < .001) 532 

and a significant main effect of AM rate (reflecting higher saliency for the 533 

middle AM rate; F(2,10) = 6.34, p < .025). However, the interaction between 534 

frequency and AM rate was not significant (F(4,20) = .808, p = .512). To 535 

directly test whether there was positive evidence for the null effect of no 536 

interaction, we also conducted repeated measures ANOVA as a Bayesian 537 

analysis (Rouder et al., 2016, 2017; Marsman and Wagenmakers, 2017). We 538 

contrasted a model which contained both main effects of frequency and AM 539 

and their interaction, with a null model that had the same structure but lacked 540 

the interaction (both models were assigned a prior probability of 0.5). This 541 

analysis indicated that the null model was 5 times more likely than the 542 

alternative model (Bayes Factor = 5.31). As the integrated coding effect in 543 

parietal cortex is defined by the interaction between frequency and AM, the 544 

absence of an interaction in the saliency judgments is therefore inconsistent 545 

with a saliency-based account of the integrated coding effect in parietal 546 

cortex, or indeed, in any other of the regions in which integrated coding was 547 

observed. 548 

As a further test of a saliency-based account, we used representational 549 

similarity analysis (RSA) to relate listeners’ saliency judgments to the 550 

observed multivoxel patterns (Kriegeskorte and Kievit, 2013). For each pair of 551 

sounds presented in the saliency judgment task, we pooled saliency 552 

judgments over trials and participants and computed the absolute difference 553 

in the percentage of observations each sound in the pair was chosen as more 554 

salient. From this we assembled a distance matrix quantifying the difference 555 

in saliency between the two sounds of all presented pairs (Figure 5B). This 556 

“saliency distance” matrix provides a more detailed characterization of 557 

between-stimulus differences in saliency than the summary measure 558 

presented in Figure 5A, which we could then correlate with the multivoxel 559 

dissimilarity matrix observed in each searchlight across the cortex of 560 

individual participants. As shown in Figure 5C, the (Fisher-transformed) 561 

Spearman correlation between the saliency and multivoxel dissimilarity 562 

structure was significantly above zero in the superior temporal plane 563 
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bilaterally but not in parietal cortex (for MNI coordinates, see Table 1). This 564 

pattern was further supported by an ROI analysis (Figure 5D) in which the 565 

Spearman correlation significantly decreased from superior temporal to 566 

parietal cortex (F(1,19) = 57.8, p < .001; effects involving hemisphere were 567 

not significant). We further note with interest how this saliency-to-multivoxel 568 

correlation peaked in posteromedial auditory area Te1.1, which clearly differs 569 

to how the independent and integrated coding effects were expressed over 570 

cortical regions (compare Figure 5D with Figure 2B). Nearly identical results 571 

were obtained when using loudness in this ROI analysis (here a loudness 572 

distance matrix was formed by computing the absolute differences in 573 

loudness between the stimuli). This suggests that saliency/loudness can be 574 

reliably dissociated from the independent and integrated coding effects of the 575 

earlier analyses. In summary then, this RSA analysis together with the 576 

absence of interactive influences of frequency and AM on behavioral saliency 577 

judgments suggests that the integrated coding effect we observe cannot be 578 

attributed to saliency/loudness. We will return to this point in the Discussion.  579 
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Figure 5.  Saliency analysis. A) Subjective saliency of the stimuli. The thick black line indicates the 
group-averaged percentage of trials each stimulus was judged as more salient (than the other stimuli). 
Light gray lines indicate saliency judgements for individual participants. The thick blue line represents 
the predicted loudness of the stimuli according to the model of Moore et al. (2016) and normalized to 
have the same scale as the saliency data (for display purposes only). B) “Saliency distance” matrix 
expressing the absolute difference in the percentage of observations each sound in a pair was chosen 
as more salient. C) Whole-cortex multivariate searchlight analysis, showing where the Fisher 
transformed spearman correlation between the saliency distance matrix in panel B and the multivoxel 
dissimilarity structure in each searchlight was significantly above zero across participants (thresholded 
voxelwise at p < .005 and clusterwise at p < .05 FWE corrected for multiple comparisons).  D) ROI 
analysis. Each data point shows the Fisher transformed Spearman correlation, averaged over the 
searchlight map within each ROI and over participants. Error bars represent the standard error of the 
mean. Brace and asterisk indicates significant p < .001 F-test comparing the strength of Spearman 
correlation between auditory and parietal regions.  
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Discussion 580 

In the current study, we manipulated two important acoustic features in 581 

parallel, frequency and AM rate, and determined the extent to which they are 582 

represented by independent versus integrated codes in fMRI multivoxel 583 

patterns. We demonstrate that these spectral and temporal dimensions are 584 

represented largely independently in the superior temporal plane, with only a 585 

weakly integrated component present in right Te1.0, Te1.2 and PT 586 

(amounting to no more than 4% of the frequency effect size and 50% of the 587 

AM rate effect size). In contrast, in a posterior parietal region not classically 588 

considered part of auditory cortex, neural representation is exclusively 589 

integrated albeit weakly.  590 

 591 
Independent representations in the superior temporal plane 592 

Our demonstration of largely independent representations of frequency 593 

and AM rate in the superior temporal plane contrasts with evidence from 594 

animal physiology that suggest highly non-linear representations already at 595 

the level of primary auditory cortex (e.g. deCharms et al., 1998; Nelken et al., 596 

2003; Wang et al., 2005). While there are many differences between the 597 

current study and this previous work (most obviously, species and recording 598 

technique), our findings may also reflect the specific features that were 599 

manipulated. Specifically, it has been suggested that frequency and AM rate 600 

are fundamental dimensions of sound analysis (Dau et al., 1997; Chi et al., 601 

2005) and in the auditory cortex are represented as orthogonally-organized 602 

topographic maps (“tonotopy” and “periodotopy”; e.g. Baumann et al., 2015). 603 

Our findings in the superior temporal plane are thus consistent with the notion 604 

of orthogonal maps for frequency and AM features. While previous 605 

electrophysiological (Langner et al., 2009) and fMRI (Baumann et al., 2015) 606 

findings from animals also support this proposal, in humans the evidence is 607 

mixed with some studies showing clear topographic organization (Langner et 608 

al., 1997; Barton et al., 2012; Herdener et al., 2013) but others not (Giraud et 609 

al., 2000; Schönwiesner and Zatorre, 2009; Overath et al., 2012; Leaver and 610 

Rauschecker, 2016). These conflicting findings may be attributed to the small 611 
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size of auditory cortex and high inter-subject variability in anatomy. In the 612 

current study we overcame these challenges by using a multivariate analysis 613 

method that abstracts away from the precise configuration of voxels. 614 

Importantly, this approach allowed us to directly test and quantify the degree 615 

of representational independence, an approach distinct to the more qualitative 616 

inferences of previous mapping studies. 617 

Orthogonal representation of frequency and AM features is also 618 

suggested by component analysis of human fMRI responses to natural 619 

sounds (Norman-Haignere et al., 2015). This work suggests that frequency 620 

and AM features are represented as independent components in partly 621 

overlapping regions of the superior temporal plane. However, this study did 622 

not test for feature interactions between those features, leaving unclear the 623 

relative contributions of independent and integrated representations to neural 624 

responses.   625 

Thus, our study provides new evidence that frequency and AM are 626 

orthogonal dimensions of sound analysis. Such independent representation 627 

may support listeners’ ability to selectively process information in frequency 628 

versus time. In addition, as noted by Schnupp (2001), an independent coding 629 

scheme will tend to convey more information than a highly-selective 630 

integrated code. This property would be desirable if the role of primary 631 

auditory cortex was to relay information to more specialized feature 632 

conjunction detectors in higher-level regions.  633 

   634 

Integrated representation in posterior parietal cortex 635 

Our imaging of the entire cortex allowed us to probe beyond classically 636 

defined auditory cortex. In this respect, a striking demonstration here is of an 637 

exclusively integrated representation of frequency and AM rate in a left 638 

parietal region, just posterior to the intraparietal sulcus (IPS). This finding is 639 

notable for two reasons. First, it parallels findings from the visual domain in 640 

which parietal cortex (in particular the IPS) shows increased fMRI responses 641 

in feature conjunction versus single feature tasks (Donner et al., 2002; 642 

Shafritz et al., 2002; see also Baumgartner et al., 2013 for a similar finding 643 

using multivariate methods), with damage to this region leading to feature 644 
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binding deficits (Humphreys et al., 2000). Second, BOLD activation in the IPS 645 

has been shown to systematically vary in auditory bi-stability (Cusack, 2005) 646 

and figure-ground paradigms (Teki et al., 2011, 2016). Indeed, the peak 647 

locations of the posterior parietal effects reported by these latter studies fall 648 

inside the cluster reported here. In both these auditory paradigms, perceptual 649 

outcomes are critically dependent on the way in which information across 650 

multiple features (frequency and time) is combined. Thus, the integrated 651 

representation for frequency and AM we observe here in posterior parietal 652 

cortex is consistent with previous work suggesting a role for the IPS in feature 653 

integration and the structuring of acoustic input, possibly alongside other 654 

parietal regions specialized for visual information (for further discussion, see 655 

Cusack, 2005). However, our study goes beyond previous work that 656 

measured overall regional differences in fMRI or MEG signal amplitude by 657 

more directly probing representational content in multivoxel patterns, an 658 

approach which is less susceptible to confounding factors such as task 659 

difficulty (Baumgartner et al., 2013). 660 

Because of previous findings from the visual domain implicating 661 

parietal cortex in bottom-up saliency (Arcizet et al., 2011; Bogler et al., 2011), 662 

we also asked a separate group of listeners to rate the subjective saliency of 663 

the stimuli. While the sounds clearly differed in their subjective saliency, we 664 

found that influences of frequency and AM on the saliency ratings combined 665 

independently without evidence for an interaction, an observation inconsistent 666 

with a saliency based account. Moreover, when using RSA to relate saliency 667 

judgments to the dissimilarity structure of the multivoxel patterns, we found 668 

that saliency did not correlate with multivoxel patterns in parietal cortex. 669 

Rather, the effect of saliency was confined to superior temporal plane regions 670 

with a peak in posteromedial auditory area Te1.1, which is reminiscent of 671 

findings by Behler and Uppenkamp (2016) who reported correlates of 672 

loudness in this region (see Liao et al., 2015 for the close relationship 673 

between loudness and saliency). Thus, the results from this saliency analysis 674 

suggest that the integrated coding effect we observe cannot be attributed to 675 

bottom-up saliency. 676 
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Related to the issue of saliency, we also consider the possibility that 677 

the integrated coding profile we observe in parietal cortex was in part a 678 

consequence of listeners’ task. In our study, listeners performed an 679 

attentionally undemanding task that did not require explicit integration of 680 

frequency and AM features: detecting the target white-noise interruptions 681 

could in principle be based on changes in either the amplitude or spectral 682 

profiles alone. Despite this, one might argue that participants nevertheless 683 

detected the noise interruptions by attending to changes in both temporal and 684 

spectral content, in turn contributing to the integrated coding effect we 685 

observe. Indeed, as discussed below, attention has long been proposed to 686 

mediate feature integration (Treisman and Gelade, 1980). However, we think 687 

that this is unlikely as an explanation for the current findings. The interaction 688 

between frequency and AM rate in parietal cortex resulted from differences in 689 

the multivoxel patterns evoked by our stimuli (while the task was fixed 690 

throughout). Thus, even if listeners monitored both spectral and temporal 691 

content to detect the target interruptions, it is unclear how this would have 692 

preferentially biased listeners’ attention towards certain feature conjunctions. 693 

This is because the targets were temporally unmodulated and spectrally wide-694 

band and therefore “neutral” with respect to the nine feature conjunctions of 695 

the stimuli. 696 

A key assumption in our approach to distinguishing independent and 697 

integrated representations is a linear relationship between underlying neural 698 

activity and the measured fMRI signal (Kornysheva and Diedrichsen, 2014; 699 

Erez et al., 2015). Our univariate analysis shows that the mean signal 700 

amplitude in the posterior parietal region did not differ between stimuli, neither 701 

in terms of mains effects nor in the interaction between frequency and AM 702 

rate. This suggests that our experimental manipulations in this region did not 703 

evoke sufficiently large changes in mean signal to saturate the fMRI response 704 

and produce non-linear signal changes that could be misinterpreted as an 705 

integrated representation. 706 

The integration of multiple feature representations is critical for building 707 

a cohesive perception of the auditory scene. However, even in parietal cortex, 708 
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the effect size for integrated coding was small in comparison with that 709 

observed for independent coding in the superior temporal plane. Why then do 710 

we observe only weak integration of frequency and AM rate? As discussed 711 

above, frequency and AM may be privileged dimensions of sound analysis 712 

that are separable in a way that other dimensions are not. Our results may 713 

also be attributed to listeners performing an attentionally undemanding task 714 

that did not require explicit integration of frequency and AM features. It has 715 

been suggested that while individual features are detected automatically, 716 

feature integration is a computationally demanding process requiring focused 717 

attention (Treisman and Gelade, 1980; Shamma et al., 2011). Thus, the 718 

absence of focused attention to feature conjunctions could explain the weak 719 

integration we observe. Future work, using manipulations of attention, will be 720 

required to test this proposal.               721 
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