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Abstract

The nycthemeral transcriptome embodies all genes displaying a rhythmic variation of
their mRNAs periodically every 24 hours, including but not restricted to circadian
genes. In this study, we show that the nycthemeral rhythmicity at the gene expression
level is biologically functional and that this functionality is more conserved between
orthologous genes than between random genes. We used this conservation of the rhythmic
expression to assess the ability of seven methods (ARSER, Lomb Scargle, RAIN, JTK,
empirical-JTK, GeneCycle, and meta2d) to detect rhythmic signal in gene expression.
We have contrasted them to a naive method, not based on rhythmic parameters. By
taking into account the tissue-specificity of rhythmic gene expression and different
species comparisons, we show that no method is strongly favored. The results show
that these methods designed for rhythm detection, in addition to having quite similar
performances, are consistent only among genes with a strong rhythm signal. Rhythmic
genes defined with a standard p-value threshold of 0.01 for instance, could include genes
whose rhythmicity is biologically irrelevant. Although these results were dependent
on the datasets used and the evolutionary distance between the species compared, we
call for caution about the results of studies reporting or using large sets of rhythmic
genes. Furthermore, given the analysis of the behaviors of the methods on real and
randomized data, we recommend using primarily ARS, empJTK, or GeneCycle, which
verify expectations of a classical distribution of p-values. Experimental design should
also take into account the circumstances under which the methods seem more efficient,
such as giving priority to biological replicates over the number of time-points, or to
the number of time-points over the quality of the technique (microarray vs RNAseq).
GeneCycle, and to a lesser extent empirical-JTK, might be the most robust method
when applied to weakly informative datasets. Finally, our analyzes suggest that rhythmic
genes are mainly highly expressed genes.

Introduction 1

The nycthemeral transcriptome is characterized by the set of genes that display a 2

rhythmic change in their mRNAs levels with a periodicity of 24 hours. These include, 3

but are not limited to, circadian genes whose rhythm is endogenous and entrainable. 4
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In baboon, 82% of protein-coding genes have been reported to be rhythmic in at least 5

one tissue [1]. The nycthemeral rhythmicity of these transcripts can be driven by the 6

internal oscillator clock or by other circadian input such as food-intake, the light-dark 7

cycle, sleep-wake behavior, or social activities. Moreover, the nycthemeral transcriptome 8

is tissue-specific [2] [3]. Given the importance of biological rhythms in understanding 9

biology and medicine, many algorithms have been proposed to detect such rhythms. 10

Some were developed specifically for biological data, while others were adapted from 11

other fields where periodicity is important, such as Lomb Scargle (LS). Most methods are 12

based on non-parametric models that search for referenced patterns, classically sinusoid, 13

called time-domain methods, while some are frequency-domain methods based on spectral 14

analysis [4]. Some of them have been designed to detect more diverse waveforms, including 15

asymmetric patterns, such as RAIN [5] or empirical JTK (empJTK) [6]. For instance, 16

RAIN outperformed the original JTK CYCLE algorithm for simulated data consisting 17

of sinusoidal and ramp waveforms [6]. Thus, methods differ in the conception of their 18

algorithm and in how they take into account features of the dataset such as curve shapes, 19

period, noise level, presence of missing data, phase shifts, sampling rates [7], asymmetry 20

of the waveform, or the number of cycles (total period length of the experiment). Each 21

method has in principle different strengths and weaknesses for some features of the 22

dataset. In Arabidopsis, HAYSTACK identified 45% more cycling transcripts than 23

COSOPT, mainly due to the inclusion of a ’spike’ pattern in its model [8]. Deckard 24

et al. [7] studied how four methods (LS, JTK CYCLE, de Lichtenberg, and persistent 25

homology) performed across a variety of organisms and periodic processes. Based on 26

synthetic data, they investigated the algorithms’ ability to distinguish periodic from 27

non-periodic profiles, to recover period, phase and amplitude, and they evaluated their 28

performance for different signal shapes, noise levels, and sampling rates. They proposed 29

a decision tree to recommend one of these four algorithms based on these features of 30

datasets [7]. 31

The performance of algorithms to identify such periodic signal has been assessed so 32

far based on synthetic (i.e., simulated) data, or on benchmark sets of known cycling 33

genes. Hughes et al. [9] recently published guidelines for the analysis of biological 34

rhythms and proposed a web-based application (CircaInSilico) for generating synthetic 35

genome biology data to benchmark statistical algorithms for studying biological rhythms. 36

While such benchmarks are useful to explore the behavior of methods in a set of cases, 37

the applicability of results to real data is limited. For example, simulations need to 38

impose an a priori fluctuation pattern, typically cosine. The fluctuation of transcript 39

abundance of core clock genes does seem to follow a cosine shape [10], but sometimes 40

follows non-sinusoidal periodic patterns in mouse liver (e.g., Nr1d1 or Arntl) [11] (based 41

on the data from [12]). The fluctuations of the nycthemeral transcriptome are entrained 42

by a complex network involving external cues [13] [14] [15] [16], as simplified in Figure 43

1a, which might yield non-sinusoidal periodic patterns among rhythmic genes even if 44

circadian genes were sinusoidal. But the biological relevance of these waveforms is still 45

not clear. This raises two issues: benchmarks based on simulations are biased towards 46

methods that detect the same types of patterns as simulated; and when an algorithm 47

detects more rhythmic genes, it could be more true positives or more false positives. 48

When pattern constraints are released this increases the number of genes detected as 49

rhythmic, but is not necessarily informative on the capacity of the algorithm to detect 50

genes whose rhythmicity is biologically relevant. 51

Using real data and randomization tests, we compared seven methods: JTK CYCLE 52

(JTK) [18], LS [19]& [20], ARSER (ARS) [4], and meta2d (Fisher integration of 53

LS, ARS, and JTK), are frequently used by many studies and are all included within 54

the MetaCycle R package [21]. We also included empirical JTK (empJTK) [6] and 55
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RAIN [5], which have been recently developed to deal with more non cosine patterns 56

and with asymmetric waveforms. empJTK and RAIN aim to improve the original JTK 57

algorithm which assumed that any underlying rhythms have symmetric waveforms [5]. 58

Finally, robust.spectrum [22] extents a robust rank-based spectral estimator to the 59

detection of periodic signals. It is integrated in the GeneCycle R package [23] and called 60

GeneCycle in this paper. We excluded de Lichtenberg [24], Persistent Homology [25], 61

COSOPT [26], Fisher’s G test [27], MAPES, Capon, and other algorithms for reasons 62

such as i. difficult accessibility of the software which limit their use by researchers, 63

ii. their higher sensitivity to certain features of the data such as the sampling density, 64

the number of replicates and/or periods, noise level, and waveform, iii. their weaker 65

efficiency on simulated data or known cycling genes, or iv. their previously reported 66

less good detection of non-sinusoidal periodic patterns [7] [4] [28] [29] [30] [6]. We first 67

analysed the behavior of these seven methods applied to a variety of real datasets in 68

animals, and within each dataset, we compared results between representative gene 69

subsets such as highly and lowly expressed genes, known cycling genes, and randomized 70

data. Contrary to real data, randomized data is not expected to show any signal of 71

rhythmicity, which we used to test proper statistical behavior under the null hypothesis. 72

Secondly, as function tends to be conserved between orthologs [31], true rhythmic genes 73

are expected to be enriched in orthologs that are themselves rhythmic in other species. 74

Indeed, evolutionary conservation provides a valuable filter through which to highlight 75

functional biological networks, notably for clock-controlled functions [32]. The biological 76

relevance of rhythmic genes is expected to be higher for rhythmic orthologs. On the 77

other hand, errors in the prediction of rhythmicity by each method are not expected 78

to be conserved between orthologs. Thus, the best methods are expected to report 79

rhythmic genes with a high proportion of rhythmic orthologs. We used this approach to 80

compare the algorithms based on their ability to capture the evolutionary conservation 81

signal within nycthemeral genes, and compared them to a Naive method. 82

Results 83

We used gene expression time-series datasets that come from circadian experiments and 84

kept the data from ”normal” individuals (apparently healthy, wild-type, no treatment) 85

for seven species (Table S1), allowing comparisons among vertebrates and among insects. 86

We benchmarked methods on animal data since organ homology allowed to compare 87

datasets for which we expect conservation of functional patterns (tissue-specific rhythms). 88

For readability, we present vertebrate results in the main figures and insect results in 89

supplementary results (Additional file 5). Apart from the rat and Anopheles datasets, 90

data with several biological replicates were obtained already normalized over replicates 91

(one value per time-point). 92

We define a rhythmic gene as a gene which displays a nycthemeral change in its mRNA 93

abundance, i.e. occurring over 24 hours and repeated every 24 hours. All these rhythmic 94

genes represent the nycthemeral transcriptome. Different organs have been reported 95

to have transcriptomes which are more or less rhythmic [2]. The rhythmic expression 96

of these genes can be entrained directly by the internal clock or indirectly by external 97

inputs, such as the light-dark cycle or food-intake [13] [14] [15] [16] (Fig 1a). We consider 98

the entirety of these rhythms to be a biologically relevant signal to detect. That is 99

why we preferred data from light-dark and ad-libitum experimental conditions whenever 100

possible (Additional Table 1), as providing a better representation of wild conditions. 101

Some methods are distinguished by their higher sensitivity to alternative patterns such 102

as peak, box, or asymmetric profiles. A visual inspection of the KEGG ”Circadian 103

entrainment” gene set (see Methods) provides indeed informal confirmation that such 104
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patterns can be observed among known cycling genes, such as Npas2, Nr1d1, or Bhlhe41 105

(Additional file 1: Fig S2). 106

Analysis of statistical behaviors of methods applied to real data 107

p-values distribution analysis 108

First, a good method should produce a uniform distribution of p-values when there is 109

no structure in the data, in contrast to the distribution obtained from empirical data, 110

which is expected to be skewed towards low p-values because of the presence of rhythmic 111

genes. We investigated the properties of the different methods applied to randomized vs 112

real data. We also investigated to what extent the density distribution of p-values of 113

each method was affected by gene expression levels. Indeed, higher expression provides 114

more power for detecting rhythmic patterns - highly expressed genes have more chance 115

to shape rhythmic patterns because the variations of expression levels are relative to 116

the general expression level - but this should not be the main driver of results. I.e., a 117

method to detect rhythmicity should not be essentially reporting high expression levels. 118

Even if true rhythmic genes were enriched in high expressed genes, we expect a good 119

method to report both high and low p-values, at each expression level. 120

Fig 1b shows the density distribution of raw p-values obtained for the seven methods 121

applied to mouse liver data (microarray) sub-categorized in: i. randomized data which 122

represents the null hypothesis; ii. randomized data restricted to the first and fourth 123

quartiles of the median gene expression level, to check for the impact of expression 124

level under the null; iii. the full original dataset; iv. the first and fourth quartiles 125

of the median gene expression level of the original data; and v. a subset of known 126

cycling genes (8 to 99 genes according to species, see Methods). Results from the 127

other datasets are provided in Additional file 2. Surprisingly, only ARS and GeneCycle 128

displayed close to the expected uniform raw p-value distribution for randomized data 129

(Fig 1b). The adjustment by default of empJTK (minimum of the p-value calculated 130

from an empirical null distribution, and of Bonferroni) recovered the expected uniform 131

distribution, suggesting that this correction allows recovering proper p-values (Fig 1b). 132

We used each software output ”p-values” for calls, which we call ”default p-value”. 133

In some software, these values result from an internal p-value adjustment, so we also 134

analysed ”raw p-values” (uncorrected, see Methods and Table 1 for JTK). For ARS, 135

GeneCycle, and LS, the default p-values are uncorrected. Under the null hypothesis, LS 136

has an abnormal peak near p-value=1 (Fig 1b), implying an issue with its definition of the 137

null hypothesis, or maybe a one-sided test when a two-sided test would be appropriate. 138

The three other algorithms (RAIN, JTK, and meta2d) seem to have issues with false 139

positives, displaying large proportions of low p-values even for randomized data. This 140

issue was also recently reported by Hutchison and Dinner [17] who in addition showed 141

that a combined method, such as meta2d which integrates results from ARS, JTK, and 142

LS, under-perform the individual methods for low p-values [17]. 143

Before analysing the impact of expression levels, we checked that the data follow a typical 144

bimodal density distribution of gene expression (Additional file 1: Fig S3a). We also 145

checked that using the median of time-points for gene expression gives similar results 146

to using the minimum or the mean value (Additional file 1: Fig S3b). Unsurprisingly, 147

higher expression levels imply a higher power to detect rhythmic patterns (Fig 2a). Only 148

empJTK, ARS, and GeneCycle presented broad distributions of the default p-values, 149

from 0 to 1, for genes with low levels of expression; the other algorithms showed a large 150
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Figure 1. The nycthemeral transcriptome is the group of genes whose mRNAs have periodic variations
with a 24h period, called rhythmic genes. To detect these rhythmic genes, we applied seven methods to
time-series datasets that produced different density distribution of p-values.
a) Simplified diagram of the entrainment of nycthemeral gene expression. Environmental cues include the light-dark
cycle, food-intake, sleep-wake behavior, social activities, or any other 24h periodic event.
b) Density distribution of p-values obtained before (raw) and after the default correction (software) for the seven methods
applied to mouse liver data (microarray) sub-categorized in: i. randomized data which represents the null hypothesis; ii.
randomized data restricted to the first and fourth quartiles of the median gene expression level, to check for the impact of
expression level under the null; iii. the full original dataset; iv. the first and fourth quartiles of the median gene expression
level of the original data; and v. a subset of known cycling genes (99 genes from KEGG ”circadian entrainment”). The
default p-values of ARS, GeneCycle, and LS are uncorrected.
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Figure 2. Detected rhythmic genes are enriched in highly expressed genes.
a) Higher expression levels imply a higher power to detect rhythmic patterns.
b) Control of the normalization by Z-score of gene expression values at a given time-point (CT24).
c) Methods applied to original vs normalized gene expression values produce the same distributions of p-values within
highly expressed genes, or within lowly expressed genes. Particularly, the normalization of gene expression values does not
allow to recover rhythmicity within lowly expressed genes.
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excess of high p-values for lowly expressed genes (Fig 2a). The p-values distributions 151

imply that most methods detect almost all highly expressed genes, and almost no lowly 152

expressed genes, as ”rhythmic” (Fig 1b). This led us to be concerned about the risk of 153

a very high false-positive rate for highly expressed genes. This risk could be produced 154

by the high sensitivity to large variations of gene expression levels. To assess this, we 155

normalized gene expression values by a Z-score transformation so that they all had the 156

same mean and variance (see Methods), and applied methods after this transformation 157

(Fig 2b). This normalization of gene expression values did not change the p-values 158

distributions within highly expressed genes, and particularly did not recover rhythmicity 159

within lowly expressed genes (Fig 2c). This was not due to sampling biases of microarray 160

data since results are consistent with RNAseq data (Additional file 1: Fig S3c). Thus, 161

the differences obtained between highly and lowly expressed genes could be explained 162

either by a truly larger number of highly expressed genes among the rhythmic genes, or 163

by experimental noise which masks circadian signal for lowly expressed genes. Overall, 164

ARS, empJTK, and GeneCycle had the best behavior, producing a uniform distribution 165

under the null hypothesis, and a skew towards p-value=0 for all empirical data. Fig 2a 166

indicates that less rhythmic organs, such as the muscle or the aorta, generated a wider 167

distribution of p-values with ARS and GeneCycle, and to a lesser degree with empJTK, 168

for both the lowly and highly expressed genes. 169
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Figure 3. Less time points per cycle lead to a weaker detection of rhythmic patterns even if the tran-
scriptome profiling quality is better.
a) Bhlhe41, Npas2, and Per1 expression over time from data of the same mouse experiment [2] using two transcriptome
profiling techniques: microarray vs RNAseq. The number of time-points with data is 24 for microarray and 8 for RNAseq.
b) The restriction of microarray time-series to the same time-points as in the RNAseq series produces similar p-value
distributions to those obtained with RNAseq. This supports a major role of the temporal resolution for method results,
relative to a minor role for the difference between RNAseq and microarrays.

From data of the same mouse experiment [2], we observed differences of p-value density 170

distributions between microarray and RNAseq, with the skew towards p-value=0 less 171

marked for RNAseq data (Additional file 1: Fig S4a and S4b). This can be due to the 172

more precise temporal resolution of the microarray time-series dataset, or to differences 173
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in the detection of gene expression by RNAseq vs microarrays (Fig 3a). When we 174

restricted the microarray time-series to the same time-points as in the RNAseq series, 175

we obtained a p-value distribution very similar to that of the RNAseq data (Fig 3b). 176

The same time-series restriction applied to known cycling genes produced comparable 177

results (Additional file 1: Fig S4c). This supports a major role of the temporal resolution 178

for method results, relative to a minor role for the difference between RNAseq and 179

microarrays. That is why for the next steps, we only considered the microarray dataset 180

for the mouse. 181
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Figure 4. Datasets with one replicate per time-point over a unique cycle of 24 hours do not provide
enough information to detect rhythmicity.
Methods lose in efficiency for detecting rhythmic patterns in gene expression when the number of 24h cycles decreases, or
when the number of time-points sampled decreases.
a) Default p-value distributions obtained for ARS, GeneCycle, and empJTK applied to different datasets and sub-
categorized in: i. randomized data which represents the null hypothesis; ii. randomized data restricted to the first and
fourth quartiles of the median gene expression level, to check for the impact of expression level under the null; iii. the full
original dataset; iv. the first and fourth quartiles of the median gene expression level of the original data; and v. a subset
of known cycling genes (8 to 99 genes according to species, see Methods). For each dataset, the number of time-points
with data and the temporal resolution is illustrated around a 24h clock. For the same number of time-points, performance
seems better with two cycles than only one cycle (zebrafish vs baboon).
b) The reduction of the number of time-points of the mouse liver microarray dataset shows increasingly weak rhythm
detection by ARS, GeneCycle, and empJTK, shown by a flattening of the p-value distribution on the full dataset (red
arrow). GeneCycle showed no difference between a few time-points over two cycles or more time-points over a single cycle
(black arrow).

This observation can be generalized to diverse datasets. We see that each method loses 182

in efficiency when the number of 24h cycles decreases, or when the number of time-points 183

sampled decreases (Fig 4a). We show only results for ARS, GeneCycle, and empJTK 184

because they were the only methods with correct behavior in their p-value distributions 185
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(Fig 1b). For the same number of time-points, performance seems better with two cycles 186

than only one cycle, as shown comparing zebrafish and baboon data which have both 187

twelve time-points (Fig 4a). But this observation could be confused by the comparison of 188

different species or different samples’ quality. ARS performed better with a smaller total 189

number of time-points but over two cycles than with more total time-points over a single 190

cycle (mouse RNAseq vs baboon in Fig 4a), indicating that ARS is very dependant on 191

the repetitive nature of profiles. The reduction of the number of time-points of the mouse 192

microarray dataset shows similar effects on the rhythm detection by ARS, GeneCycle, 193

and empJTK (Fig 4b). Of note, GeneCycle presented more or less no differences between 194

having a few time-points over two cycles and having more time-points over a single cycle 195

(black arrow Fig 4b). 196

Overlap between methods 197

Among genes called rhythmic, we analysed the number of those called in common by the 198

different methods. For p-value thresholds of 0.05 or 0.01, we found a large proportion 199

of genes called rhythmic by only one or few methods (Fig 5a and additional file 1: Fig 200

S5). Nevertheless, the overlap between all methods was the largest category for the 201

mouse liver data (Fig 5a). If we ignore p-value thresholds and consider the first 6000 202

genes detected rhythmic for each method, the overlap becomes stronger (Fig 5d). We 203

obtained similar results from the most informative dataset (Additional file 1: Fig S6b). 204

Indeed, the rat lung dataset has 36 time-points spread over three 24h cycles (Fig 4a). 205

Thus, the same genes seem to be called rhythmic by all methods but the threshold of 206

significance appear inconsistent. These results suggest an issue with the significance 207

of p-value thresholds for the methods. With a smaller number of top rhythmic genes, 208

the overlap between methods was weaker (Fig 5c and 5d). Thus the methods agree 209

on a large number of rhythmic genes, but not necessarily on the order of significance 210

among them. Finally, for baboon liver data there was less overlap of methods (Fig 5b; 211

Additional file 1: Fig S6b and S6c), which might be due to the low information in that 212

data (Fig 4a). 213

Use of evolutionary conservation as a benchmark 214

Signal of evolutionary conservation 215

We expect biologically relevant rhythmic activity of genes to be more conserved between 216

species than putative false positives from detection methods. For each condition (species 217

and tissue), we defined the group of genes whose orthologs are called rhythmic in the 218

homologous tissue of another species (Fig 6a). For example, starting with all mouse 219

genes, we only kept mouse-zebrafish one-to-one orthologs. Considering the liver, these 220

orthologs were separated into two groups: genes for which the ortholog is detected as 221

rhythmic in zebrafish liver, called rhythmic orthologs; and the remaining one-to-one 222

orthologs (Fig 6b). To detect zebrafish liver rhythmic genes, we used the ARS method 223

following the results presented above and fixed a p-value threshold of 0.01. Fig 6d shows 224

the density distribution of p-values of rhythmic orthologs and non-rhythmic orthologs 225

obtained for the seven methods applied to mouse liver data. Mouse-zebrafish orthologs, 226

that are detected rhythmic in zebrafish liver, were significantly more enriched in small 227

p-values in mouse liver, for all methods (Kolmogorov-Smirnov test p-values < 0.001; 228

Fig 6d). Similar results were obtained using other methods and/or a different threshold 229
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Figure 5. Methods detect the same first top rhythmic genes, but with inconsistencies in the meaning of
their p-values.
Upset diagrams show the number of rhythmic genes called in common by the methods.
(a,b) Upset diagram for mouse liver dataset (microarray) (a) and baboon liver dataset (b) for the p-value thresholds
of 0.05 (black) or 0.01 (grey) for calling genes rhythmic. The Venn diagram (a) illustrates the upset diagram with, for
instance, 2343 genes called rhythmic by all methods. (c,d) Upset diagram for mouse liver dataset (microarray) for the
first 1000 (c) or 6000 (d) genes detected rhythmic for each method. With a smaller number of top rhythmic genes, the
overlap between methods is weaker.

to call orthologs as rhythmic in zebrafish liver (Additional file 1: Fig S7). This result 230

obtained for distant species (Additional file 1: Fig S1) shows that the conservation of 231

rhythmicity at the transcriptomic level is strong and should be informative. Similar 232

results were obtained in other species comparisons (Additional file 1: Fig S9), with a 233

stronger signal for evolutionarily close species such as mouse and rat (Additional file 234
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1: Fig S8). Thus, for the same homologous organ, rhythmic orthologs have a stronger 235

statistical signal of rhythmicity than non-rhythmic orthologs. We are going to use this 236

evolutionary conservation of the rhythmicity of gene expression in order to compare the 237

performance of methods. 238
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Figure 6. Signal of evolutionary conservation of rhythmic gene expression.
Orthologous genes detected as rhythmic in the same organ of two species have a stronger statistical signal of rhythmicity
than those not detected as rhythmic in at least one species.
a) Mouse and zebrafish share orthologous genes, some of which are rhythmic in the homologous tissues.
b) Method used for ortholog benchmarking, as in panel d: From all mouse genes, only mouse-zebrafish one-to-one
orthologs are kept. Considering the liver, these orthologs are separated into two groups: genes for which the ortholog is
detected as rhythmic in zebrafish liver, called rhythmic orthologs; and the remaining one-to-one orthologs.
c) Chart providing the legends to inform about the method and the threshold used to call genes rhythmic for each
condition (species and tissue).
d) p-values density distribution of rhythmic orthologs vs non-rhythmic orthologs obtained for the seven methods applied
to mouse liver data. Mouse-zebrafish orthologs, that are detected rhythmic in zebrafish liver, are significantly more
enriched in small p-values in mouse liver, for all methods (Kolmogorov-Smirnov test p-values < 0.001.

Only strong rhythmic signals of gene expression are reliable 239

In this last part, we compared the performances of methods to detect the rhythmic 240

orthologs. For a given dataset, the best method is expected to report rhythmic genes 241

with the highest proportion of rhythmic orthologs. It should be noted that this does 242

not imply that we expect all rhythmic behavior to be conserved between orthologs, but 243
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Figure 7. Only strong rhythmic signals of gene expression are reliable
Methods designed for rhythm detection in gene expression show an advantage only for the genes with a strong rhythmic
signal. For a fixed number of top genes called rhythmic, all the methods, despite their design differences, retrieve
approximately the same proportion of biologically functional rhythmic genes and the same genes themselves. a) Method
to obtain figure b: For a given p-value threshold, each method detects a certain number of rhythmic genes (genes with
p-value threshold). At each threshold, we calculate the proportion of orthologs rhythmic in species2 (A) among one-to-one
species1-species2 orthologs (B). The benchmark set is composed of one-to-one orthologs detected rhythmic in the second
species (using method ARS, GeneCycle, or empJTK), called rhythmic orthologs. b) Variation of the proportion rhythmic
orthologs/all orthologs in mouse as a function of the number of mouse orthologs detected rhythmic, for each method
applied to the mouse lung dataset. The benchmark gene set is composed of mouse-rat orthologs, detected rhythmic in
rat lung by the GeneCycle method with default p-value ≤ 0.01. The black line is the Naive method which orders genes
according to their median expression levels (median of time-points), from highest expressed to lowest expressed gene, then,
for each gene, calculates the proportion of rhythmic orthologs among those with higher expression. The proportion of the
benchmark set among one-to-one orthologs is higher for highly expressed genes (4th quartile) than for lowly expressed
genes (1st quartile) (∼60% vs ∼20% respectively). Diamonds correspond to a p-value threshold of 0.01. c) Upset diagram
showing the number of rhythmic orthologs (figure a) called in common by the methods among the first 1000 mouse-rat
orthologs that are called rhythmic in mouse lung.

rather that true rhythmic genes should have more rhythmic orthologs than false-positive 244

predictions. For a given p-value threshold, each method detects a certain number 245

of rhythmic genes (genes with p-value threshold). At each threshold we calculated 246

the proportion of orthologs rhythmic in species2 among one-to-one species1-species2 247

orthologs, as defined in Fig 7a. This proportion allows assessing how each method is 248
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able to detect the conservation of rhythmicity and can be calculated for each p-value 249

threshold. The benchmark set is composed of orthologs detected rhythmic in the second 250

species, called rhythmic orthologs. To define this set, we chose a rhythmicity detection 251

method among ARS, empJTK, and GeneCycle, in agreement with results of previous 252

sections, and a p-value threshold of 0.01. 253

A risk is that orthologs have conservation of gene expression levels and that there is 254

a bias towards calling highly expressed genes ”rhythmic”. To control for this in the 255

benchmarking, we added a ”Naive” method based only on expression levels. This Naive 256

method simply orders genes (orthologs here) according to their median expression levels 257

(median of time-points), from highest expressed to lowest expressed gene, then, for 258

each gene, we calculated the proportion of rhythmic orthologs among those with higher 259

expression. We also present results for subsets obtained from the division in four quartiles 260

of expression levels. Figure 7b shows the variation of the proportion defined above as a 261

function of the number of orthologs detected rhythmic, obtained for each method applied 262

to the mouse lung dataset. The benchmark gene set was defined by mouse-rat orthologs, 263

detected rhythmic in rat lung by the GeneCycle method (default p-value ≤ 0.01). Genes 264

are given by order of their detection by the methods. The genes with small p-values, 265

i.e. with a strong signal of rhythmicity, had a high proportion of rhythmic orthologs. 266

Importantly, for all methods, this proportion was higher than that obtained from the 267

Naive method (Fig. 7b). Results are consistent in almost all species comparisons, with 268

exceptions for cerebral tissues (Additional file 3). However, the thresholds of 0.01 are to 269

the right of the cross between the curves of rhythm detection methods and the Naive, 270

except for LS. This means that, for an apparently reasonable threshold (p-value ≤ 0.01), 271

ranking genes by expression level performed ”better” than all methods designed specially 272

for rhythm detection. These methods performed better only for genes with very high 273

signal of rhythmicity. Finally, for the top 1000 mouse-rat orthologs detected as rhythmic 274

in mouse lung, all the methods reported a similar proportion of rhythmic orthologs, 275

around 62%, mainly highly expressed genes (fourth quartile of gene expression) (Fig. 276

7b). And the overlap between these orthologs was largely detected by all methods (Fig. 277

7c). Thus, for genes with a high signal of rhythmicity, all methods performed similarly 278

to detect the tissue-specific conservation of gene expression rhythmicity. Similar results 279

were obtained for other species comparisons (Additional file 4). 280

Discussion 281

The methods designed for rhythm detection in gene expression perform 282

similarly and only for strong rhythmic signal. 283

In this study, we show that orthologous genes detected as rhythmic in the same organ 284

of two species have a stronger statistical signal of rhythmicity than those detected as 285

not-rhythmic in at least one species. These results support our hypothesis that the 286

nycthemeral rhythmicity at the gene expression level is biologically functional, and that 287

this functionality is more conserved between orthologous genes than between random 288

genes. We define the nycthemeral transcriptome as all genes displaying a rhythmic 289

expression repeated every 24 hours. In order to assess the performance of seven methods 290

to detect these rhythms, we used this concept of conservation of the rhythmicity between 291

species for benchmarking. We employed genes whose orthologs had a rhythmic expression 292

called in the same homologous organ as a proxy for a true positive set, as done in some 293

previous benchmarks. For instance, [33] assessed the quality of microarrays quality 294

control methods based on evolutionary conservation of expression profiles, and [34] 295

benchmarked tissue-specificity methods in the same way. This approach based on real 296
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data, also used by Boyle et al. [3] to solve the issue of weak overlap between the same 297

tissues from the same species from different experiments, avoids relying on simulations 298

which tend to favor methods using the same model, e.g. the same patterns, and has the 299

advantage of not being based on specific assumptions, other than general evolutionary 300

conservation of function. By taking into account the tissue-specificity of rhythmic 301

gene expression and different species comparisons, we show that no method is strongly 302

favoured. For instance, one would have expected that the added features of RAIN and 303

empJTK allowing then to detect more diverse patterns than a classical sinusoidal, would 304

have favored them. But this flexibility did not provide them any advantage in the 305

benchmark. Furthermore, the comparison of the methods with a ’Naive’ one, uninformed 306

about rhythmicity, shows an advantage for informed methods only for the genes with 307

a strong rhythmic signal. Thus, only genes with a strong rhythmic signal, i.e. the top 308

genes called rhythmic, can be considered as relevant. Even if the threshold of ”relevance” 309

of these genes is dependant on the evolutionary distance of the species compared, these 310

results suggest a call for caution about the results of previous studies reporting or based 311

on large sets of rhythmic genes. For the same number of genes called rhythmic, all the 312

methods, despite their design differences, retrieved approximately the same proportion of 313

biologically functional rhythmic genes (Fig 7b) and the same genes themselves (Fig 7c). 314

The issue of significance 315

For the same p-value threshold, the number of genes called rhythmic is different from 316

one method to another, with a large proportion of these genes detected rhythmic by 317

only one or a few methods. But, if we consider the top genes called rhythmic for each 318

method, without taking into account any p-value threshold, the overlap of rhythmic 319

genes become strong between the methods (Fig 5). This highlights an issue with the 320

meaning of the p-value and the associated thresholds used. This is directly related to 321

the issue of correction that needs to be improved in this field. When a smaller number 322

of top rhythmic genes is used, the overlap between methods becomes weaker (Fig 5c and 323

5d). Thus, the order of calling genes rhythmic is different from one method to another. 324

Finally, since methods performed better than a Naive method only for genes with a 325

strong rhythmic signal, we can not conclude for the relevance of the other genes called 326

rhythmic, even when they have very low nominal p-values. 327

ARS, empJTK, and GeneCycle produce consistent p-values 328

ARS, empJTK, and GeneCycle were the methods that showed the best behavior on real 329

and randomized data (single species tests). They were the only methods displaying both 330

a uniform distribution of their p-values under the null hypothesis, and a left-skewed 331

distribution when applied to real data. For empJTK, its default correction allowed to 332

produce these expected results. However, each of these three methods is conceptually 333

completely different, which indicates that there is not one conceptual framework which 334

dominates rhythmic gene detection. ARS combines time-domain and frequency-domain 335

analyses. GeneCycle, which is the robust spectrum function of the R package, is 336

based on a robust spectral estimator which is incorporated into the hypothesis testing 337

framework using a so-called g-statistic together with correction for multiple testing. 338

And, empJTK improves the original JTK including additional reference waveforms in its 339

rhythm detection. The other methods all presented major issues. LS has a right-skewed 340

distribution of its initial uncorrected p-values suggesting an invalid null hypothesis. JTK, 341

RAIN, and meta2d had also issues with their null hypothesis displaying left-skewed 342

distributions of their uncorrected p-values. Their default adjustment was excessive, 343
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favoring high p-values obtained after correction. Hutchison and Dinner [17] observed this 344

on simulated data, and proposed that it was due to non independence of measurements 345

from the same time series. 346

Biological insight into gene rhythmicity in animal tissues 347

The separation of genes according to their expression levels showed differences in the 348

p-values distributions, with more rhythmic signal among highly expressed genes, and 349

almost none among lowly expressed genes. This led us to be concerned about the risk of 350

a very high false-positive rate for highly expressed genes. However, the normalization 351

of gene expression values (by Z-score, see above and methods) did not change the 352

p-values distributions within highly expressed genes and particularly did not recover 353

rhythmicity within lowly expressed genes (same results for microarray and RNAseq data). 354

Thus, it is possible that the rhythmic genes are largely enriched in highly expressed 355

genes. Experimental noise that would mask the rhythmic signal of lowly expressed genes 356

could also explain this result in part, especially considering that the datasets with good 357

sampling used microarray technology. 358

The observation of known cycling genes in different organs seems to indicate different 359

profiles of rhythmicity possible for the same gene. For instance, Npas2 displays a cosine 360

shape in kidney and lung, and a peak/box shape in liver and muscle (Fig. 3a). This 361

observation suggests that methods might perform differently depending on the organ 362

studied. This is also one of the reasons why all our analyses were made for homologous 363

organs. 364

In mouse-baboon comparisons, there were no significant differences of p-value density 365

between rhythmic and non-rhythmic orthologs in cerebral tissues: brain stem, cerebellum, 366

and supra-chiasmatic nucleus, except for the hypothalamus (Additional file 3: Fig S4-S5). 367

This could be explained by the fact that there are only low amplitudes of expression of 368

clock genes and few rhythmic genes in almost all brain regions. This is assumed to be 369

due to an inefficient synchronization of individual cellular oscillators in brain cells to 370

avoid noise into the synchronizator element [35]. In addition, it could also be an essential 371

aspect for intrinsic brain processes which could require a constant expression of most 372

genes. 373

The importance of having an informative dataset 374

Because of the cost and complexity of circadian experiments, time-series datasets of 375

gene expression in animals are rare, especially in the same experimental conditions. 376

Algorithms must be able to deal with little data, but importantly experiments should take 377

into account the algorithms’ sensitivity. All algorithms appeared to produce relatively 378

poor p-values distributions when applied to the available Drosophila or baboon datasets, 379

and, for the baboon dataset, were almost always less efficient than the Naive method 380

(Additional file 1: Fig S11). This baboon dataset is probably not very informative, which 381

raises questions about the biological conclusions from the associated study [1]. With 382

only one replicate per time-point, over only one cycle of 24 hours, the algorithms are 383

unable to detect repetitive patterns. Variations over a single 24 hours cycle appear to be 384

insufficient to detect rhythmic signal, when there is no evidence of repetition over several 385

cycles. Moreover, each data comes from different outbred individuals. The variations 386

of gene expression between two time-points can be due to individual variations or real 387

oscillation within the population. It is possible that sinusoidal patterns with a continuous 388

trend over successive time-points could be detected without replicates, although power 389

will be lacking, but patterns such as the peak pattern will be extremely sensitive to 390
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inter-individual variation. Figure 4 generally suggests that datasets with one replicate 391

per time-point over a unique cycle of 24 hours do not provide enough information that 392

would allow to correctly detect the rhythmicity. It seems that ARS in peculiar is very 393

sensitive to the repetitive nature of profiles. Thus, one cycle with several biological 394

replicates should be favored. Our results support the conclusions of Hutchison et al. [6] 395

who indicate that for a fixed number of samples, better sensitivity and specificity are 396

achieved with higher numbers of replicates than with higher sampling density. We 397

propose that future experiments should produce data with two biological replicates per 398

time-points as a strict minimum. Obviously, we suggest considering biological replicates 399

as new cycles within one replicate, as proposed in recent guidelines [9]. GeneCycle, 400

and to a lesser extent empJTK, were the most robust methods when applied to weakly 401

informative datasets. Thus, the performance of the algorithms is dependent on techniques 402

and experimental designs used for the experiments. The optimization of experimental 403

plans (see section Recommendations) could improve the methods’ performance for the 404

detection of rhythmically expressed genes. Finally, contrary to the mouse experiment, 405

the rat experiment has been done under zeitgeber conditions which have most likely 406

resulted in more genes being expressed rhythmically, so in proportion, more periodic 407

patterns. This might explain the higher density of small p-values obtained for the rat 408

dataset (Fig 4a). 409

Limitations and improvement of methods 410

ARS and GeneCycle need complete chronological data and cannot deal with biological 411

replicates. Except for LS and RAIN, all methods studied here assume equally spaced 412

time-points. Furthermore, ARS needs an integer sampling interval with regular time- 413

series datasets and cannot deals with missing values, or with several replicates per 414

time-point. In this study, ARS appeared to be efficient only for the dataset with at 415

least two cycles of data. Indeed it produced aberrant p-value distributions when applied 416

to datasets restricted to one cycle of 24 hours. But, for these datasets, all algorithms 417

behaved poorly. The improvement of JTK by empJTK produced much better results 418

than the original JTK algorithm. We believe that LS could be a very interesting method 419

if its null hypothesis could be clarified and would thus provide p-values with proper 420

behavior. LS has advantages that other algorithms don’t. For instance, it can deal with 421

irregular intervals, missing data, and has been shown to stay efficient on small sample 422

size [28], which constitutes one of the big issues of circadian transcriptomic data. On 423

the other hand, relative to JTK, ARS, or MICOP methods, LS has also been shown to 424

be highly sensitive to the increasing of sampling intervals and to noise for proteomic 425

data [36]. 426

A good method must, at least, display a uniform distribution under the null hypothesis, 427

and a classic skewed distribution when applied to full dataset or even more to known 428

cycling genes. It should also be able to detect efficiently rhythmic orthologs, which 429

represent an important part of the functionally relevant nycthemeral rhythmicity. In 430

this study, we did not assess the amplitudes, phases, and precise period provided by the 431

algorithms. We only analysed the performance of methods for nycthemeral or circadian 432

rhythms in gene expression data, and cannot conclude directly for ultradian or seasonal 433

rhythms, and for other types of datasets which are not gene expression data. 434
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Recommendations 435

Experimental design 436

1. Always use at least 2 biological replicates per time-point. 437

2. One full period sampled is the minimum required. 438

3. Favor time-points number (small temporal resolution) over transcriptome profiling 439

quality (e.g., Microarray vs RNAseq). 440

4. Favor regular sampling because only few algorithms can deal with irregular interval 441

time-series. 442

5. For a fixed number of samples, favor higher numbers of replicates over higher 443

sampling density (see also [6]). 444

Recommendations about the choice of rhythm detection method, the ar- 445

rangement of the time-series dataset, and the interpretation of results based 446

on these seven methods studied. 447

1. Only genes with a strong rhythmic signal should be considered as relevant. By 448

”strong” we mean the top genes called rhythmic, knowing that the threshold of 449

p-value 0.01 is already not stringent enough for some methods. 450

2. Take into account that detected rhythmic genes are strongly enriched in highly 451

expressed genes. 452

3. LS could be a good candidate to improve. 453

4. Favor ARS, GeneCycle, or empJTK with default parameters. 454

5. Consider biological replicates as new cycles with one replicate. 455

6. Check by eye for rhythms of known circadian genes. 456

7. Never duplicate and concatenate data before running algorithms [9]. 457

8. Never consider technical replicates as biological replicates [9]. 458

Tables 459

-

JTK description R
raw p-value No Bonferroni correction -

default p-value Bonferroni correction of raw p-values p.adjust(raw.pvals, method=”bonf”)
BH.Q (this paper) Benjamini-Hochberg correction of raw p-values p.adjust(raw.pvals, method=”BH”)
BH.Q (software) Benjamini-Hochberg correction of default p-values p.adjust(default.pvals, method=”BH”)

Table 1. Raw, default, and BH.Q in JTK algorithm.

460
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461

Additional Table 1. Gene expression time-series datasets. 462

Gene expression time-series datasets that come from circadian experiments. We kept data from ”normal” individuals 463

(apparently healthy, wild-type, no treatment) for these seven species, allowing comparisons among vertebrates and among 464

insects. We preferred data from light-dark (LD) and ad-libitum experimental conditions whenever possible as providing a 465

better representation of wild conditions. LD for regular alternation of light and darkness each 24h; and DD for continuous 466

darkness after an entrainment to a 12h:12h light:dark schedule for one week. 467

Additional files 468

Additional file 1 — Supplementary results 469

Additional file 2 — Density distribution of raw and default p- 470

values obtained for the seven rhythm detection methods applied 471

to vertebrate datasets. 472

Density distribution of p-values obtained before (raw) and after the default correction 473

(software) for the seven methods applied to each vertebrate dataset, sub-categorized in: 474

i. randomized data which represents the null hypothesis; ii. randomized data restricted 475

to the first and fourth quartiles of the median gene expression level, to check for the 476

impact of expression level under the null; iii. the full original dataset; iv. the first and 477

fourth quartiles of the median gene expression level of the original data; and v. a subset 478

of known cycling genes when such data was available (8 to 99 genes according to species). 479

The default p-values of ARS, GeneCycle, and LS are uncorrected. 480
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Additional file 3 — Signal of evolutionary conservation of rhyth- 481

mic gene expression in vertebrates. 482

p-values density distribution of rhythmic orthologs vs non-rhythmic orthologs obtained 483

for the seven methods applied to different vertebrate datasets. Orthologous genes 484

detected as rhythmic in the same organ of two species have a stronger statistical signal 485

of rhythmicity than those detected as not-rhythmic in at least one species. From all 486

species 1 genes, only species 1-species 2 one-to-one orthologs are kept. Considering 487

homologous tissues, these orthologs are separated into two groups: genes for which the 488

ortholog is detected as rhythmic in this tissue of species 2, called rhythmic orthologs; 489

and the remaining one-to-one orthologs. 490

Additional file 4 — Variation of the proportion A/B as a function 491

of the number of orthologs detected rhythmic, obtained for each 492

method applied to different vertebrate datasets 493

The benchmark gene set is composed of species 1-species 2 orthologs, detected rhythmic 494

in the homologous tissue of species 2 by the ARS, GeneCycle, or empJTK method 495

with default p-value ≤ 0.01 or 0.05. See Figure 7 for definitions of sets A and B. The 496

black line is the Naive method which orders genes according to their median expression 497

levels (median of time-points), from highest expressed to lowest expressed gene, then, 498

for each gene, calculates the proportion of rhythmic orthologs among those with higher 499

expression. 500

Additional file 5 — Results in insects 501

Methods 502

Pre-processing 503

For each time-series dataset, only protein coding genes were kept. For microarrays, we 504

removed probIDs which were assigned to several GeneIDs. Genes with no expression 505

(= 0) at all time-points were also removed. For each species dataset, we only kept 506

comparable conditions to other species of reference. Tissues separated in sub-tissues 507

such as adrenal gland in adrenal cortex and adrenal medulla in baboon experiment were 508

removed. 509

For each condition (species and tissue), several datasets have been built: i. the full 510

original dataset; ii. the first and fourth quartiles of the median gene expression level 511

of the original data; iii. randomized data (time-points redistributed randomly); iv. 512

randomized data restricted to the first and fourth quartiles of the median gene expression 513

level; and v. a subset of known cycling genes when such data was available (8 to 99 514

genes according to species). 515

Statistical analysis of rhythmic gene expression 516

All the rhythm detection methods (See Materials) were applied to each pre-processed 517

dataset, producing a list of p-values as output. Then, for each gene having several 518

results (ProbIDs or transcripts), we combined p-values by Brown’s method using the 519

EmpiricalBrownsMethod R package. Thus, for each dataset, we obtained a unique 520
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p-value per gene. Whenever the per-gene normalization was not necessary (unique data 521

for all genes), we obtained the original p-value for each gene. 522

Normalization by Z-score 523

The normalization of gene expression values by Z-score transforms the pre-processed 524

data such that for gene i with the original expression value at time-point j is gene.ij, 525

we have: 526

gene.ij.normalized = gene.ij − xi

with xi = mi - Zi
j . mi is the mean expression of gene i: mi =

∑
gene.ij

j ; and Zi = 527

mi−m
sd ; m and sd being the mean and the standard deviation of the original full dataset. 528

Orthology relationships 529

For each species comparison, orthologs relationships have been downloaded from OMA 530

[37]. For simplicity, we only considered one-to-one orthologs. In species comparisons, we 531

only kept orthologous genes that had available data in both species. 532

Naive method 533

The Naive method is only based on expression levels of genes and is not informed about 534

rhythm detection. It simply orders genes according to their median expression levels 535

(median of time-points), from highest expressed to lowest expressed gene. Then, for 536

each gene i, we calculate the proportion of rhythmic orthologs among those with higher 537

expression, i.e. among the genes from the highest expressed one to the gene i. 538

Materials 539

Datasets 540

Mus musculus (13 tissues) 541

Raw microarray and RNA-seq data, from [2], was downloaded from GEO accession 542

(GSE54652). Microarray gc-rma normalized data was sent by Katharina Hayer from 543

CircaDB database [38]. Expression values were already normalized between biological 544

replicates to average out both biological variance between individual animals and technical 545

variance between individual dissections. RNA-seq data was already normalized using 546

DESeq2. Data was obtained for adrenal gland, aorta, brain stem, brown adipose, 547

cerebellum, heart, hypothalamus, kidney, liver, lung, muscle, SCN (only microarray), 548

and white adipose. Probesets on the Affymetrix MoGene-1.0-ST-V1 array were cross- 549

referenced to best-matching gene symbols by using Ensembl BioMart software. 550

Papio anubis [Olive baboon] (11 tissues used) 551

RNA-seq data from [1] was downloaded already normalized by using DESeq2. Read 552

counts per gene were calculated using FeatureCounts. We kept data for aorta, brain 553
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stem, cerebellum, heart, hypothalamus, kidney, liver, lung, muscle, SCN, and white 554

adipose tissues. Data were already provided with Ensembl gene symbols. 555

Rattus norvegicus (lung) 556

Raw microarray data from [39] was downloaded from GEO accession (GSE25612). Over 557

3 days, 54 samples were extracted in light-dark condition with a temporal resolution 558

closer for some time-points (See paper for more details). Contrary to the study, we still 559

considered the 3 successive days samples as successive days measurements. ARS, JTK 560

and RAIN methods don’t operate with irregular time-series. We normalized time-series 561

by calculating the mean value of irregular time-points to obtain regular time-series. rma 562

normalization was performed using the rma R-package. Probesets on the Affymetrix 563

230-2-probe array were cross-referenced to best-matching gene symbols by using Ensembl 564

BioMart software. 565

Dano rerio (liver) 566

Raw microarray data from [3] was downloaded from GEO accession (GSE87659). Data 567

was already rma-normalized, averaged gene-level signal intensity, and already cross- 568

referenced to best-matching transcript symbols. 569

Anopheles gambiae (head and body) 570

Raw microarray data from [40] was downloaded from GEO accession (GSE22585). Non- 571

blood fed female mosquito heads and bodies were collected under light dark and constant 572

dark conditions. We only used data collected in LD condition. We normalized data 573

using the rma R package and cross-referenced to best-matching gene symbols by using 574

VectorBase software. 575

Aedes aegypti (head) 576

Raw microarray data from Ľeming was downloaded from GEO accession (GSE60496). 577

Non-blood fed female mosquito heads were collected under light dark and constant dark 578

conditions. We only used data collected in LD condition. NimbleGen Aedes aegypti 579

12plex array already rma normalized were provided with VectorBase geneIDs. 580

Drosophila melanogaster (head and body) 581

RNA-seq data from [41] was downloaded from GEO accession (GSE64108). They 582

measured RNA concentrations in the head and body of 3-, 5-, and 7-week-old adult flies 583

in ad libidum feeding or 12-hour time-restricted feeding conditions. We only used data 584

from ad libidum feeding condition of 5-week-old adult flies with best temporal resolution. 585

Cross-referenced gene IDs and known cycling genes 586

GeneID, protein coding status, ProbSetID, transcriptsID were downloaded from Ensembl 587

[42] or VectorBase [43] using BioMart. 588
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Known cycling genes were obtained from the KEGG [44] or FlyBase [45] database: 589

• KEGG circadian entrainment entry pathway for the mouse (mmu04713) and the 590

rat (rno04713). This is the pathway by which light activates SCN neurons and the 591

resulting signaling cascade that leads to a phase resetting of the circadian rhythm 592

generated in these neurons. Most of these genes are not involved in generating the 593

rhythm itself and as such cannot be called ‘clock genes’. 594

• KEGG circadian rhythm entry pathway for the baboon (human hsa04710), and 595

Anopheles (aga04711) 596

• FlyBase circadian rhythm entry pathway for Drosophila (GO:0007623). 597

Algorithms and packages 598

MetaCycle R package was performed with parameters: minper=20h and maxper=28h. 599

This package incorporates the 3 algorithms to detect rhythmic signals from time-series 600

datasets: ARSER (ARS), JTK CYCLE (JTK), and Lomb-Scargle (LS). It also provides 601

meta2d that integrates analysis results from multiple methods based on an implementa- 602

tion strategy (see “Introduction to implementation steps of MetaCycle“ in MetaCycle 603

documentation for more details). ARS does not deal with several replicates per time- 604

point. To not introduce biases, we only kept one replicate for ARS performing when 605

the dataset was provided with several replicates per time-point. Rain R package was 606

performed with parameters: period=24h, period.delta=4h (width of period interval), and 607

method=’independent’. In order to obtain unadjusted pvalues as output, we modified 608

the source code of the rain and MetaCycle R packages. 609

Empirical-JTK (empJTK) was executed by running bash commands with parameters: 610

cosine waveform, 24 hours’ period, look for phases every 2 hour from 0 to 22 hours and 611

look for asymmetries every 2 hour from 2 to 22 hours (GitHub alanlhutchison/empirical- 612

JTK CYCLE-with-asymmetry). It is important to run empJTK with python version 613

2.7.11. Raw p-value correspond to P output (P-value corresponding to Tau, uncorrected 614

for multiple hypothesis testing), and default p-value correspond to empP output (min(p- 615

value calculated from empirical null distribution, Bonferroni)). 616

GeneCycle R package [23] was downloaded from CRAN. We used the robust.spectrum 617

function developped by [22] that computes a robust rank-based estimate of the peri- 618

odogram/correlogram. 619

Plots have been created using ggplot2 R library (version 3.1.0); Upset diagrams using 620

UpSetR R package (version 1.3.3) [46]; and Venn diagram using venn R package (version 621

1.7). 622
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