


(Consortium, 2018). Several GO terms from Biological Process, Molecular Function, and Cellular 393 

Component GO categories were significantly enriched beyond expectation (up to ~83-fold after 394 

normalization) (Table S6). Several major clusters are immediately evident – most notably: 395 

muscle, cardiac, heart; morphogenesis & development; as well as transmembrane, receptor, and 396 

signaling, among others (Figure 7C). This is consistent with our previous observation that several 397 

unknown function PTMs are enriched in cardiomyopathies (Torres et al., 2016), and reiterate that 398 

this area of biology may be understudied in terms of PTM regulation. 399 

 400 

Figure 7. Exploring PTMs at the intersection of multiple independent sources of functional evidence. 401 
(A) Schematic diagram depicting the tri-partite filter used for identifying critically important PTMs here. (B) 402 
Analysis of recall and recommend rates for the resulting 517 filtered PTMs derived in A. (C) Word cloud 403 
diagram showing term frequency within the GO terms enriched between 5x-85x over expectation (greater 404 
frequency = larger size). (D) X-ray crystal structure (PDB:1A4R) of human Cdc42 with important regulatory 405 
(yellow/orange), PTM (red), and disease-linked mutation sites indicated (green). (E,F) SAPH-ire TFx MAP 406 
rank plot and PTM cluster count plot with known and unknown function MAPs indicated by color and circle 407 
size (downloaded from https://saphire.biosci.gatech.edu). 408 
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Surveying the 160 recommended PTMs of unknown function revealed several hotspots 410 

across a wide variety of very important proteins. After filtering further by whether the PTM is in 411 

the vicinity of a known functional modification (Known by Neighbor), resulted in 49 distinct PTMs 412 

for which we found no evidence of function reported (Table S5). Several PTMs in actin and other 413 

muscle/heart-related proteins dominated the list. We were particularly surprised to find a 414 

phosphosite (T161) in Cdc42, a small GTPase critical for actin dynamics and cell polarity 415 

regulation, and an important cancer target (Maldonado and Dharmawardhane, 2018).  The 416 

recommended site falls very close to the catalytic pocket of the enzyme much like the switch I/II 417 

regions that are essential for GTPase activity regulation (Figure 7D). We used the SAPH-ire 418 

website (https://saphire.biosci.gatech.edu) to view T161 in context of the small GTPase family 419 

(IPR001806), finding that the site is one of over 3000 distinct family PTMs and falls within a MAP 420 

that ranks in the top 100 (Figure 7E). While this site does fall within a small cluster of PTMs in 421 

the family, it is one that is understudied compared to other regions of the protein, made obvious 422 

by the KFSC markers for known function sources (green, yellow, red circles) (Figure 7F). Taken 423 

together, these data demonstrate the utility of SAPH-ire TFx as a model and a resource for the 424 

study of PTMs in eukaryotes.  425 

 426 

DISCUSSION 427 

We have created a new machine learning model – SAPH-ire TFx – that is capable of 428 

confidently recommending PTMs of likely functional significance. The model is shown to be highly 429 

predictive for recall of PTMs of known function, and this property is enhanced at increasing 430 

recommendation thresholds provided by the model. After its development, we tested the model 431 

with an expanded dataset to which it had never been previously exposed, showing that its 432 

performance characteristics are robust. To estimate its performance with physiologically relevant 433 

predictions, we demonstrated that the model functions adequately to predict the functionality of 434 

PTMs curated 6 months after the model was developed and tested – providing a type of meta-435 
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experimental validation that goes beyond previously reported models. In a series of benchmarking 436 

tests, we further showed that SAPH-ire TFx outperforms existing machine learning or 437 

conservation-based hotspot models (including one of our previous models) in all respects, 438 

including ROC, recall, and prediction confidence (Figure 5). Finally, we provide quantitatively 439 

validated thresholds that maximize confidence, recall, and recommendations of unknown function 440 

PTMs (the goal of the model).  441 

 Through development and validation of SAPH-ire TFx, we have shown that single features 442 

often held as the standard for predicting  whether or not a PTM is likely to be functional – such as 443 

evolutionary conservation or proximity to catalytic residues – are not capable by themselves of 444 

capturing the breadth of functional PTM observed over the last several decades. Thus, we 445 

suspect that models failing to validate the capture of these true positive data can suffer in their 446 

ability to make confident recommendations. By all benchmarking tests conducted, the SAPH-ire 447 

TFx model captures the largest swath of known functional PTMs.  Evidence from LIME analysis 448 

of model feature contributions shows that this is in part due to its ability to capture functional PTMs 449 

based on more than one combination of features. Indeed, the model recalls known functional 450 

PTMs using either strong evidence from a single feature or weaker evidence across several 451 

features (Figure 3). Consequently, SAPH-ire TFx exhibits equivalence to other models in the 452 

recall of low hanging fruit, represented by PTMs whose role in protein function could be easily 453 

guessed by conservation, proximity to functional residues or observation frequency (Figure S3); 454 

however, it significantly outperforms these models in the recall of high hanging fruit, represented 455 

by PTMs that are not easily recognized as functional by any one single feature alone (Figure 5, 456 

S5).  457 

Considering its ability to capture a broad range of functional PTM, SAPH-ire TFx shows a 458 

considerable increase in the number of PTM sites recommended as likely functional (Figure 4F). 459 

Importantly, these recommendations are based on very strict thresholds (score > 0.95, 0.975, 460 

0.985) that capture the top 67% (at most) of all known functional modifications (at score > 0.95) 461 
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included in the study. If we loosen this threshold to score = 0.75, nearly 90% of currently known 462 

functional PTMs are captured. However, even at this loose threshold nearly half (~47%) of PTMs 463 

with unknown function would not be recommended. While we would not conclude that everything 464 

below a score of 0.75 is non-functional, we can conclude that PTMs below this loose threshold 465 

do not share feature combinations observed for 90% of the functional PTM sites reported thus 466 

far. This is striking and suggests multiple possibilities: that a vast majority of studies on the 467 

functionality of a PTM have been historically restricted to those falling within a narrow range of 468 

specific features (e.g. observation frequency) or that nearly half of all observed PTMs are non-469 

functional noise in our biological systems of interest. It’s also possible that SAPH-ire TFx does 470 

not efficiently detect PTMs whose function is mediated through interaction with other 471 

modifications. We have begun to evaluate the first two hypotheses through experimental 472 

validation of SAPH-ire output wherein we empirically test the functionality of PTM sites across the 473 

range of SAPH-ire scores regardless of recommendation thresholds (Mukherjee et al., 2019). 474 

While our findings have been consistent with the noise hypothesis, more evidence will be 475 

necessary to understand this question carefully. Indeed, evidence necessary to train machine 476 

learning models to detect combinatorial regulatory modifications is severely limiting. In any case, 477 

the SAPH-ire TFx model provides the most comprehensive view of functionality to date. 478 

All of the data described in this report is publicly accessible at 479 

https://saphire.biosci.gatech.edu. The site allows investigators to explore several aspects of the 480 

SAPH-ire TFx model through customizable graphical or tabular output. This resource includes not 481 

only scoring data, but also several other features that are borne from multiple sequence alignment 482 

of PTMs (i.e. MAPs) including:  the relation to known functional PTM data (neighboring or aligned), 483 

protein and family-specific information, PTM type information, density or PTM clustering 484 

information, among other outputs that enable one to quickly survey any given protein or protein 485 

family for direct and aligned PTM evidence. We have shown an example of the graphical output 486 

here (Figure 7E,F), and have ensured that capturing these graphics for use by the end user is 487 
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simple. As a result of these efforts we hope to propel forward the study and understanding of PTM 488 

function not only through an improved quantitative model but also through improved 489 

accessibility/visualization – both of which are equally important to ensure future progress in the 490 

field.  491 

  492 

MATERIALS AND METHODS 493 

PTMs and multiple sequence alignment 494 

 SAPH-ire TFx is PTM agnostic and includes 56 different PTM types (PTMtype), the bulk 495 

of which correspond to phosphorylation, ubiquitination, acetylation, methylation, N-linked 496 

glycosylation, and sumoylation (Table S1). PTMs were collected from multiple sources including 497 

PhosphositePlus (Hornbeck et al., 2015), SysPTM (Li et al., 2014), and dbPTM (Huang et al., 498 

2016). Each PTM was mapped to UniProt identifiers (UID) and validated by matching the native 499 

position (NP) and residue (res) of the curated PTM to UniProt sequences verified for 100% 500 

sequence identity using BLAST (Altschul et al., 1990). Isoforms, although rare in the PTM dataset, 501 

were also included. The final PTM dataset for training contained 435,750  unique PTMs (identified 502 

by UID-NP-res-PTMtype).  503 

Later this process was repeated with an expanded PTM dataset for the purpose of model 504 

validation. UID entries were mapped to whole sequence protein families using InterPro (Mitchell 505 

et al., 2015) followed by multiple sequence alignment of family-linked UniProt sequences using 506 

MUSCLE with default parameters (Edgar, 2004). Families with fewer than 2 members containing 507 

at least 1 PTM per member were excluded. This process resulted in a final 512,015 PTMs mapped 508 

to 8,039 families (Table S2) containing 38,231 UIDs representing 763 eukaryotic organisms 509 

(Table S3). 510 
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Feature selection 511 

 SAPH-ire features were derived from Modified Alignment Positions (MAPs) corresponding 512 

to family alignment positions that harbor at least one PTM, as described previously in detail 513 

(Dewhurst and Torres, 2017; Torres, 2016). A total of eleven features were extracted from 514 

319,981 MAPs (containing the 512,015 PTMs) for inclusion in neural network models described 515 

below (Table S4). The number of unique PTM types observed in the alignment position (AP_PTc), 516 

the PTM residue conservation within the alignment position (PRC), the predicted disorder of the 517 

modified residue (Dis), and the number of unique modified residues within the alignment position 518 

(Modified residue count; MRc) all provide the model with an evolutionary conservation-based 519 

perspective on the MAP – a feature that has been shown to be effective in the past (Landry et al., 520 

2009). The next group of features provide information on the local environment of the MAP (not 521 

including the MAP in question) by providing the modified residue count of neighboring MAPs 522 

(NMrc), the count of neighboring MAPs with modification (Neighbor count, Nc), and neighboring 523 

MAPs that harbor known functional PTM (Known neighbor count, KNc). Neighboring residue 524 

context has been shown to be an effective predictive feature in the past by us and others (Beltrao 525 

et al., 2012; Minguez et al., 2015). Lastly, the number of sources that have reported observation 526 

of the PTM (observation source count; OBSrc), a normalized version of this feature that takes 527 

family membership into account (OBSrc_pf), and the number of UniProt entries associated with 528 

the MAP excluding gaps (Alignment position member count, AP-MEM) are utilized in this model 529 

for the first time here.  530 

 531 
Model implementation, cost function optimization, training, and model selection 532 

The SAPH-ire TFx neural network model and modified cost function (defined below) were 533 

implemented in Tensorflow using the estimator API (Abadi et al., 2016). PTMs and MAPs were 534 

processed into features using Python 3.7.3 and Pandas 0.24.0 (McKinney, 2010). MAPs with at 535 

least two references (PMIDs) of corroborating evidence of biological function, defined by 536 
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PhosphositePlus (Hornbeck et al., 2015), were treated as the positive class with all others being 537 

treated as negative. MAPs with a single source were treated as negative because they lacked 538 

independent confirmation of functional significance and because their inclusion weakened model 539 

performance. The cost for false negatives (misclassified known functional PTMs) was weighted 540 

at a 4 to 1 ratio to false positives (PTMs with unknown function classified as functional) to reflect 541 

the goal of recommending unstudied PTMs for research. Below this 4:1 ratio the performance 542 

suffered, and above it there was no significant improvement while the model began to exhibit 543 

signs of overfitting. 544 

Neural network models of various structure (in terms of connectivity, activation function, 545 

cost function weighting, etc.) were generated in batches of 100 or 200 depending on architecture 546 

complexity. The training set for these models were bootstrapped in order to over-represent the 547 

positive class to avoid sample distribution biasing (Dupret and Koda, 2001). Models were trained 548 

using a 33% holdback rate, with this holdback being used to evaluate batches of models against 549 

the same evaluation set. Model selection relied on Receiver Operating Characteristic (ROC) and 550 

Recall summarization metrics integrated by an Fzero score defined as:  551 

 552 

𝐹𝑧𝑒𝑟𝑜 = 2 ∗
𝑎𝑢𝑟𝑜𝑐 ∗ 𝑟𝑒𝑐𝑎𝑙𝑙
𝑎𝑢𝑟𝑜𝑐 + 𝑟𝑒𝑐𝑎𝑙𝑙

 553 

 554 

Optimal models were defined as those with the greatest Fzero score.  555 

 556 

SAPH-ire TFx model architecture and optimizing performance through recall 557 

For model training, we used a SAPH-ire training dataset generated in 2018, consisting of 558 

435,750 PTMs coalesced by multiple sequence alignment into 272,968 MAPs (Figure 8A). From 559 

each of more than a dozen architecture and training permutations, 200 models were stochastically 560 

trained and evaluated by Fzero and Recall and then filtered to identify the most consistently high 561 
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performing architectures (Batch 1). Due to the intended goal of SAPH-ire to identify “potential 562 

positives”, a high precision (true positives captured / total positives) was not only unwanted but 563 

indicative of a poor model and therefore not included as a summary metric. The agreement 564 

between most of the models made collective intelligence approaches redundant. Therefore, an 565 

additional series of models trained with an added feature (family-weighted observation source  566 

 567 

 568 
 569 
Figure 8. Numerical summary of SAPH-ire TFx development, training, and performance. (A) Diagram 570 
of the training dataset with positive and negative classes indicated. Note that Modified Alignment Positions 571 
(MAPs) with less than 2 literature sources of support were included in the negative class as they were not 572 
used at any point for training the model (see methods).  (B) Plot of true positive recall versus ROC AUC 573 
versus Fzero (color) for the top two of 200 models generated using ten (Batch 1) or eleven (Batch 2) 574 
features (MAP-level analysis). Dashed box (on same scale) indicates performance of individual top models 575 
from Batch 1 and 2 (M1, M2) and a combined model (SAPH-ire TFx) that is generated by taking the average 576 
score of M1 and M2 on the expanded dataset (shown further below). (C) ROC and recall threshold curves 577 
for the combined model (based on MAP-level analysis). (D) Final model architecture, in which the 10 shared 578 
input features [A] and 1 unique input feature [B] of M1 and M2 are indicated. 579 
 580 
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count) were generated (Batch 2). In general, the top model from each batch varied only slightly in 581 

terms of ROC AUC (0.68 – 0.73), but varied dramatically in recall (0.5 – 0.8), suggesting that 582 

significant gains in model performance were achieved by considering recall in addition to ROC 583 

AUC (Figure 8B).  The top performing models from these two independent evaluations were 584 

averaged together to represent the final SAPH-ire score, which outperformed either top model 585 

alone (Figure 8B (inset)). This final score resulted in excellent predictive (AUC = 0.792) and recall 586 

(AUC = 0.694) performance (Figure 8C). The top model from Batch 1 (Model 1; representing a 587 

global perspective) and Batch 2 (Model 2; representing a local perspective) rely on the same 588 

architecture in which the input layer flows into two hidden layers consisting of a rectified linear 589 

unit (RELU) followed by a saturating tanh function (Figure 8D). The RELU allows for scaling the 590 

inputs and dampening the impact of large differences in the magnitude of the features, while the 591 

tanh layer compresses the output to a fixed probability distribution. Model 1 takes in 10 features 592 

without pre-processing, allowing it to use the network architecture to scale the inputs globally. In 593 

contrast, Model 2 uses 11 features, with observation source count normalized by family for each 594 

MAP serving as the additional feature and the other 10 features normalized globally. The output 595 

of both models are averaged together to give the SAPH-ire TFx score. 596 

 597 

Pathogenic SNP and Motif Enrichment Analysis 598 

Genetic mutations and the curated interpretation of their significance to disease were 599 

collected from Clinvar (Landrum et al., 2018). The proteins affected by genetic mutations were 600 

filtered for single nucleotide polymorphisms (SNPs) that alter PTM sites present within the SAPH-601 

ire dataset. These sites were then aggregated by SAPH-ire MAP and separated into one of four 602 

Clinvar-designated categories: Benign, Likely Benign, Pathogenic, or Likely Pathogenic. Only 603 

pathogenic categories were used for further analysis. 604 

Experimentally validated Short Linear Motifs (SliMs) were collected from The Eukaryotic 605 

Linear Motif (ELM) resource for functional sites in proteins (Gouw et al., 2018). At the time of this 606 
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study, ELM contained 289 motif classes clustered into 6 motif categories based on functional 607 

assessment of 3,523 validated instances. Only PTMs that occurred within a validated motif 608 

instance in any category were used for the motif enrichment analysis. 609 

In order to identify additional instances of motifs outside of the experimentally validated 610 

set provided by ELM, we scanned the proteins contributing to the SAPH-ire TFx dataset for amino 611 

acid sequences matching the regular expression patterns provided by ELM. As a purely regular 612 

expression based approach would produce numerous false positives, the resulting SLiMs were 613 

filtered based on conservation of the detected motif within a multiple sequence alignment of 614 

the protein family, only keeping those that had more than 40% occurrence at precise 615 

alignment positions within the family – as prescribed by ELM curators previously (Gibson et 616 

al., 2015).  617 

To investigate PTMs at the intersection of functional SLiM motifs, pathogenic SNP 618 

mutations and SAPHire-TFx recommendations, PTMs within the expanded dataset were filtered 619 

based on the following criteria: (1) The PTM must be recommended by SAPHire-TFx; (2) The 620 

PTM must be within 3 residues of a pathogenic SNP mutation that changed the amino acid 621 

sequence of the associated protein; and (3) The PTM must reside within a predicted SLiM that 622 

has passed the previously stated regular expression filters.  623 

 624 

Graphical and statistical data analyses 625 

 Graphical and statistical data analyses were achieved using a combination of R (R Core 626 

Team, 2013), Python (specifically the pandas library) (McKinney, 2010), and JMP 14.1 (SAS 627 

Institute Inc.). 628 

 629 

SAPH-ire Website 630 
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 The SAPH-ire website (https://saphire.biosci.gatech.edu) is composed of three 631 

microservices managed by Docker (https://www.docker.com/community/open-source). The 632 

SAPH-ire dataset including predictions is loaded into a MongoDB microservice 633 

(https://www.mongodb.com/), which is then queried dynamically by Gunicorn microservice 634 

(ttps://github.com/benoitc/gunicorn). The Gunicorn microservice serves as the API which is 635 

accessible directly at the api endpoint of the SAPH-ire site with structured queries. The API is 636 

read by a visualization microservice developed using Vue.js  (You, n.d.), Plotly (Inc., 2015), and 637 

Vuetify (Leider, 2020). Vue.js was used to create the interactive single page application, Vuetify 638 

provided reactive application components, and Plotly provided dynamic graph element. 639 
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SUPPLEMENTAL TABLES AND FIGURES 
 
Supplemental tables can be found as individual tabs in the supplemental excel file. 
 
Table S1. Frequency of PTM types analyzed by SAPH-ire TFx. 
 
Table S2. List of InterPro families analyzed in SAPH-ire TFx. 
 
Table S3. List of organisms represented by SAPH-ire TFx. 
 
Table S4. Description of features used in the SAPH-ire TFx model. 
 
Table S5. List of PTMs that intersect between SAPH-ire TFx, ELM, and Clinvar. 
 
Table S6. GO enrichment analysis of 221 TFx-recommended PTMs from Table S5.  
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Figure S1. ROC curves at different KFSC thresholds. (unfurled in Figure 1E). 
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Figure S2. Pairwise comparison between SAPH-ire TFx and the PFS machine learning 
models. These data include 49,935 phosphosites that overlap between the SAPH-ire TFx and 
PFS datasets. (A) Score distribution relative to functional status. (B) Inter-quartile ranges from the 
distributions in A. (C). ROC and recall curves for the score comparison of each model. 
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Figure S3. Recall performance improvements observed with SAPH-ire TFx are independent 
of whether the site is serine, threonine or tyrosine. A total of 24,695 phosphosites that overlap 
between S-PFx, PFS, and SAPH-ire TFx were parsed by site identity and the percent recalled or 
missed tallied based on model-specific thresholds indicated in Figure 4.     
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Figure S4. Model recall and recommendation comparison for PTMs associated with 
validated functional SLiMs from the ELM resource.   
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Figure S5. Comparison of SAPH-ire FPx, PFS, and SAPH-ire TFx models relative to 
phosphosite conservation hotspot analysis. Phosphosites localized within conserve 
phosphosite hotspots predicted by Strumillo et al. were used to bin data from the three-model 
comparison shown in figure 5. (A) Score distribution relative to functional status relative to 
predicted hotspots. (B) Inter-quartile ranges from the distributions in A. 
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Figure S6. Model comparison for Class I and II newly curated functional phosphosites. (A) 
Model score distributions for Class I and II newly curated functional PTMs (see figure 4A). “1, 2, 
3 refs” refers to number of PMIDs associated with the new data only (not the data from the original 
analysis of the extended dataset). (B) Recall rates for each model is shown relative to number of 
references supporting functionality of the PTM from A (KFSC = 1, 2, 3 ref). 
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