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ABSTRACT 39 
Protein post-translational modifications (PTMs) are a rapidly expanding feature class of significant 40 
importance in cell biology. Due to a high burden of experimental proof, the number of functional 41 
PTMs in the eukaryotic proteome is currently underestimated. Furthermore, not all PTMs are 42 
functionally equivalent. Therefore, computational approaches that can confidently recommend the 43 
functional potential of experimental PTMs are essential. To address this challenge, we developed 44 
SAPH-ire TFx (https://saphire.biosci.gatech.edu/): a multi-feature neural network model and web 45 
resource optimized for recommending experimental PTMs with high potential for biological 46 
impact. The model is rigorously benchmarked against independent datasets and alternative 47 
models, exhibiting unmatched performance in the recall of known functional PTM sites and the 48 
recommendation of PTMs that were later confirmed experimentally. An analysis of feature 49 
contributions to model outcome provides further insight on the need for multiple rather than single 50 
features to capture the breadth of functional data in the public domain.  51 
 52 
Contact: mtorres35@gatech.edu 53 
Supplementary Information: See Tables S1-S6 & Figures S1-S4.  54 
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INTRODUCTION 55 

Post-translational modifications (PTMs), chemical or proteinaceous alterations to amino 56 

acid residues in a protein, have the potential to expand the function and regulatory control of 57 

proteins beyond the limits of the genome (Prabakaran et al., 2012). PTMs can act on long or short 58 

timescales that allow for dynamic control and response of a cellular proteome to changing 59 

environments or cellular phases that ultimately shape cellular phenotype, often by modulating 60 

changes in protein interaction, localization, or stability (Csizmok and Forman-Kay, 2018). 61 

Concomitantly, disruption to either the amino acid or modification of highly functional PTM sites 62 

can contribute to cellular dysfunction and disease (Gibson et al., 2010; Reimand et al., 2015; 63 

Reimand and Bader, 2014).  64 

The scientific community has witnessed an exponential increase in PTM data over the last 65 

15 years, fueled by high-throughput mass spectrometry that has identified hundreds of different 66 

PTM types occurring on nearly all of the 20 common amino acids. However, the rate at which 67 

PTM data is generated – a parallel process involving hundreds of independent labs – far 68 

surpasses the rate at which it is being curated and/or processed for interpretation – a task 69 

undertaken by a much smaller set of labs and institutions (Chen et al., 2017; Pascovici et al., 70 

2018). A longstanding question emerging from these efforts is whether all PTMs (detected 71 

accurately) are functionally important – a question not easily answered due to the high burden of 72 

experimental evidence needed to prove functionality, which involves significant time, cost, and 73 

specific expertise for any given protein. These challenges are compounded by unnecessary 74 

redundancy in experimental effort and the tendency of most labs not to report non-functional 75 

results. Although not as commonly addressed in the literature, lack of PTM-centric user-friendly 76 

visualization and organization tools – with or without computational enhancements – also raises 77 

significant barriers to PTM data accessibility and interpretation. These underlying challenges limit 78 

the view of what are an are not likely important modifications and this tends to promote a 79 

perspective that the study of PTMs is risky and quite possibly not worth the effort.  80 
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Computational approaches aimed at the functional prioritization, or rank-based sorting, of 81 

PTMs using single PTM site features have made a tangible impact on the discovery of several 82 

new regulatory elements in proteins. Indeed, functional significance of PTM sites that are 83 

evolutionarily conserved – especially across a great phylogenetic distance – have proven to be 84 

more likely functional for the protein families in which they are found (Beltrao et al., 2012; Landry 85 

et al., 2009; Strumillo et al., 2019). Similarly, co-localization was shown to be predictive for co-86 

regulatory phosphorylation-dependent ubiquitination (Minguez et al., 2015, 2013, 2012). Lastly, 87 

protein structural features such as solvent accessibility or PTM proximity to catalytic residues has 88 

proven to be a useful filter for functional modifications (Dewhurst et al., 2015; Johnson et al., 89 

2015). Despite these successes, not all PTMs with experimental evidence of function are highly 90 

conserved, co-localized, or are near catalytic pockets or other important protein structures. 91 

Indeed, cases wherein a PTM’s potential for function is easily predicted by one of these co-92 

occurring features alone may be considered “low-hanging fruit”.  93 

Machine learning models that incorporate multiple PTM site features have shown promise 94 

in capturing a larger proportion of the functional PTM population in eukaryotes (Ochoa et al., 95 

2020; Torres et al., 2016; Xiao et al., 2016), and have enabled the identification of functional 96 

PTMs not readily identifiable through single feature analyses alone (Dewhurst and Torres, 2017). 97 

However, most models have limited potential to inform the broad range of functionality likely to 98 

exist across the Eukaryotic kingdom as most exclude all but one type of PTM – usually 99 

phosphorylation – despite the ample evidence of many other regulatory modifications and sites. 100 

Existing models are also rank-based, in which model output places PTMs in a competitive 101 

hierarchy of functional importance. Within these models, PTMs for which functional evidence 102 

already exists end up being broadly distributed in the scoring regime and with only a small fraction 103 

of candidates rising to the top. This severely limits the utility of rank-based methods for identifying 104 

PTMs of putative function as only the most extreme outliers can be confidently chosen.  105 
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We hypothesize that capturing the breadth of function that exists naturally in biology can 106 

benefit from the use of inclusive models that incorporate data from many different PTM types, 107 

PTM site features, and functional consequences. Here we test this hypothesis through the 108 

development, characterization and application of a new machine learning model, SAPH-ire TFx, 109 

and a complimentary interactive web-based resource and API (https://saphire.biosci.gatech.edu) 110 

to enable PTM data visualization. The model is recommendation rather than rank based and has 111 

been applied to 512,015 total unique PTMs of which ~12,000 have been validated as functional 112 

a priori across 763 eukaryotic organisms. Extension of the results to experimental PTMs of 113 

unknown function suggest that as many as half of them do not exhibit characteristics of functional 114 

PTMs in the public domain. 115 

 116 

RESULTS 117 

SAPH-ire TFx exhibits robust performance on unexposed datasets 118 

A detailed description of the SAPH-ire TFx model design and architecture is described 119 

within materials and methods. Conceptually, the model utilizes feature data extracted from 120 

multiple sequence alignment positions that harbor evidence of PTM (called Modified Alignment 121 

Positions or MAPs), uses these features as inputs into a neural network trained to recognize 122 

MAPs harboring functional PTMs (called known functional MAPs) (Figure 1). For this study, the 123 

model was developed on an initial dataset compiled in late 2018, consisting of 435,750 total PTMs 124 

of which 9,151 were known functional (the training dataset; see materials and methods). We then 125 

evaluated its performance on an expanded PTM dataset in which 102,475 unexposed PTMs 126 

(3,233 known functional) were added to the original set (i.e. the expanded data was not part of 127 

the training nor validation processes employed during model development) (Figure 2A).  128 

To evaluate performance, we used area under the receiver operating characteristic curve 129 

(ROC AUC), which reports on model accuracy as well as the recall of known functional MAPs (i.e. 130 

true positive data). Overall, model performance on the expanded dataset was better than on the  131 
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 132 
Figure 1. Schematic diagram of the SAPH-ire TFx methodology. PTMs of both unknown and known 133 
functional consequence (as determined through curated public record) are organized by full length protein 134 
family multiple sequence alignment, creating Modified Alignment Positions (MAPs) of unknown or known 135 
function. Known function MAPs are used either for model training and/or model validation (via calculation 136 
of model recall) while unknown function MAPs represent the test cases for which a functional impact is not 137 
currently known for any of the aligned PTMs. Features are extracted from MAP data and then these features 138 
used as inputs into a neural network trained to identify known functional MAPs. At this point the model is 139 
blind to whether a MAP is known or unknown. Each MAP (both known and unknown) passes through the 140 
model to receive a SAPH-ire TFx output score that ranges from 0 to 1, where 1 indicates a MAP that closely 141 
resembles a known functional MAP. After scoring, the status of each MAP as known or unknown function 142 
and the sum of literature sources supporting evidence of function (i.e. the Known Function Source Count) 143 
is revealed. Model performance is graded and recommendation thresholds generated using recall of known 144 
function MAPs as a guide.   145 
 146 

original training dataset for both metrics (AUCROC 0.794 and AUCRecall 0.764) (see materials and 147 

methods), suggesting that the addition of new data did not diminish performance (Figure 2B). 148 

Next, we evaluated the model outcome score distributions for unknown and known functional 149 

MAPs. MAPs were first binned by known function source count (KFSC) – a count of the unique 150 

literature sources containing evidence of functional impact for a PTM within the MAP (not included 151 

as a feature in the model). This type of performance evaluation is unique and serves as a proxy 152 

for confidence in model output, which should prioritize MAPs that were established as functional 153 

a priori. The model functioned as intended, showing increasing enrichment of known functional 154 

MAPs with increasing model score (Figure 2C). Moreover, we observed a decrease in the 155 

variance of the prediction with increasing KFSC. These same trends were also evident for the  156 
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 157 
Figure 2. SAPH-re TFx performance on an unexposed dataset. (A) Venn diagram showing the 158 
relationship between the training and expanded datasets. The expanded dataset contained 102,475 newly 159 
curated PTMs. (B) ROC and recall curves for SAPH-ire TFx results from the expanded dataset. (C) 160 
Frequency distribution of SAPH-ire TFx scores relative to true positive status in terms of known function 161 
source count (KFSC = 0, 1, 2, or 3+ references). Area contained by solid lines corresponds to the total 162 
expanded PTM dataset. Area contained by dashed lines corresponds to model output for unexposed PTMs 163 
not contained in the original training dataset. All statistical data shown is aggregated at the MAP level. 164 
 165 

3,233 unexposed known functional PTMs in the expanded dataset to which the model was 166 

unexposed during development, demonstrating the robustness of the model (Figure 2C, dashed 167 

lines). Taken together, the data show that SAPH-ire TFx is a robust and effective model capable 168 

of distinguishing functional PTMs across independent datasets. 169 

 170 

Analysis of feature contributions in the SAPH-ire TFx model: No single feature can 171 

capture all known function PTMs 172 

SAPH-ire TFx incorporates 11 features derived from both empirically and biologically 173 

relevant features. To understand how the model balances these features to reach its  174 
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conclusions and to determine if it is overly reliant on any single feature, we sampled 29,859 MAPs 175 

and conducted a Linear Interpretability Model Explanation (LIME) analysis to calculate feature 176 

contributions for each MAP. We then clustered the samples in this feature space using normal 177 

mixtures. Clusters 1 and 3 have an overrepresentation of known functional MAPs within them 178 

(70%+) whilst making up less than 9% of the sampled MAPs. In contrast, cluster 2 represents 179 

92% of sampled MAPs but also has a minority population of known functional MAPs (Figure 3A).  180 

We used principle components analysis (PCA) to understand the differences in feature 181 

contributions between each cluster, which can give insight into the how SAPHire-TFx decides its 182 

recommendations (Figure 3B). We found that 55% of the variance within the sampled MAPs can 183 

be explained by PC1 and PC2, with the other 9 principal components contributing marginally to 184 

the remaining 45%. Furthermore, we found that cluster 1 has a high variance in terms of both 185 

PC1 and PC2, cluster 2 has a low variance in terms of both PC1 and PC2, while cluster 3 is driven 186 

mostly by PC1. In depth analysis of the eigenvector values in PC1, reveal the largest contributor 187 

is OBSrc, which corresponds to raw observation frequency of PTMs within a MAP, although the  188 

 189 

Figure 3. Exploring SAPH-ire TFx’s interpretation of feature space. Normal mixtures clustering of LIME 190 
analysis data from 29,859 representative MAPs. (A) Percentage of MAPs within normal mixture clusters 191 
that are known to contain a functional PTM. (B) Clusters projected onto two of their principal components. 192 
(C) Magnitude of each feature within the principal components shown in B. OBSrc, observation source 193 
count; AP_OIDc, alignment position organism ID count; MRc, modified residue count; Nc_7, Neighbor count 194 
within +/- 7 alignment positions; AP_MEM, alignment position membership count; AP_PTc, alignment 195 
position PTM type count; KNc_2, known functional neighbor count within +/- 2 alignment positions; 196 
PRC_AP, PTM residue conservation for the alignment position; Dis, disorder prediction value; NMrc_7, 197 
Neighboring modified residue count +/- 7 positions out; OBSrc_pf, observation source count relative to the 198 
protein family membership. (please see detailed feature descriptions in Table S4) 199 
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count of organisms contributing a residue to the alignment position (AP_OIDc), the count of 200 

modified residues in the alignment position (MRc), and the sum of MAPs observed within +/- 7 201 

alignment positions (NC_7) contribute nearly as much (Figure 3C). For PC2, the largest 202 

contributor is observation source count normalized to the number of members in the family 203 

(OBSrc_pf), but is closely followed by modified residue count in neighboring alignment positions 204 

(NMRc_7) and disorder tendency (Dis).  205 

Extrapolating these characteristics of each principle component reveal that cluster 3, 206 

which is highly reliant on PC1, is largely composed of PTMs that are observed frequently globally 207 

(OBSrc) and have some weak evidence of functionality from a combination of: one, their proximity 208 

to PTMs in neighboring alignment positions; two, the diversity of proteins contributing modified 209 

residues to the alignment position; and three, the conservation of the modification across species, 210 

for example. Restated, members of this cluster correspond with PTMs that are readily detectable 211 

by their detection frequency. Cluster 1 contains PTMs that are observed at a range of frequencies 212 

relative to their family and also have strong supporting evidence from other features. Conversely, 213 

cluster 2 has little evidence of functionality from the major features of PC1 and PC2, and therefore 214 

relies on weak contributions from several features. These results support two major conclusions: 215 

one, that single features alone are incapable of capturing the breadth of variation observed for 216 

functional PTMs; and two, that SAPH-ire TFx can recognize functional modifications despite this 217 

variation.  218 

 219 

PTM-agnostic recommendation thresholding suggests that most PTM sites are not like 220 

those we have found are functional thus far   221 

Without further treatment, the SAPH-ire TFx model would be interpreted as a rank-based 222 

model and, as described earlier, interpretation of such models is difficult. Implementing 223 

recommendation thresholds can be useful to improve interpretation of a model, but 224 
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simultaneously create boundaries that, if inappropriately placed, can lead to inaccurate 225 

predictions. To address these problems, we modeled the tradeoff between true and false positive 226 

rates using ROC curves. Our goal was to set a minimum threshold score over which MAPs could 227 

be considered having a high chance of functionality. Due to our desire for SAPH-ire scores to be 228 

agnostic across different PTM types, we first considered that the selected thresholds must not 229 

create a bias in distribution of PTMs occurring above that threshold. To evaluate this, we plotted 230 

the percent representation of each of the most common PTMs in the dataset relative to SAPH-ire 231 

TFx score (Figure 4A). The relative representation of each PTM type deflected significantly above 232 

a score of 0.9897 but was stable below this point and above 0.945, the range between which we 233 

defined as ideal for thresholding.  234 

 235 

Figure 4. Derivation of SAPH-ire TFx recommendation thresholds. (A) Plot of the percent 236 
representation for different PTM types relative to SAPH-ire TFx score, revealing an ideal threshold range 237 
inside which no one PTM becomes over or underrepresented. (B) Unfurled ROC curves showing true 238 
positive (TP) and false positive (FP) rates above given SAPH-ire score. Rates shown are KFSC > 1 (lower 239 
confidence) or KFSC > 2 (higher confidence). Dashed vertical lines represent chosen thresholds where TP 240 
and FP rates are as follows (KFSC >2): 0.95 – TP=0.82, FP=0.11; 0.972 – TP=0.7, FP=0.07; 0.987 – 241 
TP=0.53, FP=0.04. (C) Representative rank-ordered SAPH-ire TFx plot for family IPR000043 242 
(Adenosylhomocysteinase-like family)  with indicated thresholds shown for reference. Shown on an 243 
exponential scale to emphasize differences across the scale. 244 

 245 

Next, we evaluated the ROC curves for the highest confidence true positive MAPs (KFSC 246 

>1, >2) (Figure S1), and unfurled each curve to reveal the independent rates for true and false 247 

positives with respect to the SAPH-ire TFx score. From these curves, three thresholds were 248 

chosen within the ideal range (0.95, 0.9719, and 0.987) that strike a balance between true positive 249 
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hits and false positive recommendations (Figure 4B). These recommendation thresholds provide 250 

useful landmarks to interpret SAPH-ire TFx scores for a protein or family of interest, as shown 251 

here for family IPR000043 (Figure 4C). These thresholds also allow for the evaluation of SAPH-252 

ire in context of other models. 253 

 254 

Benchmarking 255 

 SAPH-ire TFx is one of a small number of published algorithms aimed at functional 256 

prioritization of PTMs, and the first recommendation-based model for functional PTMs. We 257 

therefore sought to draw comparisons with these models to gauge overall performance 258 

improvements. Two predominant models currently exist in the public domain: SAPH-ire FPx (S-259 

FPx) (Dewhurst and Torres, 2017) – an 8-feature neural network PTM ranking model; and a 260 

Phosphosite Functional Score (PFS) model (Ochoa et al., 2019) – a 59-feature gradient boosting 261 

machine learning model trained to identify functional phosphosites.  262 

To evaluate the three models equivalently, we compared model scores for phosphosites 263 

represented in all three datasets. PFS was built using a dataset containing 116,268 phosphosites 264 

that resulted from selective re-analysis of raw mass spectrometry data files collected from a broad 265 

range of eukaryotic organisms (Ochoa et al., 2019). Comparing our source database to the PFS 266 

dataset revealed 71% overlap (82,279 phosphosites), however, this number dropped  in response 267 

to strict protein family membership criteria (see materials and methods). Specifically, of PTMs 268 

that fall within InterPro whole sequence families, 236,982 represent unique phosphosites that 269 

were analyzed by SAPH-ire TFx, and 49,935 of these overlap with ~43% of the PFS dataset 270 

(Figure 5A). Inclusion of S-FPx data, which was based on PTMs curated in early 2017, resulted 271 

in a final comparable dataset of 24,695 phosphosites. 272 

In general, S-FPx and PFS perform similarly in most respects – in part because they were 273 

both rank based models built to maximize ROC AUC but not recall. Both models result in broad 274 

and overlapping score distributions that are significantly different but modestly distinct between   275 
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 276 

Figure 5. Benchmarking SAPH-ire TFx against existing PTM functional prioritization models. SAPH-277 
ire TFx was compared head-to-head with the two prior machine learning models for functional prioritization: 278 
SAPH-ire FPx (Dewhurst and Torres, 2017) and Phosphosite Functional Score (PFS) (Ochoa et al., 2019). 279 
(A) Venn diagram describing the overlap between the expanded dataset (reported here) and phosphosite 280 
datasets for the other two models. Three-way model comparisons were conducted with 24,695 281 
phosphosites. Pairwise model comparisons (PFS vs. SAPH-ire TFx) were also conducted with 49,935 282 
overlapping phosphosites (Figure S2). (B) Comparison of the score distributions for PTMs binned by 283 
category of unknown function, known function (1, 2, or 3+ sources), or known by neighbor (KbN) determined 284 
by SAPH-ire TFx protein family alignments. Dashed lines indicate the thresholds quantitatively determined 285 
for SAPH-ire TFx or loosely recommended by other models. (C) Inter-quartile range relative to known 286 
functional status, based on the distributions shown in B. (D) Comparison of ROC and recall curves for each 287 
model. (E) Pie chart representation of the percentage of recalled versus mis-called (Missed) PTMs based 288 
on thresholds shown in B [0.95 threshold used for SAPH-ire TFx] (top). Number of recommendations 289 
deduced from these percentages applied to the whole dataset for each model (bottom). Recommendations 290 
are also shown for each of the thresholds established for SAPH-ire TFx in figure 3. 291 

Note: B and C are done on MAP level across entire dataset.
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sites of known and unknown function (Figure 5B). This results from broad score distributions that 292 

change marginally across bins of increasing KFSC. S-FPx tends to have lower average scores 293 

that are compressed for the unknown function category and do not increase dramatically until 294 

reaching KFSC >2 true positive status. PFS exhibits higher overall scores compared to S-FPx but 295 

shows comparable responsiveness to increasing KFSC. The score distribution of the two models 296 

as shown by their inter-quartile ranges also increases by almost 2-fold with increasing KFSC, 297 

which is counter to the expectation for increased confidence in classification (Figure 5C). 298 

Consequently, the recommendation thresholds used for S-PFx and PFS must be low to enable 299 

either model to capture even a small percentage of true positive phosphosites. A separate 300 

analysis comparing only PFS and SAPH-ire TFx, which includes a larger phosphosite overlap 301 

(49,935 phosphosites), showed similar results (Figure S2).  302 

In contrast to S-FPx and PFS, the score distributions for SAPH-ire TFx become less, rather 303 

than more broad with increasing KFSC, concomitant with the expectation for greater confidence 304 

with increasing score (Figure 5B,C). ROC and recall curves for all three models show that this 305 

difference is largely due to improved recall performance of SAPH-ire TFx, while ROCAUC is 306 

otherwise similar between the three different models (Figure 5D). The practical consequences of 307 

the differences between SAPH-ire TFx and other models is perhaps most evident in terms of the 308 

number of missed calls based on recommended thresholds, where as many as 32% of highly 309 

confident true positive functional phosphosites (KFSCMAP > 2) are mis-called by previous models 310 

– a quantity that is lowered to less than 6% in SAPH-ire TFx (Figure 5E). This trend was not 311 

specific to whether the phosphosite was a serine, threonine, or tyrosine, further suggesting that 312 

SAPH-ire TFx performs equally well regardless of this distinction (Figures S3). This also results 313 

in an increase in the number of PTMs recommended as functional at all thresholds (Figure 5F). 314 

Both PFS and SAPH-ire TFx performed equally well for phosphosites whose functionality could 315 

have been easily predicted through association with validated functional SLiMs defined by the 316 

ELM resource database (Figure S4).  317 

.CC-BY-NC 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under 

The copyright holder for this preprint (which was notthis version posted May 23, 2020. ; https://doi.org/10.1101/731026doi: bioRxiv preprint 

https://doi.org/10.1101/731026
http://creativecommons.org/licenses/by-nc/4.0/


We next compared all three models to a recently published fourth model that is not based 318 

on machine learning, but rather on a derivative of sequence homology modeling (Strumillo et al., 319 

2018) (Figure S5). In brief, this method defines phosphorylation hotspots based on sequence 320 

conservation of protein regions in domain families that are densely populated with observed 321 

phosphorylation sites. In general, high scores were enriched for conserved phosphosite hotspots 322 

regardless of model, with SAPH-ire TFx exhibiting the best overall performance in terms of recall 323 

and score distribution across KFSC.  324 

In summary, benchmarking tests of SAPH-ire TFx support the conclusion that the model 325 

is robust and effective for the classification of PTM functional status and surpasses the recall 326 

performance of previous models. 327 

 328 

Evaluating the model using newly reported experimental evidence and disease linkage 329 

A fortuitous time gap between model development and the writing of this report allowed 330 

us to test the accuracy of SAPH-ire TFx predictions using newly reported experimental evidence 331 

that arrived after scoring was complete. Between June and December 2019, an update to the 332 

functional site database curated by PhosphoSitePlus resulted in an increase of 1066 new 333 

functional PTM sites. Consequently, we could use the new data to simulate a situation in which 334 

an experimentalist has chosen to investigate the functional impact of a PTM upon 335 

recommendations provided by SAPH-ire TFx. In this case, MAPs originally classified as ‘unknown’ 336 

in the model output could be re-classified as known functional and then this information used to 337 

evaluate model effectiveness. To do this, we cross-referenced the new functional data with 338 

existing data from the SAPH-ire TFx expanded dataset, revealing 723 MAP associations (Figure 339 

6A). Of these, we further discriminated between two classes: PTMs previously associated with 340 

MAPs that were already known to be functional due to association with functionality in other PTMs 341 

(Class I; 228) and PTMs associated with MAPs previously unassociated with any functional 342 
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evidence (Class II; 495). In each class, the curated functional mechanisms regulated by these 343 

PTMs were diverse – spanning from regulatory control over molecular association to protein 344 

localization, enzyme activity, receptor internalization, and protein degradation/stability (Figure 345 

6A).  346 

The median SAPH-ire TFx score for functional PTMs in class I was above the 347 

recommendation threshold for MAPs of known function previously supported by evidence from 1 348 

to 3+ references (Figure 6B, left). Moreover, new functional PTMs with more than one reference 349 

(from the December 2019 update) were further enriched above the threshold in most cases (red 350 

circles). Some of the associated references for the new functional data were from as recent as  351 

 352 

Figure 6. SAPH-ire TFx performance with new functional and disease-linked PTM data. (A, top) Venn 353 
diagrams depicting new functional PTM data in comparison to the expanded dataset from figure 2. Class I 354 
PTMs are new functional PTM data already associated with known functional MAPs in SAPH-ire TFx. Class 355 
II PTMs are new functional PTM data associated with MAPs previously classified as unknown functional 356 
(represent completely new experimental data). (A, bottom) pie chart indicating molecular function 357 
categories curated for the new functional PTMs. (B) Score distributions for new functional PTM data in 358 
Class I and Class II. Red circles correspond to PTMs with 2 references supporting functional impact of the 359 
PTM (from the December 2019 update). Original MAP classification (1, 2, 3+ refs) is based on the original 360 
classification from figure 2.  361 

 362 

2018, which suggest that experimental redundancy within a MAP is common and also probably 363 

not always well known to the experimentalist – hence the advantage of tracking function via 364 

alignment position in a family. In class II, which represent new functional PTMs that align with 365 

MAPs previously classified as unknown function, we found a similar trend (Figure 6B, right). 366 

Note: B and C are done on MAP level across entire dataset.
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Although the median score was slightly below our lowest threshold of 0.95, the bulk density of the 367 

new data scored near or above this threshold. Similarly, most new functional PTM data with more 368 

than one reference (red circles) were enriched above the recommendation thresholds for SAPH-369 

ire TFx. Finally, we also noted that several new functional PTMs also scored poorly by SAPH-ire 370 

TFx in class II. However, benchmark comparisons against S-PFx and PFS again showed 371 

significant improvement in recall of the newly reported functional PTMs by SAPH-ire TFx, 372 

suggesting that the model outperforms existing methods (Figure S6). Time will be necessary to 373 

establish if new reports of PTM function are corroborated by more than one investigation before 374 

any further conclusions can be drawn. In summary, new functional PTM data serve as proxies for 375 

experimental validation of the SAPH-ire TFx model and provide strong evidence that the model 376 

is effective for recommending functional modifications that span a broad range of molecular 377 

control mechanisms. 378 

 379 

SAPH-ire TFx in practice:  Recommending PTMs of unknown function at the intersection 380 

of empirical and computational evidence 381 

 Once validated, we decided to use SAPH-ire TFx predictions to filter PTMs that are 382 

proximal to functional residues and/or localized within functional short linear motifs (SLiMs). We 383 

reasoned that such an effort would highlight PTMs of potentially high biological impact. Therefore, 384 

we investigated SAPH-ire TFx-recommended PTMs that are within 3 residues of a pathogenic 385 

amino acid substitution mutation (curated by ClinVar) and within a predicted functional SLiM motif 386 

(curated by the ELM resource). 517 PTMs within the SAPHire-TFx set met these conditions 387 

(Figure 7A). Among these, 84 PTMs were already known to be functional and among the 388 

remaining 433 unknown function PTMs, 160 (36.9%) were recommended by SAPH-ire TFx 389 

(Figure 7B; Table S5). To assess the biological landscape of the recommended PTMs, we 390 

performed a gene ontology (GO) enrichment analysis (http://geneontology.org) of proteins in the 391 

recommended list normalized to the GO enrichment of all human PTMs in the extended dataset 392 
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(Consortium, 2018). Several GO terms from Biological Process, Molecular Function, and Cellular 393 

Component GO categories were significantly enriched beyond expectation (up to ~83-fold after 394 

normalization) (Table S6). Several major clusters are immediately evident – most notably: 395 

muscle, cardiac, heart; morphogenesis & development; as well as transmembrane, receptor, and 396 

signaling, among others (Figure 7C). This is consistent with our previous observation that several 397 

unknown function PTMs are enriched in cardiomyopathies (Torres et al., 2016), and reiterate that 398 

this area of biology may be understudied in terms of PTM regulation. 399 

 400 

Figure 7. Exploring PTMs at the intersection of multiple independent sources of functional evidence. 401 
(A) Schematic diagram depicting the tri-partite filter used for identifying critically important PTMs here. (B) 402 
Analysis of recall and recommend rates for the resulting 517 filtered PTMs derived in A. (C) Word cloud 403 
diagram showing term frequency within the GO terms enriched between 5x-85x over expectation (greater 404 
frequency = larger size). (D) X-ray crystal structure (PDB:1A4R) of human Cdc42 with important regulatory 405 
(yellow/orange), PTM (red), and disease-linked mutation sites indicated (green). (E,F) SAPH-ire TFx MAP 406 
rank plot and PTM cluster count plot with known and unknown function MAPs indicated by color and circle 407 
size (downloaded from https://saphire.biosci.gatech.edu). 408 
 409 
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Surveying the 160 recommended PTMs of unknown function revealed several hotspots 410 

across a wide variety of very important proteins. After filtering further by whether the PTM is in 411 

the vicinity of a known functional modification (Known by Neighbor), resulted in 49 distinct PTMs 412 

for which we found no evidence of function reported (Table S5). Several PTMs in actin and other 413 

muscle/heart-related proteins dominated the list. We were particularly surprised to find a 414 

phosphosite (T161) in Cdc42, a small GTPase critical for actin dynamics and cell polarity 415 

regulation, and an important cancer target (Maldonado and Dharmawardhane, 2018).  The 416 

recommended site falls very close to the catalytic pocket of the enzyme much like the switch I/II 417 

regions that are essential for GTPase activity regulation (Figure 7D). We used the SAPH-ire 418 

website (https://saphire.biosci.gatech.edu) to view T161 in context of the small GTPase family 419 

(IPR001806), finding that the site is one of over 3000 distinct family PTMs and falls within a MAP 420 

that ranks in the top 100 (Figure 7E). While this site does fall within a small cluster of PTMs in 421 

the family, it is one that is understudied compared to other regions of the protein, made obvious 422 

by the KFSC markers for known function sources (green, yellow, red circles) (Figure 7F). Taken 423 

together, these data demonstrate the utility of SAPH-ire TFx as a model and a resource for the 424 

study of PTMs in eukaryotes.  425 

 426 

DISCUSSION 427 

We have created a new machine learning model – SAPH-ire TFx – that is capable of 428 

confidently recommending PTMs of likely functional significance. The model is shown to be highly 429 

predictive for recall of PTMs of known function, and this property is enhanced at increasing 430 

recommendation thresholds provided by the model. After its development, we tested the model 431 

with an expanded dataset to which it had never been previously exposed, showing that its 432 

performance characteristics are robust. To estimate its performance with physiologically relevant 433 

predictions, we demonstrated that the model functions adequately to predict the functionality of 434 

PTMs curated 6 months after the model was developed and tested – providing a type of meta-435 
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experimental validation that goes beyond previously reported models. In a series of benchmarking 436 

tests, we further showed that SAPH-ire TFx outperforms existing machine learning or 437 

conservation-based hotspot models (including one of our previous models) in all respects, 438 

including ROC, recall, and prediction confidence (Figure 5). Finally, we provide quantitatively 439 

validated thresholds that maximize confidence, recall, and recommendations of unknown function 440 

PTMs (the goal of the model).  441 

 Through development and validation of SAPH-ire TFx, we have shown that single features 442 

often held as the standard for predicting  whether or not a PTM is likely to be functional – such as 443 

evolutionary conservation or proximity to catalytic residues – are not capable by themselves of 444 

capturing the breadth of functional PTM observed over the last several decades. Thus, we 445 

suspect that models failing to validate the capture of these true positive data can suffer in their 446 

ability to make confident recommendations. By all benchmarking tests conducted, the SAPH-ire 447 

TFx model captures the largest swath of known functional PTMs.  Evidence from LIME analysis 448 

of model feature contributions shows that this is in part due to its ability to capture functional PTMs 449 

based on more than one combination of features. Indeed, the model recalls known functional 450 

PTMs using either strong evidence from a single feature or weaker evidence across several 451 

features (Figure 3). Consequently, SAPH-ire TFx exhibits equivalence to other models in the 452 

recall of low hanging fruit, represented by PTMs whose role in protein function could be easily 453 

guessed by conservation, proximity to functional residues or observation frequency (Figure S3); 454 

however, it significantly outperforms these models in the recall of high hanging fruit, represented 455 

by PTMs that are not easily recognized as functional by any one single feature alone (Figure 5, 456 

S5).  457 

Considering its ability to capture a broad range of functional PTM, SAPH-ire TFx shows a 458 

considerable increase in the number of PTM sites recommended as likely functional (Figure 4F). 459 

Importantly, these recommendations are based on very strict thresholds (score > 0.95, 0.975, 460 

0.985) that capture the top 67% (at most) of all known functional modifications (at score > 0.95) 461 
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included in the study. If we loosen this threshold to score = 0.75, nearly 90% of currently known 462 

functional PTMs are captured. However, even at this loose threshold nearly half (~47%) of PTMs 463 

with unknown function would not be recommended. While we would not conclude that everything 464 

below a score of 0.75 is non-functional, we can conclude that PTMs below this loose threshold 465 

do not share feature combinations observed for 90% of the functional PTM sites reported thus 466 

far. This is striking and suggests multiple possibilities: that a vast majority of studies on the 467 

functionality of a PTM have been historically restricted to those falling within a narrow range of 468 

specific features (e.g. observation frequency) or that nearly half of all observed PTMs are non-469 

functional noise in our biological systems of interest. It’s also possible that SAPH-ire TFx does 470 

not efficiently detect PTMs whose function is mediated through interaction with other 471 

modifications. We have begun to evaluate the first two hypotheses through experimental 472 

validation of SAPH-ire output wherein we empirically test the functionality of PTM sites across the 473 

range of SAPH-ire scores regardless of recommendation thresholds (Mukherjee et al., 2019). 474 

While our findings have been consistent with the noise hypothesis, more evidence will be 475 

necessary to understand this question carefully. Indeed, evidence necessary to train machine 476 

learning models to detect combinatorial regulatory modifications is severely limiting. In any case, 477 

the SAPH-ire TFx model provides the most comprehensive view of functionality to date. 478 

All of the data described in this report is publicly accessible at 479 

https://saphire.biosci.gatech.edu. The site allows investigators to explore several aspects of the 480 

SAPH-ire TFx model through customizable graphical or tabular output. This resource includes not 481 

only scoring data, but also several other features that are borne from multiple sequence alignment 482 

of PTMs (i.e. MAPs) including:  the relation to known functional PTM data (neighboring or aligned), 483 

protein and family-specific information, PTM type information, density or PTM clustering 484 

information, among other outputs that enable one to quickly survey any given protein or protein 485 

family for direct and aligned PTM evidence. We have shown an example of the graphical output 486 

here (Figure 7E,F), and have ensured that capturing these graphics for use by the end user is 487 
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simple. As a result of these efforts we hope to propel forward the study and understanding of PTM 488 

function not only through an improved quantitative model but also through improved 489 

accessibility/visualization – both of which are equally important to ensure future progress in the 490 

field.  491 

  492 

MATERIALS AND METHODS 493 

PTMs and multiple sequence alignment 494 

 SAPH-ire TFx is PTM agnostic and includes 56 different PTM types (PTMtype), the bulk 495 

of which correspond to phosphorylation, ubiquitination, acetylation, methylation, N-linked 496 

glycosylation, and sumoylation (Table S1). PTMs were collected from multiple sources including 497 

PhosphositePlus (Hornbeck et al., 2015), SysPTM (Li et al., 2014), and dbPTM (Huang et al., 498 

2016). Each PTM was mapped to UniProt identifiers (UID) and validated by matching the native 499 

position (NP) and residue (res) of the curated PTM to UniProt sequences verified for 100% 500 

sequence identity using BLAST (Altschul et al., 1990). Isoforms, although rare in the PTM dataset, 501 

were also included. The final PTM dataset for training contained 435,750  unique PTMs (identified 502 

by UID-NP-res-PTMtype).  503 

Later this process was repeated with an expanded PTM dataset for the purpose of model 504 

validation. UID entries were mapped to whole sequence protein families using InterPro (Mitchell 505 

et al., 2015) followed by multiple sequence alignment of family-linked UniProt sequences using 506 

MUSCLE with default parameters (Edgar, 2004). Families with fewer than 2 members containing 507 

at least 1 PTM per member were excluded. This process resulted in a final 512,015 PTMs mapped 508 

to 8,039 families (Table S2) containing 38,231 UIDs representing 763 eukaryotic organisms 509 

(Table S3). 510 
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Feature selection 511 

 SAPH-ire features were derived from Modified Alignment Positions (MAPs) corresponding 512 

to family alignment positions that harbor at least one PTM, as described previously in detail 513 

(Dewhurst and Torres, 2017; Torres, 2016). A total of eleven features were extracted from 514 

319,981 MAPs (containing the 512,015 PTMs) for inclusion in neural network models described 515 

below (Table S4). The number of unique PTM types observed in the alignment position (AP_PTc), 516 

the PTM residue conservation within the alignment position (PRC), the predicted disorder of the 517 

modified residue (Dis), and the number of unique modified residues within the alignment position 518 

(Modified residue count; MRc) all provide the model with an evolutionary conservation-based 519 

perspective on the MAP – a feature that has been shown to be effective in the past (Landry et al., 520 

2009). The next group of features provide information on the local environment of the MAP (not 521 

including the MAP in question) by providing the modified residue count of neighboring MAPs 522 

(NMrc), the count of neighboring MAPs with modification (Neighbor count, Nc), and neighboring 523 

MAPs that harbor known functional PTM (Known neighbor count, KNc). Neighboring residue 524 

context has been shown to be an effective predictive feature in the past by us and others (Beltrao 525 

et al., 2012; Minguez et al., 2015). Lastly, the number of sources that have reported observation 526 

of the PTM (observation source count; OBSrc), a normalized version of this feature that takes 527 

family membership into account (OBSrc_pf), and the number of UniProt entries associated with 528 

the MAP excluding gaps (Alignment position member count, AP-MEM) are utilized in this model 529 

for the first time here.  530 

 531 
Model implementation, cost function optimization, training, and model selection 532 

The SAPH-ire TFx neural network model and modified cost function (defined below) were 533 

implemented in Tensorflow using the estimator API (Abadi et al., 2016). PTMs and MAPs were 534 

processed into features using Python 3.7.3 and Pandas 0.24.0 (McKinney, 2010). MAPs with at 535 

least two references (PMIDs) of corroborating evidence of biological function, defined by 536 
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PhosphositePlus (Hornbeck et al., 2015), were treated as the positive class with all others being 537 

treated as negative. MAPs with a single source were treated as negative because they lacked 538 

independent confirmation of functional significance and because their inclusion weakened model 539 

performance. The cost for false negatives (misclassified known functional PTMs) was weighted 540 

at a 4 to 1 ratio to false positives (PTMs with unknown function classified as functional) to reflect 541 

the goal of recommending unstudied PTMs for research. Below this 4:1 ratio the performance 542 

suffered, and above it there was no significant improvement while the model began to exhibit 543 

signs of overfitting. 544 

Neural network models of various structure (in terms of connectivity, activation function, 545 

cost function weighting, etc.) were generated in batches of 100 or 200 depending on architecture 546 

complexity. The training set for these models were bootstrapped in order to over-represent the 547 

positive class to avoid sample distribution biasing (Dupret and Koda, 2001). Models were trained 548 

using a 33% holdback rate, with this holdback being used to evaluate batches of models against 549 

the same evaluation set. Model selection relied on Receiver Operating Characteristic (ROC) and 550 

Recall summarization metrics integrated by an Fzero score defined as:  551 

 552 

𝐹𝑧𝑒𝑟𝑜 = 2 ∗
𝑎𝑢𝑟𝑜𝑐 ∗ 𝑟𝑒𝑐𝑎𝑙𝑙
𝑎𝑢𝑟𝑜𝑐 + 𝑟𝑒𝑐𝑎𝑙𝑙

 553 

 554 

Optimal models were defined as those with the greatest Fzero score.  555 

 556 

SAPH-ire TFx model architecture and optimizing performance through recall 557 

For model training, we used a SAPH-ire training dataset generated in 2018, consisting of 558 

435,750 PTMs coalesced by multiple sequence alignment into 272,968 MAPs (Figure 8A). From 559 

each of more than a dozen architecture and training permutations, 200 models were stochastically 560 

trained and evaluated by Fzero and Recall and then filtered to identify the most consistently high 561 
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performing architectures (Batch 1). Due to the intended goal of SAPH-ire to identify “potential 562 

positives”, a high precision (true positives captured / total positives) was not only unwanted but 563 

indicative of a poor model and therefore not included as a summary metric. The agreement 564 

between most of the models made collective intelligence approaches redundant. Therefore, an 565 

additional series of models trained with an added feature (family-weighted observation source  566 

 567 

 568 
 569 
Figure 8. Numerical summary of SAPH-ire TFx development, training, and performance. (A) Diagram 570 
of the training dataset with positive and negative classes indicated. Note that Modified Alignment Positions 571 
(MAPs) with less than 2 literature sources of support were included in the negative class as they were not 572 
used at any point for training the model (see methods).  (B) Plot of true positive recall versus ROC AUC 573 
versus Fzero (color) for the top two of 200 models generated using ten (Batch 1) or eleven (Batch 2) 574 
features (MAP-level analysis). Dashed box (on same scale) indicates performance of individual top models 575 
from Batch 1 and 2 (M1, M2) and a combined model (SAPH-ire TFx) that is generated by taking the average 576 
score of M1 and M2 on the expanded dataset (shown further below). (C) ROC and recall threshold curves 577 
for the combined model (based on MAP-level analysis). (D) Final model architecture, in which the 10 shared 578 
input features [A] and 1 unique input feature [B] of M1 and M2 are indicated. 579 
 580 
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count) were generated (Batch 2). In general, the top model from each batch varied only slightly in 581 

terms of ROC AUC (0.68 – 0.73), but varied dramatically in recall (0.5 – 0.8), suggesting that 582 

significant gains in model performance were achieved by considering recall in addition to ROC 583 

AUC (Figure 8B).  The top performing models from these two independent evaluations were 584 

averaged together to represent the final SAPH-ire score, which outperformed either top model 585 

alone (Figure 8B (inset)). This final score resulted in excellent predictive (AUC = 0.792) and recall 586 

(AUC = 0.694) performance (Figure 8C). The top model from Batch 1 (Model 1; representing a 587 

global perspective) and Batch 2 (Model 2; representing a local perspective) rely on the same 588 

architecture in which the input layer flows into two hidden layers consisting of a rectified linear 589 

unit (RELU) followed by a saturating tanh function (Figure 8D). The RELU allows for scaling the 590 

inputs and dampening the impact of large differences in the magnitude of the features, while the 591 

tanh layer compresses the output to a fixed probability distribution. Model 1 takes in 10 features 592 

without pre-processing, allowing it to use the network architecture to scale the inputs globally. In 593 

contrast, Model 2 uses 11 features, with observation source count normalized by family for each 594 

MAP serving as the additional feature and the other 10 features normalized globally. The output 595 

of both models are averaged together to give the SAPH-ire TFx score. 596 

 597 

Pathogenic SNP and Motif Enrichment Analysis 598 

Genetic mutations and the curated interpretation of their significance to disease were 599 

collected from Clinvar (Landrum et al., 2018). The proteins affected by genetic mutations were 600 

filtered for single nucleotide polymorphisms (SNPs) that alter PTM sites present within the SAPH-601 

ire dataset. These sites were then aggregated by SAPH-ire MAP and separated into one of four 602 

Clinvar-designated categories: Benign, Likely Benign, Pathogenic, or Likely Pathogenic. Only 603 

pathogenic categories were used for further analysis. 604 

Experimentally validated Short Linear Motifs (SliMs) were collected from The Eukaryotic 605 

Linear Motif (ELM) resource for functional sites in proteins (Gouw et al., 2018). At the time of this 606 
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study, ELM contained 289 motif classes clustered into 6 motif categories based on functional 607 

assessment of 3,523 validated instances. Only PTMs that occurred within a validated motif 608 

instance in any category were used for the motif enrichment analysis. 609 

In order to identify additional instances of motifs outside of the experimentally validated 610 

set provided by ELM, we scanned the proteins contributing to the SAPH-ire TFx dataset for amino 611 

acid sequences matching the regular expression patterns provided by ELM. As a purely regular 612 

expression based approach would produce numerous false positives, the resulting SLiMs were 613 

filtered based on conservation of the detected motif within a multiple sequence alignment of 614 

the protein family, only keeping those that had more than 40% occurrence at precise 615 

alignment positions within the family – as prescribed by ELM curators previously (Gibson et 616 

al., 2015).  617 

To investigate PTMs at the intersection of functional SLiM motifs, pathogenic SNP 618 

mutations and SAPHire-TFx recommendations, PTMs within the expanded dataset were filtered 619 

based on the following criteria: (1) The PTM must be recommended by SAPHire-TFx; (2) The 620 

PTM must be within 3 residues of a pathogenic SNP mutation that changed the amino acid 621 

sequence of the associated protein; and (3) The PTM must reside within a predicted SLiM that 622 

has passed the previously stated regular expression filters.  623 

 624 

Graphical and statistical data analyses 625 

 Graphical and statistical data analyses were achieved using a combination of R (R Core 626 

Team, 2013), Python (specifically the pandas library) (McKinney, 2010), and JMP 14.1 (SAS 627 

Institute Inc.). 628 

 629 

SAPH-ire Website 630 
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 The SAPH-ire website (https://saphire.biosci.gatech.edu) is composed of three 631 

microservices managed by Docker (https://www.docker.com/community/open-source). The 632 

SAPH-ire dataset including predictions is loaded into a MongoDB microservice 633 

(https://www.mongodb.com/), which is then queried dynamically by Gunicorn microservice 634 

(ttps://github.com/benoitc/gunicorn). The Gunicorn microservice serves as the API which is 635 

accessible directly at the api endpoint of the SAPH-ire site with structured queries. The API is 636 

read by a visualization microservice developed using Vue.js  (You, n.d.), Plotly (Inc., 2015), and 637 

Vuetify (Leider, 2020). Vue.js was used to create the interactive single page application, Vuetify 638 

provided reactive application components, and Plotly provided dynamic graph element. 639 

 640 
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SUPPLEMENTAL TABLES AND FIGURES 
 
Supplemental tables can be found as individual tabs in the supplemental excel file. 
 
Table S1. Frequency of PTM types analyzed by SAPH-ire TFx. 
 
Table S2. List of InterPro families analyzed in SAPH-ire TFx. 
 
Table S3. List of organisms represented by SAPH-ire TFx. 
 
Table S4. Description of features used in the SAPH-ire TFx model. 
 
Table S5. List of PTMs that intersect between SAPH-ire TFx, ELM, and Clinvar. 
 
Table S6. GO enrichment analysis of 221 TFx-recommended PTMs from Table S5.  
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Figure S1. ROC curves at different KFSC thresholds. (unfurled in Figure 1E). 
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Figure S2. Pairwise comparison between SAPH-ire TFx and the PFS machine learning 
models. These data include 49,935 phosphosites that overlap between the SAPH-ire TFx and 
PFS datasets. (A) Score distribution relative to functional status. (B) Inter-quartile ranges from the 
distributions in A. (C). ROC and recall curves for the score comparison of each model. 
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Figure S3. Recall performance improvements observed with SAPH-ire TFx are independent 
of whether the site is serine, threonine or tyrosine. A total of 24,695 phosphosites that overlap 
between S-PFx, PFS, and SAPH-ire TFx were parsed by site identity and the percent recalled or 
missed tallied based on model-specific thresholds indicated in Figure 4.     
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Figure S4. Model recall and recommendation comparison for PTMs associated with 
validated functional SLiMs from the ELM resource.   
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Figure S5. Comparison of SAPH-ire FPx, PFS, and SAPH-ire TFx models relative to 
phosphosite conservation hotspot analysis. Phosphosites localized within conserve 
phosphosite hotspots predicted by Strumillo et al. were used to bin data from the three-model 
comparison shown in figure 5. (A) Score distribution relative to functional status relative to 
predicted hotspots. (B) Inter-quartile ranges from the distributions in A. 
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Figure S6. Model comparison for Class I and II newly curated functional phosphosites. (A) 
Model score distributions for Class I and II newly curated functional PTMs (see figure 4A). “1, 2, 
3 refs” refers to number of PMIDs associated with the new data only (not the data from the original 
analysis of the extended dataset). (B) Recall rates for each model is shown relative to number of 
references supporting functionality of the PTM from A (KFSC = 1, 2, 3 ref). 
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