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Abstract 11 

1. The accurate identification of species in images submitted by citizen scientists is currently a 12 

bottleneck for many data uses. Machine learning tools offer the potential to provide rapid, 13 

objective and scalable species identification for the benefit of many aspects of ecological 14 

science. Currently, most approaches only make use of image pixel data for classification. 15 

However, an experienced naturalist would also use a wide variety of contextual information 16 

such as the location and date of recording.  17 

2. Here, we examine the automated identification of ladybird (Coccinellidae) records from the 18 

British Isles submitted to the UK Ladybird Survey, a volunteer-led mass participation recording 19 

scheme. Each image is associated with metadata; a date, location and recorder ID, which can 20 

be cross-referenced with other data sources to determine local weather at the time of 21 
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recording, habitat types and the experience of the observer. We built multi-input neural 22 

network models that synthesise metadata and images to identify records to species level.   23 

3. We show that machine learning models can effectively harness contextual information to 24 

improve the interpretation of images. Against an image-only baseline of 48.2%, we observe a 25 

9.1 percentage-point improvement in top-1 accuracy with a multi-input model compared to 26 

only a 3.6% increase when using an ensemble of image and metadata models. This suggests 27 

that contextual data is being used to interpret an image, beyond just providing a prior 28 

expectation. We show that our neural network models appear to be utilising similar pieces of 29 

evidence as human naturalists to make identifications.  30 

4. Metadata is a key tool for human naturalists. We show it can also be harnessed by computer 31 

vision systems. Contextualisation offers considerable extra information, particularly for 32 

challenging species, even within small and relatively homogeneous areas such as the British 33 

Isles. Although complex relationships between disparate sources of information can be 34 

profitably interpreted by simple neural network architectures, there is likely considerable 35 

room for further progress. Contextualising images has the potential to lead to a step change in 36 

the accuracy of automated identification tools, with considerable benefits for large scale 37 

verification of submitted records.  38 

 39 

Key-words: machine learning; computer vision; citizen science; ladybird; metadata; convolutional 40 

neural network; species identification 41 

Introduction 42 

Large-scale and accurate biodiversity monitoring is a cornerstone of understanding ecosystems and 43 

human impacts upon them (IPBES, 2019). Recent advances in artificial intelligence have revolutionised 44 

the outlook for automated tools to provide rapid, scalable, objective and accurate species 45 

identification and enumeration (Wäldchen & Mäder, 2018; Weinstein, 2018; Torney et al., 2019; Willi 46 

et al., 2019).  Improved accuracy levels could revolutionise the capacity of biodiversity monitoring and 47 
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invasive species surveillance programs (August et al., 2015). Nonetheless, at present, general-purpose 48 

automated classification of animal species is currently some distance from the level of accuracy 49 

obtained by humans, and the potential remains underutilised. 50 

The large data requirements and capacity of machine learning has led to a close association with 51 

citizen science projects (Wäldchen & Mäder, 2018), where volunteers contribute scientific data 52 

(Silvertown, 2009). Citizen scientists can accurately crowd-source identification of researcher-gathered 53 

images (e.g. Snapshot Serengeti; Swanson et al., 2015), generate records to be validated by experts 54 

(e.g. iRecord; Pocock, Roy, Preston, & Roy, 2015) or both simultaneously (e.g. iNaturalist; 55 

iNaturalist.org). However, there can be a considerable lag between record submission and human 56 

verification. If computer vision tools could generate more rapid, or even instantaneous, identifications 57 

it could assist with citizen scientist recruitment and retention. While image acquisition by researchers 58 

can be directly controlled and lead to high accuracies (Rzanny, Seeland, Wäldchen, & Mäder, 2017; 59 

Marques et al., 2018), images from citizen science projects are highly variable and pose considerable 60 

challenges for computer vision (Van Horn et al., 2017).  61 

Most automatic species identification tools only make use of images (Weinstein 2018). However, an 62 

experienced naturalist would utilise a wide variety of contextual information when making an 63 

identification. This is particularly the case when distinguishing ‘difficult’ species, where background 64 

information about the record may be essential for a confident identification. In a machine learning 65 

context, this supplementary information about an image (metadata) can be split into two categories 66 

(Figure 1). Primary metadata is directly associated with a record such as GPS-coordinates, date of 67 

recording and the identity of the recorder. Derived (secondary) metadata is generated through cross-68 

referencing with other sources of information to place this metadata into a more informative context 69 

(Tang, Paluri, Fei-Fei, Fergus, & Bourdev, 2015). In an ecological context, this may include weather 70 

records, maps of species distribution, climate or habitat, phenology records, recorder experience, or 71 

any other information source that could support an identification.  72 
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 73 

 74 

Figure 1. Relationships between categories of metadata. Primary metadata are basic attributes of the record 75 

directly associated with an image such as the date or location. By contrast, derived (or secondary) metadata 76 

requires cross-reference to external databases, which may include physical, ecological or social data. External 77 

sources of information may be fixed and stable (such as habitat maps) or dynamic and require updating in order 78 

to keep the model up to date (such as weather records or recorder experience).  79 

Efforts to include contextual spatio-temporal information have largely focused on reducing the list of 80 

potential species that may be expected in a given area. iRecord (www.brc.ac.uk/irecord) partially 81 

automates this process, flagging records to expert verifiers that are labelled as being outside of the 82 

known range. Distribution priors have been shown to be effective in improving the identification of 83 

North American birds (Berg et al., 2014), images in the iNaturalist dataset (Mac Aodha, Cole, & Perona, 84 

2019) and generating location-specific shortlists of German plants (Wittich, Seeland, Wäldchen, 85 

Rzanny, & Mäder, 2018). This approach can greatly reduce the risk of non-sensical identifications that 86 

otherwise lead to considerable scepticism over the use of automated methods (Gaston & O’Neill, 87 

2004). Nevertheless, this ‘filtering’ approach does not make full use the available data. Many species 88 

vary in appearance seasonally or across their range. For example,  the proportion of the melanic form 89 
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of the 2-spot ladybird Adalia bipunctata varies greatly across the UK (Creed, 1966). To an expert 90 

naturalist, metadata can do more than shorten the list of potential identifications - it can help to 91 

interpret the image itself. For example, juveniles, flowers or breeding plumage may only be observed 92 

in narrow time windows or there may be geographic variation in colour patterns. Consequently, 93 

certain features within an image (e.g. spots on a butterfly’s wing) may only aid in determining a 94 

species in specific regions, or times of year. It would only be worth looking for a particular pattern 95 

when that species and lifestage is active. Synthesising and making use of such disparate sets of 96 

information is challenging for humans even when detailed data is available, and such expertise 97 

requires many years to build.  By contrast, neural networks are ideally suited to drawing together 98 

diverse sources in such a way to gain the maximal amount of information. 99 

Ladybirds (Coleoptera: Coccinellidae) are a charismatic insect family that garner substantial public 100 

interest, with large numbers of submitted records to citizen science monitoring schemes around the 101 

world (Gardiner et al., 2012). Identification of ladybirds is challenging for both human (Jouveau, 102 

Delaunay, Vignes-Lebbe, & Nattier, 2018) and artificial intelligence (Van Horn et al., 2017) because of a 103 

number of morphological features. Many species of ladybird have polymorphic elytral colour patterns, 104 

with some species seemingly mimicking others, and so are principally disambiguated by size. However, 105 

size is extremely challenging for artificial intelligence to automatically infer from a single image 106 

without standardised scales (Laina, Rupprecht, Belagiannis, Tombari, & Navab, 2016). As an example 107 

the invasive Harlequin ladybird Harmonia axyridis (which has been a particular focus for research, Roy 108 

et al., 2016), is a polymorphic species and can resemble a number of other species. Consequently, the 109 

Harlequin ladybird is frequently misidentified by citizen scientists (Gardiner et al., 2012) but can be 110 

distinguished on the basis of its large size. Currently, submissions to the UK Ladybird Survey 111 

(www.ladybird-survey.org) are managed by a small number of expert verifiers, imposing a large 112 

burden on the expert community. There is growing interest in expanding the geographic scope of the 113 

survey with the recent launch of a smartphone app for recording ladybirds across Europe 114 

(https://european-ladybirds.brc.ac.uk/). The UK ladybird survey (and associated European extension) 115 
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therefore represents an example of a programme where a reliable automated identification tool could 116 

help to increase the use of citizen science to document biodiversity across the globe.  117 

Classification tools that only use image data are not making maximal use of the information available 118 

to human experts. Here we demonstrate methods to incorporate metadata directly within neural 119 

networks used for the classification of images of ladybirds submitted to the UK Ladybird Survey. We 120 

examine if metadata can significantly improve classification accuracy, thereby increasing their 121 

potential to assist in large-scale biodiversity monitoring, by: 122 

1. Comparing the classification accuracy of classifiers incorporating metadata compared to image-only 123 

classifiers. 124 

2. Exploring whether neural networks make use of the same pieces of metadata information that a 125 

human experts do. 126 

Methods 127 

Data 128 

Records of ladybirds (Coccinellidae) were sourced from the UK Biological Records Centre 129 

(www.brc.ac.uk). These were filtered to include only those from within the British Isles, from 2013 to 130 

2018 inclusive, that contained an image and had been verified by an expert assessor. Records were 131 

distributed across the whole of the British Isles, although records were more frequent near more-132 

heavily populated areas (Figure S1). The date range was selected based on a notable increase in 133 

records from 2013 with the release of a mobile app (iRecord Ladybirds). Identifications of records by 134 

expert verifiers was based on uploaded images and associated information including the species 135 

determination of the original observer, location, date, associated comments and (where known) the 136 

degree of skill of the recorder.  137 

Of the 47 species of ladybird that had been recorded at least once in the UK (Duff, 2018), only 18 138 

species (listed in table 1) had at least 170 usable records, which we took as our lower cut-off to ensure 139 
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each species was represented by at least 120 unique training images. We judged that fewer training 140 

images would not result in accurate classification. These 18 species made up 97% of the total ladybird 141 

records during 2013-2018. Even after removing species with fewer than 170 usable records, the data 142 

set is highly imbalanced (Table 1), with two species making up the bulk of records: 7-spot ladybird 143 

Coccinella septempunctata (25.8%) and the highly polymorphic Harlequin ladybird (44.5%).  144 

Images 145 

Records were manually scanned to remove the majority of images predominantly of eggs, larvae or 146 

pupae, ‘contextual’ images of habitat area, images including multiple species, and images that had 147 

been uploaded repeatedly. Larval and pupal images were overwhelming dominated by the highly 148 

distinctive Harlequin ladybird larvae or pupae (78%). Where a single record had multiple associated 149 

images, only the first was used. Images were centre cropped to square and then rescaled to 299x299 150 

pixels. Example images for each species are shown in Figure 2. After all data cleaning steps, the 151 

dataset had 39,877 records in total.  152 
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     153 

Figure 2. Three randomly selected images from each of the 18 ladybird species in our dataset, demonstrating the 154 

wide variety of poses, sizes and backgrounds. Images have been centre cropped to square and resized to 155 

299x299. Species are listed alphabetically: Left column: a) Adalia bipunctata, b) Adalia decempunctata, c) Anatis 156 

ocellata, d) Aphidecta obliterata, e) Calvia quattuordecimguttata, f) Chilocorus renipustulatus, g) Coccinella 157 

septempunctata, h) Coccinella undecimpunctata, i) Exochomus quadripustulatus. Right column: a) Halyzia 158 

sedecimguttata, b) Harmonia axyridis, c) Harmonia quadripunctata, d) Hippodamia variegata, e) Propylea 159 

quattrodecimpunctata, f) Psyllobora vigintiduopunctata, g) Scymnus interruptus, h) Subcoccinella 160 

vigintiquattropunctata, i) Tytthaspis sedecimpunctata.  161 
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Metadata 162 

We constructed models that made use of different subsets of the available metadata. The first (the 163 

primary metadata model) took only three pieces of primary metadata, drawn directly from the UK 164 

Ladybird Survey dataset: longitude, latitude and date. We represented date by day-of-year, excluding 165 

year values since information on ‘year’ would not be transferable to future records. The second model 166 

(the derived metadata model) supplemented the primary metadata with secondary metadata: data 167 

generated with additional reference to external sources of information, namely weather records, 168 

habitat and recorder expertise. We did not use the original citizen scientist species determination in 169 

our models, since it was too powerful compared to other sources of information (correct over 92% of 170 

the time) and did not align with the goal of fully automated identification.  171 

Temperature records were accessed from the Midas database (Met Office, 2012), selecting data from 172 

the 88 UK stations with fewer than 20 missing records (2013 to 2018). Occasional missing values were 173 

imputed with a polynomial spline. Using the closest weather station to the record, maximum daily 174 

temperature for each day in the 14 preceding days (d-1:d-15) and weekly average maximum daily 175 

temperatures for each of the 8 weeks preceding the high resolution period (d-16:d-71) were accessed. 176 

Local habitat information was derived from a 1km resolution land cover map (Rowland et al., 2017). 177 

This provides percentages in each 1km grid of 21 target habitat classes (e.g. ‘urban’, ‘coniferous 178 

woodland’, ‘heather’, etc.). Where no data was available, each habitat was assumed to be 0.  179 

We calculated a ‘recorder experience’ variable as the cumulative count of records submitted by that 180 

recorder at the time of each record. Only records of ladybirds in our dataset were included in this 181 

count. Where no unique recorder ID was available, that record was assumed to be a first record.  182 

This led to a one-dimensional metadata vector of length 47 (day-of-year, latitude, longitude, 14 daily 183 

maximum temperature records, 8 weekly average temperature records, 21 habitat frequencies and 184 

recorder experience) associated with each image.  185 
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Machine learning model architecture 186 

We built and fit convolutional neural network models (Goodfellow, Bengio, & Courville, 2016) in R 187 

3.5.3 using the functional model framework of the keras package (Allaire & Chollet, 2019). We used 188 

the TensorFlow backend on a Nvidia GTX 1080 Ti GPU. R code used to train the models is available at 189 

github.com/jcdterry/LadybirdID_Public and the core model architecture code is summarised in SI.  We 190 

first constructed and trained image-only and metadata-only models. Once these had separately 191 

attained maximum performance, these were then combined to form the core of a multi-input model 192 

that takes both an image and metadata as input variables. For all models we conducted extensive 193 

hyperparameter searches to determine model architecture, extent of data-augmentation, 194 

regularisation parameters, learning rates and training times. 195 

A schematic of the model architectures is shown in Figure 3. The metadata models were built with a 196 

simple architecture of two densely connected layers and a softmax classifier layer. For the image-197 

model, the Inception-ResNet-v2 architecture (Szegedy, Ioffe, Vanhoucke, & Alemi, 2016) was used as 198 

an initial feature extractor. This is a very deep architecture that had been pretrained on the large 199 

imageNet dataset to extract meaningful features from a generic set of images. This transfer learning 200 

approach greatly expedites the training process and has previously achieved high accuracy in tests on 201 

the iNaturalist data set of citizen science records (e.g. Cui, Song, Sun, Howard, & Belongie, 2018) and 202 

for the identification of insects (Martineau et al 2018). To repurpose the model, we replaced the 203 

imageNet classification layer with new layers and trained the model on our dataset. The combined 204 

model was built by removing the classifier layers from the metadata and image models, concatenating 205 

the two outputs, and adding further layers. This fusion approach has been successfully used in the 206 

categorisation of satellite data (Minetto & Segundo 2019).  207 

 208 

 209 
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 210 

 211 

 212 

Figure 3. Outline schematic of the difference in model architectures. Dense layers are the principle component 213 

of neural networks, that fit linkages between every input and output node. All our dense layers incorporated a 214 

rectified linear unit (ReLU) non-linear activation function. Inception-ResNet-v2 is a very deep feature extraction 215 

model incorporating many convolutional layers and originally trained to classify a diverse set of objects, that we 216 

refined by retraining on our ladybird dataset. The global max pooling stage summarises the outputs of the image 217 

feature extractor for further computation by dense layers. Softmax layers output a vector that sums to one, 218 

which can be interpreted as probabilities of each potential category. Dropout, noise, batch normalisation and 219 
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other regularisation features enacted only during training time are not shown here for simplicity. R code to build 220 

models using the keras R package (Allaire & Chollet, 2019) is given in SI, which also details further 221 

hyperparameters such as the size of the each layer. 222 

Model Training 223 

Species records in the UK Ladybird Survey, like most biological record datasets (Van Horn et al., 2017), 224 

are highly skewed towards certain common species (Table 1). As predictive models are not perfect, 225 

such class-imbalanced data leads to critical choices about how to best assess ‘accuracy’. Overall 226 

accuracy may be maximised by rarely or never assigning species to unusual categories. A citizen 227 

scientist may prefer the maximum accuracy for the species in front of them (which is likely to be a 228 

commonly reported species). However, in an ecological science context, rare (or more precisely, rarely 229 

reported) species are often of particular interest to researchers managing citizen science projects. 230 

The total dataset was randomly partitioned into training (70%), validation (15%) and test (15%) sets. 231 

To address the class-imbalance, we followed the approach suggested by Buda, Maki, & Mazurowski, 232 

(2018) and re-balanced our training set through up-sampling and down-sampling the available 233 

records. We did this so that each species had 2000 effective training records. Consequently, our 234 

underlying models did not have direct access to the information that, all else being equal, certain 235 

species are far more likely than others. This reduces the potential for the model ‘cheating’ during 236 

training by fixating on common species and ignoring rare species. To demonstrate the potential to 237 

improve overall accuracy by taking into account the relative frequency of each species, we tested 238 

weighted versions of each of the models. In these, the relative probability assigned to each species 239 

from each unweighted model (𝑃𝑖) were scaled by the relative frequency of each of the species (𝐹𝑖) in 240 

the training data as: 𝑃𝑤𝑒𝑖𝑔ℎ𝑡𝑒𝑑𝑖
∝  𝑃𝑖 𝐹𝑖. 241 

To reduce overfitting, we made extensive use of image augmentation, weight regularisation, batch 242 

normalisation, dropout layers during training and introduced Gaussian noise on the metadata vector. 243 

Training optimisation was based on a categorical cross-entropy loss function using the ‘Adam’ 244 
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adaptive moment estimation optimiser (Kingma & Ba, 2014). During training, if validation loss had 245 

reached a plateau, learning rate was reduced automatically. Training was stopped (and the best model 246 

restored) if there had been no further improvement in validation loss over at least four epochs.  247 

After fitting the derived metadata, image-only and combined models, a simple ensemble model taking 248 

a weighted average of the derived metadata and image-only model predictions was also constructed 249 

and tested. This could be considered equivalent to using the metadata to construct a prior expectation 250 

for the predictions of the image model: 251 

𝑃𝑒𝑛𝑠𝑒𝑚𝑏𝑙𝑒𝑖
∝  (1 − 𝜔)𝑃𝑖𝑚𝑎𝑔𝑒𝑖

+ 𝜔 𝑃𝑚𝑒𝑡𝑎𝑖
 252 

where the weighting (𝜔) between the metadata and image model probabilities was determined by 253 

optimising the ensemble model top-1 accuracy on the validation set.  254 

Model Testing and Evaluation 255 

Overall and species-level model performance was assessed in terms of top-1 (was the true ID rated 256 

most likely) and top-3 (was the true ID amongst the three options rated most highly) accuracy. 257 

Because model accuracy will be dependent on the split of data into testing and training sets, and 258 

because model optimisation is a non-deterministic process, we repeated the entire model fitting 259 

process 5 times. For each repeat, assignment of images to training, validation and test sets was 260 

randomised.  261 

Role of Metadata Components 262 

To examine the dependence of the model on each aspect of the metadata we examined the decline in 263 

top-3 accuracy for each species when elements of metadata were randomised by reshuffling sets of 264 

values within the test set. We did this separately for the spatial coordinates, day–of-year, 265 

temperatures data, habitats data and recorder expertise. 266 

Results 267 

Across each of our training-test split realisations, combined multi-input models showed a marked and 268 
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consistent improvement on both the image-only (+ 9.1 percentage points) and the ensemble models 269 

(+ 3.6 percentage points) (Figure 4). Species-level accuracies (averaged across the 5 split realisations) 270 

for each of the models are reported in Table 1. There was no correlation between the species-specific 271 

accuracy of the metadata-only model and the image-only model (Spearman’s rank correlation test 𝜌 272 

=0.23, p=0.34). There was, however, a strong correlation at a per-species level between the fraction 273 

correctly identified by the original citizen-scientist recorder and the combined model (𝜌 = 0.65,  p = 274 

0.003). 275 

 276 

  277 

Figure 4. Consistent improvement in top-1 (a) and top-3 (b) accuracy from image only models to models with the 278 

incorporation of metadata. An image-only model can be improved by ensembling with a metadata model, but 279 

further improvements can be gained from fitting combined multi-input models. Lines show 5 suites of models 280 

trained on a different train-validation-test randomisations.  281 

Species Relative 

Frequency 

Citizen 

Scientist  

Metadata Only Image Only Image and Metadata 

Primary Derived Combined Ensemble 

Overall 
 

92.4 15.9 22.4 48.2 57.3 53.7 

Adalia bipunctata 5.3 97.3 10.9 22.5 56.4 58.9 58.5 

Adalia decempunctata 2.9 85.8 1.9 2.2 24.6 22.9 23.3 

Anatis ocellata 0.5 94.5 2.7 15.3 37.3 41.3 42.0 

Aphidecta obliterata 0.7 96.5 63.2 55.3 71.6 80.0 81.6 

Calvia quattuordecimguttata 1.8 92.5 0.2 3.4 70.0 55.8 69.8 

Chilocorus renipustulatus 1.2 93.2 3.1 16.9 47.6 47.0 49.6 
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Coccinella septempunctata 26.1 95.5 0.0 0.3 64.8 64.2 62.9 

Coccinella undecimpunctata 0.7 94.0 5.1 27.2 58.5 58.5 62.1 

Exochomus quadripustulatus 1.5 92.0 15.2 26.9 37.9 43.9 40.0 

Halyzia sedecimguttata 3.7 93.9 0.8 7.7 65.6 73.5 66.1 

Harmonia axyridis 44.1 89.6 27.9 38.6 34.7 53.6 47.1 

Harmonia quadripunctata 0.4 94.3 6.2 12.3 37.7 43.1 39.2 

Hippodamia variegata 0.6 93.2 35.4 32.0 28.0 46.9 38.9 

Propylea quattuordecimpunctata 4.5 94.8 28.1 22.3 58.6 62.7 59.3 

Psyllobora vigintiduopunctata 3.0 98.5 5.2 11.8 56.3 58.5 58.1 

Scymnus interruptus 0.4 98.2 93.6 76.0 88.0 89.6 90.4 

Subcoccinella vigintiquattuorpunctata 1.6 96.2 6.2 17.8 62.6 67.3 64.5 

Tytthaspis sedecimpunctata 1.0 91.2 7.0 21.9 43.5 51.1 50.8 

Table 1. Average per-species top-1 accuracy across the suite of models. Citizen scientist accuracy is determined 282 

by frequency by which the label assigned by the recorder corresponds to the verified species name. Equivalent 283 

tables for top-3 accuracy and for accuracy including a prior weighting based on relative frequency are given in SI.  284 

The overall accuracy of all models could be greatly improved by weighting the output probabilities by 285 

the prior expectation given the relative frequency of each species. For example, the average top-1 286 

accuracy of the combined model rises from 57% to 69%. However, these gains are made at the cost of 287 

very infrequently identifying unusual species correctly. With a weighted model the two most 288 

commonly observed species, Harlequin and Seven-spot ladybirds, are correctly identified 90% and 89% 289 

of the time respectively. However, 12 infrequently observed species are correctly identified in less 290 

than 12% of cases. 291 
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 292 

Figure 5. Distribution of records accurately (top-3) predicted solely from a derived metadata model. a) Spatial 293 

distribution of accuracy, showing decreased accuracy in the south-east. Accurate predictions are shown in 294 

yellow, incorrect in red, b) Weekly fraction of accurate metadata identifications through the year showing strong 295 

seasonal variation in accuracy with a particular peak in mid-autumn. 296 

The derived metadata model had an overall top-3 accuracy of 43.7% and was making at least some use 297 

of all the components of the metadata since randomising each group caused a decline in accuracy. 298 

Accuracy of the metadata-only model peaked spatially away from the south-east of the British Isles 299 

and outside of summer (Figure 5). Metadata accuracy (43.7%) was most related to temperature. This is 300 

demonstrated by a 10% percentage point decrease in accuracy when temperature was removed. 301 

Where both temperature and day-of-year data was available, the temperature data appears to be 302 

used more (10% and 0.2% decreases respectively). It is not possible to determine whether this is 303 

because temperature is simply more relevant to ladybirds than date, or whether this is an artefact of 304 

the different lengths of the metadata vectors. When day-of-year was randomised in the primary 305 

metadata model, top-3 accuracy declines by 4.5% points. Within temperature, the model appeared to 306 

be making more use of the weekly temperature data (2-10 weeks before the record), where 307 

randomisation caused an 8.1% decrease than the more proximate daily records for the preceding 308 

fortnight (-5.4%).  The remaining metadata components had smaller influences on overall top-3 309 
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accuracy: randomising habitat data led to a 2.8% decrease while randomising recorder experience led 310 

to a 2.1% decrease. 311 

These overall results are highly influenced by the dominant species (particularly the Harlequin 312 

ladybird) in the test set, masking variation in decline in accuracy on a per-species level (SI Table S2). 313 

The apparent importance of each metadata component appears to align with ecological expectations. 314 

The five species with greatest decline in accuracy when habitat is randomised are all considered 315 

habitat specialists (Roy & Brown, 2018): Coccinella undecimpunctata (dunes), Anatis ocellata 316 

(conifers), Tytthaspis sedecimpunctata (grassland and dunes), Subcoccinella vigintiquattuorpunctata 317 

(grassland), and Aphidecta obliterata (conifers). Similarly, the randomisation of location had the 318 

greatest effect on the localised species (Figure S1). The top three most affected were: Aphidecta 319 

obliterata (frequently reported in Scotland), Scymnus interruptus (South-East England) and Coccinella 320 

undecimpunctata (coastal). By contrast, the Seven-Spot ladybird, a widespread and generalist speices 321 

was poorly identified by the metadata model and showed a minimal response to randomisation. The 322 

species affected most by the randomisation of temperature was Propylea quattuordecimpunctata, 323 

with the common name of the ‘dormouse’ ladybird (Roy and Brown 2018, p.112) because of its known 324 

late emergence.  325 

The randomisation of recorder experience had the greatest impact on Scymnus interruptus. This was 326 

the only ‘inconspicuous’ ladybird in our dataset, which inexperienced recorders may not even realise is 327 

a ladybird (see Figure 2g). There was also a 10% decrease in the identification of Harlequin ladybirds 328 

when recorder experience was randomised. Novice recorders are notably more likely to record 329 

Harlequin ladybirds than more experienced recorders. The first record submitted by a new recorder is 330 

a Harlequin ladybird 57.4% of the time, which rapidly declines to 38% by the 10th.  331 

Discussion 332 

The use of metadata within computer vision models considerably improves their reliability for species 333 

identification. This exciting finding has implications for biological recording, demonstrating the 334 
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potential to use innovative approaches to assist in processing large occurrence datasets accrued 335 

through mass participation citizen science. Basic primary metadata is straightforward to incorporate 336 

within machine learning models and, since this information is already collected alongside the 337 

biological records, can be widely adopted.  338 

Interpretation of results 339 

The notable gain in accuracy of the combined multi-input model compared to the ensemble model is 340 

consistent with the model learning to interpret the image based on the metadata. This is evidence that 341 

metadata can provide further gains beyond simply filtering the potential species list (Wittich et al., 342 

2018). While it is not possible to determine exactly what interpretations the artificial intelligence is 343 

making, we can discern plausible scenarios. In autumn, ladybirds select suitable overwintering sites 344 

and enter dormancy through the adverse months (Roy & Brown, 2018). Each species exhibits a specific 345 

preference in overwintering habitat. Harlequin ladybirds favour buildings, leading to a high proportion 346 

of submitted records from inside homes of Harlequin ladybirds in the autumn as they move inside to 347 

overwinter (Roy et al., 2016). Submitted images of ladybirds exhibiting this behaviour are often poor-348 

quality showing ladybirds at a distance nestled in crevices (Figure 2). The high accuracy of the 349 

metadata model during autumn suggests it has learnt (as expert human verifiers have) that a poor-350 

quality image with a pale background during the autumn is very likely a Harlequin ladybird.  351 

Our results likely represent a lower bound on the potential improvements that can be leveraged from 352 

metadata for identifying challenging species. Although British ladybirds have distinct ranges, activity 353 

periods and habitat (Comont et al., 2012; Roy & Brown, 2018) many are relatively cosmopolitan and 354 

can be observed as adults for large parts of the year. Classification models where focal species are 355 

more localised in time, space or habitat, or alternatively if the domain of the model is larger (for 356 

example North America, Berg et al. 2014), may expect to see larger gains through including metadata. 357 

Determining how deep learning models make decisions is complex (Goodfellow et al., 2016). Multiple 358 

interwoven contributing factors combine to produce a result, much akin to human decisions. The 359 
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nature of metadata means much of the gain likely comes from ruling species out rather than positively 360 

identifying them, which makes the interpretation of ‘accuracy’ metrics even more challenging. Our 361 

randomisation analysis to determine the features used by the metadata model can only be a rough 362 

guide to the basis of decisions. The randomisation process will represent the pre-existing imbalance of 363 

our dataset and will produce illogical combinations of metadata, such as hot temperatures during the 364 

winter, or coastal habitat within inland areas. Nonetheless, it does show evidence that the model 365 

operates along similar lines to expert identifiers. Where certain aspects of information are lost, this 366 

translated into inaccuracies in species for which that information is relevant. This is aligned with the 367 

results of Miao et al. (2018) who found that their image recognition tool for savanna mammals also 368 

used similar features to humans to identify species. Equally, for widespread and generalist species, 369 

metadata is not able to contribute to the accuracy. For instance, the identification of Seven-spot 370 

ladybird is essentially unchanged by the inclusion of metadata.  371 

In theory, given enough records, a deep-learning model would be able to infer the information content 372 

of the cross-referenced database based only on primary metadata. For example, a neural network 373 

could learn to identify a set of location coordinates with a high likelihood of a given species, without 374 

knowing that those coordinates contained favoured habitat, simply because the species is frequently 375 

recorded at these locations in the training dataset. In this respect, the inclusion of derived metadata 376 

could be considered a feature extractor technique that interprets the primary metadata, rather than 377 

providing additional information. In practice, the level of data required to internally reconstruct 378 

sufficient mapping purely from primary metadata would be very high, particularly when the features 379 

are very high resolution (Tang et al., 2015). A core challenge for automated species identification is the 380 

long tail of species for which there are very sparse records (Van Horn et al., 2017), for which the 381 

advantage of including derived metadata is likely to be considerably larger than for frequently 382 

recorded species. 383 

Further Improvements to Model  384 
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The design and training of deep learning models is an art rather than an exact science (Chollet & 385 

Allaire, 2018). There are likely to be opportunities for improvement in overall accuracy for each of our 386 

models. Our image-only accuracy levels (48.2%) were below that attained on other ecological 387 

datasets, though citizen scientists’ images of ladybirds have been previously identified as posing a 388 

particular challenge for computer vision systems (Van Horn et al., 2017). For example, 67% accuracy 389 

was established as a baseline on the diverse iNaturalist image competition dataset (Van Horn et al., 390 

2017), while competition winners were able to reach 74%.  391 

Practically, incorporating metadata into neural networks need not introduce considerably more effort. 392 

Metadata is substantially simpler to process than image data and did not appear to add significantly to 393 

the training time. Compared to the very deep convolutional networks needed to interpret images, 394 

metadata can be processed with a small number of densely connected layers. Our tests with much 395 

larger or deeper networks did not lead to further gains. The number of parameters in our metadata 396 

models were several orders of magnitude smaller than the image model and could be trained in a 397 

matter of seconds per epoch. However, there are small additional design overheads in constructing a 398 

multi-input neural network compared to an image-only approach. There now exist user-friendly 399 

‘automatic learning’ software that can generate a computer vision model given only a set of labelled 400 

images. In contrast, currently available support for multi-input models is comparatively lacking and 401 

requires direct specification of the model architecture as well as data manipulation pipelines to 402 

combine disparate information sources. Fortunately, tools such as the keras R package (Allaire & 403 

Chollet, 2019) provide straightforward frameworks for multi-input models that are well within the 404 

reach of ecologists without a formal computational science background. We have also shared our code 405 

(SI) to help others make use of this methodology. 406 

We have demonstrated the improvement gained through the use of metadata. Further improvements 407 

could likely be made through instigating test-time augmentation where multiple crops or rotations of 408 

an image are presented to the classifier, ensembling multiple models, and increasing the size of the 409 
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dataset through supplementary images and historical records (Chollet & Allaire, 2018). Our approach 410 

to augmenting metadata (adding Gaussian noise to each element) was relatively basic and more 411 

targeted approaches to generating additional synthetic training data (Chawla et al. 2002) could lead to 412 

better results.  413 

The overall accuracy of a species classifier can be considerably enhanced by incorporating a prior 414 

likelihood of each species’ relative frequency.  Approaches that allow the model to directly learn the 415 

relative frequencies of the species could attain even higher overall accuracy. However, in contrast to 416 

improvements discussed in the previous paragraph this would significantly reduce the accuracy for 417 

rarely observed species. A model that only learnt to accurately distinguish between Harlequin and 418 

Seven-spot ladybirds (that constitute the majority of records) could attain an accuracy of 70%, but this 419 

would be of limited applied use. 420 

The challenge of species identification has in the past attracted computer scientists who can view 421 

species identification as an interesting example of large real-world labelled datasets (Weinstein 2018). 422 

Open competitions such as the annual iNaturalist (Van Horn et al., 2017) and LifeCLEF competitions 423 

(Goëau, Bonnet, & Joly, 2017) have spurred considerable improvements in identification accuracy. 424 

Including metadata in these datasets (such as the PlantCLEF 2019 competition) could lead to 425 

considerable improvements. However, any release of metadata must consider the geoprivacy of 426 

citizen scientists and potential risk to endangered species. Due consideration of the appropriate 427 

resolution of location data, and the identifiability of individuals in any data publicly released is 428 

essential.  429 

Transferability of models including metadata 430 

The inclusion of metadata in an automatic identification tool will influence its transferability to new 431 

contexts. With all machine learning approaches, any automatic identification process is only as good 432 

as the extent and scope of the training data used. A model that has been trained on the location of UK 433 

records would need to be retrained for use in continental Europe, whereas an image-only model could 434 
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be expected to be at least somewhat useful in both contexts. As such, a model trained on derived 435 

metadata such as habitat types or local weather may be more transferable than one trained on 436 

coordinates and specific dates. A focussed appreciation of the domain a model will be applied to is 437 

essential. Transferability will be critical for expanding from well-studied areas (such as UK), to 438 

understudied areas where there is great potential for citizen science to fill gaps in knowledge (Pocock 439 

et al., 2018).  440 

Transferability of models can be a challenge even within a region since records generated through 441 

unstructured broad-based citizen science are distinctive from those generated by committed amateur 442 

recorders, structured citizen science projects or professional surveys (Boakes et al., 2016). Submitted 443 

records are the result of interactions between human behaviour and species ecology (Boakes et al., 444 

2016). Highly visited sites may show an over-abundance of common species that are new to citizen 445 

scientists with relatively limited experience. In our dataset, uploaded records of ladybirds correlate 446 

strongly with the first appearance of species and news reports of invasive species (T. A. August 447 

unpublished data). 448 

Our choice of what contextual data to include was guided by our knowledge of variables that are likely 449 

to influence ladybirds in the British Isles. For more taxonomically diverse tools, it would be beneficial 450 

to use a wider a range of derived metadata variables. This could include more diverse weather 451 

information, climate maps, and topography. We did not include species range maps (Roy, Brown, 452 

Frost, & Poland, 2011) in this study since most (>90%) records came from areas within the range of 15 453 

out of the 18 focal species considered in this study. Binary species range maps cannot account for the 454 

relative frequency of species across a region, but this can be learnt by a deep learning network 455 

provided with location data of records. Although range maps could be informative within models with 456 

a wide spatial scope or for highly localised species, they are comparatively verbose to encode for in 457 

deep learning networks. When using a model to identify large numbers of species, the intersection or 458 

otherwise of a record with each species range map may need to be encoded in a separate variable. 459 
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This greatly increases the length of the metadata vector associated with each record and it could 460 

become challenging for models to identify relevant information. Although deep learning networks 461 

have the potential to effectively ignore data that is not relevant, there is the potential to slow the 462 

fitting procedure if too much irrelevant information is presented. Where accurate species range map 463 

data is available (and may impart additional information beyond that contained in the training set of 464 

records), an approach that combines machine learning with a range-map based shortlist may be the 465 

most useful (Wittich et al., 2018).  466 

Conclusions 467 

Identification of insects poses a considerable challenge for computer vision (Martineau et al., 2017). 468 

Insect diversity is extraordinarily large – as an example, there are over 6000 ladybird species 469 

worldwide (Roy and Brown 2018), most of which do not have accessible labelled images. For difficult 470 

challenges, such as species identification in the field, the optimal solutions will involve humans and 471 

artificial intelligence working in tandem (Trouille, Lintott, & Fortson, 2019). Our results demonstrate 472 

the potential for considerable improvement in the accuracy of automatic identification when 473 

incorporating contextualisation information directly within the model. This is also likely to apply to 474 

passive acoustic monitoring tools (Gibb, Browning, Glover-Kapfer, & Jones, 2019) too. Researchers 475 

building automatic identification methods will benefit from training models to place images in context, 476 

just as a human naturalist would, to best unlock the potential of artificial intelligence in ecology. 477 
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