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Abstract

When decisions must be made between uncertain options, optimal behavior depends on
accurate estimations of the likelihoods of different outcomes. The contextual factors that
govern whether these estimations depend on model-free learning (tracking outcomes) vs.
model-based learning (learning generative stimulus distributions) are poorly understood.
We studied model-free and model-based learning using serial decision-making tasks in which
subjects selected a rule and then used it to flexibly act on visual stimuli. A factorial approach
defined a family of behavioral models that could integrate model-free and model-based strate-
gies to predict rule selection trial-by-trial. Bayesian model selection demonstrated that the
subjects strategies varied depending on lower-level task characteristics such as the identities
of the rule options. In certain conditions, subjects integrated learned stimulus distributions
and tracked reward rates to guide their behavior. The results thus identify tradeoffs be-
tween model-based and model-free decision strategies, and in some cases parallel utilization,
depending on task context.
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1. Introduction

Humans are often forced to make decisions between uncertain options, where the proba-
bility of each option leading to success is unknown and must be estimated in order to behave
optimally. For example, imagine you are given the choice between shooting a basketball into
a net or a soccer ball into a goal, but the distance from which you would have to take
each shot is unknown (Fig. 1A). Model-free reinforcement learning (RL) algorithms would
solve this problem by tracking past outcomes (successes and failures) for each possible ac-
tion (soccer and basketball) to determine the action with the greater expected probability of
success. However, sensory cues can also carry important information about expected success

∗I am corresponding author
Email address: zmabzug@gmail.com (Zachary M Abzug) 

.CC-BY-NC-ND 4.0 International licenseavailable under a
not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (which wasthis version posted August 14, 2019. ; https://doi.org/10.1101/730663doi: bioRxiv preprint 

https://doi.org/10.1101/730663
http://creativecommons.org/licenses/by-nc-nd/4.0/


probabilities: basketball shots from halfcourt should be harder than shots from the three-
point line, and both should be harder than shooting a soccer ball from only six yards away.
Model-based RL algorithms utilize these sensory cues to estimate the generative processes
that control the probability of success for any given action. In our example, a model-based
decision-maker would utilize sensory data from previous trials (Fig. 1B) to learn the proba-
bility distributions over possible shooting distances for both soccer and basketball (Fig. 1C).

Many lines of research have demonstrated that, in certain contexts, model-based RL
algorithms that incorporate estimates of generative processes outperform model-free algo-
rithms that rely solely on tracking outcomes [1–3]. However, neurophysiological studies of
decision-making have tended to focus on correlates of model-free variables (such as reward
prediction error) rather than model-based variables [4–6]. Recently, researchers have found
that many of the same brain regions putatively involved in model-free RL, such as the
dopaminergic system [7], also seem to underlie model-based RL (see 8 for review).

Implicit in model-based RL is the statistical learning of probability distributions over task
relevant stimuli. Humans are capable of implicitly learning Gaussian, skewed unimodal, and
bimodal distributions [9–14], although the learning of skewed or multimodal distributions
takes longer and is less accurate overall [9]. Crucially, humans are also able to update their
beliefs and learn non-static distributions to make decisions in changing environments [15–19]
and even identify correlations between the outcomes of different choices [1].

Substantial research has also studied how humans choose between different options after
the probabilities of reward associated with each option have already been estimated. Studies
often report that humans perform “probability matching” by choosing different options
in proportion to each option’s relative probability of leading to reward [20–22]. However,
alternate lines of work have demonstrated that probability matching arises due to a mismatch
between the generative processes that actually determine reward probabilities and subjects’
beliefs about those generative processes [1]. Furthermore, in certain cases, such as those
where reward probabilities are partially dependent on the subject’s motor behavior, subjects
exhibit behavior consistent with the maximization of reward rates rather than probability
matching [1, 9].

In this study, our goal was to determine how subjects utilize different sources of informa-
tion to make decisions under uncertainty, and how this utilization depends on the specific
decisions required. To this end, we developed two serial decision-making tasks that required
subjects to first pre-select a behavioral rule for a subtask in which they applied that rule
to flexibly act on visual stimuli. We also developed a family of behavioral models that
estimated the difficulty of each rule and predicted subjects’ trial-by-trial rule selections as
a function of two sources of information: the observed patterns of past visual stimuli and
rewards. In a prior study, we demonstrated that on a session-by-session basis, monkeys’
rule preferences in a similar serial decision-making task were correlated with their relative
performance on each rule [23]. In the present study, we used human subjects to extend
this work and found that when task difficulty systematically changes over the course of a
behavioral session, the subjects used both sensory and reward information to estimate task
difficulty. The degree to which sensory vs. reward information was utilized depended on
the specific decisions required, with underlying strategies, accordingly, trading off between
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Figure 1: Multiple sources of information affect decision-making under uncertainty. (A) Often, subjects have
to make decisions between two uncertain tasks, for instance, whether to shoot a basketball or a soccer ball
from an unknown distance. (B) To decide which option is most likely to result in reward, subjects can utilize
both sensory information (the distances that past shots have been taken from) and reward information (the
outcomes of past shots). (C) These two sources of information can be used to estimate the generative process
underlying each task (the distributions of shot distances, left) or the action-values associated with each task
(the probability of reward, right).
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model-based and model-free behaviors, and sometimes implementing them in parallel.

2. Results

In this study, we developed two serial decision-making tasks that shared a common
structure but required humans to make different specific decisions: subjects first pre-selected
a behavioral rule, then used that rule to flexibly act on visual stimuli. We then used factorial
modeling [9, 24] to generate a large family of candidate behavioral models and compared
their performance across groups of subjects. Models were fit to subjects’ rule selections on
a trial-by-trial basis based upon their past history of observed sensory (i.e., visual) features
as well as trial outcomes. Model performance was assessed via Bayesian Model Selection
[25] and rule selection prediction to identify decision-making strategies.

In both behavioral tasks, subjects were first shown two or three colored stimuli, each
corresponding to an abstract behavioral rule according to a fixed color-rule contingency on
which subjects had been previously instructed. On each trial, subjects could freely select
which rule they wanted to implement in the upcoming second stage of the trial. After rule
selection was done, visual stimuli appeared that varied in rule-relevant ways. For instance,
in Experiment 1 (Fig. 2), where the behavioral rules were “pick the smaller target” and
“pick the darker target”, visual stimuli could vary in both their sizes and their brightnesses.
Subjects then implemented their chosen rule, and received feedback indicating whether they
had implemented the rule correctly or incorrectly. On each trial, the subjects were presented
with two sources of information that could be used to guide their future rule selections: the
sensory features of the visual stimuli that indicated how difficult each rule was on that trial,
and feedback that indicated whether the selected behavioral rule was performed correctly.
Both of these sources of information were of potential importance, because the objective
difficulties of each rule (i.e., the distributions from which the size and brightness differences
were drawn from) dynamically varied across the behavioral session.

2.1. Behavioral models of serial decision-making tasks

Overall, our objective was to model subjects’ rule selection strategies across trials in each
of our two experiments. We hypothesized that subjects would track both sensory features
(e.g., the size and brightness differences between decision stimuli in Experiment 1) and
feedback across past trials, and integrate those two sources of information in order to guide
their rule selection on subsequent trials. Therefore, our core behavioral model featured three
modules: the Sensory Module, the Reward Module, and the Decision Module (Fig. 3). We
then used a factorial modeling approach to perturb our core model and generate a large
family of candidate behavioral models to predict rule selections. We varied the following
four model factors:

1. Decision Model (2 levels): stochastic posterior model (‘SPK’) or posterior probability
matching (‘PPM’)

2. Sources of Information (4 levels): both sensory and reward information (‘SR’), sensory
information only (‘S’), reward information only (‘R’), or both sources with matched
learning rates (‘SRM’)
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Figure 2: Task schematic for Experiment 1. (A) Subjects used button presses to select one of two colored rule
targets (A1 ). Subjects were previously instructed of the relationship between target color and behavioral
rule. For example, the red target could correspond to the size rule RS and the blue rule could correspond
to the brightness rule RB . They were then shown two visual stimuli, differing in their sizes and brightnesses
(A2 ). The subject’s goal was, using a button press, to select the correct target given the previously selected
rule. Stimuli not to scale; they are shown larger than in the experiment for clarity of illustration. (B)
On each trial, each rule was classified as “easy” or “hard”. Actual size and brightness ratios were drawn
from overlapping discrete distributions. Each difficulty distribution was a mixture of discrete uniform
distributions corresponding to ratios near unity (n = 5 values, π = 0.1 for “easy” distribution, π = 0.9
for “hard” distribution) and ratios significantly above or below unity (n = 4 values, π = 0.9 for “easy”
distribution, π = 0.1 for “hard” distribution). Red and blue bars are visually offset to avoid overlap. See
Methods for further details. (C) Trials were organized into a block structure. At the end of each block, the
rules swapped difficulty classes with a 100% contingency. For instance, if the rule denoted by the red target
was hard in block n, it would be easy in block n+ 1 (red arrow).
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Figure 3: Generating the family of models. We first constructed a model that tracked both sensory features
and feedback across past trials, and integrated those two sources of information in order to guide rule selection
on subsequent trials. We then perturbed the model systematically to generate a family of 32 models by
changing four factors: the optimality of the Decision Model, whether both Sensory and Reward information
were used (dashed lines), and whether the subjects’ Decision Bias and Lapse rate were incorporated into
the model.

3. Decision Bias (2 levels): present (‘B’) or absent (‘NB’)
4. Lapse (2 levels): present (‘L’) or absent (‘NL’)

By selecting levels for each of these four factors we could generate a behavioral model
and a unique string to describe it. For example, a model that implements probability
matching, uses only sensory information, and has decision bias but no lapse can be denoted
as ‘PPM-S-B-NL’. By taking every possible combination of levels, we generated 32 candidate
behavioral models, each with their own identifying string. We also included two control
models, ‘BiasOnly’ and ‘SensoryChaser’, yielding 34 models in total. The ‘BiasOnly’ model
does not use either sensory or reward information, and uses a static decision model on each
trial that represents the subjects’ learned biases. The ‘SensoryChaser’ model simulates the
behavior of a subject who always selects the rule that was easiest on the previous trial with
some learned probability p. The factors and their levels are discussed briefly below. For
more details on all models, see Methods.

Decision Model. Many studies of probabilistic decision-making have reported that subjects
sample different options in proportion to their relative probabilities of reward [20–22]. This
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behavior, referred to as “probability matching” or “posterior probability matching” (‘PPM’),
is equivalent to sampling from the posterior distribution and is suboptimal: the optimal
strategy is to always select the option with the highest probability of reward. The power
function approximation to the stochastic posterior model [stochastic posterior, κ-power;
‘SPK’; 9] increases flexibility by raising the posterior distribution to some power κ prior to
sampling. With κ = 1, the ‘PPM’ and ‘SPK’ models are equivalent. However, with κ > 1,
the ‘SPK’ model approaches optimality by increasing the probability of selecting options
with high reward probabilities. In the limit κ → ∞, the model simply implements the
decision believed to maximize reward..

Sources of Information. We explicitly varied whether our behavioral models tracked sensory
features, reward history, or both. The most flexible model tracks both sensory and reward
information and uses both sources of information to guide rule selections (‘SR’). Suboptimal-
ities can be induced by matching the learning rates across the Sensory and Reward Modules
(‘SRM’), only utilizing sensory information (‘S’), or only utilizing reward information (‘R’).

Decision Bias. Suboptimalities also could be introduced into the models by explicitly model-
ing decision biases (‘B’). These biases represent innate preferences for particular behavioral
rules that are not explained by the history of observed sensory and reward information.
Models with no biases (‘NB’) have less behavioral flexibility.

Lapse. Lastly, suboptimalities can be introduced by including behavioral lapses (‘L’). Lapses
are often included in behavioral models to explain decisions where subjects select a subop-
timal option even though the decision is objectively easy, perhaps because of a lapse of
attention on some subset of trials. Models with no lapses (‘NL’) have less behavioral flexi-
bility.

2.1.1. Comparing model fits across the population

In each experiment, we fit data from each behavioral session with all 34 candidate models,
and calculated the Bayesian information criterion (BIC ) for each model. BIC is a measure
of model performance that accounts for the complexity of the model and can be used to
compare model performance within a behavioral session. We also used Bayesian model
selection [BMS; 25] to determine which models and factor levels best explained rule selections
across the population. The particular BMS algorithm we used is a variational Bayesian
algorithm that uses marginal likelihoods (or an approximation to the marginal likelihood,
such as (−1/2)BIC ) to compare model performance across behavioral sessions or subjects,
by accounting for in-group heterogeneity. Lastly, we looked at predictions accuracy across
models: the proportion of trials that the model selects the same rule that the subject
selected. In most cases, we looked at prediction accuracy relative to chance, which was
defined as prediction accuracy for the ‘BiasOnly’ model.

2.2. Experiment 1

Twenty-four näıve human subjects completed an average of 465± 70.5 trials in an hour-
long behavioral session. Each session consisted of blocks of 30-60 trials.
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The task used in Experiment 1 is shown in Figure 2A. In general, subjects first had
to select between two behavioral rules, each denoted by a colored stimulus (Fig. 2A, left).
The two possible behavioral rules were “pick the smaller target” (size rule RS) and “pick
the darker target” (brightness rule RB). On each trial, both rule options were presented,
and their locations were counterbalanced across trials. After a rule stimulus was selected,
subjects had to use that behavioral rule to flexibly discriminate between squares differing in
their sizes and brightnesses (Fig. 2A, right). On each trial, the target sizes and brightnesses
were probabilistically drawn from pre-determined distributions (Fig. 2B). If the subject
correctly performed the perceptual discrimination in accordance with the previously selected
(or instructed) rule, they received positive feedback.

Transitions between blocks were continuous, covert, and uncued. Within a single block,
rule difficulties were globally coupled: one rule was designated as the “easy” rule and the
other rule was necessarily designated as the “hard” rule (these assignments swapped at the
start of every new block; Fig. 2C). Importantly, the difficulty distributions were overlapping,
such that a single trial could, for example, feature both a difficult size discrimination and
a difficult brightness discrimination. For more details on how target sizes and brightnesses
were generated on a trial-by-trial basis, see Methods.

2.2.1. Results & Discussion

We fit our set of 34 behavioral models to each of 24 human subjects and used the BIC
and BMS to determine the best-fitting model for each subject while taking into account
model complexity. Figure 4 shows the ∆BIC for each model fit, relative to the best-fitting
model for each subject, where smaller ∆BIC values (warmer colors) correspond to better
fits. The models are ordered according to the posterior probability that the decision model
was utilized by a randomly chosen subject, as determined by BMS. Most subjects were
well-fit by multiple models, without any models clearly outperforming the rest at the group
level. Importantly, all models were at least as likely as our two control models, ‘BiasOnly’
and ‘SensoryChaser’. Five models had a > 0.05 probability of being the best-fitting model
for a random subject, and no models had a > 0.2 probability of being the best-fitting model
(Fig. 5A). These results are confirmed by Figure 5B: out of the four possible factors, only
the lapse factor showed population-level effects, with random subjects being more likely
to not have lapses (exceedance probability P ∗ > 0.999, see Methods for further details).
Additionally, only 6.2% of subjects were likely to be described by an observer model using
only sensory information (P ∗ = 0.0003).

In Experiment 1, 29/32 behavioral models predicted rule selections significantly better
than the ‘BiasOnly’ model (Fig. 6; one-tailed t-test, Bonferroni-Holm correction for mul-
tiple comparisons), suggesting that subjects were using incoming sensory and/or reward
information to guide their decisions. Unsurprisingly, the model with maximal complexity,
‘SPK-SR-B-L’, was the best at predicting rule selections across subjects (21.61 ± 10.2%
above chance). However, this model was only one of 22 models with mean prediction im-
provements of 20% or greater, including all five of the top models as determined by BMS.
Mean prediction improvements for each model were correlated with the number of param-
eters in the model (r = 0.515, p < 0.005) but not the BMS posterior probability for the
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Figure 4: Model fitting results for Experiment 1. Each column represents a subject, and each row represents
an observer model from the factorial family of models and two control models. Models are identified by a
model string (substrings ‘NB’ and ‘NL’ are left out for clarity), and are ordered according to model posterior
likelihood from BMS algorithm. Cell color represents model evidence, defined here as the difference between
the BIC for that model and the BIC for the the best model for that subject. Differences of greater than 6
are considered to be strong evidence in favor of the model with lower BIC.
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Figure 5: Model selection results for Experiment 1. (A) Probability that a given model generated the data
of a randomly chosen subject. Only models with posterior likelihoods > 0.05 are shown individually. No
individual models had posterior likelihoods > 0.2, and the top models have no obvious strong relation to
each other. (B) Probability that a given model level within a factor generated the data of a randomly
chosen subject. There was significantly more support for models without lapses than models with lapses
(‘NL’ vs. ‘L’; P ∗ > 0.999). Observer models using only sensory information were unsupported (‘S’ vs. others;
P ∗ = 0.0003).
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Figure 6: Prediction improvement for Experiment 1. Average prediction improvement was significantly
above chance for all but 3/32 behavioral models, and was correlated with model complexity (r = 0.515,
p < 0.005) but not BMS posterior probability (r = 0.272, p = 0.12).
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model (r = 0.272, p = 0.12). As expected from the BMS results, models with lapses tended
to predict rule selections better than models without lapses (paired t(15) = 1.91, p = 0.075),
and models using only sensory information did not predict as well as models using reward
information only or sensory and reward information together (one-way ANOVA on infor-
mation source, F (3, 28) = 77.1; post-hoc Tukey’s test on ‘S’ vs. others, all p < 0.0001).
Additionally, two other trends emerged: SPK models tended to predict better than PPM
models (paired t(15) = 2.10, p = 0.053), and models with decision bias predicted better than
those without (paired t(15) = 4.20, p < 0.001). In every case, as expected, more complex
models were better at predicting behavior than less complex models.

Overall, the results of Experiment 1 suggest that subjects were using predominantly re-
ward information to guide their rule selections, although the precise strategy used by each
subject varied. All 32 models tested (and the ‘SensoryChaser’ control model) outperformed
the ‘BiasOnly’ control model, as measured by both BIC and prediction improvement met-
rics, but no individual model or small subset of models significantly outperformed the rest
of the family. Interestingly, unlike as is often found [e.g., 9, 26], models without lapses sig-
nificantly outperformed models with lapses. One possible explanation for this result is that
the incorporation of both decision biases and lapses are partially redundant when NR = 2,
particularly when the lapse rate ` is small. Another complementary possible explanation
has to do with the primary benefit of including lapse parameters: the ability to explain and
compensate for errors on objectively easy (“high signal intensity”, e.g., high coherence levels
on the RDK task) trials where proportion correct should approach or equal 1 [cf. 26, Fig. 1,
solid light line vs. broken light line]. If signal intensities are not high enough for performance
to saturate (in this study, for subjects to consistently select the optimal rule), then lapse
parameters become much less important for accurate behavioral modeling.

2.3. Experiment 2

In Experiment 1, we found that the behavioral strategies used by individual subjects
varied substantially across subjects. In Experiment 2, we sought to determine if there
were certain task conditions in which behavioral strategies across subjects would converge.
Additionally, we asked if we could promote the use of sensory information to guide decision-
making by facilitating the comparison of sensory features across rules.

Specifically, we changed two key features of the task. First, all of our task rules operated
on the same stimulus feature (target size) instead of distinct stimulus features. This means
that subjects did not need to maintain and update multiple estimates of the relationships
between a stimulus feature and reward probability, which should facilitate the comparison of
sensory features across rules. Second, subjects implemented rules using fine motor behaviors
instead of button presses, which should promote the maximization of reward rates over
suboptimal probability matching strategies. This is thought to be due to subjects’ tendencies
to attribute errors to motor errors rather than stimulus mis-estimation, thereby enhancing
their confidence regarding the relationship between stimulus features and task difficulty [1].
Overall, we hypothesized that these changes would cause observed behavioral strategies
across subjects to converge on strategies that tracked sensory information in near-optimal
ways.
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Twenty-four näıve human subjects (different from those used in Experiment 1) completed
an average of 952 ± 164.2 trials in an hour-long behavioral session. In this experiment, we
utilized a “shooting” variant of our serial decision-making task that required them to use
a joystick to pre-select a color, and then shoot at a target of that color among multiple
distractors (Fig. 7). A video of the task can be found at https://goo.gl/iXZybV. As
in Experiment 1, behavioral sessions consisted of blocks, and transitions between blocks
were continuous, covert, and uncued. Within a block, one colored rule was designated as
the “easy” rule (i.e., largest target size, on average), one was designated as the “medium”
rule, and the third was designated as the “hard” rule (i.e., smallest target size, on average;
Fig. 7B). Blocks lasted 6-9 trials, and at the end of each block, there was a 40% chance of
swapping the identities of the “easy” and “medium” rules, a 40% chance of swapping the
identities of the “medium” and “hard” rules, and a 20% chance of the rankings staying the
same (Fig. 7C). A single rule could never transition directly from “easy” to “hard” or vice
versa in a single block transition. For more details on the task used in Experiment 2 and
the motor behavior of subjects, see Methods.

2.3.1. Results & Discussion

We fit our set of 34 behavioral models to each of 24 human subjects and used the BIC
and BMS to determine the best-fitting model for each subject while taking into account
model complexity. Figure 8 shows the ∆BIC for each model fit, relative to the best-fitting
model for each subject. The models are ordered according to the posterior probability of
each observer model from the BMS procedure. In contrast to Experiment 1, where most
subjects were fit well by many different behavioral models, the model fits for most subjects
in Experiment 2 were much more sparse and selective. Additionally, whereas few detectable
patterns existed in the model rankings for Experiment 1, some clear patterns emerged in
Experiment 2: the top two models (‘SPK-SR-NB-L’ and ‘SPK-SR-B-L’) are identical in
three of the four factors of interest and only differ in the presence or absence of decision
bias, and the third-best model (‘PPM-S-NB-NL’) is one of the simplest possible models in
the family, with only one free parameter (αs). Additionally, in contrast to Experiment 1,
where almost every subject was well-fit by a large number of models (the rectangular “block”
of color in Fig. 4), subjects in Experiment 2 tended to either be fit well by many models
(e.g., Subject 9) or very few models (e.g., Subject 13; vertical “stripes” of color in Fig. 8).

These patterns inferred from the ∆BIC values for each subject were corroborated by BMS
over the population as a whole (Fig. 9). Observer models ‘SPK-SR-NB-L’ and ‘SPK-SR-B-
L’ were the most likely to be used by a randomly selected subject, although neither model
individually gained significance (Fig. 9A). Additionally, three of the four factors showed
population-level effects (Fig. 9B). Subjects were significantly more likely to use the SPK
decision model than perform probability matching (74.2%, P ∗ > 0.999), were most likely to
use both sensory and reward information to guide their decisions (63.8%, P ∗ > 0.999), and
were likely to have lapses (73.0%, P ∗ = 0.998).

Given that decision bias was the only factor not to reach population-level significance and
that the top two models were identical other than the presence or absence of decision bias,
we further examined the extent to which subjects’ biases influenced model fits. First, we
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Figure 7: Task schematic for Experiment 2. (A) Subjects used a joystick to select one of three color rules
(A1 ). They then used the joystick to shoot a virtual ball at the appropriately colored target, given the
previously selected color rule (A2 ). A video of the task can be found at https://goo.gl/iXZybV. (B)
On each trial, each color was classified as “easy”, “medium”, or “hard”. Actual target sizes were drawn
from overlapping gamma distributions with class-specific parameters. (C) Trials were organized into a block
structure. At the end of each block, the colored rules could swap difficulty classes. The “easy” and “medium”
rules could swap (40%), the “medium” and “hard” rules could swap (40%), or the classes could stay the
same (20%). The “easy” and “hard” rules could never directly swap in a single block transition.
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Figure 8: Model fitting results for Experiment 2. Same conventions as Fig. 4.

15

.CC-BY-NC-ND 4.0 International licenseavailable under a
not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (which wasthis version posted August 14, 2019. ; https://doi.org/10.1101/730663doi: bioRxiv preprint 

https://doi.org/10.1101/730663
http://creativecommons.org/licenses/by-nc-nd/4.0/


Figure 9: Model selection results for Experiment 2. Same conventions as Fig. 5. (A) The two top models,
‘SPK-SR-NB-L’ and ‘SPK-SR-B-L’, are identical in three of four factors and only differ in whether or not
they include decision bias. The third-best model, ‘PPM-S-NB-NL’, only has one free parameter (αs) and
therefore is minimally penalized in the calculation of BIC from NLL. (B) There was significantly more
support for SPK models (‘SPK’ vs. ‘PPM’; P ∗ > 0.999), models using both sensory and reward information
(‘SR’ vs. others; P ∗ > 0.999), and models with lapses (‘L’ vs. ‘NL’; P ∗ = 0.998). Models with and without
decision biases were approximately equally likely in the population.
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collapsed our family of 32 models across the bias dimension to create a group of 16 model-sets,
where each model-set contained both of the models that were identical in the other three
factors (e.g., ‘PPM-SRM-B-L’ and ‘PPM-SRM-NB-L’ were combined into the model-set
‘PPM-SRM-?-L’). BMS applied to these 16 model-sets clearly indicated that the set ‘SPK-
SR-?-L’ was significantly more likely to be found in the population (54.5%, P ∗ > 0.999).
Next, we looked to see if there was a relationship between the bias parameter π from the
full model ‘SPK-SR-B-L’ and the change in model evidence ∆BICbias between the top two
population-level models. Positive ∆BICbias means that evidence is stronger for the model
without bias, ‘SPK-SR-NB-L’. We used the entropy of π as a measure of decision bias for
each subject:

H(π) = −
NR∑
i=1

πi log2 πi (1)

For any discrete distribution, the uniform distribution maximizes entropy (for NR = 3,
π = [1/3 1/3 1/3], and H(π) = 1.585 bits), and any deviations from this distribution will
decrease entropy. Furthermore, if π is the discrete uniform distribution, then inclusion of
the decision bias parameter in the model will result in no change to the model NLL but will
increase the BIC due to the addition of extra free parameters. Therefore, we hypothesized
that decreasing entropy (i.e., increasing decision bias) would be associated with lower BIC
(i.e., better performance) on the model with decision bias relative to the model without
decision bias.

We found a strong correlation in the population between a subject’s entropy and their
∆BICbias (Fig. 10; r = 0.668, p < 0.001). However, there appeared to be outliers in
the population distribution of entropies, and the distribution of entropies was best fit as
a mixture of three Gaussian distributions (BIC3 = −20.83, compared to BIC2 = −18.49
and BIC4 = −14.47). Therefore, to ensure that this correlation was not driven by outliers
in the data, we also ran correlations over different subsets of subjects. Specifically, in our
main cluster of n = 18 subjects (black stars in Fig. 10), we still found a strong correlation
between entropy and ∆BICbias (Fig. 10, inset; r = 0.632, p < 0.005). This correlation
persisted even when only two clusters were used to partition subjects (black stars and blue
squares combined, n = 22 subjects; r = 0.515, p = 0.014).

All 32 behavioral models in the family (and the ‘SensoryChaser’ control model) predicted
rule selections significantly better than the ‘BiasOnly’ model (Fig. 11; one-tailed t-test,
Bonferroni-Holm correction for multiple comparisons), suggesting that subjects were using
incoming sensory and/or reward information to guide their decisions. As in Experiment 1,
the model with maximal complexity, ‘SPK-SR-B-L’, was the best at predicting rule selections
across subjects (27.07±15.9% above chance). Mean prediction improvements for each model
were correlated with the number of parameters in the model (r = 0.674, p < 0.0001) but not
the BMS posterior probability for the model (r = 0.218, p = 0.22). As expected from the
BMS factor results, SPK models predicted rule selections better than PPM models (paired
t(15) = 4.76, p < 0.001) and models with lapses predicted better than models without
lapses (paired t(15) = 4.04, p < 0.005). Additionally, models with decision bias predicted
better than those without (paired t(15) = 15.3, p < 0.0001), and models using both sensory
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Figure 10: Correlation between decision bias and model fits. Across the population, the relative evidence for
‘SPK-SR-NB-L’ vs. ‘SPK-SR-B-L’ was correlated with the entropy of decision bias parameter in the ‘SPK-
SR-B-L’ model, H(π) = −

∑NR

i=1 πi log2 πi (r = 0.668, p < 0.001). ∆BIC > 0 means evidence is stronger
for ‘SPK-SR-NB-L’, and ∆BIC < 0 means evidence is stronger for ‘SPK-SR-B-L’. Entropy decreases as
decision bias increases, is minimized when subjects only ever pick one rule (dashed line on left), and is
maximized when π is the discrete uniform distribution (dashed line on right). The distribution of entropies
was best fit by a Gaussian mixture model with three components (black stars, blue squares, red circles),
and the correlation was still found when only applied to the main cluster (inset, black stars; r = 0.632,
p < 0.005; see main text for details).
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Figure 11: Prediction improvement for Experiment 2. Average prediction improvement was significantly
above chance for all 32 behavioral models, and was correlated with model complexity (r = 0.674, p < 0.0001)
but not BMS posterior probability (r = 0.218, p = 0.22).
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Figure 12: Models were more successful at predicting rule selections in Experiment 2 than in Experiment
1 (paired t(31) = 6.13, p < 0.0001), represented by data points lying above the dashed unity line. Each
data point represents prediction improvement for a single model, averaged across all subjects within an
experiment. Only 5/32 models predicted rule selections better on Experiment 1.

and reward information predicted better than models using only one information source
(one-way ANOVA on information source, F (3, 28) = 17.9; post-hoc Tukey’s test on pairwise
combination of ‘SR’ or ‘SRM’ vs. ‘S’ or ‘R’, all p < 0.001). In the case of every pattern,
as expected, more complex models were better at predicting behavior than less complex
models.

We also compared prediction improvements to see if rule selections in Experiment 2
were more or less predictable than those from Experiment 1. We found that, across our
population of models, models on average predicted rule selections better when applied to
Experiment 2 data than when applied to Experiment 1 data (Fig. 12; paired t(31) = 6.13,
p < 0.0001). Only five models individually fit Experiment 1 data better on average: ‘PPM-
R-NB-NL’, ‘PPM-R-NB-L’, ‘SPK-R-NB-NL’, ‘SPK-R-NB-L’, and ‘PPM-R-B-NL’. Of these
five models, all of them only use reward information (‘R’) and 4/5 do not have decision
bias (‘NB’). Using reward information only (compared to using both sensory and reward
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information) was associated with inferior prediction in Experiment 2 but not in Experiment
1.

Overall, the results of Experiment 2 suggest that subjects utilized both sensory and
reward information to guide their rule selection. Interestingly, models that only incorpo-
rated sensory history and models that only incorporated reward history were approximately
equally poor at explaining the behavior of subjects. Taken together, this indicates that, in
tasks where sensory is more useful, sensory information is more likely to be used in conjunc-
tion with reward information, and both model-based and model-free learning may be used
in concert to generate behavior.

While no individual model was significantly better than all others, the model-set ‘SPK-
SR-?-L’ did outperform all other model-sets. At the level of factors, models with stochastic
posteriors outperformed models that implemented probability matching, suggesting that
subjects had very little noise added to their decision variable. Other groups have also recently
found evidence for stochastic posterior models [9], particularly when task performance is
based on fine motor behaviors (e.g., using a joystick as opposed to pushing a button) and
sensory cues of reward probability are present and accurate [1].

We did not find a consistent effect of decision bias in our population. However, we
did find that subject differences in evidence between the top-performing models with and
without bias were strongly related to subject biases. Additionally, most of our subjects had
small levels of bias, although there did appear to be two distinct groups of outliers with
larger biases. One potential explanation for this is that some subjects were not properly
motivated to maximize their performance for some or all of the behavioral session, and
therefore developed rule preferences. Even with our small-bias group, though, we found
predictable heterogeneity in model fits as a function of bias. Given the relatively large
number of trials performed by each subject (≈ 1000), we believe that these empirical biases
are not simply artifacts of taking a finite number of samples from an unbiased (i.e., uniform)
distribution. Therefore, we suggest that the benefits of including bias parameters in the
model outweigh the risks of overfitting rule choices.

3. Discussion

The behavioral tasks used in Experiments 1 & 2 shared a fundamental structure (pre-
select a rule and then use it to flexibly behave) but differed in the specific rules, stimuli, and
motor behaviors used. These lower-level task changes led to drastic changes in the behavioral
strategies used by human subjects to make their rule selections. In Experiment 1, subjects
had to choose between two rules that existed in different perceptual dimensions and report
a discrimination using button presses: subject behavioral strategies were heterogeneous but
typically dependent on reward history. In Experiment 2, subjects had to choose between
three rules that existed in the same perceptual dimension and use a joystick to aim for the
desired target: subject behavioral strategies were more homogeneous and dependent on both
sensory and reward history.
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3.1. Estimating task performance

One possible explanation for the difference between the findings is that it was easier to
estimate task performance from sensory stimulus features in Experiment 2 than in Exper-
iment 1. Expected performance on any task or rule with binary outcomes (where O = 1
represents correct trials and O = 0 represents errors) is:

E[p(O = 1)] =

∫
p(O = 1|x)p(x)dx (2)

where p(O = 1|x) is the psychometric curve (i.e., the relationship between stimulus features
and reward probabilities), p(x) is the generative distribution for stimulus features, and
all probabilities are conditioned on the task or rule (which is dropped from the notation
for the sake of clarity). Therefore, comparing the expected difficulties of multiple tasks
requires the estimation of both the psychometric curve and generative distribution for each
candidate task. If, however, psychometric curves for the tasks are the same, then only one
psychometric curve needs to estimated. In Experiment 1, psychometric curves for brightness
discriminations and size discriminations are distinct and therefore both must be estimated
separately in order to estimate task difficulty without using heuristics. When confronted
with these additional task demands, our results indicate that humans instead default to
heuristics that are reliant only on trial outcomes and not on the generative distribution
p(x). In contrast, in Experiment 2, the probability of hitting a target as a function of
target size should be independent of target color, so only one psychometric curve needs to
be estimated. As a result, subjects in Experiment 2 used both sensory and reward history
to guide their rule selections.

We found that models without lapse parameters best explained subject behavior in Ex-
periment 1, whereas models with lapse parameters performed best in Experiment 2. We
believe that this effect is driven by the number of rules used in each task. A subject with
both decision bias and lapses can be approximated by a model with only decision bias, and
the quality of this approximation degrades as the lapse rate increases and as the number
of possible rules increases. Therefore, the increase in model fit quality due to explicitly
modeling lapses is greater in Experiment 2 (NR = 3) than in Experiment 1 (NR = 2), which
compensates for the BIC penalty associated with adding a model parameter. Moreover,
when subjects are faced with more rule options, they may be more likely to forget which
rule they were planning to choose, leading to more instances of random selection.

3.2. Temporal dependence and probability matching

We also found that stochastic decision-making models outperformed probability match-
ing models in Experiment 2, but found no evidence in favor of either class of decision model
in Experiment 1. One possible explanation of this effect is based on motor noise and tempo-
ral independence. Noise in the motor system is well-modeled as being independent of past
motor behavior [27], and when trial outcomes are based on motor behaviors (or appear to
be based on them), this temporal independence leads to more optimal choices instead of
suboptimal probability matching [1]. In particular, Green et al. (2010) postulated that sub-
jects typically assume that outcomes in nature are temporally dependent (e.g., the tree that
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had fruit yesterday is likely to have fruit today), and showed that a mismatch between this
expectation of temporal dependence and the actual temporal independence that is typically
built into experimental tasks drives probability matching behavior. However, when subjects
are given the illusion that their motor behavior affects trial outcomes (even when it does
not actually), this expected source of temporal independence allows them to account for the
temporal independence that is built into the experimental task, and more optimal behavior
emerges [1]. In line with these findings, subjects in Experiment 2, which required fine motor
behaviors that are sensitive to temporally independent noise (moving a joystick in a precise
direction), may have been more likely to assume errors were due to motor noise and not
a misunderstanding of the relationship between stimulus features and task difficulty. This
would lead to less exploratory behavior (such as probability matching) and therefore more
optimal decisions. In Experiment 1, where subjects reported decisions with gross motor ac-
tions that are robust to noise (pushing a button), subject behavior was more heterogeneous
with no population-level preference for either stochastic posterior or probability matching
models, suggesting that some subjects believed they understood the relationship between
stimulus features and task difficulty, while others were less confident.

3.3. Overall interpretations and discussion

Here, we turned to computational modeling in an attempt to better understand serial
decision-making. Specifically, we utilized the factorial approach [9, 24] in combination with
Bayesian model selection [25] to test a large number of behavioral models. We believe that
this approach is superior to traditional behavioral modeling techniques where a single model
framework is selected, and then the parameters of that model are fit to subject data. This
approach, for example, is able to show that many of our human subjects were best fit by a
number of different behavioral models (Figs. 4 and 8), suggesting that humans use a variety
of strategies to solve the same task. If we had pre-selected only one behavioral model for
data fitting, we would have missed out on this insight.

Moreover, computational models of behavior are elegant ways to summarize many hun-
dreds of trials worth of data. For example, our most complex behavioral model features
seven parameters, effectively allowing us to summarize the data from each subject as one
point in 7-dimensional space. By applying the same behavioral model to data from sub-
jects performing further variations of our serial decision-making task, we can see how subtle
changes to the task lead to changes in the behavioral strategies used. If the same subjects
perform multiple tasks in a behavioral session, then we can use model comparison to inves-
tigate how a subject’s behavioral strategy on one task relates to behavior on other tasks,
by examining both the dominant strategy for that subject (as defined by BIC ) and the
parameter fits for that model. Computational models, by trying to learn the strategies that
generate behavior, allow for a more fine-grained comparison than simply comparing bulk
metrics such as performance.

In summary, we used normative probabilistic models to determine the behavioral strate-
gies used by humans to select between uncertain options. When sensory features span
different dimensions, humans resort to a model-free learning strategy that relies exclusively
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on reward history. However, when sensory features can be compared more intuitively, hu-
mans adopt a hybrid strategy that relies on both reward-driven model-free learning and
sensory-driven model-based learning. Furthermore, when trial outcomes are determined by
subjects beliefs regarding motor noise (in addition to sensory noise), subjects exhibit reduced
decision noise and make more optimal decisions.

4. Methods

4.1. Behavioral models

Our objective was to develop a model that is motivated by the optimal behavior of
an ideal observer and then investigate ways of sensibly perturbing the model in order to
capture suboptimalities in real-world behavior and strategy. Our core behavioral model
featured three modules: a Sensory Module, which tracked incoming sensory information; a
Reward Module, which tracked reward histories for each rule; and a Decision Module, which
integrated information from the Sensory Module and Reward Module with potential biases
and lapses.

4.1.1. Sensory Module

The purpose of the Sensory Module was to recursively track the distributions of sen-
sory features (the distance from which a basketball or soccer shot must be taken, the
size/brightness/color of an object, etc.) for each rule i on each trial t according to the
following update rules:

x̄
(t)
i =

(1− αs)× x̄(t−1)
i + x

(t)
i

Neff

(3)

Σ̄
(t)
i =

1

t

t∑
τ=1

(x̄
(τ)
i − x

(τ)
i )2 (4)

with x̄
(1)
i = x

(1)
i (5)

and Neff = 1/αs (6)

where x
(t)
i is the observed feature for rule i on trial t, x̄

(t)
i and Σ̄

(t)
i are the mean and variance

of the feature distribution for rule i incorporating all evidence through trial t, and the free
parameter αs is the sensory learning rate. The learning rate parameter was included to allow
the mean to vary dynamically rather than forcing it to converge to a stable estimate. In
contrast, the estimate of the variance around that dynamically changing mean was assumed
to be constant and to converge in the limit of infinite observations. Then, the predicted
feature for rule i on trial t+ 1 was drawn from the predictive distribution:

x̂
(t+1)
i ∼ N (x̄

(t)
i , Σ̄

(t)
i ) (7)

All features (size and brightness differences in Experiment 1, target size in Experiment
2) were such that greater feature strengths are monotonically associated with greater task
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performance (e.g., as the difference in brightness between two targets increases, it becomes
easier to discriminate which target is less bright). Therefore, an optimal decision-maker
would be interested in the probability that a random draw from the feature distribution
for rule i is greater than random draws from feature distributions for all other rules j 6= i.
Utilizing the closed-form solution for the difference between normally-distributed random
variables, dropping the trial superscript for clarity, and setting the numbers of possible rules
to 2, yielded:

p(x̂i > x̂j) = 1− Z(0|x̄i − x̄j, Σ̄i + Σ̄j) (8)

where Z(·) is the cumulative distribution function of the normal distribution.
A rational decision-maker should base their choices systematically on the relative likeli-

hoods that a target of a particular color will be largest. Therefore, we employed the power
function approximation to the stochastic posterior model (SPK; 9) to model decision-making.
The SPK model is of the form:

p(R̂i |Ds, αs, κs) ∝ p(x̂i > x̂j)
κs (9)

where p(R̂i |·) is the model probability of picking rule i given data and parameters, Ds is the
sensory stimulus history, and the power exponent κs is a free parameter controlling how noisy
or variable the decision model is. One primary benefit to the SPK model is its versatility;
by changing the value of κs, the model can implement probability matching (κs = 1; 9)
or maximum exploitation (κs → ∞), and can even ignore predictive feature distributions
(κs = 0) or preferentially select harder rules (κs < 0).

4.1.2. Reward Module

Analogous to the Sensory Module, the purpose of the Reward Module was to recursively
track distributions of rewards for each rule i on each trial t according to the following update
rules:

a
(t)
i = (1− αr)× a(t−1)

i + 1(O(t) = 1)× 1(R(t) = i) (10)

b
(t)
i = (1− αr)× b(t−1)

i + 1(O(t) = 0)× 1(R(t) = i) (11)

where 1(·) is the indicator function, O(t) is the actual outcome of trial t (1 for correct, 0
for error), R(t) is the actual rule on trial t, and the free parameter αr is the reward learning
rate. Then, the predicted reward likelihood Ô for rule i on trial t + 1 was drawn from the
predictive distribution:

Ô
(t+1)

i ∼ Beta(a
(t)
i , b

(t)
i ) (12)

Also analogous to the Sensory Module, we were interested in determining the probability
that a random draw from the reward distribution for rule i is greater than random draws
from reward distributions for all other rules j 6= i. However, the difference between beta-
distributed random variables does not have a closed-form solution. Therefore, we substituted
in the geometric mean of the beta distribution Õi, again dropping the trial superscript for
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clarity and utilizing the SPK model:

ln Õi = E[ln Ôi] = exp [ψ(ai)− ψ(ai + bi)] (13)

p(R̂i |Dr, αr, κr) ∝ Õ
κr
i (14)

where ψ is the digamma function, Dr is the reward history, and the power exponent κr is
the free SPK parameter.

4.1.3. Decision Module

The Decision Module took the outputs of the Sensory Module and Reward Module and
combined them with biases and lapses to ultimately determine the probability that the
model selected rule i on any given trial:

p(R̂i |Ds, αs, κs,Dr, αr, κr) ∝ p(R̂i |Ds, αs, κs)× p(R̂i |Dr, αr, κr)× πi (15)

p(R̂i |D) = (1− `)× p(R̂i |Ds, αs, κs,Dr, αr, κr) + `/NR (16)

where the free vector π contains the rule biases, D is a shorthand representation for all data
and parameters supplied to the model, the free parameter ` is the lapse rate, and NR is the
number of rules in the task. The final output of the model was p(R̂i |D), the probability of
the model selecting rule i on any given trial.

4.1.4. Creating a family of models

The final model had 5 + (NR − 1) free parameters: αs, κs, αr, κr, `, and the bias vector
π, which has NR−1 free parameters because it is subject to the constraint

∑NR

i πi = 1. We
employed a factorial approach to generate a large family of models [9, 24] by setting different
subsets of free parameters to be equal to constants. Our family of models was therefore the
combinatorial set of the following factors and their levels:

1. Decision Model (2 levels): stochastic posterior model (‘SPK’: κs and κr are free) or
posterior probability matching (‘PPM’: κs = 1 and κr = 1)

2. Sources of Information (4 levels): both sensory and reward information (‘SR’: αs, κs,
αr, and κr are all free), sensory information only (‘S’: αr = 0 and κr = 0), reward
information only (‘R’: αs = 0 and κs = 0), or both sources with matched learning
rates (‘SRM’: α = αs = αr)

3. Decision Bias (2 levels): present (‘B’: π is free) or absent (‘NB’: all πi = 1/NR)
4. Lapse (2 levels): present (‘L’: ` is free) or absent (‘NL’: ` = 0)

Therefore, each of the 2× 4× 2× 2 = 32 models in this family can be uniquely described
by a string. For example, the full model described above is ‘SPK-SR-B-L’ and, for NR = 2,
has 6 free parameters. In contrast, a model that used the stochastic posterior model, only
utilized sensory information, had decision bias, and had no lapse would be denoted as ‘SPK-
S-B-NL’ and, for NR = 2, has 3 free parameters (αr = 0, κr = 0, and ` = 0).

We also implemented two control models: ‘BiasOnly’ and ‘SensoryChaser’. The ‘Bia-
sOnly’ model has NR−1 free parameters, the rule bias vector π, and used the static decision
model:

p(R̂i |D) = πi (17)
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on every trial. The ‘SensoryChaser’ model has one free parameter, the lapse parameter `,
and simulates the behavior of a subject who selects the rule that had the greatest feature
strength (i.e., the easiest rule) on the immediately previous trial with probability 1− ` and
doesn’t utilize any other information. This corresponded to the dynamic decision model:

p(R̂
(t)

i |D) = (1− `)× 1(argmax
j

[x
(t−1)
j ] = i) + `/NR (18)

4.1.5. Fitting and evaluating models

We evaluated model performance using three primary metrics, the negative log-likelihood
(NLL), the Bayesian information criterion (BIC ), and prediction accuracy (how often the
model selects the rule that the subject actually selected):

NLL = −
∑
t

ln

NR∑
i=1

[ p(R̂
(t)

i |D)× 1(R(t) = i) ] (19)

BIC = 2NLL+ ln (T )k (20)

prediction accuracy =
1

T
1(argmax

i
[ p(R̂

(t)

i |D) ] = R(t)) (21)

where T is the number of trials the subject performed and k is the number of free param-
eters in the model. We used BIC rather than AIC to decrease the likelihood of selecting
overparametrized, more general models, which can be a particular problem with a family of
nested models [28].

All models were fit eight times per subject with randomized initial conditions in an
attempt to avoid local minima. Models were fit using Matlab’s fmincon function with a
tolerance of 10−5, and the individual run that yielded the lowest NLL was retained for
further analysis. Because all models in the family were formulated by starting with the
‘SPK-SR-B-L’ model and setting free parameters as constants, and adding parameters to
a model (i.e., increasing model complexity) will never result in a worse fit to data (i.e.,
increasing the NLL), we determined that the ‘SPK-SR-B-L’ model should yield the lowest
NLL for every subject. Therefore, we utilized the BIC to facilitate comparison between
models of varying complexity. For any given subject, the number of trials performed T is
constant, so adding one additional parameter to the model increases the BIC by ln (T ).
Lastly, we were interested in prediction accuracy as a measure of how well the models can
predict the actual rule selections made by the subject. Specifically, we are interested in the
prediction improvement for each model over chance, where chance is prediction accuracy for
the ‘BiasOnly’ model.

We also used Bayesian model selection (BMS) to directly compare between models [25].
BMS computes the evidence for each model based on marginal likelihoods from each subject
(or an approximation to the marginal likelihood, such as (−1/2)BIC ). Specifically, the
BMS algorithm is a variational Bayesian method that treats different models as random
variables in a Dirichlet distribution while allowing for in-group heterogeneity (i.e., treating
subject identity as a random effect). BMS provides three key related metrics that allow
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formal comparison between models: the parameters of the fit Dirichlet distribution, the
multinomial distribution over models that defines the likelihood that each model generated
the data of a random chosen subject, and the “exceedance probability” P ∗ that one model
(or one factor level) is more likely than any other. We initialized the BMS algorithm with a
symmetric Dirichlet distribution and α0 = 0.25, which corresponds to the weak belief that
only a few behavioral models are actually present in the population [9].

4.2. Experiment 1

Twenty-four näıve human subjects, with normal or corrected-to normal vision, were
recruited from the Duke University community. All individuals were older than 18 years
and gave informed consent through protocols approved by the Duke Institutional Review
Board. Subjects in Experiment 1 completed an average of 465± 70.5 trials in an hour-long
behavioral session.

4.2.1. Behavioral task

Behavioral sessions consisted of blocks of 30-60 trials. Transitions between blocks were
continuous, covert, and uncued. Within a single block, rule difficulties were globally coupled:
one rule was designated as the “easy” rule and the other rule was necessarily designated as
the “hard” rule (these assignments swapped at the start of every new block). Importantly,
the difficulty distributions were overlapping. This meant that the rule difficulties were
locally uncoupled, such that a single trial could, for example, feature both a difficult size
discrimination and a difficult brightness discrimination.

At the start of each trial, the size (measured in pixels) and brightness (measured in screen
brightness units ∈ [0, 1]) of the target on the left were drawn from normal distributions:

xsize,L ∼ N (µ = 40,Σ = 25) (22)

xbrightness,L ∼ N (µ = 0.6,Σ = 0.01) (23)

The size and brightness of the target on the right was defined relative to the target
on the left. Specifically, “easy” and “hard” distributions were defined by the ratio of sizes
or brightnesses between target on the right and the target on the left. Both difficulty
distributions were mixtures of the same two discrete uniform distributions, one with possible
R:L ratios of 0.7:1, 0.8:1, 1.2:1, or 1.3:1 (corresponding to easy discriminations), and a
second with possible R:L ratios of 0.96:1, 0.98:1, 1:1, 1.02:1, or 1.04:1 (corresponding to
difficult discriminations). The “easy” rule had R:L ratios drawn predominantly from the
easier distribution (πeasy = 0.9, πdifficult = 0.1). The “hard” rule had R:L ratios drawn
predominantly from the more difficult distribution (πeasy = 0.1, πdifficult = 0.9)

As stated above, these size differences and brightness differences are measured in different
units. As a result, some sort of scaling factor must be used to convert between size differences
and brightness differences before they can be directly compared in Equation 8. To determine
the optimal scaling factor, we used Matlab’s fminsearch function to minimize the divergence
(as a function of the scaling factor) between two distributions: the raw distribution of size
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differences and the distribution of scaled brightness differences. We used the symmetrised
KL divergence as our divergence metric to be minimized:

DKL(Xi||Xj) +DKL(Xj||Xi) (24)

This procedure yielded a scaling factor of 70.3, and xbrightness values were multiplied by
this factor before being input into Equation 3.

4.3. Experiment 2

Twenty-four näıve human subjects, with normal or corrected-to normal vision, were
recruited from the Duke University community. All individuals were older than 18 years
and gave informed consent through protocols approved by the Duke Institutional Review
Board. Subjects in Experiment 2 completed an average of 952± 164.2 trials in an hour-long
behavioral session.

4.3.1. Behavioral task

Like the task used in Experiment 1, the task used in Experiment 2 required subjects to
first choose a behavioral rule, and then use that rule to flexibly guide behavior in response
to complex stimuli. Specifically, we had subjects perform a “shooting” task that required
them to use a joystick to pre-select a color, and then shoot at a target of that color among
multiple distractors (Fig. 7). A video of the task can be found at https://goo.gl/iXZybV.

In the rule-selection stage (Fig. 7A, left), subjects were shown a ring that was equally
split into three distinct colored “rule” regions (red, green, and blue). Subjects were free to
select one of the colored regions at any time after their onset by directing a joystick radially
in the direction of their chosen target. The ring target was always centered on the screen,
but the precise boundaries between the three rule regions varied randomly from trial-to-trial,
such that the location of one particular rule region was unpredictable on any given trial.
After the joystick returned to its resting position, the trial automatically progressed to the
rule-implementation stage.

In the rule-implementation stage (Fig. 7A, right), subjects were shown a small white ball
(10px diameter) at the center of the screen, and three colored “arc” targets (red, green, and
blue) at the same radial distance away from the ball (set to 0.3 times the height of the screen
in pixels, for a landscape-oriented monitor). The targets varied in their arc-widths and their
locations, but their centers were always equally spaced around the circumference of a circle
(120◦ apart). Importantly, the location of each target was random from trial-to-trial and
could not be predicted by the location of the colored rule region in the rule-selection stage.
The subjects’ goal was to use the joystick to “shoot” the ball at the target that was the
same color. To determine the ball’s trajectory, we determined when the subject initially
began to displace the joystick from its resting position, waited 50 ms, and then sampled the
new joystick position. The resting joystick position was subtracted off from the sampled
joystick position, the difference was converted into an angular trajectory, and the ball began
moving according to that trajectory. In practice, this trajectory was typically modified by
some correction factor before visual feedback began (see Controlling motor error below for
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details). If the ball’s angular trajectory was within the angular bounds of the target, the
ball collided with the target, stopped moving, and an auditory cue sounded. If the they did
not successfully hit the target (or hit an incorrect target), the ball continued moving until
it hit the edge of the screen and no auditory cue sounded.

As in Experiment 1, behavioral sessions consisted of blocks, and transitions between
blocks were continuous, covert, and uncued. Within a block, one colored rule was designated
as the “easy” rule (i.e., largest target size, on average), one was designated as the “medium”
rule, and the third was designated as the “hard” rule (i.e., smallest target size, on average;
Fig. 7B). Blocks lasted 6-9 trials, and at the end of each block, there was a 40% chance of
swapping the identities of the “easy” and “medium” rules, a 40% chance of swapping the
identities of the “medium” and “hard” rules, and a 20% chance of the rankings staying the
same (Fig. 7C). A single rule could never transition directly from “easy” to “hard” or vice
versa in a single block transition. On a trial-by-trial basis, target sizes were drawn from the
following distributions:

xi,easy ∼ Gamma(k = 12.04, θ = 0.865) (25)

xi,medium ∼ Gamma(k = 7.42, θ = 0.928) (26)

xi,hard ∼ Gamma(k = 2.80, θ = 1.417) (27)

This yielded target size distributions with means of 10.41/6.88/3.97◦ and standard devia-
tions of 3.00/2.53/2.37◦ (E/M/H, respectively). These parameters were selected to yield
performances (i.e., target hit rates) of 0.6/0.425/0.25 (E/M/H, respectively) while maximiz-
ing overlap between the distributions, given an ideal subject motor error of σideal = 6px.

Controlling motor error. At the start of every session, subjects completed 80 “calibration”
trials. These trials mimicked the rule-implementation stage of the main task, but with
only a single 7.5◦ wide white target in the periphery instead of three colored targets of
variable size. The purpose of these calibration trials was to generate an initial estimate of
each subject’s motor error, σactual. Then, during the actual testing phase, we attempted to
equalize performance across subjects through the following procedure:

1. We calculated the correction factor f = σideal/σactual.

2. On each trial, we determined the angular deviation d between the actual trajectory
and the center of the chosen target.

3. If |d| < 450, we shifted the trajectory such that the new shifted deviation d′ = f × d.
if |d| ≥ 45◦, no shift was applied and d′ = d.

4. The deviation d′ was used for both visual feedback (the trajectory shown on screen)
and reward feedback (whether or not the ball hit the target).

5. Every 50 trials (after the initial 100 trials had elapsed), the motor error σactual was
updated to control for practice effects and motor learning.

In practice, actual motor errors were always greater than σideal = 6◦, meaning that the
shifting procedure increased subject accuracy. All subjects who commented on this increase
in accuracy attributed it to the successful “calibration” of the joystick, rather than any
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experimental manipulation of trajectories. Additionally, actual deviation magnitudes were
almost always < 45◦ unless subjects purposefully aimed for a different target. No subjects
commented on any perceived misalignment between intended and displayed target trajecto-
ries.
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