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Abstract

Cactus, a reference-free multiple genome alignment program, has been shown to be highly
accurate, but the existing implementation scales poorly with increasing numbers of genomes, and
struggles in regions of highly duplicated sequence. We describe progressive extensions to Cactus
that enable reference-free alignment of tens to thousands of large vertebrate genomes while
maintaining high alignment quality. We show that Cactus is capable of scaling to hundreds of
genomes and beyond by describing results from an alignment of over 600 amniote genomes, which
is to our knowledge the largest multiple vertebrate genome alignment yet created. Further, we
show improvements in orthology resolution leading to downstream improvements in annotation.

1 Introduction
New genome assemblies have been arriving at a rapidly increasing pace, thanks to rapid decreases
in sequencing costs and improvements in third-generation sequencing technologies [8, 40, 22]. For
example, the number of vertebrate genome assemblies currently in the NCBI database [25] has
increased by over 50% in just the past year (to 1485 assemblies as of July 2019). The Vertebrate
Genome Project, Genome 10K [26], the Earth BioGenome Project [31], the Bird 10K project [41],
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and the 200 Mammals project [14], among others, aim to release hundreds of high-quality assemblies
of previously unsequenced genomes in the next year, and thousands over the next decade.

In addition to this influx of assemblies from different species, new human de novo assemblies [21]
are being produced, which enable analysis of not just small polymorphisms, but also complex,
large-scale structural differences between human individuals and haplotypes. This coming era and its
unprecedented amount of data offers the opportunity to unlock many insights into genome evolution,
but also presents challenges in adapting our analysis methods to meet the increased scale.

Often we want to make use of these assemblies to conduct analyses like species-tree inference,
comparative annotation [11, 30], or constraint detection [19, 12]. All of these require comparing an
assembly against one or more other assemblies. This involves creating a mapping from each region
of each genome to a corresponding region in each other genome, taking into account the possibility
of complex rearrangements: this is the problem of creating a genome alignment [1].

Genome aligners are one of the most fundamental tools used in comparative genomics, but since
the problem is difficult, different aligners frequently give somewhat different results [6], and many
intentionally limit the alignments they produce to simplify the problem. Two of the most common
limitations are reference-bias, which constrains a multiple alignment to only regions present in a
single reference genome, and restricting the alignment to be single-copy, which allows only a single
alignment in any column in any given genome, causing the alignment to miss multiple-orthology
relationships created by lineage-specific duplications. Cactus [35] is a genome alignment program
which has neither of these restrictions; it is capable of generating a reference-free multiple alignment
that allows detecting multiple-orthology relationships.

The version of Cactus available at the time performed very well in the Alignathon [6], an
evaluation of genome aligners. However, the runtime of that initial iteration of Cactus scaled
quadratically with the total number of bases in the alignment problem, making alignment of more
than about ten vertebrate genomes completely impractical. To address these difficulties, we present
fundamental changes to the Cactus process that incorporate a progressive alignment [10] strategy,
which changes the runtime of the alignment to scale linearly with the number of genomes. We show
that the result is an aligner that remains state-of-the-art in accuracy, and continues to lack reference
bias, but which is tractable to use on hundreds to thousands of large, vertebrate-sized input genomes.
This new version of Cactus has been developed over several years, and has already been successfully
used as an integral component of high-profile comparative genomics projects [16, 5, 15, 32, 28]. We
describe the many improvements to the original Cactus method that make large alignments tractable,
while also increasing the accuracy of those alignments. We demonstrate it is capable of creating
useful alignments across a wide range of evolutionary distances, from intra-species alignments useful
in population genetics [13] to inter-species alignments spanning hundreds of millions of years of
genome evolution. Because of its support for multiple-orthology relationships, it automatically
supports diploid assemblies, which are becoming more common as new technologies enable phasing
across long distances [27, 40].

2 Results

2.1 Cactus
The new progressive Cactus pipeline is freely available and open source. The only inputs needed are
a guide tree and a FASTA file for each genome assembly.

The key innovation of the new Cactus aligner is to adapt the classic progressive strategy (used
in collinear multiple alignment for decades [10]) to a whole-genome alignment setting. Progressive
aligners use a guide tree to recursively break a multiple alignment problem into many smaller
sub-alignments, each of which is solved independently; the resulting sub-alignments are themselves
aligned together according to the tree structure to create the final alignment. Progressive alignment
has been succesfully applied to whole-genome alignment before, for example by progressiveMauve [4]
and TBA/MULTIZ [2]. Cactus now follows a similar strategy, with the key innovation being that
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Figure 1: A diagram of the progressive process within Cactus. A: A large alignment problem is decomposed
into many smaller subproblems using an input guide tree. Each subproblem compares a set of ingroup
genomes (the children of the internal node to be reconstructed) against each other as well as a sample of
outgroup genomes (non-descendants of the internal node in question). B: This flowchart represents the
phases which the overall alignment, as well as each subproblem alignment, proceeds through. The end
result is a new genome assembly representing Cactus’s reconstruction of the ancestral genome, as well as an
alignment between this ancestral genome and its children. After all subproblems have been completed, the
parent-child alignments are combined to create the full reference-free alignment in the HAL [18] format.
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Cactus implements a progressive-alignment strategy for whole-genome alignment using reconstructed
ancestral assemblies as the method for combining sub-alignments. This strategy not only results in
a much faster alignment runtime, but also produces ancestral reconstructions.

As a practical matter, Cactus also now uses the Toil [39] workflow framework to organize and
distribute its computational tasks. Because it runs on Toil and supports container execution via
Docker and Singularity [29], Cactus can be run on many different environments: single machines
(for small alignments), conventional HPC clusters, as well as the GCP, AWS, and Azure clouds.

Figure 1A shows the overall organization of the new Cactus process. The guide tree, which need
not be fully resolved (binary), is used to recursively split a large alignment problem (comparing
every genome to every other genome) into many small subproblems, each of which compares only a
small number (usually 2–5) of genomes against one another. The purpose of each subproblem is to
reconstruct an ancestral assembly at each internal node in the guide tree, as well as to generate
alignments between that internal node’s children and its ancestral reconstruction. The ancestral
assemblies are then used as input genomes in subproblems further up the tree, while the parent-child
alignments are later combined to produce the full alignment. Two sets of genomes are considered:
the children of the internal node (which we call the ingroup genomes), and a set of non-descendants
of that node (the outgroup genomes). The ingroup genomes form the core alignment relationship
being established at this node. The outgroup genomes serve to answer the question of what sequence
from the ingroups is also present in the ancestor (whether an indel among the ingroups is likely
a deletion rather than an insertion), and in how many copies (whether a duplication predates or
postdates the speciation event the node represents). The outgroups also provide information for
guiding the ancestral assembly by providing additional order-and-orientation information, as well
as additional information when generating ancestral base calls. These genome sets are used as the
input to the main subproblem workflow, which we outline below and in Figure 1B, and describe in
detail in Section 7.1.

Each individual subproblem follows a procedure akin to the original Cactus process. The
subproblem procedure begins with a set of pairwise local alignments generated via LASTZ [17].
These pairwise alignments are then filtered and combined into a cactus graph representing an initial
multiple alignment using the CAF algorithm described in our earlier work [35], though we note
important changes to the filtering in Section 7.1.4 and Section 7.1.5. The initial alignment is refined
using the BAR algorithm again described in earlier work [35] to create a more complete alignment.
The ancestral assembly is then created by ordering the blocks in this final alignment and establishing
a most-likely base call for each column in each block. The resulting ancestral sequence is then fed
into later subproblems (unless the subproblem represents the root of the guide tree, which indicates
the end of the alignment process).

2.2 Evaluation on simulated data
To evaluate the improvements in quality and runtime of the alignments produced using the new
progressive alignment strategy, we simulated the evolution of 20 30-megabase genomes using
Evolver [7] along a tree of catarrhines. We ran two alignment strategies — one using a fully-
resolved binary guide tree (which takes full advantage of the new progressive mode) and one using a
fully-unresolved star guide tree (which is similar to the originally published version of Cactus) —
across variously sized subsets of these genomes (for details of the simulation and alignments, see
Section S1.1). The alignments using the progressive strategy were much faster, especially when
aligning large numbers of genomes, as expected given its linear scaling runtime, as opposed to
the quadratic scaling of the star-tree (Figure 2A). The simulated genomes have a known true
alignment relating them, which is produced during the simulation process; using this it is possible to
evaluate the quality of the alignments produced by the two strategies (Figure 2B). The progressive
strategy is much more sensitive (89% recall) than the star strategy (82% recall) when aligning all 20
genomes: this reflects the fact that the increasing number of genomes will decrease the length of
rearrangement-free regions, limiting the effectiveness of the rearrangement-based alignment filtering
method that Cactus utilizes. Since the progressive strategy only aligns a constant number of genomes
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Figure 2: Results from alignments of varying numbers of simulated genomes using the progressive mode of
Cactus (“Progressive”), versus the mode without progressive decomposition similar to originally described
in [35] (“Star”). A) The total runtime of the two alignment methods across 3 runs. Error bars show standard
deviation of runtime between the runs. The runtime is nearly identical when aligning two genomes since
the alignment problem is not further decomposed, but the linear scaling of the progressive mode means
it is much faster with large numbers of genomes than the quadratic scaling required without progressive
alignment. B) The precision, recall, and F1 score (harmonic mean of precision and recall) of aligned pairs
for each alignment compared to pairs from the true alignment produced by the simulation.
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Alignment Precision Recall F1-score CPU time

Genome added to branch 97.27% 88.40% 92.63% 11 h
Genome added to node 97.21% 88.35% 92.57% 16 h
Full realignment of entire tree & new genome 97.19% 88.33% 92.55% 176 h

Table 1: Results of adding a new genome to an alignment of simulated genomes. Precision, recall, and
F1-score statistics are all of aligned pairs that contain a base of the added genome. An alignment where the
genome was included initially is shown for comparison.

together at a time, it is able not only to make the runtime of aligning large numbers of genomes
practical, but to align them with an accuracy unattainable by the previous versions of Cactus.

2.3 Adding new genomes to an existing alignment
Given the rate of arrival of new assembly versions and newly sequenced genomes, adding new
information to an alignment without recomputing it from scratch is valuable, especially for large
alignments where recomputing the entire alignment is often cost-prohibitive. Cactus supports adding
a new genome to an existing alignment by taking advantage of the tree structure of the progressive
alignments it produces. There are three ways that a new genome can be added to an alignment,
depending on its phylogenetic position relative to the existing genomes: 1) as outgroup to all the
existing genomes in the alignment, 2) by being added as a new child of an existing ancestral genome
in the alignment, or 3) by splitting a branch in the existing alignment, creating a new internal
node and two new branches (Figure S1). Cactus allows adding a new genome in any of these ways,
though the details differ; see Section 7.2. Assemblies can be replaced with new versions by simply
deleting them and adding the new assembly in as a leaf. Adding multiple genomes is possible, either
iteratively or (if the new genomes are monophyletic) by aligning together the new genomes and
adding in the ancestral clade root.

We tested the effect of adding a new genome to an existing alignment using the same set of
simulated catarrhine genomes as in Section 2.2. To replicate the use-case of an end-user wanting
to add a genome to a previously-created alignment, we generated an alignment holding out one
of the 20 genomes (the crab-eating macaque), and added that genome back into the alignment by
both splitting an existing branch (resulting in the same topology as a full alignment would), and
by adding the macaque as a new child of an existing ancestor (creating a trifurcation which did
not exist in the original tree). For details of this process, see Section S1.2. Both methods resulted
in alignments that had accuracy nearly identical to the full alignment that included the macaque
from the start: both addition methods as well as the full alignment achieved an F1 score of 0.926
(Table 1).

2.4 Effect of the guide tree
Since Cactus uses an input guide tree to decompose the alignment problem, the guide tree can
potentially impact the resulting alignment. This could be problematic when the exact species tree
relating the input set of genomes is unknown or controversial. However, Cactus aims to reduce
any effect of the guide tree by including a great deal of outgroup information, including multiple
outgroups when possible. To quantify the effect of the guide tree on a large alignment with an
uncertain species tree, we created four alignments of a set of 48 avian species, which we subsetted
down to a single chromosome (Chromosome 1). The avian species tree is somewhat debated, with
many different plausible hypotheses [23, 37], making birds an excellent test case with no single
clearly correct guide tree. We aligned these birds using four different guide trees: two trees that
represent two different hypotheses about the avian species tree [23, 37], one consensus tree between
the former two trees, and one tree that was randomly permuted from the Jarvis et al. tree [23] (see
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Guide tree Jarvis Prum Consensus Permuted

Jarvis 1
Prum 0.9867 1
Consensus 0.9882 0.9883 1
Permuted 0.9843 0.9822 0.9836 1

Table 2: Comparison of alignment similarity between four alignments of the same 48 avian genomes with
different guide trees. Similarity between each pair of alignments is represented by the F1 score (harmonic
mean of precision and recall) of aligned-pair relationships in the two alignments.

Section S1.3 for details on the alignments and Figure S2 for a visualization of the four guide trees).
The four alignments were highly similar, with an average of 98.5% of aligned pairs exactly identical
between any two different alignments: detailed results are shown in Table 2.

2.5 Timing duplication events
Users of a genome alignment are almost always interested in orthology, rather than homology,
between a set of sequences. For example, when comparing human and chimpanzee KZNF genes,
providing an alignment from each gene to the over-400 [20] homologous KZNF genes in the other
genome is nigh-useless; the user is likely interested in only the orthologous copy or copies (in the
case of a lineage-specific duplication) in the other genome. For this reason, Cactus alignments
are capable of representing complex orthology/paralogy relationships, with an ability to display
the alignment(s) labeled as orthologous, but also the option for a user to request alignments to
paralogs at a customizable coalescence-time threshold. This is achieved by implicitly producing a
gene tree as the alignment is built, albeit with some restrictions imposed by the output HAL [18]
format, namely that a duplication event is represented by multiple regions in the child(ren) aligned
to a single region in the parent species. This forbids the representation of gene-tree-species-tree
discordance as would occur in incomplete lineage-sorting or horizontal transfer, as well as the exact
ordering of multiple duplication events along a single branch. The restricted problem we solve at
each subproblem step is that each block should represent all regions orthologous to a single region
of the ancestral sequence, possibly multiple per species; we make no attempt to fully resolve the
gene tree when multiple duplications take place along a single branch. However, this still requires
resolving the timing of all duplication events: duplicated sequences whose coalescence precedes the
speciation event represented in the subproblem should be split, while those following the speciation
event should be kept together.

Because it is impractical to generate maximum-likelihood trees for every block in the subproblem,
Cactus relies on heuristically filtering alignments to remove paralogs before building its cactus
graph. For this we developed two heuristics: a filter based on similarity to outgroup sequence,
which was used in the many projects which used the beta versions of progressive Cactus, and (more
recently) a method of pre-filtering alignments that only allows any given base to contribute one “best”
alignment in most cases (described in Section 7.1.4). Of the two methods, the newer best-hit filtering
removes many more likely-paralogous alignments, especially to closely-related genomes, while leaving
approximately the same amount of sequence covered by a single homology. For example, in two
comparison alignments of the same 12 genomes, one using the best-hit filtering and one using the
outgroup filtering, the amount of human sequence mapping to two or more places in the chimpanzee
genome was reduced from 6.1% to 2.6%, while the total amount of human covered by chimpanzee
actually increased despite the removed homologies (see Figure 3A,B for an example visualization
and Figure 3C for aggregate statistics; see Section S1.4.1 for details on the alignments).

To confirm that these improvements were likely caused by removal of paralogous rather than
orthologous alignments, we compared phylogenetic trees implicit in the columns of HAL alignments
to independently re-estimated approximately-ML trees produced by FastTree [36] for the same
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regions Section S1.4.3. Since HAL does not produce a fully binarized history of duplication events,
we compared the species assigned to the most recent common ancestor (MRCA) of randomly selected
pairs of sites from genomes containing a duplication within the column. If the species assigned
to the MRCA in the HAL tree is a descendant of the species within the reconciled ML tree, that
implies that there are paralogs represented as orthologs within the HAL tree (since a duplication
event must have been resolved too early). Similarly, if the MRCA species within the HAL tree is an
ancestor of that within the reconciled ML tree, a duplication event must have been resolved too late
in the HAL, implying additional false loss / deletion events. The number of paralogous alignments
(represented by the coalescence time between duplicated sequences being too “early” in the HAL
tree relative to the ML tree) in the alignment of the 12 boreoeutherian genomes was clearly reduced
(46% in the outgroup filtering vs 26% in the best-hit filtering) (Figure 3D).

We separately ran the Comparative Annotation Toolkit (CAT) [11] on identical chimpanzee and
gorilla assemblies in two alignments using the outgroup and best-hit filtering methods (Section S1.4.2).
Not only was CAT less likely to identify a human gene in multiple chimp loci using the best-hit
filtering (e.g. 6.5% vs. 9.8% multiple-mappings across all genes in chimp, and 5.9% vs. 13.8% for
the recently-duplicated KRAB zinc-finger gene family) (Figure 3E), but as a result orthologs for
104 more human genes were identified in the output gene set for chimp (182 in gorilla) (Table S3).
This is likely because tens of thousands fewer paralogous transcripts were filtered out in the initial
filtering phase of CAT (Table S2), reducing confusion about which transcript projection to put into
the gene set.

2.6 600-way amniote alignment
To demonstrate this new version of Cactus we present results from an alignment of 605 amniote
genomes, relating in a reference-free manner a total of over 1 trillion bases of DNA across hundreds of
millions of years of genome evolution. The amniote-wide alignment combines two smaller alignments:
one created for the 200 Mammals project [14], representing 242 placental mammals, and one for the
Bird 10K project [41], which relates 363 avians. The overall topology is shown in Figure 4A. To
our knowledge this represents the largest whole-genome alignment yet created. Table 3 contains
aggregate statistics on this alignment, which was computed using the Amazon Web Services (AWS)
cloud infrastructure (for details on the construction, see Section S1.6).

Coverage within the 600-way alignment unsurprisingly closely tracks phylogenetic distance
and genome size, with e.g. a median coverage on human of 2.3 Gb from Euarchonta species, vs.
1.2 Gb from Laurasiatheria species and 1.0 Gb from Glires species (Figure 4B,C). The ancestral
reconstructions within the 600-way alignment are highly complete, especially for conserved sequence:
86% of human coding bases are represented in our reconstruction of the ancestor of all placental
mammals, while 95% of chicken coding bases are represented in our reconstruction of the common
ancestor of avians (Figure 4D,E). The ancestral assemblies consistently contain a relatively higher
proportion of avian than mammal sequence even across similar phylogenetic distance, reflecting a
much more conservative mode of genome evolution in avians as well as the lower repeat content and
denser gene content of avian genomes [42].

The reference-free nature of Cactus alignments enables examining genome evolution along all
branches equally well, rather than being restricted to sequence present in one reference genome.
In addition, the ancestral reconstructions implicitly provide a history of substitution, indel, and
rearrangement events. Though this history is by its nature only a hypothetical reconstruction of the
true history of genome evolution along the tree, it is by and large accurate enough to be useful. To
demonstrate the utility of the indel history, we examined rates of small (ď 20 bp) insertion and
deletion events in the 600-way alignment. As expected given previous studies [3, 16], the rate of small
indels in any given branch was correlated with the rate of nucleotide substitution (an R2 of 0.49 for
insertions and 0.59 for deletions), though remained much lower (1.3% of the substitution rate for
insertions, and 1.7% of the substitution rate for deletions) (Figure 5A). The ancestral assemblies also
represent even difficult-to-align regions such as transposable elements. We ran RepeatMasker [38]
on several human ancestors, focusing on the recently-emerged L1PA6 family of L1 retrotransposons.
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Figure 3: Results from the improved paralog-filtering method. A/B: A sample snake track [33] within a
recently duplicated region before (A) and after (B) the filtering change. Nucleotide subsitutions are shown
as red bars, and insertions are shown as thin orange bars. C: Coverage results from two alignments of
identical assemblies using the outgroup and best-hit filtering methods. Multiple-mappings: sites which map
to two or more sites on the target genome. D: Results from comparing phylogenetic trees implicit in the
HAL alignment to ML re-estimated trees of the same regions. “Early” coalescences imply that too many
duplication events have been created in the reconciled trees, while “Late” implies that too many loss events
have been created. E: Percent of human genes that map more than once to the chimp/gorilla genomes
in two CAT [11] annotations using alignments created with the outgroup and best-hit filtering methods.
KZNF: KRAB zinc-finger genes.
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Alignment # of genomes Total bases Instance-hours Core-hours Common ancestor size
200 Mammals 242 669 billion 68,166 1.9 million 1.73 Gb
Bird 10K 363 400 billion 5,302 0.2 million 1.13 Gb
Combined 605 1.07 trillion 73,692 2.1 million 181 Mb

Table 3: Aggregate statistics for the 600-way alignment. The increase in computational work for the
mammal alignment over the bird alignment is largely caused by the increase in the pairwise alignment phase
runtime, because it scales quadratically with the size of the genomes being aligned.

When ascending the primate tree, approaching the origin of modern L1PA6 elements above the
human-rhesus ancestor, L1PA6 elements appear increasingly similar to their consensus sequence
(Figure 5B).

The Bird 10K species were also separately aligned using MULTIZ [2] using the chicken genome
as the reference, allowing us to make a comparison between the two resulting alignments. Cactus
aligned more total bases to chicken than MULTIZ (an average of 69.4% of the chicken genome
compared to an average of 64.9%, for an average increase of 47 Mb). Since, unlike Cactus, MULTIZ
is reference-biased, the difference is more stark when looking at the number of bases aligned to a
genome not used as the MULTIZ reference (an average of 79% of the zebra finch covered vs. 49.2%,
for an average increase of 367Mb: see Figure 6).

3 Discussion
A few ambitious comparative genomics projects are already producing assemblies at the scale of tens
to hundreds of species, and we anticipate that this scale of data will become much more common in
the coming years. However, without a genome alignment it is impossible to relate these assemblies,
and making an accurate genome alignment that large is difficult. We have demonstrated that
Cactus can create alignments of hundreds of large genomes efficiently by producing an alignment
relating over a trillion bases total. With this new development, we not only enable high-quality
genome alignments for these projects, but also hope to set the stage for analysis of thousands to
tens-of-thousands of genomes in the near future.

Furthermore, as long-read technologies become cheaper and more widely accessible, assembly
quality has been rising. The age of having only a few high-quality vertebrate assemblies, like human
or mouse, is at its end. As more assemblies converge on the gold-standard, “reference” level of quality
displayed by GRCh38 and GRCm38, a reference-free genome alignment becomes increasingly useful.
A reference-biased alignment forces the user to view genome evolution through the lens of a single,
distant reference. As the average assembly becomes ever more complete and accurate, this missed
opportunity to analyze regions not present in the reference grows even worse as more data is ignored
and does not contribute to the alignment. For this reason, we provide a reference-free alignment,
allowing analysis of genome evolution throughout the entire tree rather than in comparison to one
anointed reference.

Cactus is also useful for comparison between assemblies of the same species, not just comparison
between species. Often a sequencing effort will produce multiple de novo assemblies from different
individuals, or diploid assemblies from a single individual. Alignments of these assemblies are
essential for many analyses, e.g. annotation of de novo assemblies [11]. Cactus is easily capable of
capturing even the most complex structural variation, such as copy number variation, between these
assemblies.

Producing a genome alignment has usually been an arcane task, where parameters used to
produce, chain, or filter the input local alignments can have an under-appreciated effect on the
result. We provide Cactus as an integrated pipeline that can be used across many different compute
environments, but especially thrives on modern cloud environments. It intelligently adjusts alignment
parameters to maximize efficiency and accuracy depending on evolutionary distance. While genome
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Figure 4: Results from the 600-way amniote alignment. A: The species tree relating the 600 genomes.
Branches are colored by clades in the same way as figures B and C. B: Percent coverage on human within
the eutherian mammals, grouped by clade from highest to lowest coverage. C: Similar to B, but for coverage
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to each ancestral genome reconstructed along the path leading from human to the root. The positions of
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Figure 6: A comparison of coverage in the Cactus avian alignment compared to a chicken-referenced
MULTIZ [2] alignment of the same genomes. Coverage of both alignments on chicken and zebra finch is
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alignment is a computationally intensive task, we have broken up the problem into small pieces that
can work in heterogeneous clusters, playing to the advantages of both cheap CPU-rich machines and
more expensive memory-rich machines.

We have used Cactus to produce a 600-way alignment, which is, to our knowledge, the largest-yet
genome alignment of vertebrates. This alignment is already proving useful for further downstream
analysis. The Bird 10K [41] and 200 Mammals [14] consortia plan to use the alignment to analyze
selection at unprecedented detail across avians and mammals, respectively.

In the quest to make Cactus more efficient, optimizing the local alignment phase would offer the
most return because the computational cost of the alignment is dominated by the generation of local
alignments. Some less-sensitive local alignment programs are naturally more efficient than LASTZ,
which is tuned for high sensitivity and long evolutionary distances. Making the local alignment
phase a “pluggable” module, in which methods of generating the local alignments, or even the initial
sequence graph, could be easily swapped out would be a fruitful avenue for experimentation. Cactus
could potentially transition between using a less sensitive local aligner for closely related sequence
and a more sensitive aligner across long evolutionary distance, much in the same way that we change
alignment parameters based on evolutionary distance today.

As alignments become larger and more expensive to compute, it becomes much more important to
be able to update them (by e.g. adding a new genome or updating an assembly) without recomputing
the entire alignment. Cactus’s progressive alignment framework, combined with special functionality
in the HAL toolkit [18] makes it possible to make these changes very efficiently: costing only a single
subproblem’s worth of computation time, usually about 120 CPU days. However, there is currently
an appreciable amount of manual work involved in the process of adding, removing, or updating
an assembly within an existing alignment. Making this simpler and more automated would be an
interesting future direction, one that would potentially allow a very large alignment resource to be
used and updated for years, with collaborators adding in their genomes of interest cost-effectively.

4 Data availability
The 600-way alignment is openly available for download in HAL format at https://forms.gle/
tnkTH6qa49Hhe2oa9. Access requires registering and agreeing to the B10K data usage agreement.
We anticipate that because of the large file size and the relatively small amount of alignable sequence
between avians and mammals, most users will be interested in the alignments of the avian and
mammalian clades. For this reason, we also provide the subset of the alignment containing the
200 Mammals genomes at https://alignment-output.s3.amazonaws.com/200m-v1.hal, with no
data usage agreement. The subset of the alignment containing the Bird 10K genomes is also available
from https://forms.gle/tnkTH6qa49Hhe2oa9.

A visualization of the alignments and associated data is available by loading our assembly
hub into the UCSC browser. By copying the hub link https://comparative-genomics-hubs.
s3-us-west-2.amazonaws.com/600way_hub.txt into the "Track Hubs" page, the 605 genomes
and associated tracks will be available.

5 Code availability
The Cactus pipeline is available at https://github.com/ComparativeGenomicsToolkit/cactus
under the MIT license. The exact version of Cactus used for each of the analyses described above
varies; the commit used in each analysis are available in the supplementary material.
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7 Methods

7.1 Cactus
7.1.1 Preliminary repeat-masking

Cactus requires input genomes to be soft-masked, but often repetitive sequence goes unmasked due
to poor masking or incomplete repeat libraries for newly-sequenced species. This can negatively
affect alignment runtimes (as alignments need to be enumerated to and from all copies of a repetitive
sequence) and impact quality. For this reason, we mask overabundant sequence before alignment,
using a strategy not based on alignment to repeat consensus libraries, but on over-representation of
alignments. We first divide each genome into small, mutually overlapping chunks. For each chunk,
we align it to itself and a configurable amount of other randomly sampled chunks (currently 20% of
the total pool). To avoid combinatorial explosion due to unmasked repetitive sequence, we use a
special mode of LASTZ [17] which stops exploring alignments from any region early if a maximum
depth is reached. We then soft-mask any region covered by more than a certain configurable number
of these alignments (currently set to 50).

7.1.2 Local alignment and outgroup selection

The alignment process for each subproblem begins with a series of local alignments generated using
LASTZ [17]. The local alignments fall into two sets: a set of all-against-all alignments among the
ingroup genomes, and a set of alignments from ingroup genomes to outgroup genomes.

We have found outgroup selection to be absolutely crucial in creating an acceptable ancestral
reconstruction: any missing data or misassembly in the outgroup that causes a true deletion in one of
the ingroups to be misinterpreted as an insertion in others will mean that the ancestor contains less
sequence than it ought to. This missing sequence in turn impacts the alignment between the entire
subtree below the reconstructed ancestor and the entire supertree above it: the missing sequence
will never be aligned between the subtree and supertree. To avoid this we attempt to use multiple
outgroup genomes in each subproblem (3 by default). Naively aligning each ingroup against multiple
outgroups would significantly increase the computation time; to avoid this we note that in general
any region already containing an outgroup alignment benefits very little from aligning an additional
outgroup. Therefore, we iteratively align each ingroup against one outgroup at a time, pruning
away any ingroup sequence already covered by the previous outgroup alignments. In this way the
computational cost is reduced to be far less than naively aligning against the entire outgroup set,
while still retaining nearly all of the benefit. In addition, we allow the user to designate certain
genomes in the input as being of particularly high quality; these are chosen as outgroups if possible
to avoid problems with missing data in regions like mitochondrial or sex chromosomes that are often
missing from some assemblies but not others.

7.1.3 Ancestral genome reconstruction

The core of what makes the progressive alignment algorithm possible is the ancestral reconstruction
generated in each subproblem. This assembly serves as a summary of each subproblem alignment;
the alignable sequence between the genomes in the subtree below the ancestor, as well as that
alignable between the subtree and the supertree above the ancestor, is all present in the ancestral
reconstruction. The ancestral sequence contains a base for each column in all blocks which contain
an alignment between two ingroups and/or an ingroup and an outgroup — any alignment purely
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between outgroups is discarded. The order and orientation of the blocks relative to one another is
chosen via a previously published algorithm for ordering a pangenome [34].

The identity of the ancestral bases is inferred via maximum-likelihood on a Jukes-Cantor
model [24] of evolution using Felsenstein’s pruning algorithm [9] on the subtree of the guide tree
induced by the genomes in the subproblem. These base-calls are generated as the alignment is
being made, so they necessarily take only a part of the alignment information into account and may
be different than the ideal base-calls would be if taking into account information across the entire
alignment. However, we provide a tool, ancestorsML, distributed as part of the HAL toolkit [18],
that re-estimates ancestral base-calls after completion of the alignment if desired.

7.1.4 Paralogy resolution

Previous beta versions of progressive Cactus relied on an outgroup-based heuristic to resolve
duplication timing. This heuristic, which we term “single-copy outgroup filtering”, separated
collections of ingroup regions based on their similarity to outgroup regions, ensuring that at most one
outgroup region could be present per block: the one most similar to the block’s ingroup sequences.
Assuming that the outgroup contains the proper number of copies and each ingroup copy is indeed
most similar to an orthologous outgroup copy, this should function correctly. However, this method
is very sensitive to incomplete outgroup assemblies (containing an incorrect number of copies of a
duplicated region) or variation in similarity between closely related paralogs causing assignment
to the wrong copy. As seen in Figure 3, this filtering method tended to resolve duplications far
too early, often causing paralogs to be called as orthologs (for example, implicitly labeling 6.1% of
human sequence as duplicated along the chimpanzee lineage, which is certainly an overestimate).

To remedy this problem, we developed an improved duplication-timing method, which we termed
“best-hit filtering” in the earlier text. The method assigns, for every base in every input genome, a
single primary pairwise alignment (the highest-scoring alignment involving that base, if it has been
aligned) and a set of secondary pairwise alignments (all others involving that base). All primary
alignments are added to the initial graph unconditionally, as they represent the most likely ortholog
relationship (or in the case of multiple orthology, likely a random ortholog) (Figure S5). The set
of primary alignments represents a conservative set of alignment relationships that should include
nearly no alignments to ancient paralogs. However, in regions that have undergone many rounds of
lineage-specific duplications (which should all be aligned together in the restricted duplication-timing
problem we describe above), the set of primary alignments will often by chance not align all copies
together. For this reason, we also allow some of the secondary alignments into the initial graph,
after adding the primaries, though with additional restrictions because the secondary alignments
will inevitably contain some alignments to distant paralogs. We only allow in those secondary
alignments that would not merge two existing blocks that both contain sequences from multiple
species — this allows lineage-specific duplications to correctly land in the same block, while avoiding
merging blocks from likely-paralogous alignments.

7.1.5 Removing recoverable chains

Due to the insensitive and approximate nature of the input local alignments, homologies are often
missed in the input to the CAF algorithm. Alignment blocks that are “incomplete”, i.e. contain
some true homologies but miss others, can cause issues for the CAF algorithm: if these incomplete
blocks make it into the output Cactus graph, the missing homologies can never be recovered by the
BAR algorithm because to preserve the structure of the cactus graph, BAR cannot modify existing
alignment blocks, only add new ones. To remedy this issue, we developed a method to remove
likely-incomplete blocks as part of the algorithm, which we term “removing recoverable chains”.
In short, this method runs as a post-processing step to the original CAF algorithm, removing
blocks which contain only homologies that could recovered by the BAR algorithm extending from
neighboring blocks. Adding this post-filtering step noticeably increases coverage, especially for
distant genomes in large trees (Figure S4). For further detail on the process, see Section S1.8.

15

.CC-BY-NC-ND 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under 

The copyright holder for this preprint (which was notthis version posted October 15, 2019. ; https://doi.org/10.1101/730531doi: bioRxiv preprint 

https://doi.org/10.1101/730531
http://creativecommons.org/licenses/by-nc-nd/4.0/


7.2 Adding a new genome to an existing alignment
There are three possible ways to add a genome into an existing alignment, depending on the desired
phylogenetic position of the genome. Adding a genome as an outgroup is straightforward, since
it follows the normal progressive process: the root of the existing alignment and the new genome
can be aligned together into a supertree alignment, which the existing subtree alignment can be
appended to. A genome can be added as a new child of an existing internal node by simply aligning
the new child, its siblings, and its parent together, without inferring a new ancestral genome. Adding
a genome by splitting an existing branch is the least straightforward, but is key if the topology
of the alignment or the accuracy of the ancestral genomes is important. To add a genome to an
existing alignment, two subproblems are required: one relating the new genome and its new sibling
in the target tree, constructing the ancestral genome that will split the existing branch, and one
relating this new ancestral genome, its sibling, and its parent.

After addition of a new genome as an ingroup (by adding it to a node or a branch), at most a
single ancestral sequence is re-inferred. This prevents any information from the new genome from
propagating to the rest of the tree. While this saves significant effort in recomputing other parts of
the alignment, it also means that, occasionally, rare stretches of sequence in a newly added genome
would not be properly aligned to distant outgroups because they were deleted or missing in the new
genome’s close relatives. Re-inferring the ancestral genomes on the path from newly added genomes
to the root should address this issue if it appears.
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