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ABSTRACT

Networks are present in many aspects of our lives, and networks in neuroscience have recently gained much attention leading
to novel representations of brain connectivity. Indeed, there is still room for investigation of the genetic contribution to brain
connectivity. The integration of neuroimaging and genetics allows a better understanding of the effects of the genetic variations
on brain structural and functional connections, but few studies have successfully investigated the longitudinal association of
such a mutual interplay. Nevertheless, several Alzheimer’s disease-associated genetic variants have been identified through
omic studies, and the current work uses whole-brain tractography in a longitudinal case-control study design and measures
the structural connectivity changes of brain networks to study the neurodegeneration of Alzheimer’s. This is performed by
examining the effect of targeted genetic risk factors on local and global brain connectivity. We investigated the degree to
which changes in brain connectivity are affected by gene expression. More specifically, we used the most common brain
connectivity measures such as efficiency, characteristic path length, betweenness centrality, Louvain modularity and transitivity
(a variation of clustering coefficient). Furthermore, we examined the extent to which Clinical Dementia Rating reflects brain
connections longitudinally and genetic variation. Here, we show that the expression of PLAU and HFE genes increases
the change in betweenness centrality related to the fusiform gyrus and clustering coefficient of cingulum bundle over time,
respectively. APP and BLMH gene expression associates with local connectivity. We also show that betweenness centrality
has a high contribution to dementia in distinct brain regions. Our findings provide insights into the complex longitudinal interplay
between genetics and neuroimaging characteristics and highlight the role of Alzheimer’s genetic risk factors in the estimation
of regional brain connection alterations. These regional relationship patterns can be useful for early disease treatment and
neurodegeneration prediction.

Introduction
There are many factors which may affect the susceptibility
to Alzheimer’s Disease (AD) and various ways to measure
the disease status. However, there is no single factor which
can be used to predict the disease risk sufficiently1. Genetics
is believed to be the most common risk factor in AD devel-
opment2. Towards studying the etiology of the disease, a
number of genetic variants located in about 20 genes have
been reported to affect the disease through many cell-type spe-
cific biological functions3. Those efforts resulted from omic
studies such as Genome-Wide Associations Studies (GWAS).
GWAS highlighted dozens of multi-scale genetic variations
associated with AD risk4–6.

From the early stages of studying the disease, the well
known genetic risk factors of AD were found to lie within
the coding genes of proteins involved in amyloid-β (Aβ ) pro-
cessing. These include the well-known Apolipoprotein E
(APOE) gene that increases the risk of developing AD7, the
Amyloid precursor protein (APP)8, presenilin-1 (PSEN1) and
presenilin-2 (PSEN2)9, 10. More recently, the advancement

in technologies and integration of genetic and neuroimaging
datasets has taken Alzheimer’s research steps further, and pro-
duced detailed descriptions of molecular and brain aspects.
Such studies have shown a great success in unveiling and
replicating previous findings11, 12. Shaw et al.13, for exam-
ple, showed that carriers of APOE are more likely to lose
brain tissue, measured as the cortical gray matter, than non-
carriers. Other studies have utilised the connectome14 to study
different brain diseases through associating genetic variants
to brain connectivity15. A structural connectome is a repre-
sentation of the brain as a network of distinct brain regions
(nodes) and their structural connections (edges), calculated
as the number of anatomical tracts. Those anatomical tracts
are generally obtained by diffusion tensor imaging (DTI)16,
a method used for mapping and characterizing the diffusion
of water molecules, in three-dimensions, as a function of the
location. This representation highlighted a network based or-
ganization of the brain with separated subnetworks (network
segregation) which are connected by few nodes (network inte-
gration)17. Given such a “small-world” representation of the
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brain, it is also possible to represent each individual brain as
single scalar metrics which summarize peculiar properties of
segregation and integration18. Alternatively, those global met-
rics can also be used to quantify local properties of specific
nodes/areas. Early works demostrated that APOE-4 carriers
have an accelerated age-related loss of global brain intercon-
nectivity in AD subjects19, and topological alterations of both
structural and functional brain networks are present even in
healthy subjects carrying the APOE gene20. A more recent
work has shown association between APOE expression and
brain segregation changes21. Going beyond the APOE gene,
Jahanshad et al.22 used a dataset from Alzheimer’s Disease
Neuroimaging Initiative (ADNI) to carry out a GWAS of
brain connectivity measures and found an associated variant
in F-spondin (SPON1), previously known to be associated
with dementia severity. A meta-analysis study also showed
the impact of APOE, phosphatidylinositol binding clathrin
assembly protein (PICALM), clusterin (CLU), and bridging
integrator 1 (BIN1) gene expression on resting state functional
connectivity in AD patients23.

Moreover, AD is a common dementia-related illness; in
the elderly, AD represents the most progressive and common
form of dementia. Accordingly, incorporating and assessing
dementia severity when studying AD provides more insights
about the disease progression from a clinical point of view. A
reliable global rating of dementia severity is the Clinical De-
mentia Rating (CDR)24. This paper uses a dataset from ADNI
(http://adni.loni.usc.edu/) and presents an inte-
grated association study of specific AD risk genes, dementia
scores and structural connectome characteristics. Here, we
adapted a longitudinal case-control study design to mainly
examine the association of known AD risk gene expression
with local and global connectivity metrics. We also aim at
testing the longitudinal effect of brain connectivity on dif-
ferent CDR scores, and carrying out a multivariate analysis
to study the longitudinal effect of gene expression and con-
nectome changes on CDR. Our approach can be summarized
in the simplistic representation in Figure 1, where specific
genes affect decreases of connectivity comparing baseline and
follow-up and this ultimately affects intellectual abilities and
CDR scores.

Results
Longitudinal Connectivity Changes and CDR
Initially, we used descriptive statistics plots to visualize the
data for the two populations of AD and matched control sub-
jects. To facilitate the integrated analysis, we looked into the
different sets of data individually to have a better understand-
ing of the underlying statistical distribution of each, and chose
the best analysis methods accordingly. Firstly, we plotted
the global and local connectivity metrics in a way that illus-
trates the longitudinal change. Those longitunal changes are
measured after 1 year followup from baseline screening. The
global connectivity metric box plots show the baseline and
follow-up distributions for both AD and controls for transitiv-

Figure 1. Simplistic representation of our approach which
relates connectome metrics of segregation (disconnection),
cognitive decline and gene expression.

ity, Louvain modularity, characteristic path length and global
efficiency (Figure 2). The figure shows that the longitudinal
changes in connectome metrics are statistically significant
among the AD subjects and not mere artifacts, but not within
the control population which seem to have non significant
changes. In fact, comparing all populations values, the only
significant differences were for the AD group and for the
characteristic path length (p-value 0.0057), global efficiency
(p-value 0.0033), and Louvain modularity (p-value 0.0086).

Supplementary Figure S1, Supplementary Figure S2 and
Supplementary Figure S3 show the distribution of the local
efficiency, clustering coefficient and betweenness centrality
connectivity metrics, respectively, at the baseline and follow-
up (left sub-figures), as well as their absolute differences (right
sub-figures), at all atlas brain regions. A list of the brain atlas
region names, abbreviations and ids are available in Supple-
mentary Table S1. Moreover, we show, in Supplementary
Figure S4, the scatter and violin plots of the six CDR scores,
at the baseline and follow-up. Those are the memory, ori-
entation, judgment and problem solving, community affairs,
home and hobbies, and personal care scores which take the
categorical values illustrated in the Materials and Methods
(and also in Supplementary Figure S4).

Both global and local connectivity features show non-
symmetric distribution in the baseline, follow-up and absolute
change between them. Therefore, we use non-parametric
models and statistical tests in the following analysis.

Gene Expression
We derived a list of 17 AD risk factor genes from BioMart,
and retrieved 56 related probes sets. We performed a Mann-
Whitney U test which aims at testing whether a specific probe
set expression is different between AD and controls. For
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Figure 2. Box plots of the distribution of brain segregation and integration global connectivity metrics comparing the two
time points. The plots compare the baseline and follow-up distributions for AD and controls for Louvin modularity (a),
transitivity (b), characteristic path length (c) and global efficiency (d).

each gene, we chose the probe set that has the lowest p-value.
Table 1 reports the selected probe set with the smallest p-
value, at each gene. After estimating the expression of the 17
genes, as explained in the Materials and Methods, we plotted
a heatmap of the related gene expression profiles showed in
Supplementary Figure S5. Here, some of the genes appear to
be highly expressed in the profiles (e.g. SORL1 and PSEN1),
while others show very low expression (e.g. HFE and ACE).

Association Analysis
We studied the undirected associations of the 17 gene expres-
sion with the longitudinal change in global and local brain
connectivity, as well as the associations with longitudinal
CDR and connectivity changes. The total sample size after
integrating all the datasets was 47 participants. Firstly, we
performed an association analysis of gene expression with
the connectivity changes locally, at each Automated Anatom-
ical Labeling (AAL) brain region. In Table 2 we show the
top results reported along with the Spearman correlation co-
efficient. The APP gene, ρ =-0.58, p-value=1.9e-05) and
BLMH, ρ =0.57, p-value=2.8e-05) are the top and only sig-
nificant genes in the list, and associate with the change in
local efficiency at the right middle temporal gyrus (Tempo-
ral_Mid_R AAL region) and clustering coefficient at the left

Heschl gyrus (Heschl_L), respectively. Supplementary Figure
S6 shows the scatter plots related to the latter scenarios.

In Table 2, there is a similar pattern observed in associations
results between the clustering coefficient and local efficiency,
e.g. both metrics are associated with BLMH at the left Heschl
gyrus (Heschl_L), APP at the right middle temporal gyrus
(Temporal_Mid_R) and PLAU at the right ngular gyrus (An-
gular_R). We interpret this by the strong correlation that exists
between the local efficiency and clustering coefficient, at the
baseline, follow-up and also, the absolute change (see Sup-
plementary Figure S7). On the other hand, Supplementary
Table S2 reports the top results of the association between
gene expression and the change in brain global connectivity.
In this case there is no significant associations, and therefore,
all associations observed are due to chance.

Regressing Change in Local and Global Brain Con-
nectivity on Gene Expression
We analyzed the directed association through regressing the
change in local connectivity (as a dependant variable), at each
AAL region, on gene expression using (as an independent
variable or predictor) a quantile regression model. Table 3
reports the top results, along with the regression coefficient, p-
values and t-test statistic. PLAU was the most significant gene
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Table 1. Mann-Whitney U test top results for the difference
between AD and controls in probe-set expression

Gene Top results

Chromosome Probe set id p-value

APBB2 4 11734823_a_at 0.02575
MPO 17 11727442_at 0.38631
APP 21 11762804_x_at 0.01396
ACE 17 11752871_a_at 0.24478
PLAU 10 11717154_a_at 0.01396
PAXIP1 7 11755176_a_at 0.45499
HFE 6 11736346_a_at 0.11881
SORL1 11 11743129_at 0.10912
A2M 12 11715363_a_at 0.28592
NOS3 7 11725467_a_at 0.04261
BLMH 17 11757556_s_at 0.09356
ADAM10 15 11751180_a_at 0.14278
PLD3 19 11715382_x_at 0.17304
APOE 19 11744068_x_at 0.05962
PSEN1 14 11718678_a_at 0.29453
PSEN2 1 11723674_x_at 0.04862
ABCA7 19 11755091_a_at 0.45499

Table 2. Top results of Spearman associations between AD
gene expression and local connectivity metrics.

Gene Sorted by P-value. Dashed line: threshold= 0.05
17×90 = 3.27e−05

Region Region id Metric ρ P-value

APP Temporal_Mid_R Region86 local_eff -0.5805 1.9e-05
BLMH Heschl_L Region79 cluster_coef 0.5708 2.8e-05
PSEN1 Occipital_Mid_R Region52 b_centrality -0.5598 4.3e-05
BLMH Heschl_L Region79 local_eff 0.5591 4.4e-05
APP Temporal_Mid_R Region86 cluster_coef -0.5197 0.000182
PAXIP1 Amygdala_L Region41 cluster_coef 0.5064 0.000281
PLAU Angular_R Region66 cluster_coef 0.484 0.000567
PLAU Angular_R Region66 local_eff 0.4838 0.00057
ACE Postcentral_L Region57 b_centrality 0.4648 0.000998
ADAM10 Postcentral_L Region57 local_eff -0.4602 0.001133
PAXIP1 Parietal_Sup_L Region59 b_centrality -0.4585 0.00119
PLAU Fusiform_L Region55 b_centrality 0.4564 0.001262
SORL1 Putamen_R Region74 local_eff -0.4528 0.001395
PSEN2 Frontal_Inf_Oper_R Region12 local_eff 0.4457 0.001693
PLAU Frontal_Inf_Oper_L Region11 b_centrality 0.4454 0.001704
ABCA7 Temporal_Inf_L Region89 local_eff 0.442 0.001866

affecting the absolute change in betweenness centrality at left
Fusiform gyrus (Fusiform_L) with an increase of 487.13 at
each unit increase in PLAU expression (p-value= 3e− 06).
Followed by the expression of HFE with an effect size of
0.1277 on the change in local efficiency at the right anterior
cingulate and paracingulate gyri (Cingulum_Ant_R). Those
observed associations are illustrated in Figure 3. Supplemen-
tary Figure S8, Supplementary Figure S10 and Supplementary
Figure S9 shows the Manhattan plots for the -log10 of the
p-values corresponding to the quantile regression models of
the change in local efficiency, clustering coefficient and be-
tweenness centrality, respectively.

Similarly, we regressed the absolute change of global con-

Table 3. Top 50 quantile regression results of the change in
local network metrics (y) on and targeted Alzheimer’s
Disease gene expression (x)

Region Sorted by p-value. Dashed line: threshold= 0.05
17×90 = 3.27e−05

Region R. id Beta Statistic P-value Metric

PLAU Fusiform_L 55 487.1319 5.3836 3e-06 b_centrality
HFE Cingulum_Ant_R 32 0.1277 4.8139 1.7e-05 local_eff
PAXIP1 Parietal_Sup_L 59 -147.3175 -4.5608 3.9e-05 b_centrality
HFE Cingulum_Ant_R 32 0.1662 3.9835 0.000246 cluster_coef
APP Amygdala_R 42 -0.1349 -3.8548 0.000365 local_eff
PLAU Hippocampus_L 37 0.1073 3.4801 0.001125 local_eff
ADAM10 Postcentral_L r57 -0.0871 -3.4376 0.001275 cluster_coef
APOE Frontal_Inf_Orb_L 15 153.3117 3.3627 0.001584 b_centrality
APBB2 Amygdala_L 41 0.2054 3.3517 0.001635 cluster_coef
APOE Frontal_Sup_Medial_L 23 0.1912 3.2788 0.002015 cluster_coef
MPO Cingulum_Mid_L 33 0.0293 3.2465 0.00221 cluster_coef
MPO Cingulum_Mid_L 33 0.0281 3.2143 0.00242 local_eff
PLAU Cingulum_Ant_R 32 0.1428 3.1969 0.002543 local_eff
ADAM10 Postcentral_L 57 -0.0517 -3.1541 0.002867 local_eff
APOE Postcentral_L 57 0.0806 3.0931 0.003398 local_eff
PLD3 Olfactory_R 22 -0.1268 -3.0463 0.003867 cluster_coef
ABCA7 Frontal_Inf_Orb_R 16 34.9538 2.9489 0.005043 b_centrality
A2M Putamen_R 74 -0.0543 -2.9171 0.005495 local_eff
PLAU Hippocampus_L 37 0.1472 2.9023 0.005717 cluster_coef
HFE Frontal_Inf_Tri_R 14 0.1852 2.8813 0.006047 cluster_coef
HFE Frontal_Inf_Tri_R 14 0.0926 2.8594 0.006411 local_eff
APP Amygdala_R 42 -0.1753 -2.8288 0.006953 cluster_coef
APOE Occipital_Mid_R 52 44.0624 2.7995 0.007512 b_centrality
HFE Calcarine_R 44 0.1403 2.7916 0.007669 cluster_coef
APP Temporal_Mid_R 86 -0.0692 -2.7396 0.008787 cluster_coef
APP Temporal_Mid_R 86 -0.0386 -2.7297 0.009016 local_eff
PLD3 Olfactory_R 22 -0.0987 -2.713 0.009413 local_eff
A2M Olfactory_R 22 -30.9342 -2.6919 0.009941 b_centrality
APP Cuneus_R 46 0.1443 2.6845 0.010131 cluster_coef
PSEN1 Frontal_Inf_Tri_L 13 -0.1344 -2.6492 0.01109 local_eff
PSEN2 Temporal_Mid_L 85 0.0528 2.6465 0.011168 local_eff
PSEN1 Frontal_Inf_Tri_L 13 -0.2431 -2.6432 0.011262 cluster_coef
PLAU Frontal_Mid_R 8 0.0854 2.6384 0.011401 local_eff
APOE Putamen_L 73 372.8291 2.638 0.011411 b_centrality
A2M Occipital_Mid_R 52 0.0535 2.6213 0.011907 cluster_coef
APP Cuneus_R 46 0.0798 2.6189 0.011979 local_eff
ADAM10 Temporal_Sup_L 81 -0.1123 -2.6134 0.012147 cluster_coef
APOE SupraMarginal_L 63 0.1158 2.5663 0.013677 local_eff
HFE Calcarine_R 44 0.0755 2.533 0.014866 local_eff
PLAU Occipital_Mid_L 51 0.1268 2.5193 0.01538 cluster_coef
MPO Pallidum_R 76 0.024 2.5101 0.015732 local_eff
ABCA7 Temporal_Inf_L 89 0.0249 2.5083 0.015804 local_eff
A2M Occipital_Mid_R 52 0.0268 2.5023 0.01604 local_eff
PLAU Hippocampus_R 38 182.0756 2.5007 0.016105 b_centrality
APP Frontal_Med_Orb_L 25 0.1167 2.4968 0.01626 cluster_coef
HFE Cingulum_Post_R 36 28.3207 2.4708 0.017334 b_centrality
ACE Occipital_Mid_R 52 0.0433 2.4632 0.017659 local_eff
NOS3 Olfactory_L 21 -0.1615 -2.4596 0.017815 cluster_coef
ABCA7 Temporal_Inf_L 89 0.0429 2.4374 0.018808 cluster_coef
SORL1 Paracentral_Lobule_L 69 91.7443 2.4364 0.018855 b_centrality

nectivity measures on gene expression values and the top
results are shown in Supplementary Table S3. All the results
have p-values less than the threshold we set ( 0.05

17 = 0.0029).

Additive Genetic Effect on Brain Regions
To visualize the overall contribution of AD gene risk factors
used in this work on distinct brain areas, we added up the
-log10 p-values for the gene expression coefficients at each
of the 90 AAL regions. The p-values were obtained from
the quantile regression analysis between the gene expression
values and each of the three connectivity metrics - those are the
absolute difference between baseline and follow-up of; local
efficiency, clustering coefficient and betweenness. Figure
4 summarizes this by 1) representing the brain connectome
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Figure 3. Subfigure (a) higlights regions in the brain where significant associations - between gene expression and
longitudinal change in local connectivity metrics - were found, using quantile regression (HFE and PLAU) and spearman
associations (APP and BLMH). Each gene is plotted at the AAL brain region where the association was significant; APP at
Temporal_Mid_R, BLMH at Heschl_L, PLAU at Fusiform_L and HFE at Cingulum_Ant_R. (b) and (c) are scatter plots to
visualize the association between PLAU gene expression and betweenness centrality in the left fusiform gyrus (a), and between
the expression of HFE gene with local efficiency in right anterior cingulate gyrus (b). The red line on the plots represents the
median (quantile) regression line, while the blue line represents the ordinary least square line.

without edges for each one of the connectivity metric, 2)
each node represents a distinct AAL region and is annotated
with the name of the region, 3) the size of each node is the
sum -log10 of the regression coefficient associated p-vales
for all the genes. The color is assigned automatically by the
BrainNet Viewer. Overall, although the gene contributions to
the absolute change in local efficiency have a similar pattern to
that of clustering coefficient, the contribution to betweenness
centrality change is relatively small.

Regressing the difference in CDR on the difference
in Global and Local Connectivity

To asses the directed and undirected association of the
longitudinal measures of global connectivity and CDR
scores, we calculated the difference between baseline and
follow-up visits for both CDR and global connectivity met-
rics , i.e. CDRbaseline −CDR f ollow−up and metricbaseline −
metric f ollow−up, respectively. The Spearman and quantile
regression results are both shown in Supplementary Table
S4. We observe that the increase in overall brain segrega-
tion - through transitivity- reduces the memory over time
(β = −6.14e− 06, p-value= 0.0034). On the other hand,
there is a positive association between the brain integration -
through global efficiency- and home and hobbies.

Similarly, in Supplementary Table S5 we looked at the
monotonic effect of local connectivity metrics on the seven
CDR scores, both represented as the subtraction of the follow-
up visit from the baseline visit. The increase in betweenness
centrality was shown to have different effects on the CDR
score over the one-year time period. For example, as the
betweenness centrality decreases over time, the judgement and
problem solving increases in severity by 1.06e-08 over time
(p-value=1.32e-17), in the frontal lobe (Frontal_Inf_Oper_L).

Multivariate Analysis: Ridge Regression
Additionally, we regressed the difference in CDR visits (re-
sponse variable; Y), one score at a time, on both the difference
in global brain connectivity (predictor; X1), one connectivity
metric at a time and all gene expression values (predictor;
X2), using the ridge regression model. Supplementary Table
S6 reports the mean squared error (the score column) and
shows the top hits in the multiple ridge regression. It shows
that the α (alpha column) could not converge, using the cross-
validation, when the response variables were the judgment
or personal care. However, the CDR score results show that
genes and connectivity metrics have a small effect (β ) on the
response variables (the change in CDR scores over time), and
the larger effects were observed when using the total CDR
score (CDR_diff) as a response variable. The expression of
genes have negative and positive effects on CDR change, and
so are the connectivity metrics. The expression of APOE, for
example, has a negative effect (β )of −0.24 on the change in
memory score, i.e. the memory rating decreases by 0.24 as the
APOE expression increases. While if the expression of APOE
increases one unit, the home and hobbies score increases, over
time, by 0.12.

Discussion
Our results show that Alzheimer’s risk genes can manipulate
the amount of change observed in the structural connectome,
measured as the absolute difference of longitudinal connectiv-
ity metrics. Here, we show that longitudinal regional connec-
tivity metrics, global brain segregation and integration have
effects on the CDR scores. More specifically, we observe a
consistent decrease, over time, in the local efficiency - a con-
nectivity metric that measures the efficient flow of information
around a node (a brain region) in its absence18 - in response to
the increase in APP expression, at the right middle temporal
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Figure 4. Connectome representations showing the metric additive genetic effect at each AAL node. The subfigures show the
axial (top; (a), (b) and (c)), coronal (middle; (d), (e) and (f)), and sagittal (bottom; (g), (h) and (i)) planes of the brain, the node
size represents the local efficiency (left; (a), (d) and (g)), clustering coefficient (middle; (b), (e) and (h)) and betweenness
centrality (right; (c), (f) and (i)). Colors of the nodes are automatically assigned by the BrainNet Viewer. The acronyms of the
brain regions are explained in Table S1.

gyrus (Temporal_Mid_R; see Table 2). The same connectivity
metric increases over time as the expression of HFE increases,
at the right anterior cingulate and paracingulate gyri (see Ta-
ble 3). Furthermore, as the disease progresses, we observe a

correlation between brain segregation and cognitive decline,
the latter is measured as CDR memory scores. While if the
brain becomes more integrated, as measured by global effi-
ciency; it results in an improved growth of home and hobbies
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scores (see Supplementary Table S4).
Prescott et al.25 have investigated the differences in the

structural connectome in three clinical stages of AD, using a
cross-sectional study design, and targeted regional brain areas
that are known to have increased amyloid plaque. Their work
suggested that connectome damage might occur at an earlier
preclinical stage towards developing AD. Here, we further
adapted a longitudinal study design and incorporated known
AD risk genes. We showed how the damage in the connectome
is affected by gene expression, and that the change in connec-
tome affects dementia, globally and locally - at distinct brain
regions. Aside from our previous work21 examined the APOE
associations with longitudinal global connectivity in AD, us-
ing longitudinal global connectivity metrics, this study, to the
best of our knowledge, is the first of its type to include gene
expression data with global and local brain connectivity. How-
ever, similar work has been done in schizophrenia structural
brain connectivity, where longitudinal magnetic resonance
imaging features, derived from the DTI, were associated with
higher genetic risk for schizophrenia26.

The results obtained here align with findings in the litera-
ture of genetics and neuroimaging. Specifically, Robson et
al.27 studied the interaction of the C282Y allele HFE - the
common basis of hemochromatosis - and found that carriers
of APOE-4, the C2 variant in TF and C282Y are at higher
risk of developing AD. Moreover, the HFE gene is known for
regulating iron absorption, which results in recessive genetic
disorders, such as hereditary haemochromatosis28. According
to Pujol et al.29, the association between the harm avoidance
trait and right anterior cingulate gyrus volume was statisti-
cally significant. In their study, they examined the association
between the morphology of cingulate gyrus and personality in
100 healthy participants. Personality was assessed using the
Temperament and Character Inventory questionnaire. Higher
levels of harm avoidance were shown to increase the risk of
developing AD30. We show here that HFE expression affects
the local efficiency at the right anterior cingulate gyrus (see
Table 3 and Figure 3). This might indicate a possible effect
of HFE expression on the personality of AD patient or the
person at risk of developing the disease.

Moreover, in this study we found that the Plasminogen acti-
vator, urokinase (PLAU) expression affects the betweenness
centrality (a measure of the region’s (or node) contribution to
the flow of information in a network18) in the left fusiform
gyrus, over time (see Table 3 and Figure 3). Although the
functionality of this region is not fully understood, its rela-
tionship with cognition and semantic memory was previously
reported31. PLAU, on the other hand, was shown to be a risk
factor in the development of late-onset AD as a result of its
involvement in the conversion of plasminogen to plasmin - a
contributor to the processing of APP - by the urokinase-type
plasminogen activator (uPA)32.

When examining the linear associations between gene ex-
pression and local connectivity (see Table 2 and Supplemen-
tary Figure S6), we found that the right middle temporal gyrus,

known for its involvement in cognitive processes including
comprehension of language, negatively associates with APP
expression. Additionally, the left Heschl gyrus positively cor-
relates with bleomycin hydrolase (BLMH) expression. In the
human brain, the BLMH protein is found in the neocortical
neurons and senile plaques33, microscopic decaying nerve
terminals around the amyloid occurring in the brain of AD
patients. Some studies34, 35 have found that a variant in the
BLMH gene, which leads to the Ile443→Val in the BLMH
protein, increases the risk of AD; this was strongly marked
in APOE-4 carriers. The BLMH protein can process the Aβ

protein precursor and is involved in the production of Aβ

peptide36.
Even though none of the AD risk genes showed a signifi-

cant effect on the longitudinal change in global connectivity
(see Supplementary Table S3 and Supplementary Table S2),
the genes showed significant effects on local connectivity
changes at regional brain areas (see Table 3 and Table 2). The
global connectivity metrics of the brain, on the other hand,
have shown promising results in affecting the change observed
in CDR scores, including memory, judgement and problem
solving, as well as home and hobbies, as shown in Supplemen-
tary Table S4. Previous work studied the association between
genome-wide variants and global connectivity of Alzheimer’s
brains, represented as brain integration and segregation, and
found that some genes affect the amount of change observed
in global connectivity6. This suggests that a generalisation of
the current study at a gene-wide level might warrant further
analysis.

Our work provides new possible insights, though replica-
tion on a larger sample size is required. Indeed, one limitation
here was the small sample size available. We needed to nar-
row down our selection of participants to those attended both
baseline and follow-up visits, and have CDR scores, genetic
and imaging information available. Another limitation is
given by the use of only two time points, the baseline and
the first follow-up visit. This does not allow capturing the ef-
fects of connectivity changes in a longer-term or studying the
survival probabilities in AD. Extending to more time points
would have been useful, but it would have further reduced
the dataset. We foresee future work in using a more complex
unified multi-scale model, to facilitate studying the multivari-
ate effect of clinical and genetic factors on the connectome,
besides considering the complex interplay of genetic factors.

In this work, we conducted an association analysis of tar-
geted gene expression with various longitudinal brain con-
nectivity features in AD. Aiming at estimating the neurode-
generation of the connectome, we obtained local and global
connectivity metrics at two visits, baseline and follow-up, af-
ter 12 months. We calculated the change between the two
visits and carried out an association analysis, using quantile
and ridge regression models to study the relationship between
gene expression and disease progression globally and region-
ally at distinct areas of the brain. We tested the effect of
the change in connectivity on the longitudinal CDR scores
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through quantile regression. Furthermore, using a ridge re-
gression model, we controlled for the genetic effects in the
previous settings to study the effect of connectivity changes
on the CDR change.

The present analysis was conducted in AD using a longi-
tudinal study design and highlighted the role of PLAU, HFE,
APP and BLMH in affecting how the pattern information is
propagated in particular regions of the brain, which might
have a direct effect on a person’s recognition and cognitive
abilities. Furthermore, the results illustrated the effect of brain
structural connections on memory and cognitive process of
reaching a decision or drawing conclusions. The findings pre-
sented here might have implications for better understanding
and diagnosis of the cognitive deficits in AD and dementia.

Materials and Methods

Data Description
We used two sets of data from ADNI, which is available at
adni.loni.usc.edu. To fulfil our objectives, we merged
neuroimaging, genetic and CDR datasets for all the partici-
pants with those three types of data at two-time points avail-
able. We considered follow-up imaging and CDR acquisition
one year later than the baseline visit. Given those constraints,
we ended up with a total of 47 participants. We adopted a
case-control study design; 11 of the participants are AD pa-
tients, while 36 are controls. The data were matched by age,
and the distribution of age in AD ranges between 76.5±7.4,
and 77.0±5.1 years in controls.

Imaging Data
For the imaging, we obtained the DTI volumes at two-time
points, the baseline and follow-up visits, with one year in be-
tween. Along with the DTI, we used the T1-weighted images
and they were acquired using a GE Signa scanner 3T (General
Electric, Milwaukee, WI, USA). The T1-weighted scans were
obtained with voxel size = 1.2×1.0×1.0mm3T R= 6.984ms;
TE = 2.848 ms; flip angle= 11◦ ), while DTI obtained with
voxel size = 1.4×1.4×2.7mm3 , scan time = 9 min, and 46
volumes (5 T2-weighted images with no diffusion sensitiza-
tion b0 and 41 diffusion-weighted images b= 1000s/mm2).

Genetic Data Acquisition
We used the Affymetrix Human Genome U219 Array profiled
expression dataset from ADNI. The RNA was obtained from
blood samples and normalised before hybridization to the
array plates. Partek Genomic Suite 6.6 and Affymetrix Ex-
pression Console were used to check the quality of expression
and hybridization37. The expression values were normalised
using the Robust Multi-chip Average38, after which the probe
sets were mapped according to the human genome (hg19).
Further quality control steps were performed by checking the
gender using specific gene expression, and predicting the Sin-
gle Nucleotide Polymorphisms from the expression data39, 40

In this work, we targeted specific genes which have been re-
ported to affect the susceptibility of AD. We used the BioMart

software from Ensembl to choose those genes by specifying
the phenotype as AD41. We obtained a total of 17 unique gene
names and retrieved a total of 56 probe sets from the genetic
dataset we are using here.

Clinical Dementia Rating
The Clinical Dementia Rating, or CDR score is an ordinal
scale used to rate the condition of dementia symptoms. It
range from 0 to 3, and is defined by four values: 0, 0.5,
1, 2 and 3, ordered by severity, which stand for none, very
mild, mild and severe, respectively. The scores evaluate the
cognitive state and functionality of participants. Here, we used
the main six scores of CDR; memory, orientation, judgement
and problem solving, community affairs, home and hobbies,
and personal care. Besides the latter, we used a global score,
calculated as the sum of the six scores. We obtained the CDR
scores at two-time points in accordance with the connectivity
metrics time points.

Connectome Construction
Each DTI and T1 volume have been pre-processed perform-
ing Eddy current correction and skull stripping. Given the
fact that DTI and T1 volumes were already co-registered, the
AAL atlas42, and the T1 reference volume are linearly reg-
istered according to 12 degrees of freedom. Tractography
for all subjects has been generated by processing the DTI
data with a deterministic Euler approach43, using 2,000,000
seed-points and stopping when fractional anisotropy (FA) is
smaller than 0.1 or a sharp angle (larger than 75◦). To con-
struct the connectome, we assigned a binary representation in
the form of a matrix whenever more than three connections
were present between two regions of the AAL, for any pair of
regions. Tracts shorter than 30 mm were discarded. The FA
threshold was chosen in a such a way that allows reasonable
values of characteristic path length for the given atlas. Though
the AAL atlas has been criticized for functional connectivity
studies44, it has been useful in providing insights in neuro-
science and physiology, and is believed to be sufficient for our
case study44.

Global and Local Connectivity Metrics
To quantify the overall efficiency and integrity of the brain,
we extracted global measures of connectivity from the connec-
tome, represented here in four values of network integration
and segregation. Specifically, we used two network integra-
tion metrics 1) the global efficiency (E; Equation 1), and 2)
the weighted characteristic path length (L; Equation 2). Both
are used to measure the efficiency of which information is cir-
culated in a network. On the other hand, we used; 1) Louvain
modularity (Q; Equation 3), and 2) transitivity (T ; Equation 4)
to measure the segregation of the brain, that is, the capability
of the network to shape sub-communities which are loosely
connected to one another while forming a densely connected
sub-network within communities17, 18.

Suppose that n is the number of nodes in the network, N is
the set of all nodes, the link (i, j) connects node i with node
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j and ai j define the connection status between node i and j,
such that ai j = 1 if the link (i, j) exist, and ai j = 0 otherwise.
We define the global connectivity metrics as;

E =
1

n(n−1) ∑
i∈N

∑
j∈N, j 6=i

d−1
i j , (1)

where, di j = ∑auv∈gi↔ j auv, is the shortest path length between
node i and j, and gi↔ j is the geodesic between i and j.

L =
1

n(n−1) ∑
i∈N

∑
j∈N, j 6=i

di j. (2)

Q =
1
l ∑

i j∈N

[
ai j−

kik j

l

]
δ (ci,c j), (3)

where l = ∑i, j∈N ai j, mi and m j are the modules containing
node i and j, respectively, and δ (ci,c j) = 1 if ci = c j and 0
otherwise.

T =
∑i∈N 2ti

∑i∈N ki(ki−1)
, (4)

where ti = 1
2 ∑ j,h∈N(ai jaiha jh) is the number of triangles

around node i.

Using the AAL atlas, we constructed the following local
brain network metrics at each region or node. We used the
local efficiency (Eloc,i; Equation 5), clustering coefficient (Ci;
Equation 6) and betweenness centrality (bi; Equation 7) at
each node to quantify the local connectivity. Both local ef-
ficiency and clustering coefficient measure the presence of
well-connected clusters around the node, and they are highly
correlated to each other. The betweenness centrality is the
number of shortest paths which pass through the node, and
measures the effect of the node on the overall flow of infor-
mation in the network18. The local connectivity metrics used
in this work, for a single node i, are defined as follows;

Eloc,i =
∑ j,h∈N, j 6=i ai jaih

[
d jh(Ni)

]−1

ki(ki−1)
, (5)

where, d jh(Ni), is the length of the shortest path between node
j and h - as defined in Equation, and contains only neighbours
of h 1.

Ci =
2tw

i
ki(ki−1)

. (6)

bi =
1

(n−1)(n−2) ∑
h, j∈N,h6= j,h6=i,i 6= j

ρh j(i)
ρh j

, (7)

where ρh j(i) is the weights of shoetest path between h and j
that passes throgh i.

Statistical Analysis
We used different statistical methods as described below; how-
ever, for the multiple testing we relied on the Bonferroni cor-
rection45, 46. Where applicable, the thresholds were obtained
by dividing 0.05 by the number of tests.

Quantifying the Change in CDR and Connectivity Metrics
To determine the longitudinal change in CDR, local and global
connectivity metrics, we calculated the absolute difference
between the first visit (the baseline visit) and the first visit
after 12 months (the follow-up visit). Unless stated otherwise,
this is the primary way of quantifying this longitudinal change
we used in the analysis.

Estimation of Gene Expression from Multiple Probe Sets
Different probe set expression values were present for each
gene in the data. To estimate a representative gene expres-
sion out of the probe set expression, we conducted a non-
parametric Mann-Whitney U test to evaluate whether the ex-
pression in AD was different from those of controls. For each
gene, we selected the probe set expression that has the lowest
Mann-Whitney U p-value. In this way, we selected the most
differential expressed probe sets in our data and considered
those for the remaining analysis.

Spearman’s Rank Correlation Coefficient
To test the statistical significance of pair-wise undirected rela-
tionships, we used the Spearman’s rank correlation coefficient
(ρ). The Spearman coefficient is a non-parametric method
which ranks pairs of measurements and assesses their mono-
tonic relationship. We report here the coefficient ρ along with
the corresponding p-value to evaluate the significance of the
relationship. A ρ of ±1 indicates a very strong relationship,
while ρ = 0 means there is no relationship.

Quantile Regression
To model the directed relationship between two variables, we
used the quantile regression model47. This model is used as an
alternative to the linear regression when assumptions of linear
regression are not met. This fact allows the response and
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predictor variables to have non-symmetric distribution. The
quantile regression model estimates the conditional median
of the dependent variable given the independent variables.
Besides, it can be used to estimate any conditional quantile;
and is therefore robust to outliers. In this work, we used the
second quantile; the median, to model the directed relationship
between two variables using the quantile regression.

Ridge Regression
For estimating the relationship between more than two vari-
ables, we used ridge regression48. The basic idea behind this
model is that it solves the least square function penalizing it
using the l2 norm regularization. More specifically, the ridge
regression minimizes the following objective function:

||y−Xβ ||22 +α||β ||22,
i.e.,

β
Ridge =argmin

β∈R
||y−Xβ ||22 +α||β ||22,

(8)

where y is the dependent (or response) variable, X is the in-
dependent variable (feature, or predictor), β is the ordinary
least square coefficient (or, the slope), α is the regularization
parameter, β Ridge is the ridge regression coefficient, argmin
is the argument of minimum and it is responsible for making
the function attain the minimum and is L2(v) = ||v||2 repre-
sents the L2 norm function49. Moreover, we normalized the
predictors to get a more robust estimation of our parameters.

Software
We used python 3.7.1 for this work; our code has
been made available under the MIT License https://
choosealicense.com/licenses/mit/, and is ac-
cessible at https://github.com/elssam/RGLCG.
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