ABSTRACT
Motor stereotypies are common in children with autism spectrum disorder (ASD), intellectual disability, or sensory deprivation, as well as in typically developing children (“primary” stereotypies, CMS). The precise pathophysiological mechanism for motor stereotypies is unknown, although genetic etiologies have been suggested. In this study, we perform whole-exome DNA sequencing in 129 parent-child trios with CMS and 853 control trios (118 cases and 750 controls after quality control). We report an increased rate of de novo predicted-damaging variants in CMS versus controls, identifying KDM5B as a high-confidence risk gene and estimating 184 genes conferring risk. Genes harboring de novo damaging variants in CMS probands show significant overlap with those in Tourette syndrome, ASD candidate genes, and those in ASD probands with high stereotypy scores. Furthermore, exploratory biological pathway and gene ontology analysis highlight histone demethylation, organism development, cell motility, glucocorticoid receptor pathway, and ion channel transport. Continued sequencing of CMS trios will identify more risk genes and allow greater insights into biological mechanisms of stereotypies across diagnostic boundaries.